Commit 17e36b3a authored by frtabu's avatar frtabu

add ocp/frf/enhanced basic simulator sources

parent 87a8cb28
#General
This is a RF simulator that allows to test OAI without a RF board.
It replaces a actual RF board driver.
As much as possible, it works like a RF board, but not in realtime: it can run faster than realtime if there is enough CPU or slower (it is CPU bound instead of real time RF sampling bound)
#build
## From build_oai
You can build it the same way, and together with actual RF driver
Example:
```bash
./build_oai --ue-nas-use-tun --UE --eNB -w SIMU
```
It is also possible to build actual RF and use choose on each run:
```bash
./build_oai --ue-nas-use-tun --UE --eNB -w USRP --rfsimulator
```
Will build both the eNB (lte-softmodem) and the UE (lte-uesoftmodem)
We recommend to use the option --ue-nas-use-tun that is much simpler to use than the OAI kernel driver.
## Add the rfsimulator after initial build
After any regular build, you can compile the driver
```bash
cd <the_compilation_dir_from_bouild_oai_script>/build
make rfsimulator
```
Then, you can use it freely
# Usage
Setting the env variable RFSIMULATOR enables the RF board simulator
It should the set to "enb" in the eNB
## 4G case
For the UE, it should be set to the IP address of the eNB
example:
```bash
sudo RFSIMULATOR=192.168.2.200 ./lte-uesoftmodem -C 2685000000 -r 50
```
Except this, the UE and the eNB can be used as it the RF is real
If you reach 'RA not active' on UE, be careful to generate a valid SIM
```bash
$OPENAIR_DIR/targets/bin/conf2uedata -c $OPENAIR_DIR/openair3/NAS/TOOLS/ue_eurecom_test_sfr.conf -o .
```
## 5G case
After regular build, add the simulation driver
(don't use ./build_oai -w SIMU until we merge 4G and 5G branches)
```bash
cd ran_build/build
make rfsimulator
```
### Launch gNB in one window
```bash
sudo RFSIMULATOR=enb ./nr-softmodem -O ../../../targets/PROJECTS/GENERIC-LTE-EPC/CONF/gnb.band78.tm1.106PRB.usrpn300.conf --parallel-config PARALLEL_SINGLE_THREAD
```
### Launch UE in another window
```bash
sudo RFSIMULATOR=127.0.0.1 ./nr-uesoftmodem --numerology 1 -r 106 -C 3510000000
```
Of course, set the gNB machine IP address if the UE and the gNB are not on the same machine
In UE, you can add "-d" to get the softscope
#Caveacts
Still issues in power control: txgain, rxgain are not used
no S1 mode is currently broken, so we were not able to test the simulator in noS1 mode
/*
Author: Laurent THOMAS, Open Cells for Nokia
copyleft: OpenAirInterface Software Alliance and it's licence
*/
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdbool.h>
#include <errno.h>
#include <sys/epoll.h>
#include <string.h>
#include <common/utils/assertions.h>
#include <common/utils/LOG/log.h>
#include "common_lib.h"
#include <openair1/PHY/defs_eNB.h>
#include "openair1/PHY/defs_UE.h"
#define PORT 4043 //TCP port for this simulator
#define CirSize 3072000 // 100ms is enough
#define sample_t uint32_t // 2*16 bits complex number
#define sampleToByte(a,b) ((a)*(b)*sizeof(sample_t))
#define byteToSample(a,b) ((a)/(sizeof(sample_t)*(b)))
#define MAGICeNB 0xA5A5A5A5A5A5A5A5
#define MAGICUE 0x5A5A5A5A5A5A5A5A
typedef struct {
uint64_t magic;
uint32_t size;
uint32_t nbAnt;
uint64_t timestamp;
} transferHeader;
typedef struct buffer_s {
int conn_sock;
bool alreadyRead;
uint64_t lastReceivedTS;
bool headerMode;
transferHeader th;
char *transferPtr;
uint64_t remainToTransfer;
char *circularBufEnd;
sample_t *circularBuf;
} buffer_t;
typedef struct {
int listen_sock, epollfd;
uint64_t nextTimestamp;
uint64_t typeStamp;
uint64_t initialAhead;
char *ip;
buffer_t buf[FD_SETSIZE];
} rfsimulator_state_t;
void allocCirBuf(rfsimulator_state_t *bridge, int sock) {
buffer_t *ptr=&bridge->buf[sock];
AssertFatal ( (ptr->circularBuf=(sample_t *) malloc(sampleToByte(CirSize,1))) != NULL, "");
ptr->circularBufEnd=((char *)ptr->circularBuf)+sampleToByte(CirSize,1);
ptr->conn_sock=sock;
ptr->headerMode=true;
ptr->transferPtr=(char *)&ptr->th;
ptr->remainToTransfer=sizeof(transferHeader);
int sendbuff=1000*1000*10;
AssertFatal ( setsockopt(sock, SOL_SOCKET, SO_SNDBUF, &sendbuff, sizeof(sendbuff)) == 0, "");
struct epoll_event ev= {0};
ev.events = EPOLLIN | EPOLLRDHUP;
ev.data.fd = sock;
AssertFatal(epoll_ctl(bridge->epollfd, EPOLL_CTL_ADD, sock, &ev) != -1, "");
}
void removeCirBuf(rfsimulator_state_t *bridge, int sock) {
AssertFatal( epoll_ctl(bridge->epollfd, EPOLL_CTL_DEL, sock, NULL) != -1, "");
close(sock);
free(bridge->buf[sock].circularBuf);
memset(&bridge->buf[sock], 0, sizeof(buffer_t));
bridge->buf[sock].conn_sock=-1;
}
void socketError(rfsimulator_state_t *bridge, int sock) {
if (bridge->buf[sock].conn_sock!=-1) {
LOG_W(HW,"Lost socket \n");
removeCirBuf(bridge, sock);
if (bridge->typeStamp==MAGICUE)
exit(1);
}
}
#define helpTxt "\
\x1b[31m\
rfsimulator: error: you have to run one UE and one eNB\n\
For this, export RFSIMULATOR=enb (eNB case) or \n\
RFSIMULATOR=<an ip address> (UE case)\n\
\x1b[m"
enum blocking_t {
notBlocking,
blocking
};
void setblocking(int sock, enum blocking_t active) {
int opts;
AssertFatal( (opts = fcntl(sock, F_GETFL)) >= 0,"");
if (active==blocking)
opts = opts & ~O_NONBLOCK;
else
opts = opts | O_NONBLOCK;
AssertFatal(fcntl(sock, F_SETFL, opts) >= 0, "");
}
static bool flushInput(rfsimulator_state_t *t);
void fullwrite(int fd, void *_buf, int count, rfsimulator_state_t *t) {
char *buf = _buf;
int l;
setblocking(fd, notBlocking);
while (count) {
l = write(fd, buf, count);
if (l <= 0) {
if (errno==EINTR)
continue;
if(errno==EAGAIN) {
flushInput(t);
continue;
} else
return;
}
count -= l;
buf += l;
}
}
int server_start(openair0_device *device) {
rfsimulator_state_t *t = (rfsimulator_state_t *) device->priv;
t->typeStamp=MAGICeNB;
AssertFatal((t->listen_sock = socket(AF_INET, SOCK_STREAM, 0)) >= 0, "");
int enable = 1;
AssertFatal(setsockopt(t->listen_sock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) == 0, "");
struct sockaddr_in addr = {
sin_family:
AF_INET,
sin_port:
htons(PORT),
sin_addr:
{ s_addr: INADDR_ANY }
};
bind(t->listen_sock, (struct sockaddr *)&addr, sizeof(addr));
AssertFatal(listen(t->listen_sock, 5) == 0, "");
struct epoll_event ev;
ev.events = EPOLLIN;
ev.data.fd = t->listen_sock;
AssertFatal(epoll_ctl(t->epollfd, EPOLL_CTL_ADD, t->listen_sock, &ev) != -1, "");
return 0;
}
int start_ue(openair0_device *device) {
rfsimulator_state_t *t = device->priv;
t->typeStamp=MAGICUE;
int sock;
AssertFatal((sock = socket(AF_INET, SOCK_STREAM, 0)) >= 0, "");
struct sockaddr_in addr = {
sin_family:
AF_INET,
sin_port:
htons(PORT),
sin_addr:
{ s_addr: INADDR_ANY }
};
addr.sin_addr.s_addr = inet_addr(t->ip);
bool connected=false;
while(!connected) {
LOG_I(HW,"rfsimulator: trying to connect to %s:%d\n", t->ip, PORT);
if (connect(sock, (struct sockaddr *)&addr, sizeof(addr)) == 0) {
LOG_I(HW,"rfsimulator: connection established\n");
connected=true;
}
perror("rfsimulator");
sleep(1);
}
setblocking(sock, notBlocking);
allocCirBuf(t, sock);
t->buf[sock].alreadyRead=true; // UE will start blocking on read
return 0;
}
int rfsimulator_write(openair0_device *device, openair0_timestamp timestamp, void **samplesVoid, int nsamps, int nbAnt, int flags) {
rfsimulator_state_t *t = device->priv;
for (int i=0; i<FD_SETSIZE; i++) {
buffer_t *ptr=&t->buf[i];
if (ptr->conn_sock >= 0 ) {
transferHeader header= {t->typeStamp, nsamps, nbAnt, timestamp};
fullwrite(ptr->conn_sock,&header, sizeof(header), t);
sample_t tmpSamples[nsamps][nbAnt];
for(int a=0; a<nbAnt; a++) {
sample_t *in=(sample_t *)samplesVoid[a];
for(int s=0; s<nsamps; s++)
tmpSamples[s][a]=in[s];
}
if (ptr->conn_sock >= 0 )
fullwrite(ptr->conn_sock, (void *)tmpSamples, sampleToByte(nsamps,nbAnt), t);
}
}
LOG_D(HW,"sent %d samples at time: %ld->%ld, energy in first antenna: %d\n",
nsamps, timestamp, timestamp+nsamps, signal_energy(samplesVoid[0], nsamps) );
return nsamps;
}
static bool flushInput(rfsimulator_state_t *t) {
// Process all incoming events on sockets
// store the data in lists
struct epoll_event events[FD_SETSIZE]= {0};
int nfds = epoll_wait(t->epollfd, events, FD_SETSIZE, 200);
if ( nfds==-1 ) {
if ( errno==EINTR || errno==EAGAIN )
return false;
else
AssertFatal(false,"error in epoll_wait\n");
}
for (int nbEv = 0; nbEv < nfds; ++nbEv) {
int fd=events[nbEv].data.fd;
if (events[nbEv].events & EPOLLIN && fd == t->listen_sock) {
int conn_sock;
AssertFatal( (conn_sock = accept(t->listen_sock,NULL,NULL)) != -1, "");
setblocking(conn_sock, notBlocking);
allocCirBuf(t, conn_sock);
LOG_I(HW,"A ue connected\n");
} else {
if ( events[nbEv].events & (EPOLLHUP | EPOLLERR | EPOLLRDHUP) ) {
socketError(t,fd);
continue;
}
buffer_t *b=&t->buf[fd];
if ( b->circularBuf == NULL ) {
LOG_E(HW, "received data on not connected socket %d\n", events[nbEv].data.fd);
continue;
}
int blockSz;
if ( b->headerMode)
blockSz=b->remainToTransfer;
else
blockSz= b->transferPtr+b->remainToTransfer < b->circularBufEnd ?
b->remainToTransfer :
b->circularBufEnd - 1 - b->transferPtr ;
int sz=recv(fd, b->transferPtr, blockSz, MSG_DONTWAIT);
if ( sz < 0 ) {
if ( errno != EAGAIN ) {
LOG_E(HW,"socket failed %s\n", strerror(errno));
abort();
}
} else if ( sz == 0 )
continue;
AssertFatal((b->remainToTransfer-=sz) >= 0, "");
b->transferPtr+=sz;
if (b->transferPtr==b->circularBufEnd - 1)
b->transferPtr=(char *)b->circularBuf;
// check the header and start block transfer
if ( b->headerMode==true && b->remainToTransfer==0) {
AssertFatal( (t->typeStamp == MAGICUE && b->th.magic==MAGICeNB) ||
(t->typeStamp == MAGICeNB && b->th.magic==MAGICUE), "Socket Error in protocol");
b->headerMode=false;
b->alreadyRead=true;
if ( b->lastReceivedTS != b->th.timestamp) {
int nbAnt= b->th.nbAnt;
for (uint64_t index=b->lastReceivedTS; index < b->th.timestamp; index++ )
for (int a=0; a < nbAnt; a++)
b->circularBuf[(index*nbAnt+a)%CirSize]=0;
LOG_W(HW,"gap of: %ld in reception\n", b->th.timestamp-b->lastReceivedTS );
}
b->lastReceivedTS=b->th.timestamp;
b->transferPtr=(char *)&b->circularBuf[b->lastReceivedTS%CirSize];
b->remainToTransfer=sampleToByte(b->th.size, b->th.nbAnt);
}
if ( b->headerMode==false ) {
b->lastReceivedTS=b->th.timestamp+b->th.size-byteToSample(b->remainToTransfer,b->th.nbAnt);
if ( b->remainToTransfer==0) {
LOG_D(HW,"Completed block reception: %ld\n", b->lastReceivedTS);
// First block in UE, resync with the eNB current TS
if ( t->nextTimestamp == 0 )
t->nextTimestamp=b->lastReceivedTS-b->th.size;
b->headerMode=true;
b->transferPtr=(char *)&b->th;
b->remainToTransfer=sizeof(transferHeader);
b->th.magic=-1;
}
}
}
}
return nfds>0;
}
int rfsimulator_read(openair0_device *device, openair0_timestamp *ptimestamp, void **samplesVoid, int nsamps, int nbAnt) {
if (nbAnt != 1) {
LOG_E(HW, "rfsimulator: only 1 antenna tested\n");
exit(1);
}
rfsimulator_state_t *t = device->priv;
LOG_D(HW, "Enter rfsimulator_read, expect %d samples, will release at TS: %ld\n", nsamps, t->nextTimestamp+nsamps);
// deliver data from received data
// check if a UE is connected
int first_sock;
for (first_sock=0; first_sock<FD_SETSIZE; first_sock++)
if (t->buf[first_sock].circularBuf != NULL )
break;
if ( first_sock == FD_SETSIZE ) {
// no connected device (we are eNB, no UE is connected)
if (!flushInput(t)) {
for (int x=0; x < nbAnt; x++)
memset(samplesVoid[x],0,sampleToByte(nsamps,1));
t->nextTimestamp+=nsamps;
LOG_W(HW,"Generated void samples for Rx: %ld\n", t->nextTimestamp);
*ptimestamp = t->nextTimestamp-nsamps;
return nsamps;
}
} else {
bool have_to_wait;
do {
have_to_wait=false;
for ( int sock=0; sock<FD_SETSIZE; sock++)
if ( t->buf[sock].circularBuf &&
t->buf[sock].alreadyRead && //>= t->initialAhead &&
(t->nextTimestamp+nsamps) > t->buf[sock].lastReceivedTS ) {
have_to_wait=true;
break;
}
if (have_to_wait)
/*printf("Waiting on socket, current last ts: %ld, expected at least : %ld\n",
ptr->lastReceivedTS,
t->nextTimestamp+nsamps);
*/
flushInput(t);
} while (have_to_wait);
}
// Clear the output buffer
for (int a=0; a<nbAnt; a++)
memset(samplesVoid[a],0,sampleToByte(nsamps,1));
// Add all input signal in the output buffer
for (int sock=0; sock<FD_SETSIZE; sock++) {
buffer_t *ptr=&t->buf[sock];
if ( ptr->circularBuf && ptr->alreadyRead ) {
for (int a=0; a<nbAnt; a++) {
sample_t *out=(sample_t *)samplesVoid[a];
for ( int i=0; i < nsamps; i++ )
out[i]+=ptr->circularBuf[((t->nextTimestamp+i)*nbAnt+a)%CirSize]<<1;
}
}
}
*ptimestamp = t->nextTimestamp; // return the time of the first sample
t->nextTimestamp+=nsamps;
LOG_D(HW,"Rx to upper layer: %d from %ld to %ld, energy in first antenna %d\n",
nsamps,
*ptimestamp, t->nextTimestamp,
signal_energy(samplesVoid[0], nsamps));
return nsamps;
}
int rfsimulator_request(openair0_device *device, void *msg, ssize_t msg_len) {
abort();
return 0;
}
int rfsimulator_reply(openair0_device *device, void *msg, ssize_t msg_len) {
abort();
return 0;
}
int rfsimulator_get_stats(openair0_device *device) {
return 0;
}
int rfsimulator_reset_stats(openair0_device *device) {
return 0;
}
void rfsimulator_end(openair0_device *device) {}
int rfsimulator_stop(openair0_device *device) {
return 0;
}
int rfsimulator_set_freq(openair0_device *device, openair0_config_t *openair0_cfg,int exmimo_dump_config) {
return 0;
}
int rfsimulator_set_gains(openair0_device *device, openair0_config_t *openair0_cfg) {
return 0;
}
__attribute__((__visibility__("default")))
int device_init(openair0_device *device, openair0_config_t *openair0_cfg) {
//set_log(HW,OAILOG_DEBUG);
rfsimulator_state_t *rfsimulator = (rfsimulator_state_t *)calloc(sizeof(rfsimulator_state_t),1);
if ((rfsimulator->ip=getenv("RFSIMULATOR")) == NULL ) {
LOG_E(HW,helpTxt);
exit(1);
}
rfsimulator->typeStamp = strncasecmp(rfsimulator->ip,"enb",3) == 0 ?
MAGICeNB:
MAGICUE;
LOG_I(HW,"rfsimulator: running as %s\n", rfsimulator-> typeStamp == MAGICeNB ? "eNB" : "UE");
device->trx_start_func = rfsimulator->typeStamp == MAGICeNB ?
server_start :
start_ue;
device->trx_get_stats_func = rfsimulator_get_stats;
device->trx_reset_stats_func = rfsimulator_reset_stats;
device->trx_end_func = rfsimulator_end;
device->trx_stop_func = rfsimulator_stop;
device->trx_set_freq_func = rfsimulator_set_freq;
device->trx_set_gains_func = rfsimulator_set_gains;
device->trx_write_func = rfsimulator_write;
device->trx_read_func = rfsimulator_read;
/* let's pretend to be a b2x0 */
device->type = USRP_B200_DEV;
device->openair0_cfg=&openair0_cfg[0];
device->priv = rfsimulator;
for (int i=0; i<FD_SETSIZE; i++)
rfsimulator->buf[i].conn_sock=-1;
AssertFatal((rfsimulator->epollfd = epoll_create1(0)) != -1,"");
rfsimulator->initialAhead=openair0_cfg[0].sample_rate/1000; // One sub frame
return 0;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment