Commit a46d732b authored by Sensing's avatar Sensing

wifi group commit

parent 3bbeb840
import tensorflow as tf
import numpy as np
import pickle
import normalization
import cv2
import math
import os
os.environ['CUDA_VISIBLE_DEVICES']='2'
class autoencoder():
def __init__(
self,
train_data = None,
batch_size = 16,
learning_rate = 0.001,
training_epochs = 20,
time_scale = 20,
param_file = False,
is_train = True
):
self.train = train_data
self.batch_size = batch_size
self.lr = learning_rate
self.learning_rate=learning_rate
self.is_train = is_train
self.training_epochs = training_epochs
self.time_scale = time_scale
self.build()
print "Neural networks build!"
self.saver = tf.train.Saver()
self.sess = tf.Session()
init = tf.global_variables_initializer()
self.sess.run(init)
if is_train is True:
if param_file is True:
self.saver.restore(self.sess, "./params/train.ckpt")
print("loading neural-network params...")
self.learn()
else:
print "learning initialization!"
self.learn()
else:
self.saver.restore(self.sess, "./params/train.ckpt")
self.show()
def build(self):
self.input = tf.placeholder(tf.float32, shape = [None, 30, self.time_scale, 4], name='csi_input')
self.tag = tf.placeholder(tf.float32, shape = [None, 120, 160, 1], name ='image_origin')
self.output= tf.placeholder(tf.float32, shape = [None, 120, 160,1], name='image_output')
with tf.variable_scope('CNN'):
alpha = 0.01
w_initializer = tf.random_normal_initializer(0.,0.1)
b_initializer = tf.constant_initializer(0.1)
self.W_e_conv1 = tf.get_variable('w1', [3, 3, 4, 8], initializer=w_initializer)
b_e_conv1 = tf.get_variable('b1', [8, ], initializer=b_initializer)
self.conv1 = tf.nn.relu(
tf.add(tf.nn.conv2d(self.input, self.W_e_conv1, strides=[1, 2, 2, 1], padding='SAME'), b_e_conv1))
print self.conv1.shape
self.W_e_conv2 = tf.get_variable('w2', [1, 1, 8, 8], initializer=w_initializer)
b_e_conv2 = tf.get_variable('b2', [8, ], initializer=b_initializer)
self.conv2 = tf.nn.relu(
tf.add(tf.nn.conv2d(self.conv1, self.W_e_conv2, strides=[1, 1, 1, 1], padding='SAME'), b_e_conv2))
print self.conv2.shape
self.W_e_conv3 = tf.get_variable('w3', [3, 3, 8, 32], initializer=w_initializer)
b_e_conv3 = tf.get_variable('b3', [32, ], initializer=b_initializer)
self.conv3 = tf.nn.relu(
tf.add(tf.nn.conv2d(self.conv2, self.W_e_conv3, strides=[1, 2, 2, 1], padding='SAME'), b_e_conv3))
print self.conv3.shape
self.W_e_conv4 = tf.get_variable('w4', [1, 1, 32, 32], initializer=w_initializer)
b_e_conv4 = tf.get_variable('b4', [32, ], initializer=b_initializer)
self.conv4 = tf.nn.relu(
tf.add(tf.nn.conv2d(self.conv3, self.W_e_conv4, strides=[1, 1, 1, 1], padding='SAME'), b_e_conv4))
print self.conv4.shape
self.W_e_conv5 = tf.get_variable('w5', [3, 3, 32, 128], initializer=w_initializer)
b_e_conv5 = tf.get_variable('b5', [128, ], initializer=b_initializer)
self.conv5 = tf.nn.relu(
tf.add(tf.nn.conv2d(self.conv4, self.W_e_conv5, strides=[1, 2, 2, 1], padding='SAME'), b_e_conv5))
print self.conv5.shape
self.W_e_conv6 = tf.get_variable('w6', [1, 1, 128, 128], initializer=w_initializer)
b_e_conv6 = tf.get_variable('b6', [128, ], initializer=b_initializer)
self.conv6 = tf.nn.relu(
tf.add(tf.nn.conv2d(self.conv5, self.W_e_conv6, strides=[1, 1, 1, 1], padding='SAME'), b_e_conv6))
print self.conv6.shape
weight_features = self.SENET(self.conv6, 1)
weight_features = tf.reshape(weight_features, [-1, 4 * 3 * 128])
self.w_code = tf.get_variable('w_code', [4 * 3 * 128, 8 * 10 * 128], initializer=w_initializer, )
self.b_code = tf.get_variable('b_code', [8 * 10 * 128, ], initializer=b_initializer, )
encoder = tf.nn.relu(tf.matmul(weight_features, self.w_code) + self.b_code)
encoder = tf.reshape(encoder, [-1, 8, 10, 128])
decoder_1 = tf.image.resize_images(encoder, size=(15, 20),
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
self.W_d_conv1 = tf.get_variable('w_d_1', [1, 1, 128, 64], initializer=w_initializer)
decoder_1 = tf.nn.conv2d(decoder_1, self.W_d_conv1, strides=[1, 1, 1, 1], padding='SAME', )
decoder_1 = tf.maximum(alpha * decoder_1, decoder_1)
print decoder_1.shape
self.W_d_conv2 = tf.get_variable('w_d_2', [1, 1, 64, 64], initializer=w_initializer)
decoder_2 = tf.nn.conv2d(decoder_1, self.W_d_conv2, strides=[1, 1, 1, 1], padding='SAME', )
decoder_2 = tf.maximum(alpha * decoder_2, decoder_2)
print decoder_2.shape
decoder_3 = tf.image.resize_images(decoder_2, size=(30, 40),
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
self.W_d_conv3 = tf.get_variable('w_d_3', [3, 3, 64, 32], initializer=w_initializer)
decoder_3 = tf.nn.conv2d(decoder_3, self.W_d_conv3, strides=[1, 1, 1, 1], padding='SAME', )
decoder_3 = tf.maximum(alpha * decoder_3, decoder_3)
print decoder_3.shape
self.W_d_conv4 = tf.get_variable('w_d_4', [3, 3, 32, 32], initializer=w_initializer)
decoder_4 = tf.nn.conv2d(decoder_3, self.W_d_conv4, strides=[1, 1, 1, 1], padding='SAME', )
decoder_4 = tf.maximum(alpha * decoder_4, decoder_4)
print decoder_4.shape
decoder_5 = tf.image.resize_images(decoder_4, size=(60, 80),
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
self.W_d_conv5 = tf.get_variable('w_d_5', [3, 3, 32, 8], initializer=w_initializer)
decoder_5 = tf.nn.conv2d(decoder_5, self.W_d_conv5, strides=[1, 1, 1, 1], padding='SAME', )
decoder_5 = tf.maximum(alpha * decoder_5, decoder_5)
print decoder_5.shape
self.W_d_conv6 = tf.get_variable('w_d_6', [3, 3, 8, 8], initializer=w_initializer)
decoder_6 = tf.nn.conv2d(decoder_5, self.W_d_conv6, strides=[1, 1, 1, 1], padding='SAME', )
decoder_6 = tf.maximum(alpha * decoder_6, decoder_6)
print decoder_6.shape
decoder_7 = tf.image.resize_images(decoder_6, size=(120, 160),
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
self.W_d_conv7 = tf.get_variable('w_d_7', [3, 3, 8, 1], initializer=w_initializer)
decoder_7 = tf.nn.conv2d(decoder_7, self.W_d_conv7, strides=[1, 1, 1, 1], padding='SAME', )
decoder_7 = tf.maximum(alpha * decoder_7, decoder_7)
print decoder_7.shape
self.output = tf.reshape(decoder_7, [-1, 120, 160, 1])
max = tf.reduce_max(self.output)
min = tf.reduce_min(self.output)
self.output = (self.output - min) / (max - min)
self.output = tf.clip_by_value(self.output, 1e-7, 0.9999999)
with tf.variable_scope('loss'):
alpha, beta, rho = 5e-6, 7.5e-6, 0.08
Wset = [self.W_e_conv1, self.W_e_conv2, self.W_e_conv3, self.w2, self.W_d_conv1,self.W_d_conv2,self.W_d_conv3]
self.loss =tf.reduce_mean(-tf.reduce_sum(self.tag*tf.log(self.output)+(1.0-self.tag)*tf.log(1.0-self.output)))
with tf.variable_scope('train'):
self.optimizer = tf.train.AdamOptimizer(self.lr).minimize(self.loss)
def batch_Convert(self, csidata, image, csi_index_list):
csidata_batch, image_batch = None, None
for index in range(len(image)):
xs = csidata[:,csi_index_list[index]-self.time_scale+1:csi_index_list[index]+1 ,:]
ys = image[index]
if (index)%4==0:
csidata_batch = np.array([xs]) if csidata_batch is None else np.append(csidata_batch, [xs], axis=0)
image_batch = np.array([ys]) if image_batch is None else np.append(image_batch, [ys], axis= 0)
return csidata_batch, image_batch
def learn(self):
stop_flag=0
for j in range(self.training_epochs):
for train_data in self.train:
print train_data[2].shape
xs = train_data[0].astype(np.float32)
xs = np.nan_to_num(xs)
batch_xs, batch_ys = self.batch_Convert(xs, train_data[1], train_data[2])
print batch_xs.shape
batch_xs = np.reshape(batch_xs, [-1, 30, self.time_scale, 4])
batch_ys = batch_ys.astype(np.float32)
batch_ys = np.nan_to_num(batch_ys)
batch_ys = np.reshape(batch_ys, [-1, 120, 160, 1])
batch_ys = np.clip(batch_ys, 1e-7, 0.9999999)
for i in range(2000):
loss = 0
_, c ,output,tag= self.sess.run([self.optimizer, self.loss,self.output,self.tag], feed_dict={self.input: batch_xs, self.tag: batch_ys})
if i==10:
pass
loss += c
if math.isnan(loss) is True:
stop_flag=1
break
if np.any(np.isnan(batch_xs)):
print "Input Nan Type Error!! "
if np.any(np.isnan(batch_ys)):
print "Tag Nan Type Error!! "
if i % 5 == 0:
print("Total Epoch:", '%d' % (j), "Pic Rpoch:",'%d' % (i), "total cost=", "{:.9f}".format(loss))
if stop_flag==1:
break
if stop_flag==1:
break
print("Optimization Finished!")
self.saver.save(self.sess, "./params/train.ckpt")
def show(self):
"""
display the performance of autoencoder
:return: a autoencoder model using unsupervised learning
"""
count = 0
for train_data in self.train:
xs = train_data[0].astype(np.float32)
xs = np.nan_to_num(xs)
batch_xs, batch_ys = self.batch_Convert(xs, train_data[1], train_data[2])
batch_xs = np.reshape(batch_xs, [-1, 30, self.time_scale, 4])
output = self.sess.run(self.output, feed_dict={self.input: batch_xs})
output = np.reshape(output, (-1, 120, 160, 1))
for i in range(len(output)):
output[i] = output[i] * 255
output1 = output[i].astype(np.uint8)
# cv2.imshow("Image", output1)
# cv2.waitKey(0)
# cv2.imwrite('generator/'+str(count)+'.jpg',output1)
#
#
batch_ys[i] = batch_ys[i] * 255
target = batch_ys[i].astype(np.uint8)
cv2.imwrite('target/' + str(count) + '.jpg', target)
count += 1
def conv2d(self, x, W):
return tf.nn.conv2d(x, W, strides=[1,2,2,1], padding='SAME')
def deconv2d(self, x,W, output_shape):
return tf.nn.conv2d_transpose(x, W, output_shape, strides=[1,2,2,1], padding = 'SAME')
def kldlv(rho, rho_hat):
invrho = tf.subtract(tf.constant(1.), rho)
invrhohat = tf.subtract(tf.constant(1.), rho_hat)
logrho = tf.add(logfunc(rho, rho_hat), logfunc(invrho, invrhohat))
return logrho
def logfunc(x, x2):
return tf.multiply(x, tf.log(tf.div(x, x2)))
def batchNormalization(data):
for each_item in range(len(data)):
data[each_item] = normalization.MINMAXNormalization(data[each_item])
def package(train_data):
csi_rx1,csi_rx2, image ,index= train_data[0], train_data[1],train_data[2],train_data[3]
tn_data = np.append(csi_rx1, csi_rx2, axis=0)
tn_data = np.transpose(tn_data, [1,2,0])
return [tn_data, image,index]
if __name__ =="__main__":
np.set_printoptions(threshold=np.inf)
train_data=[]
for i in range( ):#data range
index=i+1
if index == :#abnormal data
pass
elif index == :#test data
pass
# with open('../data_523/data_index/training_data_' + str(index) + '.pkl', 'rb') as handle:
# data_temp = pickle.load(handle)
# batchNormalization(data_temp[0])
# #batchNormalization(data_temp[1])
# data_nor = package(data_temp)
# train_data.append(data_nor)
else:
with open('../data_523/data_index_dwt/training_data_' + str(index) + '.pkl', 'rb') as handle:
data_temp = pickle.load(handle)
batchNormalization(data_temp[0])
#batchNormalization(data_temp[1])
data_nor = package(data_temp)
train_data.append(data_nor)
print len(train_data)
autoencoder(train_data=train_data)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment