Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2DPose
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Sensing
2DPose
Commits
3bbeb840
Commit
3bbeb840
authored
Feb 28, 2022
by
Sensing
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Delete train_resize_index.py
parent
b3b48cd3
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
318 deletions
+0
-318
train_resize_index.py
train_resize_index.py
+0
-318
No files found.
train_resize_index.py
deleted
100644 → 0
View file @
b3b48cd3
import
tensorflow
as
tf
import
numpy
as
np
import
pickle
import
normalization
import
cv2
import
math
import
os
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'2'
class
autoencoder
():
def
__init__
(
self
,
train_data
=
None
,
batch_size
=
16
,
learning_rate
=
0.001
,
training_epochs
=
20
,
time_scale
=
20
,
param_file
=
False
,
is_train
=
True
):
self
.
train
=
train_data
self
.
batch_size
=
batch_size
self
.
lr
=
learning_rate
self
.
learning_rate
=
learning_rate
self
.
is_train
=
is_train
self
.
training_epochs
=
training_epochs
self
.
time_scale
=
time_scale
self
.
build
()
print
"Neural networks build!"
self
.
saver
=
tf
.
train
.
Saver
()
self
.
sess
=
tf
.
Session
()
init
=
tf
.
global_variables_initializer
()
self
.
sess
.
run
(
init
)
if
is_train
is
True
:
if
param_file
is
True
:
self
.
saver
.
restore
(
self
.
sess
,
"./params/train.ckpt"
)
print
(
"loading neural-network params..."
)
self
.
learn
()
else
:
print
"learning initialization!"
self
.
learn
()
else
:
self
.
saver
.
restore
(
self
.
sess
,
"./params/train.ckpt"
)
self
.
show
()
def
build
(
self
):
self
.
input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
None
,
30
,
self
.
time_scale
,
4
],
name
=
'csi_input'
)
self
.
tag
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
None
,
120
,
160
,
1
],
name
=
'image_origin'
)
self
.
output
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
[
None
,
120
,
160
,
1
],
name
=
'image_output'
)
with
tf
.
variable_scope
(
'CNN'
):
alpha
=
0.01
w_initializer
=
tf
.
random_normal_initializer
(
0.
,
0.1
)
b_initializer
=
tf
.
constant_initializer
(
0.1
)
self
.
W_e_conv1
=
tf
.
get_variable
(
'w1'
,
[
3
,
3
,
4
,
8
],
initializer
=
w_initializer
)
b_e_conv1
=
tf
.
get_variable
(
'b1'
,
[
8
,
],
initializer
=
b_initializer
)
self
.
conv1
=
tf
.
nn
.
relu
(
tf
.
add
(
tf
.
nn
.
conv2d
(
self
.
input
,
self
.
W_e_conv1
,
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
),
b_e_conv1
))
print
self
.
conv1
.
shape
self
.
W_e_conv2
=
tf
.
get_variable
(
'w2'
,
[
1
,
1
,
8
,
8
],
initializer
=
w_initializer
)
b_e_conv2
=
tf
.
get_variable
(
'b2'
,
[
8
,
],
initializer
=
b_initializer
)
self
.
conv2
=
tf
.
nn
.
relu
(
tf
.
add
(
tf
.
nn
.
conv2d
(
self
.
conv1
,
self
.
W_e_conv2
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
),
b_e_conv2
))
print
self
.
conv2
.
shape
self
.
W_e_conv3
=
tf
.
get_variable
(
'w3'
,
[
3
,
3
,
8
,
32
],
initializer
=
w_initializer
)
b_e_conv3
=
tf
.
get_variable
(
'b3'
,
[
32
,
],
initializer
=
b_initializer
)
self
.
conv3
=
tf
.
nn
.
relu
(
tf
.
add
(
tf
.
nn
.
conv2d
(
self
.
conv2
,
self
.
W_e_conv3
,
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
),
b_e_conv3
))
print
self
.
conv3
.
shape
self
.
W_e_conv4
=
tf
.
get_variable
(
'w4'
,
[
1
,
1
,
32
,
32
],
initializer
=
w_initializer
)
b_e_conv4
=
tf
.
get_variable
(
'b4'
,
[
32
,
],
initializer
=
b_initializer
)
self
.
conv4
=
tf
.
nn
.
relu
(
tf
.
add
(
tf
.
nn
.
conv2d
(
self
.
conv3
,
self
.
W_e_conv4
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
),
b_e_conv4
))
print
self
.
conv4
.
shape
self
.
W_e_conv5
=
tf
.
get_variable
(
'w5'
,
[
3
,
3
,
32
,
128
],
initializer
=
w_initializer
)
b_e_conv5
=
tf
.
get_variable
(
'b5'
,
[
128
,
],
initializer
=
b_initializer
)
self
.
conv5
=
tf
.
nn
.
relu
(
tf
.
add
(
tf
.
nn
.
conv2d
(
self
.
conv4
,
self
.
W_e_conv5
,
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
),
b_e_conv5
))
print
self
.
conv5
.
shape
self
.
W_e_conv6
=
tf
.
get_variable
(
'w6'
,
[
1
,
1
,
128
,
128
],
initializer
=
w_initializer
)
b_e_conv6
=
tf
.
get_variable
(
'b6'
,
[
128
,
],
initializer
=
b_initializer
)
self
.
conv6
=
tf
.
nn
.
relu
(
tf
.
add
(
tf
.
nn
.
conv2d
(
self
.
conv5
,
self
.
W_e_conv6
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
),
b_e_conv6
))
print
self
.
conv6
.
shape
weight_features
=
self
.
SENET
(
self
.
conv6
,
1
)
weight_features
=
tf
.
reshape
(
weight_features
,
[
-
1
,
4
*
3
*
128
])
self
.
w_code
=
tf
.
get_variable
(
'w_code'
,
[
4
*
3
*
128
,
8
*
10
*
128
],
initializer
=
w_initializer
,
)
self
.
b_code
=
tf
.
get_variable
(
'b_code'
,
[
8
*
10
*
128
,
],
initializer
=
b_initializer
,
)
encoder
=
tf
.
nn
.
relu
(
tf
.
matmul
(
weight_features
,
self
.
w_code
)
+
self
.
b_code
)
encoder
=
tf
.
reshape
(
encoder
,
[
-
1
,
8
,
10
,
128
])
decoder_1
=
tf
.
image
.
resize_images
(
encoder
,
size
=
(
15
,
20
),
method
=
tf
.
image
.
ResizeMethod
.
NEAREST_NEIGHBOR
)
self
.
W_d_conv1
=
tf
.
get_variable
(
'w_d_1'
,
[
1
,
1
,
128
,
64
],
initializer
=
w_initializer
)
decoder_1
=
tf
.
nn
.
conv2d
(
decoder_1
,
self
.
W_d_conv1
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
,
)
decoder_1
=
tf
.
maximum
(
alpha
*
decoder_1
,
decoder_1
)
print
decoder_1
.
shape
self
.
W_d_conv2
=
tf
.
get_variable
(
'w_d_2'
,
[
1
,
1
,
64
,
64
],
initializer
=
w_initializer
)
decoder_2
=
tf
.
nn
.
conv2d
(
decoder_1
,
self
.
W_d_conv2
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
,
)
decoder_2
=
tf
.
maximum
(
alpha
*
decoder_2
,
decoder_2
)
print
decoder_2
.
shape
decoder_3
=
tf
.
image
.
resize_images
(
decoder_2
,
size
=
(
30
,
40
),
method
=
tf
.
image
.
ResizeMethod
.
NEAREST_NEIGHBOR
)
self
.
W_d_conv3
=
tf
.
get_variable
(
'w_d_3'
,
[
3
,
3
,
64
,
32
],
initializer
=
w_initializer
)
decoder_3
=
tf
.
nn
.
conv2d
(
decoder_3
,
self
.
W_d_conv3
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
,
)
decoder_3
=
tf
.
maximum
(
alpha
*
decoder_3
,
decoder_3
)
print
decoder_3
.
shape
self
.
W_d_conv4
=
tf
.
get_variable
(
'w_d_4'
,
[
3
,
3
,
32
,
32
],
initializer
=
w_initializer
)
decoder_4
=
tf
.
nn
.
conv2d
(
decoder_3
,
self
.
W_d_conv4
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
,
)
decoder_4
=
tf
.
maximum
(
alpha
*
decoder_4
,
decoder_4
)
print
decoder_4
.
shape
decoder_5
=
tf
.
image
.
resize_images
(
decoder_4
,
size
=
(
60
,
80
),
method
=
tf
.
image
.
ResizeMethod
.
NEAREST_NEIGHBOR
)
self
.
W_d_conv5
=
tf
.
get_variable
(
'w_d_5'
,
[
3
,
3
,
32
,
8
],
initializer
=
w_initializer
)
decoder_5
=
tf
.
nn
.
conv2d
(
decoder_5
,
self
.
W_d_conv5
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
,
)
decoder_5
=
tf
.
maximum
(
alpha
*
decoder_5
,
decoder_5
)
print
decoder_5
.
shape
self
.
W_d_conv6
=
tf
.
get_variable
(
'w_d_6'
,
[
3
,
3
,
8
,
8
],
initializer
=
w_initializer
)
decoder_6
=
tf
.
nn
.
conv2d
(
decoder_5
,
self
.
W_d_conv6
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
,
)
decoder_6
=
tf
.
maximum
(
alpha
*
decoder_6
,
decoder_6
)
print
decoder_6
.
shape
decoder_7
=
tf
.
image
.
resize_images
(
decoder_6
,
size
=
(
120
,
160
),
method
=
tf
.
image
.
ResizeMethod
.
NEAREST_NEIGHBOR
)
self
.
W_d_conv7
=
tf
.
get_variable
(
'w_d_7'
,
[
3
,
3
,
8
,
1
],
initializer
=
w_initializer
)
decoder_7
=
tf
.
nn
.
conv2d
(
decoder_7
,
self
.
W_d_conv7
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
,
)
decoder_7
=
tf
.
maximum
(
alpha
*
decoder_7
,
decoder_7
)
print
decoder_7
.
shape
self
.
output
=
tf
.
reshape
(
decoder_7
,
[
-
1
,
120
,
160
,
1
])
max
=
tf
.
reduce_max
(
self
.
output
)
min
=
tf
.
reduce_min
(
self
.
output
)
self
.
output
=
(
self
.
output
-
min
)
/
(
max
-
min
)
self
.
output
=
tf
.
clip_by_value
(
self
.
output
,
1e-7
,
0.9999999
)
with
tf
.
variable_scope
(
'loss'
):
alpha
,
beta
,
rho
=
5e-6
,
7.5e-6
,
0.08
Wset
=
[
self
.
W_e_conv1
,
self
.
W_e_conv2
,
self
.
W_e_conv3
,
self
.
w2
,
self
.
W_d_conv1
,
self
.
W_d_conv2
,
self
.
W_d_conv3
]
self
.
loss
=
tf
.
reduce_mean
(
-
tf
.
reduce_sum
(
self
.
tag
*
tf
.
log
(
self
.
output
)
+
(
1.0
-
self
.
tag
)
*
tf
.
log
(
1.0
-
self
.
output
)))
with
tf
.
variable_scope
(
'train'
):
self
.
optimizer
=
tf
.
train
.
AdamOptimizer
(
self
.
lr
).
minimize
(
self
.
loss
)
def
batch_Convert
(
self
,
csidata
,
image
,
csi_index_list
):
csidata_batch
,
image_batch
=
None
,
None
for
index
in
range
(
len
(
image
)):
xs
=
csidata
[:,
csi_index_list
[
index
]
-
self
.
time_scale
+
1
:
csi_index_list
[
index
]
+
1
,:]
ys
=
image
[
index
]
if
(
index
)
%
4
==
0
:
csidata_batch
=
np
.
array
([
xs
])
if
csidata_batch
is
None
else
np
.
append
(
csidata_batch
,
[
xs
],
axis
=
0
)
image_batch
=
np
.
array
([
ys
])
if
image_batch
is
None
else
np
.
append
(
image_batch
,
[
ys
],
axis
=
0
)
return
csidata_batch
,
image_batch
def
learn
(
self
):
stop_flag
=
0
for
j
in
range
(
self
.
training_epochs
):
for
train_data
in
self
.
train
:
print
train_data
[
2
].
shape
xs
=
train_data
[
0
].
astype
(
np
.
float32
)
xs
=
np
.
nan_to_num
(
xs
)
batch_xs
,
batch_ys
=
self
.
batch_Convert
(
xs
,
train_data
[
1
],
train_data
[
2
])
print
batch_xs
.
shape
batch_xs
=
np
.
reshape
(
batch_xs
,
[
-
1
,
30
,
self
.
time_scale
,
4
])
batch_ys
=
batch_ys
.
astype
(
np
.
float32
)
batch_ys
=
np
.
nan_to_num
(
batch_ys
)
batch_ys
=
np
.
reshape
(
batch_ys
,
[
-
1
,
120
,
160
,
1
])
batch_ys
=
np
.
clip
(
batch_ys
,
1e-7
,
0.9999999
)
for
i
in
range
(
2000
):
loss
=
0
_
,
c
,
output
,
tag
=
self
.
sess
.
run
([
self
.
optimizer
,
self
.
loss
,
self
.
output
,
self
.
tag
],
feed_dict
=
{
self
.
input
:
batch_xs
,
self
.
tag
:
batch_ys
})
if
i
==
10
:
pass
loss
+=
c
if
math
.
isnan
(
loss
)
is
True
:
stop_flag
=
1
break
if
np
.
any
(
np
.
isnan
(
batch_xs
)):
print
"Input Nan Type Error!! "
if
np
.
any
(
np
.
isnan
(
batch_ys
)):
print
"Tag Nan Type Error!! "
if
i
%
5
==
0
:
print
(
"Total Epoch:"
,
'%d'
%
(
j
),
"Pic Rpoch:"
,
'%d'
%
(
i
),
"total cost="
,
"{:.9f}"
.
format
(
loss
))
if
stop_flag
==
1
:
break
if
stop_flag
==
1
:
break
print
(
"Optimization Finished!"
)
self
.
saver
.
save
(
self
.
sess
,
"./params/train.ckpt"
)
def
show
(
self
):
"""
display the performance of autoencoder
:return: a autoencoder model using unsupervised learning
"""
count
=
0
for
train_data
in
self
.
train
:
xs
=
train_data
[
0
].
astype
(
np
.
float32
)
xs
=
np
.
nan_to_num
(
xs
)
batch_xs
,
batch_ys
=
self
.
batch_Convert
(
xs
,
train_data
[
1
],
train_data
[
2
])
batch_xs
=
np
.
reshape
(
batch_xs
,
[
-
1
,
30
,
self
.
time_scale
,
4
])
output
=
self
.
sess
.
run
(
self
.
output
,
feed_dict
=
{
self
.
input
:
batch_xs
})
output
=
np
.
reshape
(
output
,
(
-
1
,
120
,
160
,
1
))
for
i
in
range
(
len
(
output
)):
output
[
i
]
=
output
[
i
]
*
255
output1
=
output
[
i
].
astype
(
np
.
uint8
)
# cv2.imshow("Image", output1)
# cv2.waitKey(0)
# cv2.imwrite('generator/'+str(count)+'.jpg',output1)
#
#
batch_ys
[
i
]
=
batch_ys
[
i
]
*
255
target
=
batch_ys
[
i
].
astype
(
np
.
uint8
)
cv2
.
imwrite
(
'target/'
+
str
(
count
)
+
'.jpg'
,
target
)
count
+=
1
def
conv2d
(
self
,
x
,
W
):
return
tf
.
nn
.
conv2d
(
x
,
W
,
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
)
def
deconv2d
(
self
,
x
,
W
,
output_shape
):
return
tf
.
nn
.
conv2d_transpose
(
x
,
W
,
output_shape
,
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
)
def
kldlv
(
rho
,
rho_hat
):
invrho
=
tf
.
subtract
(
tf
.
constant
(
1.
),
rho
)
invrhohat
=
tf
.
subtract
(
tf
.
constant
(
1.
),
rho_hat
)
logrho
=
tf
.
add
(
logfunc
(
rho
,
rho_hat
),
logfunc
(
invrho
,
invrhohat
))
return
logrho
def
logfunc
(
x
,
x2
):
return
tf
.
multiply
(
x
,
tf
.
log
(
tf
.
div
(
x
,
x2
)))
def
batchNormalization
(
data
):
for
each_item
in
range
(
len
(
data
)):
data
[
each_item
]
=
normalization
.
MINMAXNormalization
(
data
[
each_item
])
def
package
(
train_data
):
csi_rx1
,
csi_rx2
,
image
,
index
=
train_data
[
0
],
train_data
[
1
],
train_data
[
2
],
train_data
[
3
]
tn_data
=
np
.
append
(
csi_rx1
,
csi_rx2
,
axis
=
0
)
tn_data
=
np
.
transpose
(
tn_data
,
[
1
,
2
,
0
])
return
[
tn_data
,
image
,
index
]
if
__name__
==
"__main__"
:
np
.
set_printoptions
(
threshold
=
np
.
inf
)
train_data
=
[]
for
i
in
range
(
):
#data range
index
=
i
+
1
if
index
==
:
#abnormal data
pass
elif
index
==
:
#test data
pass
# with open('../data_523/data_index/training_data_' + str(index) + '.pkl', 'rb') as handle:
# data_temp = pickle.load(handle)
# batchNormalization(data_temp[0])
# #batchNormalization(data_temp[1])
# data_nor = package(data_temp)
# train_data.append(data_nor)
else
:
with
open
(
'../data_523/data_index_dwt/training_data_'
+
str
(
index
)
+
'.pkl'
,
'rb'
)
as
handle
:
data_temp
=
pickle
.
load
(
handle
)
batchNormalization
(
data_temp
[
0
])
#batchNormalization(data_temp[1])
data_nor
=
package
(
data_temp
)
train_data
.
append
(
data_nor
)
print
len
(
train_data
)
autoencoder
(
train_data
=
train_data
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment