Commit 486b48f9 authored by Florian Kaltenberger's avatar Florian Kaltenberger

moving old simulators


git-svn-id: http://svn.eurecom.fr/openair4G/trunk@7227 818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent 43d5d1f9
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
include $(OPENAIR_HOME)/common/utils/Makefile.inc
TOP_DIR = $(OPENAIR1_DIR)
OPENAIR1_TOP = $(OPENAIR1_DIR)
OPENAIR2_TOP = $(OPENAIR2_DIR)
OPENAIR3 = $(OPENAIR3_DIR)
CFLAGS += -DPHYSIM -DNODE_RG -DUSER_MODE -DPC_TARGET -DPC_DSP -DNB_ANTENNAS_RX=2 -DNB_ANTENNAS_TXRX=2 -DNB_ANTENNAS_TX=2 -DPHY_CONTEXT=1 # -Wno-packed-bitfield-compat
LFLAGS = -lm -lblas -lrt
CFLAGS += -m32 -DOPENAIR_LTE -DOFDMA_ULSCH #-DIFFT_FPGA -DIFFT_FPGA_UE
#CFLAGS += -DTBS_FIX
CFLAGS += -DCELLULAR
ASN1_MSG_INC = $(OPENAIR2_DIR)/RRC/LITE/MESSAGES
ifdef EMOS
CFLAGS += -DEMOS
endif
ifdef DEBUG_PHY
CFLAGS += -DDEBUG_PHY
endif
ifdef MeNBMUE
CFLAGS += -DMeNBMUE
endif
ifdef MU_RECEIVER
CFLAGS += -DMU_RECEIVER
endif
ifdef ZBF_ENABLED
CFLAGS += -DNULL_SHAPE_BF_ENABLED
endif
ifdef RANDOM_BF
CFLAGS += -DRANDOM_BF
endif
ifdef PBS_SIM
CFLAGS += -DPBS_SIM
endif
ifdef XFORMS
CFLAGS += -DXFORMS
LFLAGS += -lforms
endif
ifdef PERFECT_CE
CFLAGS += -DPERFECT_CE
endif
CFLAGS += -DNO_RRM -DOPENAIR2 #-DPHY_ABSTRACTION
CFLAGS += -I/usr/include/X11 -I/usr/X11R6/include
all: colabsim
include $(TOP_DIR)/PHY/Makefile.inc
#SCHED_OBJS = $(TOP_DIR)/SCHED/phy_procedures_lte_common.o $(TOP_DIR)/SCHED/phy_procedures_lte_eNb.o $(TOP_DIR)/SCHED/phy_procedures_lte_ue.o
include $(TOP_DIR)/SCHED/Makefile.inc
include $(TOP_DIR)/SIMULATION/Makefile.inc
include $(OPENAIR2_DIR)/LAYER2/Makefile.inc
include $(OPENAIR2_DIR)/UTIL/Makefile.inc
include $(OPENAIR2_DIR)/RRC/LITE/MESSAGES/Makefile.inc
CFLAGS += $(L2_incl) -I$(ASN1_MSG_INC) -I$(TOP_DIR) -I$(OPENAIR3) ${UTIL_incl}
#EXTRA_CFLAGS =
#STATS_OBJS += $(TOP_DIR)/ARCH/CBMIMO1/DEVICE_DRIVER/cbmimo1_proc.o
#LAYER2_OBJ += $(OPENAIR2_DIR)/LAYER2/MAC/rar_tools.o
LAYER2_OBJ = $(OPENAIR2_DIR)/LAYER2/MAC/lte_transport_init.o
OBJ = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS) $(SCHED_OBJS) $(LAYER2_OBJ) $(LOG_OBJS) #$(ASN1_MSG_OBJS)
ifdef XFORMS
OBJ += ../../USERSPACE_TOOLS/SCOPE/lte_scope.o
endif
$(OBJ) : %.o : %.c
@echo
@echo Compiling $< ...
@$(CC) -c $(CFLAGS) -o $@ $<
colabsim : $(OBJ) colabsim.c
@echo "Compiling colabsim.c ..."
@$(CC) colabsim.c -o colabsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas
clean :
rm -f $(OBJ)
rm -f *.o
cleanall : clean
rm -f colabsim
rm -f *.exe*
showcflags :
@echo $(CFLAGS)
* TDD mode 1
* [du]lsch_ue_col for collaborative links
* Define TBS_FIX (pilots for several CH)
* Document output result file format
* Add end-to-end HARQ strategy
* AMC?
* Describe placement of data in LTE frame
* Automatic RB allocation
* MR bler statistics
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
//**************************************************************
// Compile with:
// $ make colabsim
//**************************************************************
#include <string.h>
#include <math.h>
#include <execinfo.h>
#include <signal.h>
#include <unistd.h>
#include <getopt.h>
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"
#include "OCG_vars.h"
#ifndef RA_RNTI
#define RA_RNTI 0xfffe
#endif
typedef unsigned char bool;
const bool false = 0;
const bool true = 1;
#define BW 7.68
#define N_PRB 25
#define RBG_SIZE 2
#define NID_CELL 0
#define MAX_RELAYS 8
#define MAX_HARQ_ROUNDS 4
#define MAX_FRAMES 2*MAX_HARQ_ROUNDS+1
const uint8_t cp_type = 0; // Normal cyclic prefix
const uint8_t n_txantenna_ch = 1; // Number of CH transmit antennas
const uint8_t n_rxantenna_ch = 1; // Number of CH receive antennas
const uint8_t n_txantenna_mr = 1; // Number of MR transmit antennas
const uint8_t n_rxantenna_mr = 1; // Number of MR receive antennas
const uint8_t oversampling = 1;
const uint8_t subframe_hop1 = 1; // Subframe for CH1 PDCCH+PDSCH transmission
const uint8_t subframe_hop2 = 7; // Subframe for MR PDU to CH2
const uint8_t n_pdcch_symbols = 3; // Number of PDCCH symbols in DL subframes
typedef enum {
analysis_single, // Simulate one SNR point
analysis_snrsweep_a, // Sweep SNR of first relay from negative to positive
// for both hops
analysis_snrsweep_b, // Sweep SNR of first relay from negative to positive
// for hop 1 and from postive to negative for hop 2
analysis_snrsweep_c
} analysis_t;
typedef enum {
strategy_wait_all, // Wait for all relays to decode before starting hop 2
strategy_wait_one // Start hop 2 when one relay has decoded
} strategy_t;
// Structure for command line parsed arguments
typedef struct {
bool debug_output; // Output MATLAB signal files
int verbose; // Verbosity level
analysis_t analysis; // Analysis mode
int range; // Sweep range
double step; // Sweep step size
strategy_t strategy; // HARQ strategy
int n_relays; // Number of relays
int n_pdu; // Number of MAC PDUs to simulate
int n_harq; // Maximum number of HARQ rounds
int mcs_hop1; // MCS for hop 1
int mcs_hop2; // MCS for hop 2
int n_prb_hop1; // Number of PRB utilized in hop 1
int n_prb_hop2; // Number of PRB utilized in hop 2
bool autorb; // Reduce number of PRB to balance TBS
SCM_t channel_model; // Channel model
double channel_correlation; // Channel reutilization factor
double snr_hop1[MAX_RELAYS]; // SNR used in hop 1 for all links
double snr_hop2[MAX_RELAYS]; // SNR used in hop 2 for all links
const char* results_fn; // File to save simulation results to
} args_t;
// Structure containing link simulation results for one test
// Note: mcs_hop*, tbs_hop*, n_prb_hop* are matrices containing values for each
// transmission attempt in the simulation. The first index is the MAC PDU
// index and the second is the HARQ round index. Currently no AMC is
// implemented, and all these values are the same for each MAC PDU.
// Note: The meaning of n_harq_success_hop1 is dependent on the HARQ strategy.
// In HARQ strategy 1, both relays must be decode.
// Other HARQ strategies are not implemented yet.
typedef struct {
int n_relays; // number of relays
int n_pdu; // number of transmitted MAC PDUs
int n_harq; // number of HARQ rounds
SCM_t channel_model; // used channel model
double* snr_hop1; // SNRs for each link in hop 1
double* snr_hop2; // SNRs for each link in hop 2
int** mcs_hop1; // MCS used in hop 1
int** mcs_hop2; // MCS used in hop 2
int** tbs_hop1; // transport block size for hop 1
int** tbs_hop2; // transport block size for hop 2
int** n_prb_hop1; // number of used PRBs in hop 1
int** n_prb_hop2; // number of used PRBs in hop 2
int n_frames_hop1; // number of transmitted LTE frames in hop 1
int n_frames_hop2; // number of transmitted LTE frames in hop 2
int n_bits_hop1; // number of correctly received information bits over hop 1
int n_bits_hop2; // number of correctly received information bits over hop 2
double ber_hop1[MAX_RELAYS]; // raw BER in hop 1
double ber_hop2; // raw BER in hop 2
int n_pdu_success_hop1; // number of correctly received MAC PDUs in hop 1
int n_pdu_success_hop2; // number of correctly received MAC PDUs in hop 2
int n_harq_tries_hop1[MAX_HARQ_ROUNDS]; // number of transmitted MAC PDUs in each HARQ round in hop 1
int n_harq_success_hop1[MAX_HARQ_ROUNDS]; // number of successfully decoded MAC PDUs in each HARQ round in hop 1
int n_harq_tries_hop2[MAX_HARQ_ROUNDS]; // number of transmitted MAC PDUs in each HARQ round in hop 2
int n_harq_success_hop2[MAX_HARQ_ROUNDS]; // number of successfully decoded MAC PDUs in each HARQ round in hop 2
int n_transmissions[MAX_HARQ_ROUNDS][MAX_HARQ_ROUNDS]; // PDF of number of transmissions in the two hops for
// MAC PDUs correctly received at CH2
int* relay_activity; // PDF of relay activity, [1]: MR1 active, [2]: MR2 active, [3]: MR1+MR2 active
} results_t;
// Relay role in distributed Alamouti coding
typedef enum {
RELAY_ROLE_STANDARD, // Relay sends [ x1 x2 ]
RELAY_ROLE_ALTERNATE // Relay sends [-x2* x1*]
} relay_role_t;
typedef struct {
double* s_re[1];
double* s_im[1];
double* r_re[1];
double* r_im[1];
double* r_re_t[1];
double* r_im_t[1];
} channel_vars_t;
typedef struct {
channel_vars_t* cvars;
channel_desc_t* channel;
} sh_channel_t;
// Simulation context
typedef struct {
LTE_DL_FRAME_PARMS* frame_parms;
PHY_VARS_eNB* phy_vars_ch_src;
PHY_VARS_eNB* phy_vars_ch_dest;
PHY_VARS_UE** phy_vars_mr;
sh_channel_t** channels_hop1;
sh_channel_t** channels_hop2;
int32_t* rxdata[1];
double* snr_hop1;
double* snr_hop2;
int mcs_hop1;
int mcs_hop2;
uint32_t tbs_hop1;
uint32_t tbs_hop2;
uint32_t tbs_col;
uint16_t rnti_hop1;
uint16_t rnti_hop2;
int input_buffer_length;
uint8_t* input_buffer;
int mr_buffer_length;
uint8_t* mr_buffer[MAX_RELAYS];
uint32_t n_coded_bits_hop1;
uint32_t n_coded_bits_hop2;
int n_ber_frames_hop1[MAX_RELAYS];
int n_ber_frames_hop2;
uint8_t n_avail_pdcch_symbols;
uint8_t subframe_hop1;
uint8_t subframe_hop2;
uint8_t harq_pid_hop2;
} context_t;
void transmit_one_pdu(args_t* args, context_t* context, int pdu, results_t* results);
int parse_args(int argc, char** argv, args_t* args);
int parse_channel_model(const char* str, SCM_t* model);
bool parse_snr(const char* str, double* snr, int n);
void print_usage(const char* prog);
void print_channel_usage();
void signal_handler(int sig);
void setup_single(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays);
void setup_snrsweep_a(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end);
void setup_snrsweep_b(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end);
void setup_snrsweep_c(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end);
void setup_frame_params(LTE_DL_FRAME_PARMS* frame_parms, unsigned char transmission_mode);
void setup_phy_vars(LTE_DL_FRAME_PARMS* frame_parms, PHY_VARS_eNB* phy_vars_ch_src,
PHY_VARS_UE** phy_vars_mr, PHY_VARS_eNB* phy_vars_ch_dest, int n_relays);
uint16_t rballoc_type0(int n_rb, int rbg_size);
void setup_broadcast_dci(DCI_ALLOC_t* dci, uint16_t rnti, int harq_round, int mcs, int n_rb);
void setup_distributed_dci(DCI_ALLOC_t* dci, uint16_t rnti, int harq_round, int mcs, int n_rb);
void alloc_broadcast_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays, uint16_t rnti);
void free_broadcast_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays);
void alloc_distributed_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays, uint16_t rnti);
void free_distributed_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays);
void ofdm_modulation(mod_sym_t** tx_f, int32_t** tx_t, LTE_DL_FRAME_PARMS* frame_parms, uint8_t subframe, uint8_t nsymb);
channel_vars_t alloc_channel_vars(LTE_DL_FRAME_PARMS* frame_parms);
void free_channel_vars(channel_vars_t v);
sh_channel_t* alloc_sh_channel(channel_vars_t* cvars, SCM_t channel_model, int n_txantennas, int n_rxantennas, double channel_correlation);
void free_sh_channel(sh_channel_t* c);
void transmit_subframe(sh_channel_t* channel, int32_t** src, LTE_DL_FRAME_PARMS* frame_parms, uint8_t subframe, uint8_t nsymb, double ampl, bool accumulate);
void deliver_subframe(sh_channel_t* channel, int32_t** dst, LTE_DL_FRAME_PARMS* frame_parms, uint8_t subframe, uint8_t nsymb, double stddev);
void ofdm_fep(PHY_VARS_UE* phy_vars_mr, uint8_t subframe);
int rx_dlsch_symbol(PHY_VARS_UE* phy_vars, uint8_t subframe, uint8_t symbol, uint8_t first_symbol);
uint32_t get_ulsch_G(LTE_UE_ULSCH_t *ulsch, uint8_t harq_pid);
double compute_ber_soft(uint8_t* ref, int16_t* rec, int n);
void print_dlsch_eNB_stats(LTE_eNB_DLSCH_t* d);
void print_dlsch_ue_stats(LTE_UE_DLSCH_t* d);
void print_ulsch_ue_stats(LTE_UE_ULSCH_t* d);
void print_ulsch_eNB_stats(LTE_eNB_ULSCH_t* d);
int block_valid(uint8_t* ref, uint8_t* rec, int n);
void init_results(results_t* r, args_t* a);
void clear_results(results_t* r);
void free_results(results_t* r);
void print_results(results_t* r);
void write_results_header(FILE* f, results_t* r, int n_tests);
void write_results_data(FILE* f, results_t* r);
double calc_delay(int* n_frames, int n_harq);
// Function declarations missing in LTE_TRANSPORT/proto.h:
uint8_t pdcch_alloc2ul_subframe(LTE_DL_FRAME_PARMS* frame_parms, uint8_t n);
uint8_t ul_subframe2pdcch_alloc_subframe(LTE_DL_FRAME_PARMS* frame_parms, uint8_t n);
int main(int argc, char **argv)
{
args_t args;
results_t results;
context_t context;
DCI_ALLOC_t dci_hop1;
DCI_ALLOC_t dci_hop2;
channel_vars_t channel_vars;
double* snrs;
int n_tests;
int test; // Current test
int pdu; // Current MAC PDU
int k;
bool store_results = false;
FILE* results_file = 0;
// Parse arguments
k = parse_args(argc, argv, &args);
if(k == 1) {
print_usage(argv[0]);
exit(1);
} else if(k == 2) {
print_channel_usage();
exit(1);
}
// Check argument bounds
if(args.n_relays > MAX_RELAYS) {
printf("Too many relays, increase MAX_RELAYS\n");
exit(1);
}
if(args.n_harq > MAX_HARQ_ROUNDS) {
printf("Too many HARQ rounds, increase MAX_HARQ_ROUNDS\n");
exit(1);
}
// General setup
signal(SIGSEGV, signal_handler);
randominit(0);
set_taus_seed(0);
// Allocate memory for frame parameters and node structures
context.frame_parms = malloc(sizeof(LTE_DL_FRAME_PARMS));
memset(context.frame_parms, 0, sizeof(LTE_DL_FRAME_PARMS));
context.phy_vars_ch_src = malloc(sizeof(PHY_VARS_eNB));
context.phy_vars_ch_dest = malloc(sizeof(PHY_VARS_eNB));
context.phy_vars_mr = malloc(args.n_relays*sizeof(PHY_VARS_UE*));
for(k = 0; k < args.n_relays; k++) {
context.phy_vars_mr[k] = malloc(sizeof(PHY_VARS_UE));
memset(context.phy_vars_mr[k], 0, sizeof(PHY_VARS_UE));
}
memset(context.phy_vars_ch_src, 0, sizeof(PHY_VARS_eNB));
memset(context.phy_vars_ch_dest, 0, sizeof(PHY_VARS_eNB));
// Initialize log
logInit();
// Initialize result data
init_results(&results, &args);
// Allocate channel structures
context.channels_hop1 = malloc(args.n_relays*sizeof(sh_channel_t*));
context.channels_hop2 = malloc(args.n_relays*sizeof(sh_channel_t*));
memset(context.channels_hop1, 0, args.n_relays*sizeof(sh_channel_t*));
memset(context.channels_hop2, 0, args.n_relays*sizeof(sh_channel_t*));
// Setup analysis structures
switch(args.analysis) {
case analysis_single:
setup_single(&snrs, &n_tests, args.snr_hop1, args.snr_hop2, args.n_relays);
break;
case analysis_snrsweep_a:
setup_snrsweep_a(&snrs, &n_tests, args.snr_hop1, args.snr_hop2, args.n_relays, args.step, -args.range, args.range);
break;
case analysis_snrsweep_b:
setup_snrsweep_b(&snrs, &n_tests, args.snr_hop1, args.snr_hop2, args.n_relays, args.step, -args.range, args.range);
break;
case analysis_snrsweep_c:
setup_snrsweep_c(&snrs, &n_tests, args.snr_hop1, args.snr_hop2, args.n_relays, args.step, -args.range, args.range);
break;
}
// Open results file (if requested)
if(args.results_fn) {
store_results = true;
results_file = fopen(args.results_fn, "w");
if(!results_file) {
perror("fopen");
exit(1);
}
}
if(store_results) {
write_results_header(results_file, &results, n_tests);
}
// Setup PHY structures
setup_frame_params(context.frame_parms, 1);
setup_phy_vars(context.frame_parms, context.phy_vars_ch_src, context.phy_vars_mr, context.phy_vars_ch_dest, args.n_relays);
// Setup simulation context
context.rnti_hop1 = 0x1515;
context.rnti_hop2 = 0x1516;
context.mcs_hop1 = args.mcs_hop1;
context.mcs_hop2 = args.mcs_hop2;
context.n_avail_pdcch_symbols = n_pdcch_symbols;
context.subframe_hop1 = subframe_hop1;
context.subframe_hop2 = subframe_hop2;
// Allocate temporary signal structures
context.rxdata[0] = malloc(10*context.frame_parms->samples_per_tti);
// Allocate first hop transport channel
alloc_broadcast_transport_channel(context.phy_vars_ch_src, context.phy_vars_mr, args.n_relays, context.rnti_hop1);
// Allocate second hop transport channel
alloc_distributed_transport_channel(context.phy_vars_ch_dest, context.phy_vars_mr, args.n_relays, context.rnti_hop2);
// Setup channel structures
channel_vars = alloc_channel_vars(context.frame_parms);
for(k = 0; k < args.n_relays; k++) {
context.channels_hop1[k] = alloc_sh_channel(&channel_vars, args.channel_model, n_txantenna_ch, n_rxantenna_mr, args.channel_correlation);
context.channels_hop2[k] = alloc_sh_channel(&channel_vars, args.channel_model, n_txantenna_mr, n_rxantenna_ch, args.channel_correlation);
}
// Create broadcast DCI and generate transport channel parameters,
// in order to determine hop 1 transfer block size and number of coded bits
setup_broadcast_dci(&dci_hop1, context.rnti_hop1, 0, args.mcs_hop1, args.n_prb_hop1);
generate_eNB_dlsch_params_from_dci(subframe_hop1, dci_hop1.dci_pdu,
context.rnti_hop1, format1, context.phy_vars_ch_src->dlsch_eNB[0], context.frame_parms,
SI_RNTI, RA_RNTI, P_RNTI,
context.phy_vars_ch_src->eNB_UE_stats[0].DL_pmi_single);
context.tbs_hop1 = context.phy_vars_ch_src->dlsch_eNB[0][0]->harq_processes[0]->TBS;
context.n_coded_bits_hop1 = get_G(context.frame_parms, context.phy_vars_ch_src->dlsch_eNB[0][0]->nb_rb,
context.phy_vars_ch_src->dlsch_eNB[0][0]->rb_alloc,
get_Qm(context.phy_vars_ch_src->dlsch_eNB[0][0]->harq_processes[0]->mcs),
context.n_avail_pdcch_symbols, subframe_hop1);
// Create distributed DCI and generate transport channel parameters,
// in order to determine hop 2 transfer block size and number of coded bits
context.harq_pid_hop2 = subframe2harq_pid(context.frame_parms, 0, subframe_hop2);
setup_distributed_dci(&dci_hop2, context.rnti_hop2, 0, args.mcs_hop2, args.n_prb_hop2);
generate_ue_ulsch_params_from_dci(dci_hop2.dci_pdu, context.rnti_hop2,
ul_subframe2pdcch_alloc_subframe(context.frame_parms, subframe_hop2),
format0, context.phy_vars_mr[0], SI_RNTI, RA_RNTI, P_RNTI, 0, 0);
context.tbs_hop2 = context.phy_vars_mr[0]->ulsch_ue[0]->harq_processes[context.harq_pid_hop2]->TBS;
context.n_coded_bits_hop2 = get_ulsch_G(context.phy_vars_mr[0]->ulsch_ue[0], context.harq_pid_hop2);
if(args.verbose > 1) {
print_dlsch_eNB_stats(context.phy_vars_ch_src->dlsch_eNB[0][0]);
print_ulsch_ue_stats(context.phy_vars_mr[0]->ulsch_ue[0]);
dump_dci(context.frame_parms, &dci_hop1);
dump_dci(context.frame_parms, &dci_hop2);
}
printf("Hop 1: TBS=%d, G=%d, rate=%f. Hop 2: TBS=%d, G=%d, rate=%f\n",
context.tbs_hop1, context.n_coded_bits_hop1, (float)context.tbs_hop1/(float)context.n_coded_bits_hop1,
context.tbs_hop2, context.n_coded_bits_hop2, (float)context.tbs_hop2/(float)context.n_coded_bits_hop2);
context.tbs_col = context.tbs_hop1 < context.tbs_hop2 ? context.tbs_hop1 : context.tbs_hop2;
// Allocate input buffer
context.input_buffer_length = context.tbs_hop1/8;
context.input_buffer = malloc(context.input_buffer_length+4);
memset(context.input_buffer, 0, context.input_buffer_length+4);
if(args.verbose > 0)
printf("Input buffer: %d bytes\n", context.input_buffer_length);
// Allocate MR data buffers
context.mr_buffer_length = context.tbs_hop2/8;
for(k = 0; k < args.n_relays; k++) {
context.mr_buffer[k] = malloc(context.mr_buffer_length+4);
memset(context.mr_buffer[k], 0, context.mr_buffer_length+4);
}
for(test = 0; test < n_tests; test++) {
// Set SNRs
context.snr_hop1 = &snrs[2*args.n_relays*test];
context.snr_hop2 = &snrs[2*args.n_relays*test + args.n_relays];
// Clear results
clear_results(&results);
for(k = 0; k < args.n_relays; k++) {
context.n_ber_frames_hop1[k] = 0;
}
context.n_ber_frames_hop2 = 0;
results.snr_hop1 = context.snr_hop1;
results.snr_hop2 = context.snr_hop2;
// Print test info.
printf("\n*** Test %d/%d ***\n", test+1, n_tests);
for(pdu = 0; pdu < args.n_pdu; pdu++) {
transmit_one_pdu(&args, &context, pdu, &results);
}
// Compute average BER for the links
for(k = 0; k < args.n_relays; k++)
if(context.n_ber_frames_hop1[k] > 0)
results.ber_hop1[k] /= (double)context.n_ber_frames_hop1[k];
else
results.ber_hop1[k] = 0.0;
if(context.n_ber_frames_hop2 > 0)
results.ber_hop2 /= (double)context.n_ber_frames_hop2;
else
results.ber_hop2 = 0.0;
print_results(&results);
if(store_results)
write_results_data(results_file, &results);
}
if(store_results)
fclose(results_file);
free_results(&results);
free(context.input_buffer);
free(context.rxdata[0]);
free_broadcast_transport_channel(context.phy_vars_ch_src, context.phy_vars_mr, args.n_relays);
free_distributed_transport_channel(context.phy_vars_ch_dest, context.phy_vars_mr, args.n_relays);
free(snrs);
for(k = 0; k < args.n_relays; k++) {
free_sh_channel(context.channels_hop1[k]);
free_sh_channel(context.channels_hop2[k]);
}
free_channel_vars(channel_vars);
free(context.channels_hop1);
free(context.channels_hop2);
free(context.phy_vars_ch_src);
free(context.phy_vars_ch_dest);
for(k = 0; k < args.n_relays; k++)
free(context.phy_vars_mr[k]);
free(context.phy_vars_mr);
free(context.frame_parms);
return 0;
}
void transmit_one_pdu(args_t* args, context_t* context, int pdu, results_t* results)
{
// State variables:
int frame = 0; // Current LTE frame
bool hop1_active = false;
bool hop2_active = false;
bool start_hop2;
int round_hop1 = 0; // Current HARQ round in hop 1
int round_hop2 = 0; // Current HARQ round in hop 2
int rounds_hop1; // Number of rounds in hop 1 before hop 2 started
int rounds_hop2; // Number of rounds in hop 2 until CH decoded
relay_role_t relay_role[MAX_RELAYS]; // the roles of the relays in Alamouti coding
bool decoded_at_all_mr;
bool decoded_at_mr[MAX_RELAYS];
bool activate_mr[MAX_RELAYS];
bool decoded_at_ch;
LTE_DL_FRAME_PARMS* frame_parms = context->frame_parms;
PHY_VARS_eNB* phy_vars_ch_src = context->phy_vars_ch_src;
PHY_VARS_eNB* phy_vars_ch_dest = context->phy_vars_ch_dest;
PHY_VARS_UE** phy_vars_mr = context->phy_vars_mr;
DCI_ALLOC_t dci_hop1;
DCI_ALLOC_t dci_hop2;
int n_symbols_per_slot = (cp_type == 0 ? 7 : 6);
int pilot1_symbol = (cp_type == 0 ? 4 : 3);
// Temporary variables
int n_re_hop1;
int n_re_hop2;
int n_active_relays;
uint8_t n_used_pdcch_symbols;
uint32_t tx_energy;
//double awgn_stddev;
double tx_ampl;
double raw_ber;
double awgn_stddev;
bool accumulate_at_rx;
int i;
int k;
int l;
int n_iter;
// Temporary strings
char fnbuf[80];
char varbuf[80];
if(args->verbose == 0) {
printf("Transmitting MAC PDU %d\r", pdu);
fflush(stdout);
} else
printf("Transmitting MAC PDU %d\n", pdu);
for(k = 0; k < args->n_relays; k++)
decoded_at_mr[k] = false;
decoded_at_ch = false;
// Set role of each relay (alternating STANDARD and ALTERNATE)
for(k = 0; k < args->n_relays; k++) {
relay_role[k] = k & 1;
}
// Generate input data
for(k = 0; k < context->input_buffer_length; k++)
context->input_buffer[k] = (uint8_t)(taus()&0xff);
hop1_active = true;
while(hop1_active || hop2_active) {
if(args->verbose > 0) {
fprintf(stderr, "LTE frame %d: hop 1 %s, hop 2 %s, decoded at relays: ", frame,
hop1_active ? "active" : "inactive",
hop2_active ? "active" : "inactive");
for(k = 0; k < args->n_relays; k++)
fprintf(stderr, "%s", decoded_at_mr[k] ? "X" : ".");
fprintf(stderr, "\n");
}
for(k = 0; k < args->n_relays; k++)
activate_mr[k] = false;
// Do hop 1 transmission if hop 1 is active
if(hop1_active) {
// Clear txdataF vector
memset(&phy_vars_ch_src->lte_eNB_common_vars.txdataF[0][0][0], 0,
FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
// Fill results
results->mcs_hop1[pdu][round_hop1] = context->mcs_hop1;
results->tbs_hop1[pdu][round_hop1] = context->tbs_hop1;
results->n_prb_hop1[pdu][round_hop1] = args->n_prb_hop1;
// Create first hop DCI
setup_broadcast_dci(&dci_hop1, context->rnti_hop1, round_hop1, context->mcs_hop1, args->n_prb_hop1);
if(args->verbose > 1)
dump_dci(frame_parms, &dci_hop1);
// Generate eNB transport channel parameters
generate_eNB_dlsch_params_from_dci(context->subframe_hop1, dci_hop1.dci_pdu,
context->rnti_hop1, format1, phy_vars_ch_src->dlsch_eNB[0], frame_parms,
SI_RNTI, RA_RNTI, P_RNTI,
phy_vars_ch_src->eNB_UE_stats[0].DL_pmi_single);
// Create PDCCH
n_used_pdcch_symbols = generate_dci_top(1, 0, &dci_hop1, 0, 1024, frame_parms,
phy_vars_ch_src->lte_eNB_common_vars.txdataF[0], context->subframe_hop1);
if(n_used_pdcch_symbols > context->n_avail_pdcch_symbols) {
printf("Need %d PDCCH symbols\n", n_used_pdcch_symbols);
exit(1);
}
// Encode source data
if(dlsch_encoding(context->input_buffer, frame_parms, context->n_avail_pdcch_symbols,
phy_vars_ch_src->dlsch_eNB[0][0], context->subframe_hop1) < 0)
exit(-1);
// Scramble data
dlsch_scrambling(frame_parms, context->n_avail_pdcch_symbols,
phy_vars_ch_src->dlsch_eNB[0][0], context->n_coded_bits_hop1, 0, context->subframe_hop1 << 1);
// Modulate data
n_re_hop1 = dlsch_modulation(phy_vars_ch_src->lte_eNB_common_vars.txdataF[0],
1024, context->subframe_hop1, frame_parms, context->n_avail_pdcch_symbols,
phy_vars_ch_src->dlsch_eNB[0][0]);
if(args->verbose > 0)
printf("Hop 1, HARQ round %d: %d coded bits, Modulated %d REs\n", round_hop1, context->n_coded_bits_hop1, n_re_hop1);
if(args->verbose > 2)
print_dlsch_eNB_stats(phy_vars_ch_src->dlsch_eNB[0][0]);
// Generate pilots
generate_pilots(phy_vars_ch_src, phy_vars_ch_src->lte_eNB_common_vars.txdataF[0],
1024, LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
// OFDM modulation
ofdm_modulation(phy_vars_ch_src->lte_eNB_common_vars.txdataF[0],
phy_vars_ch_src->lte_eNB_common_vars.txdata[0],
frame_parms, context->subframe_hop1, frame_parms->symbols_per_tti/2*3);
// Compute transmitter signal energy ( E{abs(X)^2} )
tx_energy = signal_energy(&phy_vars_ch_src->lte_eNB_common_vars.txdata[0][0]
[context->subframe_hop1*frame_parms->samples_per_tti], frame_parms->samples_per_tti);
// Transmit over channel
for(k = 0; k < args->n_relays; k++) {
//awgn_stddev = sqrt((double)tx_energy*((double)frame_parms->ofdm_symbol_size/(args->n_prb_hop1*12))/pow(10.0, ((double)context->snr_hop1[k])/10.0)/2.0);
awgn_stddev = sqrt((double)tx_energy)/pow(10.0, ((double)context->snr_hop1[k])/20.0);
tx_ampl = awgn_stddev/sqrt((double)tx_energy)*pow(10.0, ((double)context->snr_hop1[k])/20.0);
//printf("hop 1: E=%d, ampl=%f, awgn=%f\n", tx_energy, tx_ampl, awgn_stddev);
transmit_subframe(context->channels_hop1[k],
phy_vars_ch_src->lte_eNB_common_vars.txdata[0],
frame_parms, context->subframe_hop1, frame_parms->symbols_per_tti+1, tx_ampl, false);
deliver_subframe(context->channels_hop1[k],
phy_vars_mr[k]->lte_ue_common_vars.rxdata,
frame_parms, context->subframe_hop1, frame_parms->symbols_per_tti+1, awgn_stddev);
}
results->n_frames_hop1++;
if(!hop2_active)
results->n_harq_tries_hop1[round_hop1]++;
// Decode at all relays that have not yet decoded
for(k = 0; k < args->n_relays; k++) {
if(decoded_at_mr[k])
continue;
// Front end processor up to first pilot
for(l = 0; l <= pilot1_symbol; l++)
slot_fep(phy_vars_mr[k], l, context->subframe_hop1<<1, 0, 0);
// Skip decoding of DCI
phy_vars_mr[k]->lte_ue_pdcch_vars[0]->crnti = context->rnti_hop1;
phy_vars_mr[k]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = context->n_avail_pdcch_symbols;
generate_ue_dlsch_params_from_dci(context->subframe_hop1, dci_hop1.dci_pdu, context->rnti_hop1,
format1, phy_vars_mr[k]->dlsch_ue[0], frame_parms, SI_RNTI, RA_RNTI, P_RNTI);
// Receive DLSCH data
// Front end processor up to second pilot
for(l = pilot1_symbol+1; l < n_symbols_per_slot; l++)
slot_fep(phy_vars_mr[k], l, context->subframe_hop1<<1, 0, 0);
slot_fep(phy_vars_mr[k], 0, (context->subframe_hop1<<1)+1, 0, 0);
// Receive DLSCH for first slot
if(rx_dlsch_symbol(phy_vars_mr[k], context->subframe_hop1, context->n_avail_pdcch_symbols, 1) == -1)
break;
for(l = context->n_avail_pdcch_symbols + 1; l < n_symbols_per_slot; l++)
if(rx_dlsch_symbol(phy_vars_mr[k], context->subframe_hop1, l, 0) == -1)
break;
// Front end processor up to third pilot
for(l = 1; l <= pilot1_symbol; l++)
slot_fep(phy_vars_mr[k], l, (context->subframe_hop1<<1)+1, 0, 0);
// Receive DLSCH up to third pilot
for(l = n_symbols_per_slot; l < n_symbols_per_slot+pilot1_symbol; l++)
if(rx_dlsch_symbol(phy_vars_mr[k], context->subframe_hop1, l, 0) == -1)
break;
// Front end processor for rest of subframe
for(l = pilot1_symbol+1; l < n_symbols_per_slot; l++)
slot_fep(phy_vars_mr[k], l, (context->subframe_hop1<<1)+1, 0, 0);
slot_fep(phy_vars_mr[k], 0, (context->subframe_hop1<<1)+2, 0, 0);
// Receive DLSCH for rest of subframe
for(l = n_symbols_per_slot+pilot1_symbol; l < 2*n_symbols_per_slot; l++)
if(rx_dlsch_symbol(phy_vars_mr[k], context->subframe_hop1, l, 0) == -1)
break;
// Compute raw bit error rate
raw_ber = compute_ber_soft(phy_vars_ch_src->dlsch_eNB[0][0]->e,
phy_vars_mr[k]->lte_ue_pdsch_vars[0]->llr[0], context->n_coded_bits_hop1);
results->ber_hop1[k] += raw_ber;
context->n_ber_frames_hop1[k]++;
if(args->verbose > 0)
printf("Received %d bits at MR %d, raw BER: %f\n", context->n_coded_bits_hop1, k, raw_ber);
// Unscramble received bits
dlsch_unscrambling(frame_parms, phy_vars_mr[k]->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
phy_vars_mr[k]->dlsch_ue[0][0], context->n_coded_bits_hop1, phy_vars_mr[k]->lte_ue_pdsch_vars[0]->llr[0],
0, context->subframe_hop1 << 1);
// Decode received bits
n_iter = dlsch_decoding(phy_vars_mr[k]->lte_ue_pdsch_vars[0]->llr[0],
frame_parms, phy_vars_mr[k]->dlsch_ue[0][0], context->subframe_hop1,
phy_vars_mr[k]->lte_ue_pdcch_vars[0]->num_pdcch_symbols);
if(args->verbose > 2)
print_dlsch_ue_stats(phy_vars_mr[k]->dlsch_ue[0][0]);
if(n_iter <= MAX_TURBO_ITERATIONS) {
if(args->verbose > 0)
printf("Successfully decoded at MR %d\n", k);
activate_mr[k] = true;
// copy received data to intermediate buffer
memcpy(context->mr_buffer[k], phy_vars_mr[k]->dlsch_ue[0][0]->harq_processes[0]->b, context->tbs_col>>3);
//memset(&context->mr_buffer[k][context->tbs_col>>3], 0, context->mr_buffer_length+4-(context->tbs_col>>3));
}
}
// Write debug signals if required
if(args->debug_output) {
if(round_hop1 == 0)
write_output("hop1_e.m", "e", phy_vars_ch_src->dlsch_eNB[0][0]->e, context->n_coded_bits_hop1, 1, 4);
snprintf(fnbuf, 80, "hop1_r%d_ch_txdataFv.m", round_hop1);
snprintf(varbuf, 80, "hop1_r%d_ch_txdataF", round_hop1);
write_output(fnbuf, varbuf, phy_vars_ch_src->lte_eNB_common_vars.txdataF[0][0],
FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX, 1, 1);
snprintf(fnbuf, 80, "hop1_r%d_ch_txdatav.m", round_hop1);
snprintf(varbuf, 80, "hop1_r%d_ch_txdata", round_hop1);
write_output(fnbuf, varbuf, phy_vars_ch_src->lte_eNB_common_vars.txdata[0][0],
10*frame_parms->samples_per_tti, 1, 1);
for(k = 0; k < args->n_relays; k++) {
snprintf(fnbuf, 80, "hop1_r%d_mr%d_rxdatav.m", round_hop1, k);
snprintf(varbuf, 80, "hop1_r%d_mr%d_rxdata", round_hop1, k);
write_output(fnbuf, varbuf, phy_vars_mr[k]->lte_ue_common_vars.rxdata[0],
10*frame_parms->samples_per_tti, 1, 1);
snprintf(fnbuf, 80, "hop1_r%d_mr%d_rxdataFv.m", round_hop1, k);
snprintf(varbuf, 80, "hop1_r%d_mr%d_rxdataF", round_hop1, k);
write_output(fnbuf, varbuf, phy_vars_mr[k]->lte_ue_common_vars.rxdataF[0],
2*frame_parms->ofdm_symbol_size*2*n_symbols_per_slot, 2, 1);
}
}
}
if(hop2_active) {
// Fill results
results->mcs_hop2[pdu][round_hop2] = context->mcs_hop2;
results->tbs_hop2[pdu][round_hop2] = context->tbs_hop2;
results->n_prb_hop2[pdu][round_hop2] = args->n_prb_hop2;
l = 0;
for(k = args->n_relays-1; k >= 0; k--)
if(decoded_at_mr[k])
l = (l << 1) + 1;
else
l = (l << 1);
results->relay_activity[l]++;
// create second hop dci
setup_distributed_dci(&dci_hop2, context->rnti_hop2, round_hop2, context->mcs_hop2, args->n_prb_hop2);
if(args->verbose > 1)
dump_dci(frame_parms, &dci_hop2);
if(args->verbose > 0)
printf("Hop 2, HARQ round %d\n", round_hop2);
// Clear eNB receive vector
memset(phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0][0], 0, FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(int));
// Determine how many relays are active for this transmission, split the total power between them
n_active_relays = 0;
for(k = 0; k < args->n_relays; k++)
if(decoded_at_mr[k])
n_active_relays++;
// Normalization of received signal, fix this..
tx_energy = 300.0e3;
// awgn_stddev = sqrt((double)tx_energy)/pow(10.0, ((double)context->snr_hop2[0])/20.0);
awgn_stddev = pow(10,.05*40);
// for(k = 1; k < args->n_relays; k++)
// awgn_stddev = min(sqrt((double)tx_energy)/pow(10.0, ((double)context->snr_hop2[k])/20.0), awgn_stddev);
// printf("hop2 awgn_stddev %f\n",10*log10(awgn_stddev));
// transmit from all active relays
accumulate_at_rx = false;
for(k = 0; k < args->n_relays; k++) {
if(!decoded_at_mr[k])
continue;
// Clear txdataF vector
memset(phy_vars_mr[k]->lte_ue_common_vars.txdataF[0], 0,
FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
// Generate transport channel parameters
generate_ue_ulsch_params_from_dci(dci_hop2.dci_pdu, context->rnti_hop2,
ul_subframe2pdcch_alloc_subframe(&phy_vars_mr[k]->lte_frame_parms,context->subframe_hop2),//(context->subframe_hop2+6)%10,
format0, phy_vars_mr[k], SI_RNTI, RA_RNTI, P_RNTI, 0, 0);
// Set relay role in Alamouti coding (this could be done better)
if(relay_role[k] == RELAY_ROLE_STANDARD) {
phy_vars_mr[k]->ulsch_ue[0]->cooperation_flag = 0;
} else {
phy_vars_mr[k]->ulsch_ue[0]->cooperation_flag = 2;
}
// Generate uplink reference signal
generate_drs_pusch(phy_vars_mr[k], 0, AMP, context->subframe_hop2, 0, args->n_prb_hop2);
// Encode ULSCH data
// printf("transmit_one_pdu 1 : ulsch_encoding mr %d\n",k);
if(ulsch_encoding(context->mr_buffer[k], frame_parms, phy_vars_mr[k]->ulsch_ue[0],
context->harq_pid_hop2, 1, 0, 1) == -1) {
printf("ulsch_encoding failed\n");
exit(1);
}
// Modulate ULSCH data
ulsch_modulation(phy_vars_mr[k]->lte_ue_common_vars.txdataF, AMP, 0, context->subframe_hop2,
frame_parms, phy_vars_mr[k]->ulsch_ue[0]);
// Compute number of resource elements from coded bits and modulation order
n_re_hop2 = context->n_coded_bits_hop2/get_Qm(context->mcs_hop2);
if(args->verbose > 2)
print_ulsch_ue_stats(phy_vars_mr[k]->ulsch_ue[0]);
// OFDM modulation
ofdm_modulation(phy_vars_mr[k]->lte_ue_common_vars.txdataF,
phy_vars_mr[k]->lte_ue_common_vars.txdata, frame_parms, context->subframe_hop2, frame_parms->symbols_per_tti);
tx_energy = signal_energy(&phy_vars_mr[k]->lte_ue_common_vars.txdata[0]
[frame_parms->samples_per_tti*context->subframe_hop2], frame_parms->samples_per_tti);
// Transmit over channel
// Redo this in a more intuitive manner:
//awgn_stddev = sqrt((double)tx_energy*((double)frame_parms->ofdm_symbol_size/(args->n_prb_hop2*12))/pow(10.0, ((double)context->snr_hop2[k])/10.0)/2.0);
tx_ampl = awgn_stddev/sqrt((double)tx_energy)*pow(10.0, ((double)context->snr_hop2[k])/20.0)/sqrt((double)n_active_relays);
// printf("hop 2 (%d): E=%d, ampl=%f, awgn=%f (accum %d)\n", k,tx_energy, tx_ampl, awgn_stddev,(unsigned char)accumulate_at_rx);
transmit_subframe(context->channels_hop2[k],
phy_vars_mr[k]->lte_ue_common_vars.txdata, frame_parms,
//context->subframe_hop2, frame_parms->symbols_per_tti, 256.0/sqrt((double)n_active_relays)/awgn_stddev, accumulate_at_rx);
context->subframe_hop2, frame_parms->symbols_per_tti, tx_ampl, accumulate_at_rx);
accumulate_at_rx = true;
}
// This is ugly. Fix it.
deliver_subframe(context->channels_hop2[0],
phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0], frame_parms,
context->subframe_hop2, frame_parms->symbols_per_tti, awgn_stddev);
results->n_harq_tries_hop2[round_hop2]++;
// Fill the last symbol of the frame with random data (used for SNR estimation?)
for (i=0; i<OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
((short*) &phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0][0]
[(frame_parms->samples_per_tti<<1) -frame_parms->ofdm_symbol_size])[2*i] =
(short) ((awgn_stddev*0.707*gaussdouble(0.0,1.0)));
((short*) &phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0][0]
[(frame_parms->samples_per_tti<<1) -frame_parms->ofdm_symbol_size])[2*i+1] =
(short) ((awgn_stddev*0.707*gaussdouble(0.0,1.0)));
}
// Generate eNB transport channel parameters
generate_eNB_ulsch_params_from_dci(dci_hop2.dci_pdu, context->rnti_hop2,
ul_subframe2pdcch_alloc_subframe(&phy_vars_ch_dest->lte_frame_parms,context->subframe_hop2),//(context->subframe_hop2+6)%10,
format0, 0, phy_vars_ch_dest, SI_RNTI, RA_RNTI, P_RNTI, 0);
// Front end processing at destination CH
for(l = 0; l < frame_parms->symbols_per_tti>>1; l++)
slot_fep_ul(frame_parms, &phy_vars_ch_dest->lte_eNB_common_vars, l, 2*context->subframe_hop2, 0, 0);
for(l = 0; l < frame_parms->symbols_per_tti>>1; l++)
slot_fep_ul(frame_parms, &phy_vars_ch_dest->lte_eNB_common_vars, l, 2*context->subframe_hop2+1, 0, 0);
// Receive ULSCH data
rx_ulsch(phy_vars_ch_dest, context->subframe_hop2, 0, 0, phy_vars_ch_dest->ulsch_eNB, 2);
// Compute uncoded bit error rate
k = 0;
while(!decoded_at_mr[k])
k++;
raw_ber = compute_ber_soft(phy_vars_mr[k]->ulsch_ue[0]->b_tilde,
phy_vars_ch_dest->lte_eNB_pusch_vars[0]->llr, context->n_coded_bits_hop2);
results->ber_hop2 += raw_ber;
context->n_ber_frames_hop2++;
results->n_frames_hop2++;
if(args->verbose > 0) {
printf("Received %d bits at dest CH, raw BER: %f\n", context->n_coded_bits_hop2, raw_ber);
}
// Decode ULSCH data
n_iter = ulsch_decoding(phy_vars_ch_dest, 0, context->subframe_hop2, 0, 1);
if(args->verbose > 2)
print_ulsch_eNB_stats(phy_vars_ch_dest->ulsch_eNB[0]);
if(n_iter <= MAX_TURBO_ITERATIONS) {
if(args->verbose > 0)
printf("Successfully decoded at dest CH\n");
decoded_at_ch = true;
}
// Write debug output if requested
if(args->debug_output) {
for(k = 0; k < args->n_relays; k++) {
snprintf(fnbuf, 80, "hop2_r%d_mr%d_txdataFv.m", round_hop2, k);
snprintf(varbuf, 80, "hop2_r%d_mr%d_txdataF", round_hop2, k);
write_output(fnbuf, varbuf, phy_vars_mr[k]->lte_ue_common_vars.txdataF[0],
FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX, 1, 1);
snprintf(fnbuf, 80, "hop2_r%d_mr%d_txdatav.m", round_hop2, k);
snprintf(varbuf, 80, "hop2_r%d_mr%d_txdata", round_hop2, k);
write_output(fnbuf, varbuf, phy_vars_mr[k]->lte_ue_common_vars.txdata[0],
10*frame_parms->samples_per_tti, 1, 1);
}
snprintf(fnbuf, 80, "hop2_r%d_ch_rxdatav.m", round_hop2);
snprintf(varbuf, 80, "hop2_r%d_ch_rxdata", round_hop2);
write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_common_vars.rxdata[0][0],
10*frame_parms->samples_per_tti, 1, 1);
snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataFv.m", round_hop2);
snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF", round_hop2);
write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_common_vars.rxdataF[0][0],
20*frame_parms->ofdm_symbol_size*2*n_symbols_per_slot, 2, 1);
snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataF_ext2v.m", round_hop2);
snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF_ext2", round_hop2);
write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->rxdataF_ext2[0][0],
12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1);
snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataF_comp.m", round_hop2);
snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF_comp", round_hop2);
write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->rxdataF_comp[0][0],
12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1);
snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataF_comp_0.m", round_hop2);
snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF_comp_0", round_hop2);
write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->rxdataF_comp_0[0][0],
12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1);
snprintf(fnbuf, 80, "hop2_r%d_ch_rxdataF_comp_1.m", round_hop2);
snprintf(varbuf, 80, "hop2_r%d_ch_rxdataF_comp_1", round_hop2);
write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->rxdataF_comp_1[0][0],
12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1);
snprintf(fnbuf, 80, "hop2_r%d_ch_drs_ch_estimates_0.m", round_hop2);
snprintf(varbuf, 80, "hop2_r%d_ch_drs_ch_estimates_0", round_hop2);
write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->drs_ch_estimates_0[0][0],
12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1);
snprintf(fnbuf, 80, "hop2_r%d_ch_drs_ch_estimates_1.m", round_hop2);
snprintf(varbuf, 80, "hop2_r%d_ch_drs_ch_estimates_1", round_hop2);
write_output(fnbuf, varbuf, phy_vars_ch_dest->lte_eNB_pusch_vars[0]->drs_ch_estimates_1[0][0],
12*phy_vars_ch_dest->lte_frame_parms.N_RB_UL*n_symbols_per_slot*2, 1, 1);
}
}
// Activate MRs that decoded during this frame
for(k = 0; k < args->n_relays; k++)
if(activate_mr[k]) {
setup_distributed_dci(&dci_hop2, context->rnti_hop2, 0, context->mcs_hop2, args->n_prb_hop2);
// Generate transport channel parameters
generate_ue_ulsch_params_from_dci(dci_hop2.dci_pdu, context->rnti_hop2,
ul_subframe2pdcch_alloc_subframe(&phy_vars_mr[k]->lte_frame_parms,context->subframe_hop2),//(context->subframe_hop2+6)%10,
format0, phy_vars_mr[k], SI_RNTI, RA_RNTI, P_RNTI, 0, 0);
// Set relay role in Alamouti coding (this could be done better)
if(relay_role[k] == RELAY_ROLE_STANDARD) {
phy_vars_mr[k]->ulsch_ue[0]->cooperation_flag = 0;
} else {
phy_vars_mr[k]->ulsch_ue[0]->cooperation_flag = 2;
}
// Encode ULSCH data
// printf("transmit one pdu 2 : ulsch_encoding mr %d\n",k);
if(ulsch_encoding(context->mr_buffer[k], frame_parms, phy_vars_mr[k]->ulsch_ue[0],
context->harq_pid_hop2, 1, 0, 1) == -1) {
printf("ulsch_encoding failed\n");
exit(1);
}
decoded_at_mr[k] = true;
}
// Do strategy logic
start_hop2 = false;
switch(args->strategy) {
case strategy_wait_all:
if(hop1_active && !hop2_active) {
// Start hop 2 if all relays have decoded
start_hop2 = true;
for(k = 0; k < args->n_relays; k++)
if(!decoded_at_mr[k])
start_hop2 = false;
}
break;
case strategy_wait_one:
if(hop1_active && !hop2_active) {
// Start hop 2 if at least one relay has decoded
for(k = 0; k < args->n_relays; k++)
if(decoded_at_mr[k])
start_hop2 = true;
}
break;
default:
exit(1);
}
// If we start hop 2 now, save statistics for hop 1
if(start_hop2) {
results->n_harq_success_hop1[round_hop1]++;
results->n_pdu_success_hop1++;
results->n_bits_hop1 += context->tbs_hop1;
rounds_hop1 = round_hop1;
}
if(hop1_active) {
// Check if all relays decoded the PDU
decoded_at_all_mr = true;
for(k = 0; k < args->n_relays; k++)
if(!decoded_at_mr[k])
decoded_at_all_mr = false;
// Disable hop 1 if all relays decoded or the maximum HARQ round was reached
round_hop1++;
if(decoded_at_all_mr || round_hop1 == args->n_harq)
hop1_active = false;
}
if(hop2_active) {
// If successfully decoded at CH2, save statistics
if(decoded_at_ch) {
results->n_harq_success_hop2[round_hop2]++;
results->n_pdu_success_hop2++;
results->n_bits_hop2 += context->tbs_hop2;
rounds_hop2 = round_hop2;
if(rounds_hop1 < 0 || rounds_hop1 >= MAX_HARQ_ROUNDS)
fprintf(stderr, "rounds_hop1 has invalid value %d\n", rounds_hop1);
else if(rounds_hop2 < 0 || rounds_hop2 >= MAX_HARQ_ROUNDS)
fprintf(stderr, "rounds_hop2 has invalid value %d\n", rounds_hop2);
else
results->n_transmissions[rounds_hop1][rounds_hop2]++;
if(!block_valid(context->input_buffer, phy_vars_ch_dest->ulsch_eNB[0]->harq_processes[context->harq_pid_hop2]->b,
context->tbs_col/8)) {
printf("MAC PDU %d decoded successfully, but contained errors\n", pdu);
}
}
// If successfully decoded at CH2 or the maximum HARQ round was reached, disable both hops
round_hop2++;
if(decoded_at_ch || round_hop2 == args->n_harq) {
hop1_active = false;
hop2_active = false;
}
}
if(start_hop2)
hop2_active = true;
frame++;
/*
if(!decoded_at_all_mr) {
if(args.verbose > 0)
printf("Not decoded at all relays, dropping block\n");
continue;
}
*/
}
}
int parse_args(int argc, char** argv, args_t* args)
{
int c;
int k;
bool snr_set;
const struct option long_options[] = {
{"mcs1", required_argument, NULL, 256},
{"mcs2", required_argument, NULL, 257},
{"snr", required_argument, NULL, 258},
{"snr1", required_argument, NULL, 259},
{"snr2", required_argument, NULL, 260},
{"single", no_argument, NULL, 261},
{"sweep", no_argument, NULL, 262},
{"bsweep", no_argument, NULL, 263},
{"csweep", no_argument, NULL, 271},
{"strategy", required_argument, NULL, 264},
{"rb1", required_argument, NULL, 265},
{"rb2", required_argument, NULL, 266},
{"autorb", no_argument, NULL, 267},
{"range", required_argument, NULL, 268},
{"step", required_argument, NULL, 269},
{"corr", required_argument, NULL, 270},
{NULL, 0, NULL, 0}
};
args->n_relays = 2;
args->debug_output = false;
args->verbose = 0;
args->n_pdu = 1;
args->n_harq = 4;
args->mcs_hop1 = 0;
args->mcs_hop2 = 0;
args->n_prb_hop1 = N_PRB;
args->n_prb_hop2 = N_PRB;
args->autorb = false;
args->channel_model = AWGN;
args->channel_correlation = 0.0;
args->results_fn = 0;
args->analysis = analysis_single;
args->strategy = strategy_wait_all;
args->range = 10.0;
args->step = 1.0;
for(k = 0; k < args->n_relays; k++)
args->snr_hop1[k] = 10.0;
for(k = 0; k < args->n_relays; k++)
args->snr_hop2[k] = 10.0;
snr_set = false;
while((c = getopt_long(argc, argv, "hovN:n:m:r:H:C:", long_options, NULL)) != -1) {
switch(c) {
case 'h':
return 1;
case 'o':
args->debug_output = true;
break;
case 'v':
args->verbose++;
break;
case 'N':
args->n_relays = atoi(optarg);
if(args->n_relays <= 0)
return 1;
break;
case 'n':
args->n_pdu = atoi(optarg);
if(args->n_pdu <= 0)
return 1;
break;
case 'H':
args->n_harq = atoi(optarg);
break;
case 'C':
if(strcmp(optarg, "help") == 0)
return 2;
if(!parse_channel_model(optarg, &args->channel_model))
return 1;
break;
case 'm':
args->mcs_hop1 = args->mcs_hop2 = atoi(optarg);
break;
case 'r':
args->results_fn = optarg;
break;
case 256:
args->mcs_hop1 = atoi(optarg);
break;
case 257:
args->mcs_hop2 = atoi(optarg);
break;
case 258:
for(k = 0; k < args->n_relays; k++)
args->snr_hop1[k] = atof(optarg);
for(k = 0; k < args->n_relays; k++)
args->snr_hop2[k] = atof(optarg);
snr_set = true;
break;
case 259:
if(!parse_snr(optarg, args->snr_hop1, args->n_relays))
return 1;
snr_set = true;
break;
case 260:
if(!parse_snr(optarg, args->snr_hop2, args->n_relays))
return 1;
snr_set = true;
break;
case 261:
args->analysis = analysis_single;
break;
case 262:
args->analysis = analysis_snrsweep_a;
break;
case 263:
args->analysis = analysis_snrsweep_b;
break;
case 271:
args->analysis = analysis_snrsweep_c;
break;
case 264:
switch(atoi(optarg)) {
case 1:
args->strategy = strategy_wait_all;
break;
case 2:
args->strategy = strategy_wait_one;
break;
default:
return 1;
}
break;
case 265: // --rb1
args->n_prb_hop1 = atoi(optarg);
if(args->n_prb_hop1 <= 0 || args->n_prb_hop1 > N_PRB)
return 1;
break;
case 266: // --rb2
args->n_prb_hop2 = atoi(optarg);
if(args->n_prb_hop2 <= 0 || args->n_prb_hop2 > N_PRB)
return 1;
break;
case 267: // --autorb
args->autorb = true;
break;
case 268: // --range
args->range = atof(optarg);
if(args->range <= 0.0)
return 1;
break;
case 269: // --step
args->step = atof(optarg);
if(args->step <= 0.0)
return 1;
break;
case 270: // --corr
args->channel_correlation = atof(optarg);
if(args->channel_correlation < 0.0 || args->channel_correlation > 1.0)
return 1;
break;
default:
return 1;
}
}
return 0;
}
bool parse_snr(const char* str, double* snr, int n)
{
char* p;
int k;
for(k = 0; k < n; k++) {
snr[k] = strtod(str, &p);
if(p == str)
break;
str = p;
}
if(k == 0)
for(k = 1; k < n; k++)
snr[k] = snr[0];
else if(k < n-1)
return false;
return true;
}
int parse_channel_model(const char* str, SCM_t* model)
{
if(strcmp(str, "0") == 0) *model = AWGN;
else if(strcmp(str, "A") == 0) *model = SCM_A;
else if(strcmp(str, "B") == 0) *model = SCM_B;
else if(strcmp(str, "C") == 0) *model = SCM_C;
else if(strcmp(str, "D") == 0) *model = SCM_D;
else if(strcmp(str, "E") == 0) *model = EPA;
else if(strcmp(str, "F") == 0) *model = EVA;
else if(strcmp(str, "G") == 0) *model = ETU;
else if(strcmp(str, "H") == 0) *model = Rayleigh8;
else if(strcmp(str, "I") == 0) *model = Rayleigh1;
else if(strcmp(str, "J") == 0) *model = Rayleigh1_corr;
else if(strcmp(str, "K") == 0) *model = Rayleigh1_anticorr;
else if(strcmp(str, "L") == 0) *model = Rice8;
else if(strcmp(str, "M") == 0) *model = Rice1;
else return false;
return true;
}
void print_usage(const char* prog)
{
printf("Usage: %s [options]\n", prog);
printf("\n");
printf(" General options:\n");
printf(" -h : print usage\n");
printf(" -v : increase verbosity level [0]\n");
printf(" -o : output MATLAB signal files (implies -n 1) [no]\n");
printf(" -r FILE : write results to FILE\n");
printf(" -N NRELAYS : simulate using NRELAYS relays [2]\n");
printf(" -n NUM : simulate NUM MAC PDUs [1]\n");
printf(" -H NUM : do NUM HARQ rounds in each hop [4]\n");
printf(" note: the hop 1 RVs are 0,0,1,1,2,2,3,3,0,0,..., the hop 2 RVs are 0,2,3,1,...\n");
printf(" -C CHANNEL : set the channel model, use -C help for available models [AWGN]\n");
printf(" --corr CORR : set channel realization correlation (0.0 .. 1.0) [0.0]\n");
printf(" --strategy X : set the HARQ strategy to X [1]\n");
printf(" 1: decode at all relays before starting hop 2\n");
printf(" 2: start hop 2 when at least one relay has decoded\n");
printf("\n");
printf(" SNR options:\n");
printf(" --snr SNR : set snr for all links to SNR [10.0]\n");
printf(" --snr1 SNR : set snr for hop 1 to SNR\n");
printf(" --snr2 SNR : set snr for hop 2 to SNR\n");
printf(" for --snr1 and --snr2, SNR may be either a single value or a vector with n_relays elements\n");
printf(" e.g.: --snr1 \"4.0 6.0\" sets the SNR from CH1 to MR1 and MR2 to 4.0 and 6.0, respectively\n");
printf("\n");
printf(" Analysis setup (only one may be specified):\n");
printf(" --single : single point analysis [default]\n");
printf(" --sweep : sweep snr of first relay of both hops [-RANGE*STEP..+RANGE*STEP]\n");
printf(" --bsweep : sweep first relay of hop 1 [-RANGE*STEP..+RANGE*STEP],\n");
printf(" sweep first relay of hop 2 [+RANGE*STEP..-RANGE*STEP]\n");
printf(" --range RANGE : set sweep range [10]\n");
printf(" --step STEP : set sweep step size [1.0]\n");
printf(" note: the swept range is relative to SNR specified with --snr* options\n");
printf("\n");
printf(" Link and resource parameters:\n");
printf(" -m MCS : set mcs for both hops to MCS [0]\n");
printf(" --mcs1 MCS : set mcs for hop 1 to MCS\n");
printf(" --mcs2 MCS : set mcs for hop 2 to MCS\n");
printf(" --rb1 NUM : set number of resource blocks for hop 1 [%d]\n", N_PRB);
printf(" --rb2 NUM : set number of resource blocks for hop 2 [%d]\n", N_PRB);
//printf(" --autorb : adjust the hop bandwidths to have similar TBS\n");
printf("\n");
printf(" Definition of results:\n");
printf(" BLER is the fraction of MAC PDUs that are not successfully delivered from CH1 to CH2\n");
printf(" BER is the fraction of coded bits that are incorrectly received for each link\n");
printf(" avg bits/frame is TBS*n_pdu/n_frames, where n_pdu is the number of successfully received MAC PDUs\n");
printf(" (for hop 1: decoded by both MR), and n_frames is the number of LTE frames transmitted for the hop\n");
printf(" norm. delay is the average number of LTE frames required for the successful transmission of a MAC PDU\n");
}
void print_channel_usage()
{
printf("Available channel models:\n");
printf(" 0: AWGN\n");
printf(" A: SCM-A\n");
printf(" B: SCM-B\n");
printf(" C: SCM-C\n");
printf(" D: SCM-D\n");
printf(" E: EPA\n");
printf(" F: EVA\n");
printf(" G: ETU\n");
printf(" H: Rayleigh8\n");
printf(" I: Rayleigh1\n");
printf(" J: Rayleigh1_corr\n");
printf(" K: Rayleigh1_anticorr\n");
printf(" L: Rice8\n");
printf(" M: Rice1\n");
}
void signal_handler(int sig)
{
void *array[10];
size_t size;
size = backtrace(array, 10);
fprintf(stderr, "Error: signal %d:\n", sig);
backtrace_symbols_fd(array, size, 2);
exit(1);
}
void setup_single(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays)
{
int k;
*snrs = malloc(2*n_relays*sizeof(double));
for(k = 0; k < n_relays; k++)
(*snrs)[k] = snr_hop1[k];
for(k = 0; k < n_relays; k++)
(*snrs)[k+n_relays] = snr_hop2[k];
*n_tests = 1;
}
void setup_snrsweep_a(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end)
{
int l;
int k;
*n_tests = end-start+1;
*snrs = malloc((*n_tests)*2*n_relays*sizeof(double));
for(l = 0; l < *n_tests; l++) {
(*snrs)[2*n_relays*l] = snr_hop1[0] + step*(start+l);
(*snrs)[2*n_relays*l + n_relays] = snr_hop2[0] + step*(start+l);
for(k = 1; k < n_relays; k++) {
(*snrs)[2*n_relays*l + k] = snr_hop1[k];
(*snrs)[2*n_relays*l + n_relays + k] = snr_hop2[k];
}
}
}
void setup_snrsweep_b(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end)
{
int l;
int k;
*n_tests = end-start+1;
*snrs = malloc((*n_tests)*2*n_relays*sizeof(double));
for(l = 0; l < *n_tests; l++) {
(*snrs)[2*n_relays*l] = snr_hop1[0] + step*(start+l);
(*snrs)[2*n_relays*l + n_relays] = snr_hop2[0] + step*(end-l);
for(k = 1; k < n_relays; k++) {
(*snrs)[2*n_relays*l + k] = snr_hop1[k];
(*snrs)[2*n_relays*l + n_relays + k] = snr_hop2[k];
}
}
}
void setup_snrsweep_c(double** snrs, int* n_tests, double* snr_hop1, double* snr_hop2, int n_relays, double step, int start, int end)
{
int l;
int k;
*n_tests = end-start+1;
*snrs = malloc((*n_tests)*2*n_relays*sizeof(double));
for(l = 0; l < *n_tests; l++) {
for(k = 0; k < n_relays; k++) {
(*snrs)[2*n_relays*l + k] = snr_hop1[k] + step*(start+l);
(*snrs)[2*n_relays*l + n_relays + k] = snr_hop2[k] + step*(start+l);
}
}
}
void setup_frame_params(LTE_DL_FRAME_PARMS* frame_parms, unsigned char transmission_mode)
{
frame_parms->N_RB_DL = N_PRB;
frame_parms->N_RB_UL = N_PRB;
frame_parms->Nid_cell = NID_CELL;
frame_parms->Ncp = cp_type;
frame_parms->Ncp_UL = cp_type;
frame_parms->nushift = 0;
frame_parms->frame_type = 1; // TDD frames
frame_parms->tdd_config = 1; // TDD frame type 1
frame_parms->mode1_flag = (transmission_mode == 1 ? 1 : 0);
frame_parms->nb_antennas_tx = n_txantenna_ch;
frame_parms->nb_antennas_rx = n_rxantenna_mr;
init_frame_parms(frame_parms, oversampling);
phy_init_top(frame_parms);
frame_parms->twiddle_fft = twiddle_fft;
frame_parms->twiddle_ifft = twiddle_ifft;
frame_parms->rev = rev;
phy_init_lte_top(frame_parms);
frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.groupHoppingEnabled = 1;
frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.sequenceHoppingEnabled = 0;
frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.groupAssignmentPUSCH = 0;
init_ul_hopping(frame_parms);
//dump_frame_parms(frame_parms);
}
void setup_phy_vars(LTE_DL_FRAME_PARMS* frame_parms, PHY_VARS_eNB* phy_vars_ch_src,
PHY_VARS_UE** phy_vars_mr, PHY_VARS_eNB* phy_vars_ch_dest, int n_relays)
{
int k;
phy_vars_ch_src->lte_frame_parms = *frame_parms;
phy_vars_ch_src->frame = 1;
phy_init_lte_eNB(phy_vars_ch_src, 0, 0, 0);
for(k = 0; k < n_relays; k++) {
phy_vars_mr[k]->lte_frame_parms = *frame_parms;
phy_vars_mr[k]->frame = 1;
lte_gold(frame_parms, phy_vars_mr[k]->lte_gold_table[0], 0);
lte_gold(frame_parms, phy_vars_mr[k]->lte_gold_table[1], 1);
lte_gold(frame_parms, phy_vars_mr[k]->lte_gold_table[2], 2);
phy_init_lte_ue(phy_vars_mr[k], 0);
phy_vars_mr[k]->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling;
phy_vars_mr[k]->pusch_config_dedicated[0].betaOffset_ACK_Index = 0;
phy_vars_mr[k]->pusch_config_dedicated[0].betaOffset_RI_Index = 0;
phy_vars_mr[k]->pusch_config_dedicated[0].betaOffset_CQI_Index = 2;
}
phy_vars_ch_dest->lte_frame_parms = *frame_parms;
phy_vars_ch_dest->frame = 1;
phy_init_lte_eNB(phy_vars_ch_dest, 0, 2, 0);
phy_vars_ch_dest->transmission_mode[0] = 2;
phy_vars_ch_dest->pucch_config_dedicated[0].tdd_AckNackFeedbackMode = bundling;
phy_vars_ch_dest->pusch_config_dedicated[0].betaOffset_ACK_Index = 0;
phy_vars_ch_dest->pusch_config_dedicated[0].betaOffset_RI_Index = 0;
phy_vars_ch_dest->pusch_config_dedicated[0].betaOffset_CQI_Index = 2;
}
void alloc_broadcast_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays, uint16_t rnti)
{
int k;
// Workaround for memory leak:
phy_vars_ch->dlsch_eNB[0][0] = new_eNB_dlsch(1, 8, 0);
free(phy_vars_ch->dlsch_eNB[0][0]->harq_processes[0]->b);
for(k = 0; k < n_relays; k++) {
phy_vars_mr[k]->dlsch_ue[0][0] = new_ue_dlsch(1, 8, 0);
phy_vars_mr[k]->dlsch_ue[0][0]->mode1_flag = 0;
memset(phy_vars_mr[k]->dlsch_ue[0][0]->rb_alloc, 0, 16);
}
}
void free_broadcast_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays)
{
int k;
// Workaround for memory leak:
phy_vars_ch->dlsch_eNB[0][0]->harq_processes[0]->b = 0;
free_eNB_dlsch(phy_vars_ch->dlsch_eNB[0][0]);
for(k = 0; k < n_relays; k++) {
free_ue_dlsch(phy_vars_mr[k]->dlsch_ue[0][0]);
}
}
void alloc_distributed_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays, uint16_t rnti)
{
int k;
int l;
for(k = 0; k < n_relays; k++) {
phy_vars_mr[k]->ulsch_ue[0] = new_ue_ulsch(8, 0);
phy_vars_mr[k]->ulsch_ue[0]->o_ACK[0] = 0;
phy_vars_mr[k]->ulsch_ue[0]->o_ACK[1] = 0;
phy_vars_mr[k]->ulsch_ue[0]->o_ACK[2] = 0;
phy_vars_mr[k]->ulsch_ue[0]->o_ACK[3] = 0;
for(l = 0; l < 3; l++)
if(phy_vars_mr[k]->ulsch_ue[0]->harq_processes[l]) {
phy_vars_mr[k]->ulsch_ue[0]->harq_processes[l]->status = DISABLED;
phy_vars_mr[k]->ulsch_ue[0]->harq_processes[l]->B = 0;
}
}
phy_vars_ch->ulsch_eNB[0] = new_eNB_ulsch(8, 0);
}
void free_distributed_transport_channel(PHY_VARS_eNB* phy_vars_ch, PHY_VARS_UE** phy_vars_mr, int n_relays)
{
int k;
for(k = 0; k < n_relays; k++) {
free_ue_ulsch(phy_vars_mr[k]->ulsch_ue[0]);
}
//free_eNB_ulsch(phy_vars_ch->ulsch_eNB[0]);
}
uint16_t rballoc_type0(int n_rb, int rbg_size)
{
int rb = 0;
int k;
for(k = 0; k < n_rb; k += rbg_size)
rb = (rb << 1) + 1;
return rb;
}
void setup_broadcast_dci(DCI_ALLOC_t* dci, uint16_t rnti, int harq_round, int mcs, int n_rb)
{
DCI1_5MHz_TDD_t* dci_data = (DCI1_5MHz_TDD_t*) dci->dci_pdu;
memset(dci, 0, sizeof(DCI_ALLOC_t));
dci_data->dai = 1;
dci_data->TPC = 0;
dci_data->rv = (harq_round >> 1) & 0x03;
dci_data->ndi = (harq_round == 0 ? 1 : 0);
dci_data->harq_pid = 0;
dci_data->mcs = mcs;
dci_data->rballoc = rballoc_type0(n_rb, RBG_SIZE);
dci_data->rah = 0;
dci->dci_length = sizeof_DCI1_5MHz_TDD_t;
dci->L = 1;
dci->rnti = rnti;
dci->format = format1;
}
void setup_distributed_dci(DCI_ALLOC_t* dci, uint16_t rnti, int harq_round, int mcs, int n_rb)
{
DCI0_5MHz_TDD_1_6_t* dci_data = (DCI0_5MHz_TDD_1_6_t*) dci->dci_pdu;
memset(dci, 0, sizeof(DCI_ALLOC_t));
dci_data->cqi_req = 0;
dci_data->dai = 1;
dci_data->cshift = 0;
dci_data->TPC = 0;
if(harq_round == 0) {
dci_data->ndi = 1;
dci_data->mcs = mcs;
} else {
dci_data->ndi = 0;
switch(harq_round % 4) {
case 0:
dci_data->mcs = mcs;
break;
case 1:
// dci_data->mcs = 30;
dci_data->mcs = mcs;
break;
case 2:
// dci_data->mcs = 31;
dci_data->mcs = 29;
break;
case 3:
dci_data->mcs = 29;
break;
}
}
dci_data->rballoc = computeRIV(N_PRB,0,n_rb);
dci_data->hopping = 0;
dci_data->type = 0;
dci->dci_length = sizeof_DCI0_5MHz_TDD_1_6_t;
dci->L = 1;
dci->rnti = rnti;
dci->format = format0;
}
void ofdm_modulation(mod_sym_t** tx_f, int32_t** tx_t, LTE_DL_FRAME_PARMS* frame_parms, uint8_t subframe, uint8_t nsymb)
{
mod_sym_t* src;
int32_t* dst;
if(frame_parms->Ncp == 0) { // Normal prefix
src = &tx_f[0][subframe*14*frame_parms->ofdm_symbol_size];
dst = &tx_t[0][subframe*frame_parms->samples_per_tti];
normal_prefix_mod(src, dst, nsymb, frame_parms);
} else { // Extended prefix
src = &tx_f[0][subframe*12*frame_parms->ofdm_symbol_size];
dst = &tx_t[0][subframe*frame_parms->samples_per_tti];
PHY_ofdm_mod(src, dst, frame_parms->log2_symbol_size,
nsymb, frame_parms->nb_prefix_samples, frame_parms->twiddle_ifft,
frame_parms->rev, CYCLIC_PREFIX);
}
}
channel_vars_t alloc_channel_vars(LTE_DL_FRAME_PARMS* frame_parms)
{
channel_vars_t v;
v.s_re[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
v.s_im[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
v.r_re[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
v.r_im[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
v.r_re_t[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
v.r_im_t[0] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
return v;
}
void free_channel_vars(channel_vars_t v)
{
free(v.s_re[0]);
free(v.s_im[0]);
free(v.r_re[0]);
free(v.r_im[0]);
free(v.r_re_t[0]);
free(v.r_im_t[0]);
}
sh_channel_t* alloc_sh_channel(channel_vars_t* cvars, SCM_t channel_model, int n_txantennas, int n_rxantennas,
double channel_correlation)
{
sh_channel_t* ch = malloc(sizeof(sh_channel_t));
ch->cvars = cvars;
ch->channel = new_channel_desc_scm(n_txantennas, n_rxantennas, channel_model, BW, channel_correlation, 0, 0.0);
return ch;
}
void free_sh_channel(sh_channel_t* c)
{
free(c->channel);
}
void transmit_subframe(sh_channel_t* channel, int32_t** src, LTE_DL_FRAME_PARMS* frame_parms,
uint8_t subframe, uint8_t nsymb, double ampl, bool accumulate)
{
int k;
int symbols_per_slot = (frame_parms->Ncp == 0 ? 7 : 6);
int nsamples = 0;
for(k = 0; k < nsymb; k++) {
if(k % symbols_per_slot == 0)
nsamples += frame_parms->nb_prefix_samples0;
else
nsamples += frame_parms->nb_prefix_samples;
nsamples += frame_parms->ofdm_symbol_size;
}
for(k = 0; k < nsamples; k++) {
channel->cvars->s_re[0][k] = (double)((int16_t*)src[0])[2*subframe*frame_parms->samples_per_tti + (k<<1)];
channel->cvars->s_im[0][k] = (double)((int16_t*)src[0])[2*subframe*frame_parms->samples_per_tti + (k<<1) + 1];
/*
if(accumulate) {
channel->cvars->r_re_t[0][k] = channel->cvars->s_re[0][k];
channel->cvars->r_im_t[0][k] = channel->cvars->s_im[0][k];
} else {
channel->cvars->r_re[0][k] = channel->cvars->s_re[0][k];
channel->cvars->r_im[0][k] = channel->cvars->s_im[0][k];
}
*/
//channel->cvars->s_re[1][k] = 0;
//channel->cvars->s_im[1][k] = 0;
}
if(accumulate) {
multipath_channel(channel->channel, channel->cvars->s_re, channel->cvars->s_im,
channel->cvars->r_re_t, channel->cvars->r_im_t, nsamples, 0);
for(k = 0; k < nsamples; k++) {
channel->cvars->r_re[0][k] += channel->cvars->r_re_t[0][k] * ampl;
channel->cvars->r_im[0][k] += channel->cvars->r_im_t[0][k] * ampl;
}
} else {
multipath_channel(channel->channel, channel->cvars->s_re, channel->cvars->s_im,
channel->cvars->r_re, channel->cvars->r_im, nsamples, 0);
for(k = 0; k < nsamples; k++) {
channel->cvars->r_re[0][k] *= ampl;
channel->cvars->r_im[0][k] *= ampl;
}
}
}
void deliver_subframe(sh_channel_t* channel, int32_t** dst, LTE_DL_FRAME_PARMS* frame_parms,
uint8_t subframe, uint8_t nsymb, double stddev)
{
int k;
int symbols_per_slot = (frame_parms->Ncp == 0 ? 7 : 6);
int nsamples = 0;
for(k = 0; k < nsymb; k++) {
// printf("deliver_subframe symbol k %d\n",k);
if(k % symbols_per_slot == 0)
nsamples += frame_parms->nb_prefix_samples0;
else
nsamples += frame_parms->nb_prefix_samples;
nsamples += frame_parms->ofdm_symbol_size;
}
for(k = 0; k < nsamples; k++) {
((int16_t*)dst[0])[2*subframe*frame_parms->samples_per_tti + (k<<1)] =
(int16_t) (channel->cvars->r_re[0][k] + stddev*0.707*gaussdouble(0.0, 1.0));
((int16_t*)dst[0])[2*subframe*frame_parms->samples_per_tti + (k<<1) + 1] =
(int16_t) (channel->cvars->r_im[0][k] + stddev*0.707*gaussdouble(0.0, 1.0));
}
}
void ofdm_fep(PHY_VARS_UE* phy_vars_mr, uint8_t subframe)
{
int n_symbols_per_slot = (phy_vars_mr->lte_frame_parms.Ncp == 0 ? 7 : 6);
int slot;
int symbol;
//slot = subframe;
for(slot = 2*subframe; slot < 2*subframe+2; slot++)
for(symbol = 0; symbol < n_symbols_per_slot; symbol++)
slot_fep(phy_vars_mr, symbol, slot, 0, 0);
slot_fep(phy_vars_mr, 0, 2*subframe+2, 0, 0);
}
int rx_dlsch_symbol(PHY_VARS_UE* phy_vars, uint8_t subframe, uint8_t symbol, uint8_t first_symbol)
{
int s;
s = rx_pdsch(phy_vars, PDSCH, 0, 0, subframe, symbol, first_symbol, 0, 0);
if(s == -1)
printf("DLSCH receiver error\n");
return s;
}
uint32_t get_ulsch_G(LTE_UE_ULSCH_t *ulsch, uint8_t harq_pid)
{
uint8_t Q_m = 0;
uint32_t Kr = 0;
int r;
uint32_t sumKr = 0;
uint32_t Qprime;
uint32_t L;
uint32_t G;
uint32_t Q_CQI = 0;
uint32_t Q_RI = 0;
Q_m = get_Qm(ulsch->harq_processes[harq_pid]->mcs);
sumKr = 0;
for (r=0; r<ulsch->harq_processes[harq_pid]->C; r++) {
if (r<ulsch->harq_processes[harq_pid]->Cminus)
Kr = ulsch->harq_processes[harq_pid]->Kminus;
else
Kr = ulsch->harq_processes[harq_pid]->Kplus;
sumKr += Kr;
}
Qprime = ulsch->O_RI * ulsch->harq_processes[harq_pid]->Msc_initial *
ulsch->harq_processes[harq_pid]->Nsymb_initial * ulsch->beta_offset_ri_times8;
if (Qprime > 0) {
if ((Qprime % (8*sumKr)) > 0)
Qprime = 1+(Qprime/(8*sumKr));
else
Qprime = Qprime/(8*sumKr);
if (Qprime > 4*ulsch->harq_processes[harq_pid]->nb_rb * 12)
Qprime = 4*ulsch->harq_processes[harq_pid]->nb_rb * 12;
}
Q_RI = Q_m*Qprime;
if (ulsch->O < 12)
L=0;
else
L=8;
Qprime = (ulsch->O + L) * ulsch->harq_processes[harq_pid]->Msc_initial *
ulsch->harq_processes[harq_pid]->Nsymb_initial * ulsch->beta_offset_cqi_times8;
if (Qprime > 0) {
if ((Qprime % (8*sumKr)) > 0)
Qprime = 1+(Qprime/(8*sumKr));
else
Qprime = Qprime/(8*sumKr);
}
G = ulsch->harq_processes[harq_pid]->nb_rb * (12 * Q_m) * (ulsch->Nsymb_pusch);
if (Qprime > (G - ulsch->O_RI))
Qprime = G - ulsch->O_RI;
Q_CQI = Q_m * Qprime;
G = G - Q_RI - Q_CQI;
return G;
}
double compute_ber_soft(uint8_t* ref, int16_t* rec, int n)
{
int k;
int e = 0;
for(k = 0; k < n; k++) {
if((ref[k]==1) != (rec[k]<0)) {
//printf("error pos %d ( %d => %d)\n",k,ref[k],rec[k]);
e++;
}
}
return (double)e / (double)n;
}
void print_dlsch_eNB_stats(LTE_eNB_DLSCH_t* d)
{
int k;
LTE_DL_eNB_HARQ_t* h;
if(d) {
printf("eNB dlsch: rnti=%04x, active=%d, current_harq_pid=%d, rb_alloc=%08x %08x %08x %08x, nb_rb=%d, G=%d, layer_index=%d, codebook_index=%d, Mdlharq=%d, Kmimo=%d\n",
d->rnti, d->active, d->current_harq_pid,
d->rb_alloc[0], d->rb_alloc[1], d->rb_alloc[2], d->rb_alloc[3], d->nb_rb, d->G,
d->layer_index, d->codebook_index, d->Mdlharq, d->Kmimo);
for(k = 0; k < 8; k++) {
if(d->harq_processes[k]) {
h = d->harq_processes[k];
if(h->status == ACTIVE) {
printf("HARQ process %d: Ndi=%d, status=%d, TBS=%d, B=%d, round=%d, mcs=%d, rvidx=%d, Nl=%d\n",
k, h->Ndi, h->status, h->TBS, h->B, h->round, h->mcs, h->rvidx, h->Nl);
}
}
}
}
}
void print_dlsch_ue_stats(LTE_UE_DLSCH_t* d)
{
int k;
LTE_DL_UE_HARQ_t* h;
if(d) {
printf("UE dlsch: rnti=%04x, active=%d, mode1_flag=%d, current_harq_pid=%d, rb_alloc=%08x %08x %08x %08x, nb_rb=%d, G=%d, layer_index=%d, Mdlharq=%d, Kmimo=%d\n",
d->rnti, d->active, d->mode1_flag, d->current_harq_pid,
d->rb_alloc[0], d->rb_alloc[1], d->rb_alloc[2], d->rb_alloc[3], d->nb_rb, d->G,
d->layer_index, d->Mdlharq, d->Kmimo);
for(k = 0; k < 8; k++) {
if(d->harq_processes[k]) {
h = d->harq_processes[k];
if(h->status == ACTIVE || h->TBS > 0) {
printf("HARQ process %d: Ndi=%d, status=%d, TBS=%d, B=%d, round=%d, mcs=%d, rvidx=%d, Nl=%d\n",
k, h->Ndi, h->status, h->TBS, h->B, h->round, h->mcs, h->rvidx, h->Nl);
}
}
}
}
}
void print_ulsch_ue_stats(LTE_UE_ULSCH_t* d)
{
int k;
LTE_UL_UE_HARQ_t* h;
if(d) {
printf("UE ulsch: Nsymb_pusch=%d, O=%d, o_ACK=%d %d %d %d, O_ACK=%d, Mdlharq=%d, n_DMRS2=%d, cooperation_flag=%d\n",
d->Nsymb_pusch, d->O, d->o_ACK[0], d->o_ACK[1], d->o_ACK[2], d->o_ACK[3], d->O_ACK, d->Mdlharq, d->n_DMRS2, d->cooperation_flag);
for(k = 0; k < 3; k++) {
if(d->harq_processes[k]) {
h = d->harq_processes[k];
if(h->status == ACTIVE) {
printf("HARQ process %d: Ndi=%d, status=%d, subframe_scheduling_flag=%d, first_rb=%d, nb_rb=%d, TBS=%d, B=%d, round=%d, mcs=%d, rvidx=%d\n",
k, h->Ndi, h->status, h->subframe_scheduling_flag, h->first_rb, h->nb_rb, h->TBS, h->B, h->round, h->mcs, h->rvidx);
}
}
}
}
}
void print_ulsch_eNB_stats(LTE_eNB_ULSCH_t* d)
{
int k;
LTE_UL_eNB_HARQ_t* h;
if(d) {
printf("eNB ulsch: Nsymb_pusch=%d, Mdlharq=%d, cqi_crc_status=%d, Or1=%d, Or2=%d, o_RI=%d %d, O_RI=%d, o_ACK=%d %d %d %d, O_ACK=%d, o_RCC=%d, beta_offset_cqi_times8=%d, beta_offset_ri_times8=%d, beta_offset_harqack_times8=%d, rnti=%x, n_DMRS2=%d, cyclicShift=%d, cooperation_flag=%d\n",
d->Nsymb_pusch, d->Mdlharq, d->cqi_crc_status, d->Or1, d->Or2, d->o_RI[0], d->o_RI[1], d->O_RI, d->o_ACK[0], d->o_ACK[1], d->o_ACK[2], d->o_ACK[3], d->O_ACK, d->o_RCC, d->beta_offset_cqi_times8,
d->beta_offset_ri_times8, d->beta_offset_harqack_times8, d->rnti, d->n_DMRS2, d->cyclicShift, d->cooperation_flag);
for(k = 0; k < 3; k++) {
if(d->harq_processes[k]) {
h = d->harq_processes[k];
if(h->status == ACTIVE) {
printf("HARQ process %d: Ndi=%d, status=%d, subframe_scheduling_flag=%d, phich_active=%d, phich_ACK=%d, TPC=%d, first_rb=%d, nb_rb=%d, TBS=%d, B=%d, round=%d, mcs=%d, rvidx=%d\n",
k, h->Ndi, h->status, h->subframe_scheduling_flag, h->phich_active, h->phich_ACK, h->TPC, h->first_rb, h->nb_rb, h->TBS, h->B, h->round, h->mcs, h->rvidx);
}
}
}
}
}
int block_valid(uint8_t* ref, uint8_t* rec, int n)
{
int k;
for(k = 0; k < n; k++) {
if(ref[k] != rec[k])
return 0;
//printf("%d ",k);
}
//printf("\n");
return 1;
}
void init_results(results_t* r, args_t* a)
{
int k;
r->n_relays = a->n_relays;
r->n_pdu = a->n_pdu;
r->n_harq = a->n_harq;
r->channel_model = a->channel_model;
r->mcs_hop1 = malloc(a->n_pdu*sizeof(int*));
r->mcs_hop2 = malloc(a->n_pdu*sizeof(int*));
r->tbs_hop1 = malloc(a->n_pdu*sizeof(int*));
r->tbs_hop2 = malloc(a->n_pdu*sizeof(int*));
r->n_prb_hop1 = malloc(a->n_pdu*sizeof(int*));
r->n_prb_hop2 = malloc(a->n_pdu*sizeof(int*));
for(k = 0; k < a->n_pdu; k++) {
r->mcs_hop1[k] = malloc(a->n_harq*sizeof(int));
r->mcs_hop2[k] = malloc(a->n_harq*sizeof(int));
r->tbs_hop1[k] = malloc(a->n_harq*sizeof(int));
r->tbs_hop2[k] = malloc(a->n_harq*sizeof(int));
r->n_prb_hop1[k] = malloc(a->n_harq*sizeof(int));
r->n_prb_hop2[k] = malloc(a->n_harq*sizeof(int));
}
r->relay_activity = malloc((1 << a->n_relays)*sizeof(int));
}
void clear_results(results_t* r)
{
int k;
r->snr_hop1 = 0;
r->snr_hop2 = 0;
r->n_frames_hop1 = 0;
r->n_frames_hop2 = 0;
r->n_bits_hop1 = 0;
r->n_bits_hop2 = 0;
for(k = 0; k < MAX_RELAYS; k++) {
r->ber_hop1[k] = 0.0;
}
r->ber_hop2 = 0.0;
r->n_pdu_success_hop1 = 0;
r->n_pdu_success_hop2 = 0;
for(k = 0; k < MAX_HARQ_ROUNDS; k++) {
r->n_harq_tries_hop1[k] = 0;
r->n_harq_tries_hop2[k] = 0;
r->n_harq_success_hop1[k] = 0;
r->n_harq_success_hop2[k] = 0;
}
for(k = 0; k < r->n_pdu; k++) {
memset(r->mcs_hop1[k], 0, r->n_harq*sizeof(int));
memset(r->mcs_hop2[k], 0, r->n_harq*sizeof(int));
memset(r->tbs_hop1[k], 0, r->n_harq*sizeof(int));
memset(r->tbs_hop2[k], 0, r->n_harq*sizeof(int));
memset(r->n_prb_hop1[k], 0, r->n_harq*sizeof(int));
memset(r->n_prb_hop2[k], 0, r->n_harq*sizeof(int));
}
memset(r->n_transmissions, 0, MAX_HARQ_ROUNDS*MAX_HARQ_ROUNDS*sizeof(int));
memset(r->relay_activity, 0, (1 << (r->n_relays))*sizeof(int));
}
void free_results(results_t* r)
{
int k;
for(k = 0; k < r->n_pdu; k++) {
free(r->mcs_hop1[k]);
free(r->mcs_hop2[k]);
free(r->tbs_hop1[k]);
free(r->tbs_hop2[k]);
free(r->n_prb_hop1[k]);
free(r->n_prb_hop2[k]);
}
free(r->mcs_hop1);
free(r->mcs_hop2);
free(r->tbs_hop1);
free(r->tbs_hop2);
free(r->n_prb_hop1);
free(r->n_prb_hop2);
free(r->relay_activity);
}
void print_results(results_t* r)
{
int k;
printf("Hop 1: SNR (");
for(k = 0; k < r->n_relays; k++)
printf("%.1f%s", r->snr_hop1[k], k < r->n_relays-1 ? ", " : "");
printf("), BER (");
for(k = 0; k < r->n_relays; k++)
printf("%f%s", r->ber_hop1[k], k < r->n_relays-1 ? ", " : "");
printf(")\n");
printf(" avg bits/frame %f, avg frames/received PDU %f, avg delay %f\n",
(double)r->n_bits_hop1/(double)r->n_frames_hop1,
(double)r->n_frames_hop1/(double)r->n_pdu_success_hop1,
calc_delay(r->n_harq_success_hop1, r->n_harq));
//(double)(r->n_frames_hop1-(r->n_harq_tries_hop1[0]-r->n_pdu_success_hop1)*r->n_harq)/(double)r->n_pdu_success_hop1);
printf(" HARQ (n_success/n_tries):");
for(k = 0; k < r->n_harq; k++)
printf(" %d/%d", r->n_harq_success_hop1[k], r->n_harq_tries_hop1[k]);
printf("\n");
printf("Hop 2: SNR (");
for(k = 0; k < r->n_relays; k++)
printf("%.1f%s", r->snr_hop2[k], k < r->n_relays-1 ? ", " : "");
printf("), BER %f\n", r->ber_hop2);
printf(" avg bits/frame %f, avg frames/received PDU %f, avg delay %f\n",
(double)r->n_bits_hop2/(double)r->n_frames_hop2,
(double)r->n_frames_hop2/(double)r->n_pdu_success_hop2,
calc_delay(r->n_harq_success_hop2, r->n_harq));
//(double)(r->n_frames_hop2-(r->n_harq_tries_hop2[0]-r->n_pdu_success_hop2)*r->n_harq)/(double)r->n_pdu_success_hop2);
printf(" HARQ (n_success/n_tries):");
for(k = 0; k < r->n_harq; k++)
printf(" %d/%d", r->n_harq_success_hop2[k], r->n_harq_tries_hop2[k]);
printf("\n");
printf("Collaborative link BLER: %d/%d\n", r->n_pdu-r->n_pdu_success_hop2, r->n_pdu);
printf("Relay activity:");
if(r->n_relays == 2)
printf(" MR1(%d) MR2(%d) MR1+MR2(%d)\n", r->relay_activity[1], r->relay_activity[2], r->relay_activity[3]);
else {
for(k = 1; k < (1 << r->n_relays); k++)
printf(" %d", r->relay_activity[k]);
printf("\n");
}
}
void write_results_header(FILE* f, results_t* r, int n_tests)
{
fprintf(f, "%d %d %d %d %d\n", r->n_relays, r->channel_model, n_tests, r->n_pdu, r->n_harq);
}
void write_results_data(FILE* f, results_t* r)
{
int k;
int l;
for(k = 0; k < r->n_relays; k++)
fprintf(f, "%f ", r->snr_hop1[k]);
fprintf(f, "\n");
for(k = 0; k < r->n_relays; k++)
fprintf(f, "%f ", r->snr_hop2[k]);
fprintf(f, "\n");
fprintf(f, "%d %d %d %d %d %d\n", r->n_frames_hop1, r->n_frames_hop2,
r->n_bits_hop1, r->n_bits_hop2, r->n_pdu_success_hop1, r->n_pdu_success_hop2);
for(k = 0; k < r->n_relays; k++)
fprintf(f, "%f ", r->ber_hop1[k]);
fprintf(f, "%f\n", r->ber_hop2);
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->n_harq_tries_hop1[k]);
fprintf(f, "\n");
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->n_harq_success_hop1[k]);
fprintf(f, "\n");
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->n_harq_tries_hop2[k]);
fprintf(f, "\n");
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->n_harq_success_hop2[k]);
fprintf(f, "\n");
for(l = 0; l < r->n_pdu; l++) {
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->mcs_hop1[l][k]);
fprintf(f, "\n");
}
for(l = 0; l < r->n_pdu; l++) {
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->mcs_hop2[l][k]);
fprintf(f, "\n");
}
for(l = 0; l < r->n_pdu; l++) {
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->tbs_hop1[l][k]);
fprintf(f, "\n");
}
for(l = 0; l < r->n_pdu; l++) {
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->tbs_hop2[l][k]);
fprintf(f, "\n");
}
for(l = 0; l < r->n_pdu; l++) {
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->n_prb_hop1[l][k]);
fprintf(f, "\n");
}
for(l = 0; l < r->n_pdu; l++) {
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->n_prb_hop2[l][k]);
fprintf(f, "\n");
}
for(l = 0; l < r->n_harq; l++) {
for(k = 0; k < r->n_harq; k++)
fprintf(f, "%d ", r->n_transmissions[l][k]);
fprintf(f, "\n");
}
for(k = 0; k < (1 << r->n_relays); k++)
fprintf(f, "%d ", r->relay_activity[k]);
fprintf(f, "\n");
}
double calc_delay(int* n_frames, int n_harq)
{
int n = 0;
int f = 0;
int k;
for(k = 0; k < n_harq; k++) {
n += n_frames[k]*(k+1);
f += n_frames[k];
}
return (double)n/(double)f;
}
function r = read_results(f)
%r = read_results(f)
%
%Reads colabsim simulation results from file f.
%
%Arguments:
% f - results file (produced with -r option to colabsim)
%
%Returns:
% r - results structure with the following fields:
% n_relays: number of relays
% channel_model: the used channel model as a string
% n_tests: the number of tests done (each with different SNR)
% n_pdu: the number of sent MAC PDUs for each test
% n_harq: the maximum number of HARQ rounds
% tests: struct array of length n_tests containing the following fields:
% snr_hop{1,2}: SNRs for each link in hop {1,2}
% n_frames_hop{1,2}: number of transmitted LTE frames in hop {1,2}
% n_bits_hop{1,2}: number of correctly received information bits in hop {1,2}
% n_pdu_success_hop{1,2}: number of correctly received MAC PDUs in hop {1,2}
% ber_hop1: vector of average raw BER at relays
% ber_hop2: average raw BER at destination CH
% n_harq_tries_hop{1,2}: number of transmitted MAC PDUs in each HARQ round in hop {1,2}
% n_harq_success_hop{1,2}: number of successfully decoded MAC PDUs in each HARQ round in hop {1,2}
% mcs_hop{1,2}: MCS used in each transmission in hop {1,2}
% tbs_hop{1,2}: TBS used in each transmission in hop {1,2}
% n_rb_hop{1,2}: number of resource blocks used in each transmission in hop {1,2}
% n_transmissions: distribution of the number of required transmissions in each hop for the
% successfully decoded MAC PDUs, n_transmissions(n1,n2) is the number of successfully decoded
% MAC PDUs that required n1 transmissions in hop 1 and n2 transmissions in hop 2
% relay_activity: number of transmissions with different cooperation level of relays,
% for n_relays==2 there are four values: [0 MR1 MR2 MR1+MR2], this is for all transmissions
% over hop 2, even if the PDU was not finally received at the destination CH
fid = fopen(f, 'r');
A = mread(fid, 1, 5);
r.n_relays = A(1);
r.channel_model = parse_channel(A(2));
r.n_tests = A(3);
r.n_pdu = A(4);
r.n_harq = A(5);
n_relays = A(1);
n_tests = A(3);
n_pdu = A(4);
n_harq = A(5);
test_row = 1;
for test = 1:n_tests
r.tests(test).snr_hop1 = mread(fid, 1, n_relays);
r.tests(test).snr_hop2 = mread(fid, 1, n_relays);
A = mread(fid, 1, 6);
r.tests(test).n_frames_hop1 = A(1);
r.tests(test).n_frames_hop2 = A(2);
r.tests(test).n_bits_hop1 = A(3);
r.tests(test).n_bits_hop2 = A(4);
r.tests(test).n_pdu_success_hop1 = A(5);
r.tests(test).n_pdu_success_hop2 = A(6);
A = mread(fid, 1, n_relays+1);
r.tests(test).ber_hop1 = A(1:end-1);
r.tests(test).ber_hop2 = A(end);
r.tests(test).n_harq_tries_hop1 = mread(fid, 1, n_harq);
r.tests(test).n_harq_success_hop1 = mread(fid, 1, n_harq);
r.tests(test).n_harq_tries_hop2 = mread(fid, 1, n_harq);
r.tests(test).n_harq_success_hop2 = mread(fid, 1, n_harq);
r.tests(test).mcs_hop1 = mread(fid, n_pdu, n_harq);
r.tests(test).mcs_hop2 = mread(fid, n_pdu, n_harq);
r.tests(test).tbs_hop1 = mread(fid, n_pdu, n_harq);
r.tests(test).tbs_hop2 = mread(fid, n_pdu, n_harq);
r.tests(test).n_rb_hop1 = mread(fid, n_pdu, n_harq);
r.tests(test).n_rb_hop2 = mread(fid, n_pdu, n_harq);
r.tests(test).n_transmissions = mread(fid, n_harq, n_harq);
r.tests(test).relay_activity = mread(fid, 1, 2^n_relays);
end
fclose(fid);
function s = parse_channel(c)
s = sprintf('%d', c);
function A = mread(fid, nrow, ncol)
A = fscanf(fid, '%f', [ncol,nrow])';
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment