Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
T
TCHSLAM
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Sensing
TCHSLAM
Commits
13959d59
Commit
13959d59
authored
Jun 28, 2019
by
Sensing
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
delete some files
parent
16b7ee79
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
0 additions
and
832 deletions
+0
-832
AP Clustering/apclusterSparse.m
AP Clustering/apclusterSparse.m
+0
-345
main.m
main.m
+0
-6
softmodem.m
softmodem.m
+0
-58
top_file.m
top_file.m
+0
-269
top_file_without_cluster.m
top_file_without_cluster.m
+0
-154
No files found.
AP Clustering/apclusterSparse.m
deleted
100644 → 0
View file @
16b7ee79
%
% [idx,netsim,dpsim,expref]=apclusterSparse(s,p)
%
% APCLUSTER uses affinity propagation (Frey and Dueck, Science,
% 2007) to identify data clusters, using a set of real-valued
% pair-wise data point similarities as input. Each cluster is
% represented by a data point called a cluster center, and the
% method searches for clusters so as to maximize a fitness
% function called net similarity. The method is iterative and
% stops after maxits iterations (default of 500 - see below for
% how to change this value) or when the cluster centers stay
% constant for convits iterations (default of 50). The command
% apcluster(s,p,'plot') can be used to plot the net similarity
% during operation of the algorithm.
%
% For N data points, there may be as many as N^2-N pair-wise
% similarities (note that the similarity of data point i to k
% need not be equal to the similarity of data point k to i).
% These may be passed to APCLUSTER in an NxN matrix s, where
% s(i,k) is the similarity of point i to point k. In fact, only
% a smaller number of relevant similarities are needed for
% APCLUSTER to work. If only M similarity values are known,
% where M < N^2-N, they can be passed to APCLUSTER in an Mx3
% matrix s, where each row of s contains a pair of data point
% indices and a corresponding similarity value: s(j,3) is the
% similarity of data point s(j,1) to data point s(j,2).
%
% APCLUSTER automatically determines the number of clusters,
% based on the input p, which is an Nx1 matrix of real numbers
% called preferences. p(i) indicates the preference that data
% point i be chosen as a cluster center. A good choice is to
% set all preference values to the median of the similarity
% values. The number of identified clusters can be increased or
% decreased by changing this value accordingly. If p is a
% scalar, APCLUSTER assumes all preferences are equal to p.
%
% The fitness function (net similarity) used to search for
% solutions equals the sum of the preferences of the the data
% centers plus the sum of the similarities of the other data
% points to their data centers.
%
% The identified cluster centers and the assignments of other
% data points to these centers are returned in idx. idx(j) is
% the index of the data point that is the cluster center for
% data point j. If idx(j) equals j, then point j is itself a
% cluster center. The sum of the similarities of the data
% points to their cluster centers is returned in dpsim, the
% sum of the preferences of the identified cluster centers is
% returned in expref and the net similarity (sum of the data
% point similarities and preferences) is returned in netsim.
%
% EXAMPLE
%
% N=100; x=rand(N,2); % Create N, 2-D data points
% M=N*N-N; s=zeros(M,3); % Make ALL N^2-N similarities
% j=1;
% for i=1:N
% for k=[1:i-1,i+1:N]
% s(j,1)=i; s(j,2)=k; s(j,3)=-sum((x(i,:)-x(k,:)).^2);
% j=j+1;
% end;
% end;
% p=median(s(:,3)); % Set preference to median similarity
% [idx,netsim,dpsim,expref]=apclusterSparse(s,p,'plot');
% fprintf('Number of clusters: %d\n',length(unique(idx)));
% fprintf('Fitness (net similarity): %f\n',netsim);
% figure; % Make a figures showing the data and the clusters
% for i=unique(idx)'
% ii=find(idx==i); h=plot(x(ii,1),x(ii,2),'o'); hold on;
% col=rand(1,3); set(h,'Color',col,'MarkerFaceColor',col);
% xi1=x(i,1)*ones(size(ii)); xi2=x(i,2)*ones(size(ii));
% line([x(ii,1),xi1]',[x(ii,2),xi2]','Color',col);
% end;
% axis equal tight;
%
% PARAMETERS
%
% [idx,netsim,dpsim,expref]=apclusterSparse(s,p,'NAME',VALUE,...)
%
% The following parameters can be set by providing name-value
% pairs, eg, apcluster(s,p,'maxits',1000):
%
% Parameter Value
% 'maxits' Any positive integer. This specifies the
% maximum number of iterations performed by
% affinity propagation. Default: 1000.
% 'convits' Any positive integer. APCLUSTER decides that
% the algorithm has converged if the estimated
% cluster centers stay fixed for convits
% iterations. Increase this value to apply a
% more stringent convergence test. Default: 100.
% 'dampfact' A real number that is less than 1 and
% greater than or equal to 0.5. This sets the
% damping level of the message-passing method,
% where values close to 1 correspond to heavy
% damping which may be needed if oscillations
% occur. Default: .9
% 'plot' No value needed. This creates a figure that
% plots the net similarity after each iteration
% of the method. If the net similarity fails to
% converge, consider increasing the values of
% dampfact and maxits.
% 'details' No value needed. This causes idx, netsim,
% dpsim and expref to be stored after each
% iteration.
% 'nonoise' No value needed. Degenerate input similarities
% (eg, where the similarity of i to k equals the
% similarity of k to i) can prevent convergence.
% To avoid this, APCLUSTER adds a small amount
% of noise to the input similarities. This flag
% turns off the addition of noise.
%
% Copyright (c) Brendan J. Frey and Delbert Dueck (2006). This
% software may be freely used and distributed for
% non-commercial purposes.
function
[
idx
,
netsim
,
dpsim
,
expref
]
=
apclusterSparse
(
s
,
p
,
varargin
);
% Handle arguments to function
if
nargin
<
2
error
(
'Too few input arguments'
);
else
maxits
=
1000
;
convits
=
100
;
lam
=
0.9
;
plt
=
0
;
details
=
0
;
nonoise
=
0
;
i
=
1
;
while
i
<=
length
(
varargin
)
if
strcmp
(
varargin
{
i
},
'plot'
)
plt
=
1
;
i
=
i
+
1
;
elseif
strcmp
(
varargin
{
i
},
'details'
)
details
=
1
;
i
=
i
+
1
;
elseif
strcmp
(
varargin
{
i
},
'nonoise'
)
nonoise
=
1
;
i
=
i
+
1
;
elseif
strcmp
(
varargin
{
i
},
'maxits'
)
maxits
=
varargin
{
i
+
1
};
i
=
i
+
2
;
if
maxits
<=
0
error
(
'maxits must be a positive integer'
);
end
;
elseif
strcmp
(
varargin
{
i
},
'convits'
)
convits
=
varargin
{
i
+
1
};
i
=
i
+
2
;
if
convits
<=
0
error
(
'convits must be a positive integer'
);
end
;
elseif
strcmp
(
varargin
{
i
},
'dampfact'
)
lam
=
varargin
{
i
+
1
};
i
=
i
+
2
;
if
(
lam
<
0.5
)
||
(
lam
>=
1
)
error
(
'dampfact must be >= 0.5 and < 1'
);
end
;
else
i
=
i
+
1
;
end
;
end
;
end
;
if
lam
>
0.9
fprintf
(
'\n*** Warning: Large damping factor in use. Turn on plotting\n'
);
fprintf
(
' to monitor the net similarity. The algorithm will\n'
);
fprintf
(
' change decisions slowly, so consider using a larger value\n'
);
fprintf
(
' of convits.\n\n'
);
end
;
% Check that standard arguments are consistent in size
if
length
(
size
(
s
))
~=
2
error
(
's should be a 2D matrix'
);
elseif
length
(
size
(
p
))
>
2
error
(
'p should be a vector or a scalar'
);
elseif
size
(
s
,
2
)
==
3
tmp
=
max
(
max
(
s
(:,
1
)),
max
(
s
(:,
2
)));
if
length
(
p
)
==
1
N
=
tmp
;
else
N
=
length
(
p
);
end
;
if
tmp
>
N
error
(
'data point index exceeds number of data points'
);
elseif
min
(
min
(
s
(:,
1
)),
min
(
s
(:,
2
)))
<=
0
error
(
'data point indices must be >= 1'
);
end
;
elseif
size
(
s
,
1
)
==
size
(
s
,
2
)
N
=
size
(
s
,
1
);
if
(
length
(
p
)
~=
N
)
&&
(
length
(
p
)
~=
1
)
error
(
'p should be scalar or a vector of size N'
);
end
;
else
error
(
's must have 3 columns or be square'
);
end
;
% Make vector of preferences
if
length
(
p
)
==
1
p
=
p
*
ones
(
N
,
1
);
end
;
% Append self-similarities (preferences) to s-matrix
tmps
=
[
repmat
([
1
:
N
]
'
,[
1
,
2
]),
p
];
s
=
[
s
;
tmps
];
M
=
size
(
s
,
1
);
% In case user did not remove degeneracies from the input similarities,
% avoid degenerate solutions by adding a small amount of noise to the
% input similarities
if
~
nonoise
rns
=
randn
(
'state'
);
randn
(
'state'
,
0
);
s
(:,
3
)
=
s
(:,
3
)
+
(
eps
*
s
(:,
3
)
+
realmin
*
100
)
.*
rand
(
M
,
1
);
randn
(
'state'
,
rns
);
end
;
% Construct indices of neighbors
ind1e
=
zeros
(
N
,
1
);
for
j
=
1
:
M
k
=
s
(
j
,
1
);
ind1e
(
k
)
=
ind1e
(
k
)
+
1
;
end
;
ind1e
=
cumsum
(
ind1e
);
ind1s
=
[
1
;
ind1e
(
1
:
end
-
1
)
+
1
];
ind1
=
zeros
(
M
,
1
);
for
j
=
1
:
M
k
=
s
(
j
,
1
);
ind1
(
ind1s
(
k
))
=
j
;
ind1s
(
k
)
=
ind1s
(
k
)
+
1
;
end
;
ind1s
=
[
1
;
ind1e
(
1
:
end
-
1
)
+
1
];
ind2e
=
zeros
(
N
,
1
);
for
j
=
1
:
M
k
=
s
(
j
,
2
);
ind2e
(
k
)
=
ind2e
(
k
)
+
1
;
end
;
ind2e
=
cumsum
(
ind2e
);
ind2s
=
[
1
;
ind2e
(
1
:
end
-
1
)
+
1
];
ind2
=
zeros
(
M
,
1
);
for
j
=
1
:
M
k
=
s
(
j
,
2
);
ind2
(
ind2s
(
k
))
=
j
;
ind2s
(
k
)
=
ind2s
(
k
)
+
1
;
end
;
ind2s
=
[
1
;
ind2e
(
1
:
end
-
1
)
+
1
];
% Allocate space for messages, etc
A
=
zeros
(
M
,
1
);
R
=
zeros
(
M
,
1
);
t
=
1
;
if
plt
netsim
=
zeros
(
1
,
maxits
+
1
);
end
;
if
details
idx
=
zeros
(
N
,
maxits
+
1
);
netsim
=
zeros
(
1
,
maxits
+
1
);
dpsim
=
zeros
(
1
,
maxits
+
1
);
expref
=
zeros
(
1
,
maxits
+
1
);
end
;
% Execute parallel affinity propagation updates
e
=
zeros
(
N
,
convits
);
dn
=
0
;
i
=
0
;
while
~
dn
i
=
i
+
1
;
% Compute responsibilities
for
j
=
1
:
N
ss
=
s
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)),
3
);
as
=
A
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)))
+
ss
;
[
Y
,
I
]
=
max
(
as
);
as
(
I
)
=-
realmax
;
[
Y2
,
I2
]
=
max
(
as
);
r
=
ss
-
Y
;
r
(
I
)
=
ss
(
I
)
-
Y2
;
R
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)))
=
(
1
-
lam
)
*
r
+
...
lam
*
R
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)));
end
;
% Compute availabilities
for
j
=
1
:
N
rp
=
R
(
ind2
(
ind2s
(
j
):
ind2e
(
j
)));
rp
(
1
:
end
-
1
)
=
max
(
rp
(
1
:
end
-
1
),
0
);
a
=
sum
(
rp
)
-
rp
;
a
(
1
:
end
-
1
)
=
min
(
a
(
1
:
end
-
1
),
0
);
A
(
ind2
(
ind2s
(
j
):
ind2e
(
j
)))
=
(
1
-
lam
)
*
a
+
...
lam
*
A
(
ind2
(
ind2s
(
j
):
ind2e
(
j
)));
end
;
% Check for convergence
E
=
((
A
(
M
-
N
+
1
:
M
)
+
R
(
M
-
N
+
1
:
M
))
>
0
);
e
(:,
mod
(
i
-
1
,
convits
)
+
1
)
=
E
;
K
=
sum
(
E
);
if
i
>=
convits
||
i
>=
maxits
se
=
sum
(
e
,
2
);
unconverged
=
(
sum
((
se
==
convits
)
+
(
se
==
0
))
~=
N
);
if
(
~
unconverged
&&
(
K
>
0
))
||
(
i
==
maxits
)
dn
=
1
;
end
;
end
;
% Handle plotting and storage of details, if requested
if
plt
||
details
if
K
==
0
tmpnetsim
=
nan
;
tmpdpsim
=
nan
;
tmpexpref
=
nan
;
tmpidx
=
nan
;
else
tmpidx
=
zeros
(
N
,
1
);
tmpdpsim
=
0
;
tmpidx
(
find
(
E
))
=
find
(
E
);
tmpexpref
=
sum
(
p
(
find
(
E
)));
discon
=
0
;
for
j
=
find
(
E
==
0
)
'
ss
=
s
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)),
3
);
ii
=
s
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)),
2
);
ee
=
find
(
E
(
ii
));
if
length
(
ee
)
==
0
discon
=
1
;
else
[
smx
imx
]
=
max
(
ss
(
ee
));
tmpidx
(
j
)
=
ii
(
ee
(
imx
));
tmpdpsim
=
tmpdpsim
+
smx
;
end
;
end
;
if
discon
tmpnetsim
=
nan
;
tmpdpsim
=
nan
;
tmpexpref
=
nan
;
tmpidx
=
nan
;
else
tmpnetsim
=
tmpdpsim
+
tmpexpref
;
end
;
end
;
end
;
if
details
netsim
(
i
)
=
tmpnetsim
;
dpsim
(
i
)
=
tmpdpsim
;
expref
(
i
)
=
tmpexpref
;
idx
(:,
i
)
=
tmpidx
;
end
;
if
plt
netsim
(
i
)
=
tmpnetsim
;
figure
(
234
);
tmp
=
1
:
i
;
tmpi
=
find
(
~
isnan
(
netsim
(
1
:
i
)));
plot
(
tmp
(
tmpi
),
netsim
(
tmpi
),
'r-'
);
xlabel
(
'# Iterations'
);
ylabel
(
'Net similarity of quantized intermediate solution'
);
drawnow
;
end
;
end
;
% Identify exemplars
E
=
((
A
(
M
-
N
+
1
:
M
)
+
R
(
M
-
N
+
1
:
M
))
>
0
);
K
=
sum
(
E
);
if
K
>
0
tmpidx
=
zeros
(
N
,
1
);
tmpidx
(
find
(
E
))
=
find
(
E
);
% Identify clusters
for
j
=
find
(
E
==
0
)
'
ss
=
s
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)),
3
);
ii
=
s
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)),
2
);
ee
=
find
(
E
(
ii
));
[
smx
imx
]
=
max
(
ss
(
ee
));
tmpidx
(
j
)
=
ii
(
ee
(
imx
));
end
;
EE
=
zeros
(
N
,
1
);
for
j
=
find
(
E
)
'
jj
=
find
(
tmpidx
==
j
);
mx
=-
Inf
;
ns
=
zeros
(
N
,
1
);
msk
=
zeros
(
N
,
1
);
for
m
=
jj
'
mm
=
s
(
ind1
(
ind1s
(
m
):
ind1e
(
m
)),
2
);
msk
(
mm
)
=
msk
(
mm
)
+
1
;
ns
(
mm
)
=
ns
(
mm
)
+
s
(
ind1
(
ind1s
(
m
):
ind1e
(
m
)),
3
);
end
;
ii
=
jj
(
find
(
msk
(
jj
)
==
length
(
jj
)));
[
smx
imx
]
=
max
(
ns
(
ii
));
EE
(
ii
(
imx
))
=
1
;
end
;
E
=
EE
;
tmpidx
=
zeros
(
N
,
1
);
tmpdpsim
=
0
;
tmpidx
(
find
(
E
))
=
find
(
E
);
tmpexpref
=
sum
(
p
(
find
(
E
)));
for
j
=
find
(
E
==
0
)
'
ss
=
s
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)),
3
);
ii
=
s
(
ind1
(
ind1s
(
j
):
ind1e
(
j
)),
2
);
ee
=
find
(
E
(
ii
));
[
smx
imx
]
=
max
(
ss
(
ee
));
tmpidx
(
j
)
=
ii
(
ee
(
imx
));
tmpdpsim
=
tmpdpsim
+
smx
;
end
;
tmpnetsim
=
tmpdpsim
+
tmpexpref
;
else
tmpidx
=
nan
*
ones
(
N
,
1
);
tmpnetsim
=
nan
;
tmpexpref
=
nan
;
end
;
if
details
netsim
(
i
+
1
)
=
tmpnetsim
;
netsim
=
netsim
(
1
:
i
+
1
);
dpsim
(
i
+
1
)
=
tmpnetsim
-
tmpexpref
;
dpsim
=
dpsim
(
1
:
i
+
1
);
expref
(
i
+
1
)
=
tmpexpref
;
expref
=
expref
(
1
:
i
+
1
);
idx
(:,
i
+
1
)
=
tmpidx
;
idx
=
idx
(:,
1
:
i
+
1
);
else
netsim
=
tmpnetsim
;
dpsim
=
tmpnetsim
-
tmpexpref
;
expref
=
tmpexpref
;
idx
=
tmpidx
;
end
;
if
plt
||
details
fprintf
(
'\nNumber of identified clusters: %d\n'
,
K
);
fprintf
(
'Fitness (net similarity): %f\n'
,
tmpnetsim
);
fprintf
(
' Similarities of data points to exemplars: %f\n'
,
dpsim
(
end
));
fprintf
(
' Preferences of selected exemplars: %f\n'
,
tmpexpref
);
fprintf
(
'Number of iterations: %d\n\n'
,
i
);
end
;
if
unconverged
fprintf
(
'\n*** Warning: Algorithm did not converge. The similarities\n'
);
fprintf
(
' may contain degeneracies - add noise to the similarities\n'
);
fprintf
(
' to remove degeneracies. To monitor the net similarity,\n'
);
fprintf
(
' activate plotting. Also, consider increasing maxits and\n'
);
fprintf
(
' if necessary dampfact.\n\n'
);
end
;
\ No newline at end of file
main.m
deleted
100644 → 0
View file @
16b7ee79
ITER
=
100000
;
for
i
=
10001
:
ITER
% time = datetime;
% save(['time',num2str(i),'.mat'],'time');
softmodem
(
i
);
end
\ No newline at end of file
softmodem.m
deleted
100644 → 0
View file @
16b7ee79
function
[]
=
softmodem
(
i
)
save
(
'i.mat'
,
'i'
);
clc
;
clear
all
;
warning
off
;
global
M
;
global
filename
;
global
VSP
;
global
VSS
;
global
VSB
;
global
VSA
;
i
=
importdata
(
'i.mat'
);
T
=
200
;
step
=
2
;
M_idx
=
6
;
data_file
=
[
'all_data'
,
num2str
(
i
)];
mkdir
(
data_file
);
while
M_idx
<=
6
i
=
importdata
(
'i.mat'
);
% if i == 1 && M == 1
% M = M + 3;
% end
% init_const_para(M);
i
=
importdata
(
'i.mat'
);
M_vec
=
importdata
(
'M_vec.mat'
);
M
=
M_vec
(
M_idx
);
fprintf
(
'[ NUMBER ]the number of vehicle is %d\n'
,
M
);
filename
=
[
'all_data'
,
num2str
(
i
),
'/data_vehicle_number='
,
num2str
(
M
)];
new_folder
=
filename
;
mkdir
(
new_folder
);
fprintf
(
'[ M O D E ]vehicle number is %d, cluster\n'
,
M
);
top_file
;
% save('M\M.mat','M');
% clear all;
% global M;
% M = importdata('M\M.mat');
% init_const_para(M);
% filename = ['all_data',num2str(i),'/data_without_cluster_vehicle_number=',num2str(M)];
% new_folder = filename;
% mkdir(new_folder);
% fprintf('[ M O D E ]vehicle number is %d, no-cluster\n',M);
% if M == 1
% copyfile('all_data\data_vehicle_number=1\*' ,'all_data\data_without_cluster_vehicle_number=1');
% else
% top_file_without_cluster;
% end
% % data_p(M,T,step);
save
(
'M\M_idx.mat'
,
'M_idx'
);
clear
all
;
global
M
;
M_idx
=
importdata
(
'M\M_idx.mat'
);
M_vec
=
importdata
(
'M_vec.mat'
);
M
=
M_vec
(
M_idx
);
M_idx
=
M_idx
+
1
;
end
end
\ No newline at end of file
top_file.m
deleted
100644 → 0
View file @
16b7ee79
% clear;
% clear state;
% clear ob;
% clear PF;
% clear obj;
% clear cluster;
%%%用观测去采样粒子!!!------learning approach
global
state
;
global
ob
;
global
PF
;
global
obj
;
global
cluster
;
global
path_track
;
global
VSP
;
global
VSS
;
global
VSB
;
global
VSA
;
global
M
;
global
filename
;
global
reflector
;
global
vehicle_vec
;
global
recorder
;
reflector
.
N_ref
=
0
;
PI
=
3.1415926
;
T_RECLUSTER
=
10
;
t_del
=
15
;
if
M
==
1
t_del
=
100
;
end
%% remained to be done
%%%1. 要与没有聚类的结果进行对比%%%注释掉cluster_update,重新跑一遍即可
%%%3. T_duration和加速度,加速度的方差需要调整
len_road
=
150
;
len_veh_trace
=
100
;
lane_wedith
=
4
;
len_ref_x
=
12
;
%15;
dis_ref_x
=
6
;
%7.5;
y_line
=
35
;
%40;%35;
building_height
=
15
;
%20;
bs_height
=
8
;
theta_building
.
theta1
=
PI
/
6
;
theta_building
.
theta2
=
PI
/
9
;
theta_building
.
theta3
=
PI
/
12
;
% theta1_building=PI/4;
% theta2_building=PI/6;
% theta3_building=PI/12;
veh_speed
=
10
;
veh_acce_speed_straight
=
9.8
*
0.5
;
veh_angle_acce_speed
=
0.8
;
ref_step
=
0.5
;
edge_limit
=
0.5
;
limit_N
=
200
;
limit_percentage
=
0.1
;
batch_limit
=
10
;
lr
=
5e-5
;
ITER
=
100
;
% limit_dist = 8;
svt_combine_limit
=
10
;
del_limit
=
20
;
particle_limit
=
120
;
PF_step
=
10
;
N_batch
=
1
;
overlap
=
1
;
p_min_veh
=
4
;
%exp(-4.25^2);
p_min_svt
=
7
;
%exp(-7^2);
if
M
==
1
p_min_veh
=
10
;
%exp(-4.25^2);
p_min_svt
=
10
;
%exp(-7^2);
end
%% vehicle parameters
derta_d_super
=
0.1
*
pow2
(
-
1
*
(
M
>
1
));
%0.2*pow2(-floor(0.34*log2(M)));%0.1,0.25**********************************vehicle
L_d_super
=
6
;
%40*******************************************vehicle
k
=
6
;
%%%%2*pi*derta_d_super/k
%% svt parameters
sigma_vh
.
rvh
=
0.5
;
%*********************************************SVT
derta_d_svt
=
0.125
*
power
(
1.25
,
-
1
*
(
M
>
8
));
%******************************************SVT
L_d_svt
=
2
;
%**********************************************SVT
derta_d_svt_upd
=
0.15
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%svt_upd
derta_theta_upd
=
pi
/
4
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%svt_upd
L_d_upd
=
4
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%svt_upd
%% const para
%%%% max iteration of time
T
=
300
;
T_duration
=
0.1
;
%%0.5
%%%% number of vehicle
% M = 5;
% %%% VSP: vehicle_start_position---> M*2
% VSP = [ 0,0;8,5;16,-5;24,5;32,5 ];
% %%% VSS: vehicle start speed---> M*2
% VSS = [ 17,0;16,0;15,0;14,0;13,0 ];
% %%% VSB:vehicle start bias----> M*1
% VSB = [ 0;0;0;0;0 ];
% VSA = [ 0,0;0,0;0,0;0,0;0,0 ];
%%% the minimum weight that two reflector is combineed
limit_combine
=
0.6
;
%%%% the weight of the direction of the estimated reflector points
%%% hight for autenna in vehicle
H_v
=
1
;
%%% hight for building
H_b
=
10
;
%%% hight for base sta,tion
% H_bs = 15;
%%% the number of objects
% obj_N = 400;
%%% std for observation of TOA and AOA
sigma_d
=
2.62
;
%%%3************************************************TOA
sigma_theta
=
0.036
;
%%%0.01*****************************************AOA
sigma_theta_init
=
0.01
;
sigma_a
=
0
;
%2*0.001*9.8/3;%%2
sigma_a_vec
=
0
;
%0.5/(180*3)*pi;%*********************************************a
sigma_v
=
0.1
;
sigma_v_vec
=
0.1
*
T_duration
;
%************************************************v
sigma_center
=
4
;
sigma_a_init
=
1
;
sigma_vh
.
dvh
=
0.03
;
sigma_gps
=
3
;
LAMDA
=
(
sigma_d
/
sigma_theta
)
^
2
;
%%% block size for distance(for Xvt_ja)
derta_d
=
0.1
;
%%0.5
%%%%the distance resolution of the reflector line
derta_d_reflector
=
0.1
;
beta
=
0.95
;
%%% block size for distance(for Xu_j)
%%% block size for and angle(for Xvt_j)
derta_theta
=
10
*
pi
/
180
;
%%% block size for speed(for Xu_j)
derta_v_super
=
0.2
;
%%% block size for bias(for Xu_j
derta_b_super
=
5e-12
;
%%% number of particle size in distance domain(for Xu_j)
L_d
=
8
;
%8
L_d_cluster
=
10
;
%%% number of particle size in speed domain(for Xu_j)
L_v
=
7
;
%%% number of particle size in bias domain(for Xu_j)
L_b
=
1
;
%%% the number of particles for super PF
N_beta
=
6
;
%6
N_beta_super
=
18
;
%36********************************************vehicle
N_beta_cluster
=
9
;
N_super
=
L_d
*
L_v
*
L_b
*
N_beta
*
N_beta
;
%%% K times of AOA estimation std to decide the number of particles(for
%%% Xvt_ja)
K
=
2
;
%3
%%% time duration for one time slot
%%% the max number of particles(for Xvt_ja) in one block
N_max
=
100
;
%%% sigma_vt : the std of the noise added to the particles of virtual
%%% transmitters, with
%%%% sigma_vt.Rvt : the std for position
%%%% sigma_vt.Dvt : the std for addentional distance
% sigma_vt.Rvt = 3;
% sigma_vt.Dvt = 2;
sigma_u
=
sigma_v
*
T_duration
*
sqrt
(
2
/
pi
);
step
=
2
;
rita
=
6
;
gama
=
2
;
N_select
=
ceil
((
gama
/
10
)
*
L_d_super
*
N_beta_super
);
%%% init the map
% init_map(T,T_duration,sigma_a_init,sigma_center,M,obj_N,VSP,VSS,VSA);
% filename = 'data';
% obj = importdata('obj.mat');
%%% generate the objects
%%%end
%% dynamic input
%%% veh_para: the parameters of vehicle including
%%% vehicle[0...M].MultiPath[0...N].d
%%% vehicle[0...M].Multipath[0...N].theta
%%% vehicle[0...M].Multipath[0...N].id //ascending order with the id
%%% u is a motion with
%%%% u.a accelerate speed
%%%% u.b bias
%%% end
%% main loop for estimation
%%% initialize the bias,speed and positions for vehicle
MAP_generation
(
M
,
len_road
,
len_veh_trace
,
len_ref_x
,
dis_ref_x
,
y_line
,
building_height
,
bs_height
,
theta_building
,
T_duration
,
veh_speed
,
veh_acce_speed_straight
,
veh_angle_acce_speed
,
lane_wedith
,
T
)
obj_N
=
length
(
obj
);
arrived
=
1
:
1
:
M
;
arrived_pre
=
[];
%%% initialize the position, speed and bias for state 1.
for
t
=
1
:
T
fprintf
(
'\nvehicle = %d, cluster\nFor time slot T = %d*%.1f(second)\n'
,
M
,
t
,
T_duration
);
initialize
(
t
,
arrived
,
sigma_gps
,
sigma_v
,
sigma_v_vec
,
sigma_a
,
sigma_a_vec
);
%%% for new vehicle
[
veh_para
]
=
generate_para
(
t
,
M
,
obj_N
,
T_duration
,
sigma_d
,
sigma_theta
,
sigma_a
,
sigma_v
);
%%% the observation for state 1
%%% generate the parameters for multipath and the motion information.
%%% update the observation
% para_update(t,M,veh_para,sigma_d,sigma_theta);%start from time 1
%%% give the multipath parameter to observation.
motion_update
(
t
,
M
,
T_duration
,
sigma_a
,
sigma_a_vec
,
sigma_v
,
sigma_v_vec
,
arrived
);
% if ~isempty(arrived)
% %%% init the particles of super_PF
% veh_PF_init(t,M,arrived);
% % init_super_PF(M,N_super,derta_d_super,derta_v_super,derta_b_super,L_d,L_v,L_b,N_beta); % for time 1 only
% %%% generate the super particles in blocks
% end
veh_PF_update
(
t
,
M
,
T_duration
,
L_d_super
,
derta_d_super
,
k
,
arrived
,
particle_limit
);
%%% update the super_PF using the motion information u.
VTCI_update_del
(
t
,
M
,
derta_d_svt
,
derta_theta
,
K
,
sigma_theta_init
,
beta
,
sigma_vh
,
arrived
);
% VTCH_estimate(t,M,sigma_d,sigma_theta,rita,derta_d,L_d,N_beta,arrived);
% vehicle_state_estimation(t,M,gama,arrived);
isChanged
=
VTCI_update_add
(
t
,
M
,
L_d_upd
,
derta_d_svt
,
derta_theta_upd
,
particle_limit
);
% svt_cluster_judge(t,M,svt_combine_limit,particle_limit,del_limit,arrived);
svt_cluster_judge
(
t
,
M
,
svt_combine_limit
,
particle_limit
,
del_limit
,
T_RECLUSTER
,
t_del
,
L_d_upd
,
derta_d_svt
,
derta_theta_upd
)
Analysis
(
t
);
% if ~isempty(arrived)
% svt_re_drawing(t,L_d_upd,derta_d_svt_upd,derta_theta_upd,particle_limit);
% end
Coupled_PF
(
t
,
M
,
sigma_d
,
sigma_theta
,
rita
,
arrived
,
N_batch
,
overlap
,
sigma_u
,
gama
,
p_min_veh
,
p_min_svt
,
sigma_vh
);
% state(t).vehicle(1).Xu.Ru
Analysis
(
t
);
% cluster_update(t,M,N_beta,derta_d,particle_limit,limit_dist,sigma_vh,derta_d_reflector,limit_combine,ref_step,edge_limit,limit_N,limit_percentage,batch_limit,lr,LAMDA,ITER,sigma_d);
% reflector_building(t,sigma_d,sigma_vh,limit_percentage,limit_N,derta_d_reflector,limit_combine,step,edge_limit,batch_limit,lr,LAMDA,ITER);
% svt_re_drawing(t,L_d_upd,derta_d_svt_upd,derta_theta_upd,particle_limit);
update_path_track
();
update_state
(
t
,
M
,
T_duration
);
line_detection
(
t
,
sigma_d
);
arrived_pre
=
arrived
;
arrived
=
[];
% arrived = vehicle_arrived(t,M,veh_speed,len_road,len_veh_trace,T_duration);
if
mod
(
t
,
step
)
==
1
||
t
==
T
clean_data
(
t
,
T
,
step
,
filename
);
%%% clean the
end
fprintf
(
'[REFLECTOR] THE NUMBER OF REFLECTOR IS %d...\n'
,
reflector
.
N_ref
);
end
% reflector_estimate(T);
obj_name
=
[
filename
,
'\obj'
];
save
(
obj_name
,
'obj'
);
ob_name
=
[
filename
,
'\ob'
];
save
(
ob_name
,
'ob'
);
recorder_name
=
[
filename
,
'\recorder'
];
save
(
recorder_name
,
'recorder'
);
% show_result(T_duration,M,T);
%%%end
%%%1. batch 应该shaffule一下
%%%2. 应该更新一下svt的位置
%%%3. 应该更多得体现随机性以提高精度
top_file_without_cluster.m
deleted
100644 → 0
View file @
16b7ee79
% clear;
% clear state;
% clear ob;
% clear PF;
% clear obj;
% clear cluster;
global
state
;
global
ob
;
global
PF
;
global
obj
;
global
cluster
;
global
VSP
;
global
VSS
;
global
VSB
;
global
VSA
;
global
M
;
global
filename
;
%% remained to be done
%%%1. 要与没有聚类的结果进行对比%%%注释掉cluster_update,重新跑一遍即可
%%%3. T_duration和加速度,加速度的方差需要调整
%% const para
%%%% max iteration of time
T
=
100
;
% %%%% number of vehicle
% M = 5;
% %%% VSP: vehicle_start_position---> M*2
% VSP = [ 0,0;8,5;16,-5;24,5;32,5 ];
% %%% VSS: vehicle start speed---> M*2
% VSS = [ 17,0;16,0;15,0;14,0;13,0 ];
% %%% VSB:vehicle start bias----> M*1
% VSB = [ 0;0;0;0;0 ];
% VSA = [ 0,0;0,0;0,0;0,0;0,0 ];
%%% hight for autenna in vehicle
H_v
=
1
;
%%% hight for building
H_b
=
10
;
%%% hight for base station
H_bs
=
15
;
%%% the number of objects
obj_N
=
400
;
%%% std for observation of TOA and AOA
sigma_d
=
2
;
%%%1
sigma_theta
=
0.01
;
sigma_theta_init
=
0.01
;
sigma_a
=
0.5
;
%%2
sigma_v
=
0.1
;
sigma_center
=
4
;
sigma_a_init
=
1
;
sigma_vh
.
rvh
=
0.2
;
sigma_vh
.
dvh
=
0
;
%%% block size for distance(for Xvt_ja)
derta_d
=
0.5
;
%%0.1
beta
=
0.95
;
%%% block size for distance(for Xu_j)
derta_d_super
=
0.1
;
%%% block size for and angle(for Xvt_j)
derta_theta
=
0.01
;
%%% block size for speed(for Xu_j)
derta_v_super
=
0.2
;
%%% block size for bias(for Xu_j)
derta_b_super
=
5e-12
;
%%% number of particle size in distance domain(for Xu_j)
L_d
=
8
;
L_d_super
=
40
;
L_d_cluster
=
10
;
%%% number of particle size in speed domain(for Xu_j)
L_v
=
7
;
%%% number of particle size in bias domain(for Xu_j)
L_b
=
1
;
%%% the number of particles for super PF
N_beta
=
6
;
%18
N_beta_super
=
36
;
N_beta_cluster
=
9
;
N_super
=
L_d
*
L_v
*
L_b
*
N_beta
*
N_beta
;
%%% K times of AOA estimation std to decide the number of particles(for
%%% Xvt_ja)
K
=
3
;
%3
%%% time duration for one time slot
T_duration
=
0.2
;
%%0.5
%%% the max number of particles(for Xvt_ja) in one block
N_max
=
100
;
%%% sigma_vt : the std of the noise added to the particles of virtual
%%% transmitters, with
%%%% sigma_vt.Rvt : the std for position
%%%% sigma_vt.Dvt : the std for addentional distance
% sigma_vt.Rvt = 3;
% sigma_vt.Dvt = 2;
sigma_u
=
1
;
step
=
2
;
rita
=
2
;
%%% init the map
init_map
(
T
,
T_duration
,
sigma_a_init
,
sigma_center
,
M
,
obj_N
,
VSP
,
VSS
,
VSA
);
% filename = 'data_without_cluster';
% obj = importdata('obj.mat');
%%% generate the objects
%%%end
%% dynamic input
%%% veh_para: the parameters of vehicle including
%%% vehicle[0...M].MultiPath[0...N].d
%%% vehicle[0...M].Multipath[0...N].theta
%%% vehicle[0...M].Multipath[0...N].id //ascending order with the id
%%% u is a motion with
%%%% u.a accelerate speed
%%%% u.b bias
%%% end
%% main loop for estimation
%%% initialize the bias,speed and positions for vehicle
initialize
(
T
,
M
,
VSP
,
VSS
,
VSB
);
%%% for state 1
%%% initialize the position, speed and bias for state 1.
for
t
=
1
:
T
fprintf
(
'\nvehicle = %d, no-cluster\nFor time slot T = %d*%.1f(second)\n'
,
M
,
t
,
T_duration
);
[
veh_para
]
=
generate_para
(
t
,
M
,
obj_N
,
T_duration
,
sigma_d
,
sigma_theta
,
sigma_a
,
sigma_v
);
%%% the observation for state 1
%%% generate the parameters for multipath and the motion information.
%%% update the observation
% para_update(t,M,veh_para,sigma_d,sigma_theta);%start from time 1
%%% give the multipath parameter to observation.
if
t
==
1
%%% init the particles of super_PF
veh_PF_init
(
M
);
% init_super_PF(M,N_super,derta_d_super,derta_v_super,derta_b_super,L_d,L_v,L_b,N_beta); % for time 1 only
%%% generate the super particles in blocks
else
veh_PF_update
(
t
,
M
,
T_duration
,
L_d_super
,
derta_d_super
,
N_beta_super
,
sigma_u
);
%%% update the super_PF using the motion information u.
end
isChanged
=
VTCI_update_del
(
t
,
M
,
derta_d
,
derta_theta
,
K
,
sigma_theta_init
,
beta
,
sigma_vh
);
% if t>1
% cluster(t).VH(1).N_VH
% end
VTCH_estimate
(
t
,
M
,
sigma_d
,
sigma_theta
,
rita
,
derta_d
,
L_d
,
N_beta
);
vehicle_state_estimation
(
t
,
M
);
isChanged
=
VTCI_update_add
(
t
,
M
,
derta_d
,
derta_theta
,
K
,
sigma_theta
,
beta
);
motion_update
(
t
,
M
,
T_duration
,
sigma_a
,
sigma_v
);
% cluster_update(t,M,N_beta,derta_d,L_d);
%%% RB-particle_filter
% RBPF(t,M,T_duration,derta_d,derta_theta,K,u,N_max,sigma_vt,beta);
%%% MMSE to calculate the final state of vehicle
% mmse(t,M);
% noise_PF(t,M,sigma_vt,sigma_u);
update_state
(
t
,
M
,
T_duration
);
if
mod
(
t
,
step
)
==
1
||
t
==
T
clean_data
(
t
,
step
,
filename
);
%%% clean the
end
end
obj_name
=
[
filename
,
'\obj'
];
save
(
obj_name
,
'obj'
);
ob_name
=
[
filename
,
'\ob'
];
save
(
ob_name
,
'ob'
);
% show_result(T_duration,M,T);
%%%end
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment