Commit 9108ecbd authored by Cedric Roux's avatar Cedric Roux

Use diff files and 'patch' instead of copying full files.

parent a9256ded
#!/bin/bash
# in those arrays, each line is:
# <file> <sha1sum of file> <replacement file>
# <file> <sha1sum of file> <patch to apply to file>
RRC_Rel10=(
"SystemInformation-r8-IEs.h" 819eda3db27516f7c6780d832fb3c462e2264ea7 "fix_asn1.data/RRC.rel10/SystemInformation-r8-IEs.h"
"SystemInformation-r8-IEs.h" 819eda3db27516f7c6780d832fb3c462e2264ea7 "fix_asn1.data/RRC.rel10/SystemInformation-r8-IEs.h.diff"
)
X2AP_Rel11_2=(
"X2ap-CriticalityDiagnostics-IE-List.h" f0e2414992bfacfbc4b9fd15c977241d6d7fabeb "fix_asn1.data/X2AP.rel11.2/X2ap-CriticalityDiagnostics-IE-List.h"
"NativeInteger.c" e23034083a0fb9d4a2e523e2a64286161e621f27 "fix_asn1.data/X2AP.rel11.2/NativeInteger.c"
"constr_SET_OF.c" 5fb65da648a57ea61f008fa226b707cf343c1c0c "fix_asn1.data/X2AP.rel11.2/constr_SET_OF.c"
"X2ap-CriticalityDiagnostics-IE-List.h" f0e2414992bfacfbc4b9fd15c977241d6d7fabeb "fix_asn1.data/X2AP.rel11.2/X2ap-CriticalityDiagnostics-IE-List.h.diff"
"NativeInteger.c" e23034083a0fb9d4a2e523e2a64286161e621f27 "fix_asn1.data/X2AP.rel11.2/NativeInteger.c.diff"
"constr_SET_OF.c" 5fb65da648a57ea61f008fa226b707cf343c1c0c "fix_asn1.data/X2AP.rel11.2/constr_SET_OF.c.diff"
)
S1AP_Rel10_5=(
"NativeInteger.c" e23034083a0fb9d4a2e523e2a64286161e621f27 "fix_asn1.data/S1AP.rel10.5/NativeInteger.c"
"constr_SET_OF.c" 5fb65da648a57ea61f008fa226b707cf343c1c0c "fix_asn1.data/S1AP.rel10.5/constr_SET_OF.c"
"NativeInteger.c" e23034083a0fb9d4a2e523e2a64286161e621f27 "fix_asn1.data/S1AP.rel10.5/NativeInteger.c.diff"
"constr_SET_OF.c" 5fb65da648a57ea61f008fa226b707cf343c1c0c "fix_asn1.data/S1AP.rel10.5/constr_SET_OF.c.diff"
)
red_color="\x1b[31m"
green_color="\x1b[32m"
reset_color="\x1b[0m"
red_color="$(tput setaf 1)"
green_color="$(tput setaf 2)"
reset_color="$(tput sgr0)"
function error()
{
......@@ -46,21 +46,21 @@ function check_sha1()
fi
}
function copy_file()
function patch_file()
{
local file="$1"
local destination="$2"
local patch="$1"
local file="$2"
echo -e "$green_color""copy file $OPENAIR_DIR/cmake_targets/tools/$file to $destination""$reset_color"
echo -e "$green_color""patch file $file with $OPENAIR_DIR/cmake_targets/tools/$patch""$reset_color"
cp -f "$OPENAIR_DIR/cmake_targets/tools/$file" "$destination"
patch "$file" "$OPENAIR_DIR/cmake_targets/tools/$patch"
if [ $? -ne 0 ]
then
error "copy of $file to $destination failed"
error "patching of $file with $OPENAIR_DIR/cmake_targets/tools/$patch failed"
fi
}
function patch()
function apply_patches()
{
local directory="$1"
local array=$2
......@@ -69,7 +69,7 @@ function patch()
local i
local file
local sha1
local replace
local patch
local item
for (( i = 0; i < $len; i += 3 ))
......@@ -77,9 +77,9 @@ function patch()
# special bash syntax to access the array
item=$array[$i]; file=${!item}
item=$array[$((i+1))]; sha1=${!item}
item=$array[$((i+2))]; replace=${!item}
item=$array[$((i+2))]; patch=${!item}
check_sha1 "$directory/$file" "$sha1"
copy_file "$replace" "$directory"
patch_file "$patch" "$directory/$file"
done
}
......@@ -91,7 +91,7 @@ function patch_rrc()
case "$version" in
Rel10 )
echo "patching RRC files release 10"
patch "$directory" RRC_Rel10 ${#RRC_Rel10[*]}
apply_patches "$directory" RRC_Rel10 ${#RRC_Rel10[*]}
;;
* )
error unknwon/unhandled RRC version \'"$version"\'
......@@ -107,7 +107,7 @@ function patch_x2ap()
case "$version" in
R11 )
echo "patching X2AP files release 11.2"
patch "$directory" X2AP_Rel11_2 ${#X2AP_Rel11_2[*]}
apply_patches "$directory" X2AP_Rel11_2 ${#X2AP_Rel11_2[*]}
;;
* )
error unknwon/unhandled X2AP version \'"$version"\'
......@@ -123,7 +123,7 @@ function patch_s1ap()
case "$version" in
R10 )
echo "patching S1AP files release 10.5"
patch "$directory" S1AP_Rel10_5 ${#S1AP_Rel10_5[*]}
apply_patches "$directory" S1AP_Rel10_5 ${#S1AP_Rel10_5[*]}
;;
* )
error unknwon/unhandled S1AP version \'"$version"\'
......
/*
* Generated by asn1c-0.9.24 (http://lionet.info/asn1c)
* From ASN.1 module "EUTRA-RRC-Definitions"
* found in "fixed_grammar.asn"
* `asn1c -gen-PER`
*/
#ifndef _SystemInformation_r8_IEs_H_
#define _SystemInformation_r8_IEs_H_
#include <asn_application.h>
/* Including external dependencies */
#include <asn_SEQUENCE_OF.h>
#include "SystemInformationBlockType2.h"
#include "SystemInformationBlockType3.h"
#include "SystemInformationBlockType4.h"
#include "SystemInformationBlockType5.h"
#include "SystemInformationBlockType6.h"
#include "SystemInformationBlockType7.h"
#include "SystemInformationBlockType8.h"
#include "SystemInformationBlockType9.h"
#include "SystemInformationBlockType10.h"
#include "SystemInformationBlockType11.h"
#include "SystemInformationBlockType12-r9.h"
#include "SystemInformationBlockType13-r9.h"
#include <constr_CHOICE.h>
#include <constr_SEQUENCE_OF.h>
#include <constr_SEQUENCE.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Dependencies */
typedef enum SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR {
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_NOTHING, /* No components present */
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib2,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib3,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib4,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib5,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib6,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib7,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib8,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib9,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib10,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib11,
/* Extensions may appear below */
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib12_v920,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib13_v920
} SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR;
/* Forward declarations */
struct SystemInformation_v8a0_IEs;
union SystemInformation_r8_IEs__sib_TypeAndInfo__Member_u {
SystemInformationBlockType2_t sib2;
SystemInformationBlockType3_t sib3;
SystemInformationBlockType4_t sib4;
SystemInformationBlockType5_t sib5;
SystemInformationBlockType6_t sib6;
SystemInformationBlockType7_t sib7;
SystemInformationBlockType8_t sib8;
SystemInformationBlockType9_t sib9;
SystemInformationBlockType10_t sib10;
SystemInformationBlockType11_t sib11;
/*
* This type is extensible,
* possible extensions are below.
*/
SystemInformationBlockType12_r9_t sib12_v920;
SystemInformationBlockType13_r9_t sib13_v920;
};
struct SystemInformation_r8_IEs__sib_TypeAndInfo__Member {
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR present;
union SystemInformation_r8_IEs__sib_TypeAndInfo__Member_u choice;
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
};
/* SystemInformation-r8-IEs */
typedef struct SystemInformation_r8_IEs {
struct SystemInformation_r8_IEs__sib_TypeAndInfo {
A_SEQUENCE_OF(struct SystemInformation_r8_IEs__sib_TypeAndInfo__Member) list;
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
} sib_TypeAndInfo;
struct SystemInformation_v8a0_IEs *nonCriticalExtension /* OPTIONAL */;
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
} SystemInformation_r8_IEs_t;
/* Implementation */
extern asn_TYPE_descriptor_t asn_DEF_SystemInformation_r8_IEs;
#ifdef __cplusplus
}
#endif
/* Referred external types */
#include "SystemInformation-v8a0-IEs.h"
#endif /* _SystemInformation_r8_IEs_H_ */
#include <asn_internal.h>
57,61d56
< /* SystemInformation-r8-IEs */
< typedef struct SystemInformation_r8_IEs {
< struct SystemInformation_r8_IEs__sib_TypeAndInfo {
< A_SEQUENCE_OF(struct SystemInformation_r8_IEs__sib_TypeAndInfo__Member {
< SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR present;
79c74,78
< } choice;
---
> };
>
> struct SystemInformation_r8_IEs__sib_TypeAndInfo__Member {
> SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR present;
> union SystemInformation_r8_IEs__sib_TypeAndInfo__Member_u choice;
83c82,87
< } ) list;
---
> };
>
> /* SystemInformation-r8-IEs */
> typedef struct SystemInformation_r8_IEs {
> struct SystemInformation_r8_IEs__sib_TypeAndInfo {
> A_SEQUENCE_OF(struct SystemInformation_r8_IEs__sib_TypeAndInfo__Member) list;
/*-
* Copyright (c) 2004, 2005, 2006 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
/*
* Read the NativeInteger.h for the explanation wrt. differences between
* INTEGER and NativeInteger.
* Basically, both are decoders and encoders of ASN.1 INTEGER type, but this
* implementation deals with the standard (machine-specific) representation
* of them instead of using the platform-independent buffer.
*/
#include <asn_internal.h>
#include <NativeInteger.h>
/*
* NativeInteger basic type description.
*/
static ber_tlv_tag_t asn_DEF_NativeInteger_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (2 << 2))
};
asn_TYPE_descriptor_t asn_DEF_NativeInteger = {
"INTEGER", /* The ASN.1 type is still INTEGER */
"INTEGER",
NativeInteger_free,
NativeInteger_print,
asn_generic_no_constraint,
NativeInteger_decode_ber,
NativeInteger_encode_der,
NativeInteger_decode_xer,
NativeInteger_encode_xer,
NativeInteger_decode_uper, /* Unaligned PER decoder */
NativeInteger_encode_uper, /* Unaligned PER encoder */
NativeInteger_decode_aper, /* Aligned PER decoder */
NativeInteger_encode_aper, /* Aligned PER encoder */
0, /* Use generic outmost tag fetcher */
asn_DEF_NativeInteger_tags,
sizeof(asn_DEF_NativeInteger_tags) / sizeof(asn_DEF_NativeInteger_tags[0]),
asn_DEF_NativeInteger_tags, /* Same as above */
sizeof(asn_DEF_NativeInteger_tags) / sizeof(asn_DEF_NativeInteger_tags[0]),
0, /* No PER visible constraints */
0, 0, /* No members */
0 /* No specifics */
};
/*
* Decode INTEGER type.
*/
asn_dec_rval_t
NativeInteger_decode_ber(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
void **nint_ptr, const void *buf_ptr, size_t size, int tag_mode) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
long *native = (long *)*nint_ptr;
asn_dec_rval_t rval;
ber_tlv_len_t length;
/*
* If the structure is not there, allocate it.
*/
if(native == NULL) {
native = (long *)(*nint_ptr = CALLOC(1, sizeof(*native)));
if(native == NULL) {
rval.code = RC_FAIL;
rval.consumed = 0;
return rval;
}
}
ASN_DEBUG("Decoding %s as INTEGER (tm=%d)",
td->name, tag_mode);
/*
* Check tags.
*/
rval = ber_check_tags(opt_codec_ctx, td, 0, buf_ptr, size,
tag_mode, 0, &length, 0);
if(rval.code != RC_OK)
return rval;
ASN_DEBUG("%s length is %d bytes", td->name, (int)length);
/*
* Make sure we have this length.
*/
buf_ptr = ((const char *)buf_ptr) + rval.consumed;
size -= rval.consumed;
if(length > (ber_tlv_len_t)size) {
rval.code = RC_WMORE;
rval.consumed = 0;
return rval;
}
/*
* ASN.1 encoded INTEGER: buf_ptr, length
* Fill the native, at the same time checking for overflow.
* If overflow occured, return with RC_FAIL.
*/
{
INTEGER_t tmp;
union {
const void *constbuf;
void *nonconstbuf;
} unconst_buf;
long l;
unconst_buf.constbuf = buf_ptr;
tmp.buf = (uint8_t *)unconst_buf.nonconstbuf;
tmp.size = length;
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmp, (unsigned long *)&l) /* sic */
: asn_INTEGER2long(&tmp, &l)) {
rval.code = RC_FAIL;
rval.consumed = 0;
return rval;
}
*native = l;
}
rval.code = RC_OK;
rval.consumed += length;
ASN_DEBUG("Took %ld/%ld bytes to encode %s (%ld)",
(long)rval.consumed, (long)length, td->name, (long)*native);
return rval;
}
/*
* Encode the NativeInteger using the standard INTEGER type DER encoder.
*/
asn_enc_rval_t
NativeInteger_encode_der(asn_TYPE_descriptor_t *sd, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
unsigned long native = *(unsigned long *)ptr; /* Disable sign ext. */
asn_enc_rval_t erval;
INTEGER_t tmp;
#ifdef WORDS_BIGENDIAN /* Opportunistic optimization */
tmp.buf = (uint8_t *)&native;
tmp.size = sizeof(native);
#else /* Works even if WORDS_BIGENDIAN is not set where should've been */
uint8_t buf[sizeof(native)];
uint8_t *p;
/* Prepare a fake INTEGER */
for(p = buf + sizeof(buf) - 1; p >= buf; p--, native >>= 8)
*p = (uint8_t)native;
tmp.buf = buf;
tmp.size = sizeof(buf);
#endif /* WORDS_BIGENDIAN */
/* Encode fake INTEGER */
erval = INTEGER_encode_der(sd, &tmp, tag_mode, tag, cb, app_key);
if(erval.encoded == -1) {
assert(erval.structure_ptr == &tmp);
erval.structure_ptr = ptr;
}
return erval;
}
/*
* Decode the chunk of XML text encoding INTEGER.
*/
asn_dec_rval_t
NativeInteger_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **sptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
INTEGER_t st;
void *st_ptr = (void *)&st;
long *native = (long *)*sptr;
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
if(!native) _ASN_DECODE_FAILED;
}
memset(&st, 0, sizeof(st));
rval = INTEGER_decode_xer(opt_codec_ctx, td, &st_ptr,
opt_mname, buf_ptr, size);
if(rval.code == RC_OK) {
long l;
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&st, (unsigned long *)&l) /* sic */
: asn_INTEGER2long(&st, &l)) {
rval.code = RC_FAIL;
rval.consumed = 0;
} else {
*native = l;
}
} else {
/*
* Cannot restart from the middle;
* there is no place to save state in the native type.
* Request a continuation from the very beginning.
*/
rval.consumed = 0;
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &st);
return rval;
}
asn_enc_rval_t
NativeInteger_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
char scratch[32]; /* Enough for 64-bit int */
asn_enc_rval_t er;
const long *native = (const long *)sptr;
(void)ilevel;
(void)flags;
if(!native) _ASN_ENCODE_FAILED;
er.encoded = snprintf(scratch, sizeof(scratch),
(specs && specs->field_unsigned)
? "%lu" : "%ld", *native);
if(er.encoded <= 0 || (size_t)er.encoded >= sizeof(scratch)
|| cb(scratch, er.encoded, app_key) < 0)
_ASN_ENCODE_FAILED;
_ASN_ENCODED_OK(er);
}
asn_dec_rval_t
NativeInteger_decode_uper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
long *native = (long *)*sptr;
INTEGER_t tmpint;
void *tmpintptr = &tmpint;
(void)opt_codec_ctx;
ASN_DEBUG("Decoding NativeInteger %s (UPER)", td->name);
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
if(!native) _ASN_DECODE_FAILED;
}
memset(&tmpint, 0, sizeof tmpint);
rval = INTEGER_decode_uper(opt_codec_ctx, td, constraints,
&tmpintptr, pd);
if(rval.code == RC_OK) {
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmpint, (unsigned long *)native)
: asn_INTEGER2long(&tmpint, native))
rval.code = RC_FAIL;
else
ASN_DEBUG("NativeInteger %s got value %ld",
td->name, *native);
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return rval;
}
asn_dec_rval_t
NativeInteger_decode_aper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
long *native = (long *)*sptr;
INTEGER_t tmpint;
void *tmpintptr = &tmpint;
//int dynamic = 0;
(void)opt_codec_ctx;
ASN_DEBUG("Decoding NativeInteger %s (APER)", td->name);
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
//dynamic = 1;
if(!native) _ASN_DECODE_FAILED;
}
memset(&tmpint, 0, sizeof tmpint);
rval = INTEGER_decode_aper(opt_codec_ctx, td, constraints,
&tmpintptr, pd);
if(rval.code == RC_OK) {
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmpint, (unsigned long *)native)
: asn_INTEGER2long(&tmpint, native))
rval.code = RC_FAIL;
else
ASN_DEBUG("NativeInteger %s got value %ld",
td->name, *native);
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
//if (dynamic)
// free(native);
return rval;
}
asn_enc_rval_t
NativeInteger_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
long native;
INTEGER_t tmpint;
if(!sptr) _ASN_ENCODE_FAILED;
native = *(long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %ld (UPER)", td->name, native);
memset(&tmpint, 0, sizeof(tmpint));
if((specs&&specs->field_unsigned)
? asn_ulong2INTEGER(&tmpint, native)
: asn_long2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
er = INTEGER_encode_uper(td, constraints, &tmpint, po);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return er;
}
asn_enc_rval_t
NativeInteger_encode_aper(
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
INTEGER_t tmpint;
if(!sptr) _ASN_ENCODE_FAILED;
memset(&tmpint, 0, sizeof(tmpint));
if(specs&&specs->field_unsigned) {
unsigned long native;
native = *(unsigned long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %lu (APER) (unsigned)", td->name, native);
if(asn_ulong2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
} else {
long native;
native = *(long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %ld (APER) (unsigned)", td->name, native);
if(asn_long2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
}
// if((specs&&specs->field_unsigned)
// ? asn_ulong2INTEGER(&tmpint, native)
// : asn_long2INTEGER(&tmpint, native))
// _ASN_ENCODE_FAILED;
er = INTEGER_encode_aper(td, constraints, &tmpint, po);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return er;
}
/*
* INTEGER specific human-readable output.
*/
int
NativeInteger_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
const long *native = (const long *)sptr;
char scratch[32]; /* Enough for 64-bit int */
int ret;
(void)td; /* Unused argument */
(void)ilevel; /* Unused argument */
if(native) {
ret = snprintf(scratch, sizeof(scratch),
(specs && specs->field_unsigned)
? "%lu" : "%ld", *native);
assert(ret > 0 && (size_t)ret < sizeof(scratch));
return (cb(scratch, ret, app_key) < 0) ? -1 : 0;
} else {
return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
}
}
void
NativeInteger_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(!td || !ptr)
return;
ASN_DEBUG("Freeing %s as INTEGER (%d, %p, Native)",
td->name, contents_only, ptr);
if(!contents_only) {
FREEMEM(ptr);
}
}
282c282
< int dynamic = 0;
---
> //int dynamic = 0;
289c289
< dynamic = 1;
---
> //dynamic = 1;
/*-
* Copyright (c) 2003, 2004, 2005 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <constr_SET_OF.h>
#include <asn_SET_OF.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#undef ADVANCE
#define ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
ptr = ((const char *)ptr) + num;\
size -= num; \
if(ctx->left >= 0) \
ctx->left -= num; \
consumed_myself += num; \
} while(0)
/*
* Switch to the next phase of parsing.
*/
#undef NEXT_PHASE
#undef PHASE_OUT
#define NEXT_PHASE(ctx) do { \
ctx->phase++; \
ctx->step = 0; \
} while(0)
#define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0)
/*
* Return a standardized complex structure.
*/
#undef RETURN
#define RETURN(_code) do { \
rval.code = _code; \
rval.consumed = consumed_myself;\
return rval; \
} while(0)
/*
* The decoder of the SET OF type.
*/
asn_dec_rval_t
SET_OF_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **struct_ptr, const void *ptr, size_t size, int tag_mode) {
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
asn_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
ASN_DEBUG("Decoding %s as SET OF", td->name);
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) {
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch(ctx->phase) {
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size,
tag_mode, 1, &ctx->left, 0);
if(rval.code != RC_OK) {
ASN_DEBUG("%s tagging check failed: %d",
td->name, rval.code);
return rval;
}
if(ctx->left >= 0)
ctx->left += rval.consumed; /* ?Substracted below! */
ADVANCE(rval.consumed);
ASN_DEBUG("Structure consumes %ld bytes, "
"buffer %ld", (long)ctx->left, (long)size);
NEXT_PHASE(ctx);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next item.
*/
for(;; ctx->step = 0) {
ssize_t tag_len; /* Length of TLV's T */
if(ctx->step & 1)
goto microphase2;
/*
* MICROPHASE 1: Synchronize decoding.
*/
if(ctx->left == 0) {
ASN_DEBUG("End of SET OF %s", td->name);
/*
* No more things to decode.
* Exit out of here.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tag_len) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((const uint8_t *)ptr)[1] == 0) {
/*
* Found the terminator of the
* indefinite length structure.
*/
break;
}
}
/* Outmost tag may be unknown and cannot be fetched/compared */
if(elm->tag != (ber_tlv_tag_t)-1) {
if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) {
/*
* The new list member of expected type has arrived.
*/
} else {
ASN_DEBUG("Unexpected tag %s fixed SET OF %s",
ber_tlv_tag_string(tlv_tag), td->name);
ASN_DEBUG("%s SET OF has tag %s",
td->name, ber_tlv_tag_string(elm->tag));
RETURN(RC_FAIL);
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
/*
* Invoke the member fetch routine according to member's type
*/
rval = elm->type->ber_decoder(opt_codec_ctx,
elm->type, &ctx->ptr, ptr, LEFT, 0);
ASN_DEBUG("In %s SET OF %s code %d consumed %d",
td->name, elm->type->name,
rval.code, (int)rval.consumed);
switch(rval.code) {
case RC_OK:
{
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
else
ctx->ptr = 0;
}
break;
case RC_WMORE: /* More data expected */
if(!SIZE_VIOLATION) {
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fall through */
case RC_FAIL: /* Fatal error */
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all list members) */
NEXT_PHASE(ctx);
case 2:
/*
* Read in all "end of content" TLVs.
*/
while(ctx->left < 0) {
if(LEFT < 2) {
if(LEFT > 0 && ((const char *)ptr)[0] != 0) {
/* Unexpected tag */
RETURN(RC_FAIL);
} else {
RETURN(RC_WMORE);
}
}
if(((const char *)ptr)[0] == 0
&& ((const char *)ptr)[1] == 0) {
ADVANCE(2);
ctx->left++;
} else {
RETURN(RC_FAIL);
}
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* Internally visible buffer holding a single encoded element.
*/
struct _el_buffer {
uint8_t *buf;
size_t length;
size_t size;
};
/* Append bytes to the above structure */
static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) {
struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr;
if(el_buf->length + size > el_buf->size)
return -1;
memcpy(el_buf->buf + el_buf->length, buffer, size);
el_buf->length += size;
return 0;
}
static int _el_buf_cmp(const void *ap, const void *bp) {
const struct _el_buffer *a = (const struct _el_buffer *)ap;
const struct _el_buffer *b = (const struct _el_buffer *)bp;
int ret;
size_t common_len;
if(a->length < b->length)
common_len = a->length;
else
common_len = b->length;
ret = memcmp(a->buf, b->buf, common_len);
if(ret == 0) {
if(a->length < b->length)
ret = -1;
else if(a->length > b->length)
ret = 1;
}
return ret;
}
/*
* The DER encoder of the SET OF type.
*/
asn_enc_rval_t
SET_OF_encode_der(asn_TYPE_descriptor_t *td, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
asn_TYPE_descriptor_t *elm_type = elm->type;
der_type_encoder_f *der_encoder = elm_type->der_encoder;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
size_t computed_size = 0;
ssize_t encoding_size = 0;
struct _el_buffer *encoded_els;
ssize_t eels_count = 0;
size_t max_encoded_len = 1;
asn_enc_rval_t erval;
int ret;
int edx;
ASN_DEBUG("Estimating size for SET OF %s", td->name);
/*
* Gather the length of the underlying members sequence.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
if(!memb_ptr) continue;
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0);
if(erval.encoded == -1)
return erval;
computed_size += erval.encoded;
/* Compute maximum encoding's size */
if(max_encoded_len < (size_t)erval.encoded)
max_encoded_len = erval.encoded;
}
/*
* Encode the TLV for the sequence itself.
*/
encoding_size = der_write_tags(td, computed_size, tag_mode, 1, tag,
cb, app_key);
if(encoding_size == -1) {
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
computed_size += encoding_size;
if(!cb || list->count == 0) {
erval.encoded = computed_size;
_ASN_ENCODED_OK(erval);
}
/*
* DER mandates dynamic sorting of the SET OF elements
* according to their encodings. Build an array of the
* encoded elements.
*/
encoded_els = (struct _el_buffer *)MALLOC(
list->count * sizeof(encoded_els[0]));
if(encoded_els == NULL) {
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
ASN_DEBUG("Encoding members of %s SET OF", td->name);
/*
* Encode all members.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
struct _el_buffer *encoded_el = &encoded_els[eels_count];
if(!memb_ptr) continue;
/*
* Prepare space for encoding.
*/
encoded_el->buf = (uint8_t *)MALLOC(max_encoded_len);
if(encoded_el->buf) {
encoded_el->length = 0;
encoded_el->size = max_encoded_len;
} else {
for(edx--; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
/*
* Encode the member into the prepared space.
*/
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag,
_el_addbytes, encoded_el);
if(erval.encoded == -1) {
for(; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
return erval;
}
encoding_size += erval.encoded;
eels_count++;
}
/*
* Sort the encoded elements according to their encoding.
*/
qsort(encoded_els, eels_count, sizeof(encoded_els[0]), _el_buf_cmp);
/*
* Report encoded elements to the application.
* Dispose of temporary sorted members table.
*/
ret = 0;
for(edx = 0; edx < eels_count; edx++) {
struct _el_buffer *encoded_el = &encoded_els[edx];
/* Report encoded chunks to the application */
if(ret == 0
&& cb(encoded_el->buf, encoded_el->length, app_key) < 0)
ret = -1;
FREEMEM(encoded_el->buf);
}
FREEMEM(encoded_els);
if(ret || computed_size != (size_t)encoding_size) {
/*
* Standard callback failed, or
* encoded size is not equal to the computed size.
*/
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
} else {
erval.encoded = computed_size;
}
_ASN_ENCODED_OK(erval);
}
#undef XER_ADVANCE
#define XER_ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
buf_ptr = ((const char *)buf_ptr) + num;\
size -= num; \
consumed_myself += num; \
} while(0)
/*
* Decode the XER (XML) data.
*/
asn_dec_rval_t
SET_OF_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **struct_ptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *element = td->elements;
const char *elm_tag;
const char *xml_tag = opt_mname ? opt_mname : td->xml_tag;
/*
* ... and parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
asn_dec_rval_t rval; /* Return value from a decoder */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) RETURN(RC_FAIL);
}
/* Which tag is expected for the downstream */
if(specs->as_XMLValueList) {
elm_tag = (specs->as_XMLValueList == 1) ? 0 : "";
} else {
elm_tag = (*element->name)
? element->name : element->type->xml_tag;
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Phases of XER/XML processing:
* Phase 0: Check that the opening tag matches our expectations.
* Phase 1: Processing body and reacting on closing tag.
* Phase 2: Processing inner type.
*/
for(; ctx->phase <= 2;) {
pxer_chunk_type_e ch_type; /* XER chunk type */
ssize_t ch_size; /* Chunk size */
xer_check_tag_e tcv; /* Tag check value */
/*
* Go inside the inner member of a set.
*/
if(ctx->phase == 2) {
asn_dec_rval_t tmprval;
/* Invoke the inner type decoder, m.b. multiple times */
ASN_DEBUG("XER/SET OF element [%s]", elm_tag);
tmprval = element->type->xer_decoder(opt_codec_ctx,
element->type, &ctx->ptr, elm_tag,
buf_ptr, size);
if(tmprval.code == RC_OK) {
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
ctx->ptr = 0;
XER_ADVANCE(tmprval.consumed);
} else {
XER_ADVANCE(tmprval.consumed);
RETURN(tmprval.code);
}
ctx->phase = 1; /* Back to body processing */
ASN_DEBUG("XER/SET OF phase => %d", ctx->phase);
/* Fall through */
}
/*
* Get the next part of the XML stream.
*/
ch_size = xer_next_token(&ctx->context,
buf_ptr, size, &ch_type);
switch(ch_size) {
case -1: RETURN(RC_FAIL);
case 0: RETURN(RC_WMORE);
default:
switch(ch_type) {
case PXER_COMMENT: /* Got XML comment */
case PXER_TEXT: /* Ignore free-standing text */
XER_ADVANCE(ch_size); /* Skip silently */
continue;
case PXER_TAG:
break; /* Check the rest down there */
}
}
tcv = xer_check_tag(buf_ptr, ch_size, xml_tag);
ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s",
tcv, ctx->phase, xml_tag);
switch(tcv) {
case XCT_CLOSING:
if(ctx->phase == 0) break;
ctx->phase = 0;
/* Fall through */
case XCT_BOTH:
if(ctx->phase == 0) {
/* No more things to decode */
XER_ADVANCE(ch_size);
ctx->phase = 3; /* Phase out */
RETURN(RC_OK);
}
/* Fall through */
case XCT_OPENING:
if(ctx->phase == 0) {
XER_ADVANCE(ch_size);
ctx->phase = 1; /* Processing body phase */
continue;
}
/* Fall through */
case XCT_UNKNOWN_OP:
case XCT_UNKNOWN_BO:
ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase);
if(ctx->phase == 1) {
/*
* Process a single possible member.
*/
ctx->phase = 2;
continue;
}
/* Fall through */
default:
break;
}
ASN_DEBUG("Unexpected XML tag in SET OF");
break;
}
ctx->phase = 3; /* "Phase out" on hard failure */
RETURN(RC_FAIL);
}
typedef struct xer_tmp_enc_s {
void *buffer;
size_t offset;
size_t size;
} xer_tmp_enc_t;
static int
SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) {
xer_tmp_enc_t *t = (xer_tmp_enc_t *)key;
if(t->offset + size >= t->size) {
size_t newsize = (t->size << 2) + size;
void *p = REALLOC(t->buffer, newsize);
if(!p) return -1;
t->buffer = p;
t->size = newsize;
}
memcpy((char *)t->buffer + t->offset, buffer, size);
t->offset += size;
return 0;
}
static int
SET_OF_xer_order(const void *aptr, const void *bptr) {
const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr;
const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr;
size_t minlen = a->offset;
int ret;
if(b->offset < minlen) minlen = b->offset;
/* Well-formed UTF-8 has this nice lexicographical property... */
ret = memcmp(a->buffer, b->buffer, minlen);
if(ret != 0) return ret;
if(a->offset == b->offset)
return 0;
if(a->offset == minlen)
return -1;
return 1;
}
asn_enc_rval_t
SET_OF_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_enc_rval_t er;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(sptr);
const char *mname = specs->as_XMLValueList
? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag);
size_t mlen = mname ? strlen(mname) : 0;
int xcan = (flags & XER_F_CANONICAL);
xer_tmp_enc_t *encs = 0;
size_t encs_count = 0;
void *original_app_key = app_key;
asn_app_consume_bytes_f *original_cb = cb;
int i;
if(!sptr) _ASN_ENCODE_FAILED;
if(xcan) {
encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0]));
if(!encs) _ASN_ENCODE_FAILED;
cb = SET_OF_encode_xer_callback;
}
er.encoded = 0;
for(i = 0; i < list->count; i++) {
asn_enc_rval_t tmper;
void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
if(encs) {
memset(&encs[encs_count], 0, sizeof(encs[0]));
app_key = &encs[encs_count];
encs_count++;
}
if(mname) {
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel);
_ASN_CALLBACK3("<", 1, mname, mlen, ">", 1);
}
if(!xcan && specs->as_XMLValueList == 1)
_i_ASN_TEXT_INDENT(1, ilevel + 1);
tmper = elm->type->xer_encoder(elm->type, memb_ptr,
ilevel + (specs->as_XMLValueList != 2),
flags, cb, app_key);
if(tmper.encoded == -1) {
td = tmper.failed_type;
sptr = tmper.structure_ptr;
goto cb_failed;
}
if(tmper.encoded == 0 && specs->as_XMLValueList) {
const char *name = elm->type->xml_tag;
size_t len = strlen(name);
_ASN_CALLBACK3("<", 1, name, len, "/>", 2);
}
if(mname) {
_ASN_CALLBACK3("</", 2, mname, mlen, ">", 1);
er.encoded += 5;
}
er.encoded += (2 * mlen) + tmper.encoded;
}
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel - 1);
if(encs) {
xer_tmp_enc_t *enc = encs;
xer_tmp_enc_t *end = encs + encs_count;
ssize_t control_size = 0;
cb = original_cb;
app_key = original_app_key;
qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order);
for(; enc < end; enc++) {
_ASN_CALLBACK(enc->buffer, enc->offset);
FREEMEM(enc->buffer);
enc->buffer = 0;
control_size += enc->offset;
}
assert(control_size == er.encoded);
}
goto cleanup;
cb_failed:
er.encoded = -1;
er.failed_type = td;
er.structure_ptr = sptr;
cleanup:
if(encs) {
while(encs_count-- > 0) {
if(encs[encs_count].buffer)
FREEMEM(encs[encs_count].buffer);
}
FREEMEM(encs);
}
_ASN_ENCODED_OK(er);
}
int
SET_OF_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int ret;
int i;
if(!sptr) return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
/* Dump preamble */
if(cb(td->name, strlen(td->name), app_key) < 0
|| cb(" ::= {", 6, app_key) < 0)
return -1;
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
_i_INDENT(1);
ret = elm->type->print_struct(elm->type, memb_ptr,
ilevel + 1, cb, app_key);
if(ret) return ret;
}
ilevel--;
_i_INDENT(1);
return (cb("}", 1, app_key) < 0) ? -1 : 0;
}
void
SET_OF_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(td && ptr) {
asn_SET_OF_specifics_t *specs;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
asn_struct_ctx_t *ctx; /* Decoder context */
int i;
/*
* Could not use set_of_empty() because of (*free)
* incompatibility.
*/
for(i = 0; i < list->count; i++) {
void *memb_ptr = list->array[i];
if(memb_ptr)
ASN_STRUCT_FREE(*elm->type, memb_ptr);
}
list->count = 0; /* No meaningful elements left */
asn_set_empty(list); /* Remove (list->array) */
specs = (asn_SET_OF_specifics_t *)td->specifics;
ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset);
if(ctx->ptr) {
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
}
if(!contents_only) {
FREEMEM(ptr);
}
}
}
int
SET_OF_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
asn_constr_check_f *constr;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int i;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
constr = elm->memb_constraints;
if(!constr) constr = elm->type->check_constraints;
/*
* Iterate over the members of an array.
* Validate each in turn, until one fails.
*/
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
int ret;
if(!memb_ptr) continue;
ret = constr(elm->type, memb_ptr, ctfailcb, app_key);
if(ret) return ret;
}
/*
* Cannot inherit it eralier:
* need to make sure we get the updated version.
*/
if(!elm->memb_constraints)
elm->memb_constraints = elm->type->check_constraints;
return 0;
}
asn_dec_rval_t
SET_OF_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
_ASN_DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) _ASN_DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->per_constraints) ct = &td->per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) _ASN_DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
nelems = per_get_few_bits(pd, ct->effective_bits);
ASN_DEBUG("Preparing to fetch %ld+%"PRIdMAX" elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) _ASN_DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = uper_get_length(pd,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, (int)(ct ? ct->effective_bits : -1));
if(nelems < 0) _ASN_DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->uper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
asn_dec_rval_t
SET_OF_decode_aper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
_ASN_DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) _ASN_DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->per_constraints) ct = &td->per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) _ASN_DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
// nelems = per_get_few_bits(pd, ct->effective_bits);
nelems = aper_get_nsnnwn(pd, ct->upper_bound - ct->lower_bound);
ASN_DEBUG("Preparing to fetch %ld+%"PRIdMAX" elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) _ASN_DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = aper_get_length(pd, ct ? ct->upper_bound - ct->lower_bound + 1 : -1,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, ct ? ct->effective_bits : -1);
if(nelems < 0) _ASN_DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->aper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
1007c1007
< (int)nelems, (int)ct ? ct->effective_bits : -1);
---
> (int)nelems, ct ? ct->effective_bits : -1);
/*-
* Copyright (c) 2004, 2005, 2006 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
/*
* Read the NativeInteger.h for the explanation wrt. differences between
* INTEGER and NativeInteger.
* Basically, both are decoders and encoders of ASN.1 INTEGER type, but this
* implementation deals with the standard (machine-specific) representation
* of them instead of using the platform-independent buffer.
*/
#include <asn_internal.h>
#include <NativeInteger.h>
/*
* NativeInteger basic type description.
*/
static ber_tlv_tag_t asn_DEF_NativeInteger_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (2 << 2))
};
asn_TYPE_descriptor_t asn_DEF_NativeInteger = {
"INTEGER", /* The ASN.1 type is still INTEGER */
"INTEGER",
NativeInteger_free,
NativeInteger_print,
asn_generic_no_constraint,
NativeInteger_decode_ber,
NativeInteger_encode_der,
NativeInteger_decode_xer,
NativeInteger_encode_xer,
NativeInteger_decode_uper, /* Unaligned PER decoder */
NativeInteger_encode_uper, /* Unaligned PER encoder */
NativeInteger_decode_aper, /* Aligned PER decoder */
NativeInteger_encode_aper, /* Aligned PER encoder */
0, /* Use generic outmost tag fetcher */
asn_DEF_NativeInteger_tags,
sizeof(asn_DEF_NativeInteger_tags) / sizeof(asn_DEF_NativeInteger_tags[0]),
asn_DEF_NativeInteger_tags, /* Same as above */
sizeof(asn_DEF_NativeInteger_tags) / sizeof(asn_DEF_NativeInteger_tags[0]),
0, /* No PER visible constraints */
0, 0, /* No members */
0 /* No specifics */
};
/*
* Decode INTEGER type.
*/
asn_dec_rval_t
NativeInteger_decode_ber(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
void **nint_ptr, const void *buf_ptr, size_t size, int tag_mode) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
long *native = (long *)*nint_ptr;
asn_dec_rval_t rval;
ber_tlv_len_t length;
/*
* If the structure is not there, allocate it.
*/
if(native == NULL) {
native = (long *)(*nint_ptr = CALLOC(1, sizeof(*native)));
if(native == NULL) {
rval.code = RC_FAIL;
rval.consumed = 0;
return rval;
}
}
ASN_DEBUG("Decoding %s as INTEGER (tm=%d)",
td->name, tag_mode);
/*
* Check tags.
*/
rval = ber_check_tags(opt_codec_ctx, td, 0, buf_ptr, size,
tag_mode, 0, &length, 0);
if(rval.code != RC_OK)
return rval;
ASN_DEBUG("%s length is %d bytes", td->name, (int)length);
/*
* Make sure we have this length.
*/
buf_ptr = ((const char *)buf_ptr) + rval.consumed;
size -= rval.consumed;
if(length > (ber_tlv_len_t)size) {
rval.code = RC_WMORE;
rval.consumed = 0;
return rval;
}
/*
* ASN.1 encoded INTEGER: buf_ptr, length
* Fill the native, at the same time checking for overflow.
* If overflow occured, return with RC_FAIL.
*/
{
INTEGER_t tmp;
union {
const void *constbuf;
void *nonconstbuf;
} unconst_buf;
long l;
unconst_buf.constbuf = buf_ptr;
tmp.buf = (uint8_t *)unconst_buf.nonconstbuf;
tmp.size = length;
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmp, (unsigned long *)&l) /* sic */
: asn_INTEGER2long(&tmp, &l)) {
rval.code = RC_FAIL;
rval.consumed = 0;
return rval;
}
*native = l;
}
rval.code = RC_OK;
rval.consumed += length;
ASN_DEBUG("Took %ld/%ld bytes to encode %s (%ld)",
(long)rval.consumed, (long)length, td->name, (long)*native);
return rval;
}
/*
* Encode the NativeInteger using the standard INTEGER type DER encoder.
*/
asn_enc_rval_t
NativeInteger_encode_der(asn_TYPE_descriptor_t *sd, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
unsigned long native = *(unsigned long *)ptr; /* Disable sign ext. */
asn_enc_rval_t erval;
INTEGER_t tmp;
#ifdef WORDS_BIGENDIAN /* Opportunistic optimization */
tmp.buf = (uint8_t *)&native;
tmp.size = sizeof(native);
#else /* Works even if WORDS_BIGENDIAN is not set where should've been */
uint8_t buf[sizeof(native)];
uint8_t *p;
/* Prepare a fake INTEGER */
for(p = buf + sizeof(buf) - 1; p >= buf; p--, native >>= 8)
*p = (uint8_t)native;
tmp.buf = buf;
tmp.size = sizeof(buf);
#endif /* WORDS_BIGENDIAN */
/* Encode fake INTEGER */
erval = INTEGER_encode_der(sd, &tmp, tag_mode, tag, cb, app_key);
if(erval.encoded == -1) {
assert(erval.structure_ptr == &tmp);
erval.structure_ptr = ptr;
}
return erval;
}
/*
* Decode the chunk of XML text encoding INTEGER.
*/
asn_dec_rval_t
NativeInteger_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **sptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
INTEGER_t st;
void *st_ptr = (void *)&st;
long *native = (long *)*sptr;
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
if(!native) _ASN_DECODE_FAILED;
}
memset(&st, 0, sizeof(st));
rval = INTEGER_decode_xer(opt_codec_ctx, td, &st_ptr,
opt_mname, buf_ptr, size);
if(rval.code == RC_OK) {
long l;
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&st, (unsigned long *)&l) /* sic */
: asn_INTEGER2long(&st, &l)) {
rval.code = RC_FAIL;
rval.consumed = 0;
} else {
*native = l;
}
} else {
/*
* Cannot restart from the middle;
* there is no place to save state in the native type.
* Request a continuation from the very beginning.
*/
rval.consumed = 0;
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &st);
return rval;
}
asn_enc_rval_t
NativeInteger_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
char scratch[32]; /* Enough for 64-bit int */
asn_enc_rval_t er;
const long *native = (const long *)sptr;
(void)ilevel;
(void)flags;
if(!native) _ASN_ENCODE_FAILED;
er.encoded = snprintf(scratch, sizeof(scratch),
(specs && specs->field_unsigned)
? "%lu" : "%ld", *native);
if(er.encoded <= 0 || (size_t)er.encoded >= sizeof(scratch)
|| cb(scratch, er.encoded, app_key) < 0)
_ASN_ENCODE_FAILED;
_ASN_ENCODED_OK(er);
}
asn_dec_rval_t
NativeInteger_decode_uper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
long *native = (long *)*sptr;
INTEGER_t tmpint;
void *tmpintptr = &tmpint;
(void)opt_codec_ctx;
ASN_DEBUG("Decoding NativeInteger %s (UPER)", td->name);
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
if(!native) _ASN_DECODE_FAILED;
}
memset(&tmpint, 0, sizeof tmpint);
rval = INTEGER_decode_uper(opt_codec_ctx, td, constraints,
&tmpintptr, pd);
if(rval.code == RC_OK) {
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmpint, (unsigned long *)native)
: asn_INTEGER2long(&tmpint, native))
rval.code = RC_FAIL;
else
ASN_DEBUG("NativeInteger %s got value %ld",
td->name, *native);
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return rval;
}
asn_dec_rval_t
NativeInteger_decode_aper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
long *native = (long *)*sptr;
INTEGER_t tmpint;
void *tmpintptr = &tmpint;
//int dynamic = 0;
(void)opt_codec_ctx;
ASN_DEBUG("Decoding NativeInteger %s (APER)", td->name);
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
//dynamic = 1;
if(!native) _ASN_DECODE_FAILED;
}
memset(&tmpint, 0, sizeof tmpint);
rval = INTEGER_decode_aper(opt_codec_ctx, td, constraints,
&tmpintptr, pd);
if(rval.code == RC_OK) {
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmpint, (unsigned long *)native)
: asn_INTEGER2long(&tmpint, native))
rval.code = RC_FAIL;
else
ASN_DEBUG("NativeInteger %s got value %ld",
td->name, *native);
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
//if (dynamic)
// free(native);
return rval;
}
asn_enc_rval_t
NativeInteger_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
long native;
INTEGER_t tmpint;
if(!sptr) _ASN_ENCODE_FAILED;
native = *(long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %ld (UPER)", td->name, native);
memset(&tmpint, 0, sizeof(tmpint));
if((specs&&specs->field_unsigned)
? asn_ulong2INTEGER(&tmpint, native)
: asn_long2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
er = INTEGER_encode_uper(td, constraints, &tmpint, po);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return er;
}
asn_enc_rval_t
NativeInteger_encode_aper(
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
INTEGER_t tmpint;
if(!sptr) _ASN_ENCODE_FAILED;
memset(&tmpint, 0, sizeof(tmpint));
if(specs&&specs->field_unsigned) {
unsigned long native;
native = *(unsigned long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %lu (APER) (unsigned)", td->name, native);
if(asn_ulong2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
} else {
long native;
native = *(long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %ld (APER) (unsigned)", td->name, native);
if(asn_long2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
}
// if((specs&&specs->field_unsigned)
// ? asn_ulong2INTEGER(&tmpint, native)
// : asn_long2INTEGER(&tmpint, native))
// _ASN_ENCODE_FAILED;
er = INTEGER_encode_aper(td, constraints, &tmpint, po);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return er;
}
/*
* INTEGER specific human-readable output.
*/
int
NativeInteger_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
const long *native = (const long *)sptr;
char scratch[32]; /* Enough for 64-bit int */
int ret;
(void)td; /* Unused argument */
(void)ilevel; /* Unused argument */
if(native) {
ret = snprintf(scratch, sizeof(scratch),
(specs && specs->field_unsigned)
? "%lu" : "%ld", *native);
assert(ret > 0 && (size_t)ret < sizeof(scratch));
return (cb(scratch, ret, app_key) < 0) ? -1 : 0;
} else {
return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
}
}
void
NativeInteger_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(!td || !ptr)
return;
ASN_DEBUG("Freeing %s as INTEGER (%d, %p, Native)",
td->name, contents_only, ptr);
if(!contents_only) {
FREEMEM(ptr);
}
}
282c282
< int dynamic = 0;
---
> //int dynamic = 0;
289c289
< dynamic = 1;
---
> //dynamic = 1;
/*
* Generated by asn1c-0.9.24 (http://lionet.info/asn1c)
* From ASN.1 module "X2AP-IEs"
* found in "/roux/comments/openairinterface5g/openair2/X2AP/MESSAGES/ASN1/R11.2/X2AP-IEs.asn"
* `asn1c -gen-PER`
*/
#ifndef _X2ap_CriticalityDiagnostics_IE_List_H_
#define _X2ap_CriticalityDiagnostics_IE_List_H_
#include <asn_application.h>
/* Including external dependencies */
#include <asn_SEQUENCE_OF.h>
#include "X2ap-Criticality.h"
#include "X2ap-ProtocolIE-ID.h"
#include "X2ap-TypeOfError.h"
#include <constr_SEQUENCE.h>
#include <constr_SEQUENCE_OF.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Forward declarations */
struct X2ap_IE_Extensions;
struct X2ap_CriticalityDiagnostics_IE_List__Member {
X2ap_Criticality_t iECriticality;
X2ap_ProtocolIE_ID_t iE_ID;
X2ap_TypeOfError_t typeOfError;
struct X2ap_IE_Extensions *iE_Extensions /* OPTIONAL */;
/*
* This type is extensible,
* possible extensions are below.
*/
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
};
/* X2ap-CriticalityDiagnostics-IE-List */
typedef struct X2ap_CriticalityDiagnostics_IE_List {
A_SEQUENCE_OF(struct X2ap_CriticalityDiagnostics_IE_List__Member
) list;
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
} X2ap_CriticalityDiagnostics_IE_List_t;
/* Implementation */
extern asn_TYPE_descriptor_t asn_DEF_X2ap_CriticalityDiagnostics_IE_List;
#ifdef __cplusplus
}
#endif
/* Referred external types */
#include "X2ap-IE-Extensions.h"
#endif /* _X2ap_CriticalityDiagnostics_IE_List_H_ */
#include <asn_internal.h>
29,31c29
< /* X2ap-CriticalityDiagnostics-IE-List */
< typedef struct X2ap_CriticalityDiagnostics_IE_List {
< A_SEQUENCE_OF(struct X2ap_CriticalityDiagnostics_IE_List__Member {
---
> struct X2ap_CriticalityDiagnostics_IE_List__Member {
43c41,46
< } ) list;
---
> };
>
> /* X2ap-CriticalityDiagnostics-IE-List */
> typedef struct X2ap_CriticalityDiagnostics_IE_List {
> A_SEQUENCE_OF(struct X2ap_CriticalityDiagnostics_IE_List__Member
> ) list;
/*-
* Copyright (c) 2003, 2004, 2005 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <constr_SET_OF.h>
#include <asn_SET_OF.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#undef ADVANCE
#define ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
ptr = ((const char *)ptr) + num;\
size -= num; \
if(ctx->left >= 0) \
ctx->left -= num; \
consumed_myself += num; \
} while(0)
/*
* Switch to the next phase of parsing.
*/
#undef NEXT_PHASE
#undef PHASE_OUT
#define NEXT_PHASE(ctx) do { \
ctx->phase++; \
ctx->step = 0; \
} while(0)
#define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0)
/*
* Return a standardized complex structure.
*/
#undef RETURN
#define RETURN(_code) do { \
rval.code = _code; \
rval.consumed = consumed_myself;\
return rval; \
} while(0)
/*
* The decoder of the SET OF type.
*/
asn_dec_rval_t
SET_OF_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **struct_ptr, const void *ptr, size_t size, int tag_mode) {
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
asn_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
ASN_DEBUG("Decoding %s as SET OF", td->name);
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) {
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch(ctx->phase) {
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size,
tag_mode, 1, &ctx->left, 0);
if(rval.code != RC_OK) {
ASN_DEBUG("%s tagging check failed: %d",
td->name, rval.code);
return rval;
}
if(ctx->left >= 0)
ctx->left += rval.consumed; /* ?Substracted below! */
ADVANCE(rval.consumed);
ASN_DEBUG("Structure consumes %ld bytes, "
"buffer %ld", (long)ctx->left, (long)size);
NEXT_PHASE(ctx);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next item.
*/
for(;; ctx->step = 0) {
ssize_t tag_len; /* Length of TLV's T */
if(ctx->step & 1)
goto microphase2;
/*
* MICROPHASE 1: Synchronize decoding.
*/
if(ctx->left == 0) {
ASN_DEBUG("End of SET OF %s", td->name);
/*
* No more things to decode.
* Exit out of here.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tag_len) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((const uint8_t *)ptr)[1] == 0) {
/*
* Found the terminator of the
* indefinite length structure.
*/
break;
}
}
/* Outmost tag may be unknown and cannot be fetched/compared */
if(elm->tag != (ber_tlv_tag_t)-1) {
if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) {
/*
* The new list member of expected type has arrived.
*/
} else {
ASN_DEBUG("Unexpected tag %s fixed SET OF %s",
ber_tlv_tag_string(tlv_tag), td->name);
ASN_DEBUG("%s SET OF has tag %s",
td->name, ber_tlv_tag_string(elm->tag));
RETURN(RC_FAIL);
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
/*
* Invoke the member fetch routine according to member's type
*/
rval = elm->type->ber_decoder(opt_codec_ctx,
elm->type, &ctx->ptr, ptr, LEFT, 0);
ASN_DEBUG("In %s SET OF %s code %d consumed %d",
td->name, elm->type->name,
rval.code, (int)rval.consumed);
switch(rval.code) {
case RC_OK:
{
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
else
ctx->ptr = 0;
}
break;
case RC_WMORE: /* More data expected */
if(!SIZE_VIOLATION) {
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fall through */
case RC_FAIL: /* Fatal error */
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all list members) */
NEXT_PHASE(ctx);
case 2:
/*
* Read in all "end of content" TLVs.
*/
while(ctx->left < 0) {
if(LEFT < 2) {
if(LEFT > 0 && ((const char *)ptr)[0] != 0) {
/* Unexpected tag */
RETURN(RC_FAIL);
} else {
RETURN(RC_WMORE);
}
}
if(((const char *)ptr)[0] == 0
&& ((const char *)ptr)[1] == 0) {
ADVANCE(2);
ctx->left++;
} else {
RETURN(RC_FAIL);
}
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* Internally visible buffer holding a single encoded element.
*/
struct _el_buffer {
uint8_t *buf;
size_t length;
size_t size;
};
/* Append bytes to the above structure */
static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) {
struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr;
if(el_buf->length + size > el_buf->size)
return -1;
memcpy(el_buf->buf + el_buf->length, buffer, size);
el_buf->length += size;
return 0;
}
static int _el_buf_cmp(const void *ap, const void *bp) {
const struct _el_buffer *a = (const struct _el_buffer *)ap;
const struct _el_buffer *b = (const struct _el_buffer *)bp;
int ret;
size_t common_len;
if(a->length < b->length)
common_len = a->length;
else
common_len = b->length;
ret = memcmp(a->buf, b->buf, common_len);
if(ret == 0) {
if(a->length < b->length)
ret = -1;
else if(a->length > b->length)
ret = 1;
}
return ret;
}
/*
* The DER encoder of the SET OF type.
*/
asn_enc_rval_t
SET_OF_encode_der(asn_TYPE_descriptor_t *td, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
asn_TYPE_descriptor_t *elm_type = elm->type;
der_type_encoder_f *der_encoder = elm_type->der_encoder;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
size_t computed_size = 0;
ssize_t encoding_size = 0;
struct _el_buffer *encoded_els;
ssize_t eels_count = 0;
size_t max_encoded_len = 1;
asn_enc_rval_t erval;
int ret;
int edx;
ASN_DEBUG("Estimating size for SET OF %s", td->name);
/*
* Gather the length of the underlying members sequence.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
if(!memb_ptr) continue;
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0);
if(erval.encoded == -1)
return erval;
computed_size += erval.encoded;
/* Compute maximum encoding's size */
if(max_encoded_len < (size_t)erval.encoded)
max_encoded_len = erval.encoded;
}
/*
* Encode the TLV for the sequence itself.
*/
encoding_size = der_write_tags(td, computed_size, tag_mode, 1, tag,
cb, app_key);
if(encoding_size == -1) {
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
computed_size += encoding_size;
if(!cb || list->count == 0) {
erval.encoded = computed_size;
_ASN_ENCODED_OK(erval);
}
/*
* DER mandates dynamic sorting of the SET OF elements
* according to their encodings. Build an array of the
* encoded elements.
*/
encoded_els = (struct _el_buffer *)MALLOC(
list->count * sizeof(encoded_els[0]));
if(encoded_els == NULL) {
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
ASN_DEBUG("Encoding members of %s SET OF", td->name);
/*
* Encode all members.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
struct _el_buffer *encoded_el = &encoded_els[eels_count];
if(!memb_ptr) continue;
/*
* Prepare space for encoding.
*/
encoded_el->buf = (uint8_t *)MALLOC(max_encoded_len);
if(encoded_el->buf) {
encoded_el->length = 0;
encoded_el->size = max_encoded_len;
} else {
for(edx--; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
/*
* Encode the member into the prepared space.
*/
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag,
_el_addbytes, encoded_el);
if(erval.encoded == -1) {
for(; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
return erval;
}
encoding_size += erval.encoded;
eels_count++;
}
/*
* Sort the encoded elements according to their encoding.
*/
qsort(encoded_els, eels_count, sizeof(encoded_els[0]), _el_buf_cmp);
/*
* Report encoded elements to the application.
* Dispose of temporary sorted members table.
*/
ret = 0;
for(edx = 0; edx < eels_count; edx++) {
struct _el_buffer *encoded_el = &encoded_els[edx];
/* Report encoded chunks to the application */
if(ret == 0
&& cb(encoded_el->buf, encoded_el->length, app_key) < 0)
ret = -1;
FREEMEM(encoded_el->buf);
}
FREEMEM(encoded_els);
if(ret || computed_size != (size_t)encoding_size) {
/*
* Standard callback failed, or
* encoded size is not equal to the computed size.
*/
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
} else {
erval.encoded = computed_size;
}
_ASN_ENCODED_OK(erval);
}
#undef XER_ADVANCE
#define XER_ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
buf_ptr = ((const char *)buf_ptr) + num;\
size -= num; \
consumed_myself += num; \
} while(0)
/*
* Decode the XER (XML) data.
*/
asn_dec_rval_t
SET_OF_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **struct_ptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *element = td->elements;
const char *elm_tag;
const char *xml_tag = opt_mname ? opt_mname : td->xml_tag;
/*
* ... and parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
asn_dec_rval_t rval; /* Return value from a decoder */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) RETURN(RC_FAIL);
}
/* Which tag is expected for the downstream */
if(specs->as_XMLValueList) {
elm_tag = (specs->as_XMLValueList == 1) ? 0 : "";
} else {
elm_tag = (*element->name)
? element->name : element->type->xml_tag;
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Phases of XER/XML processing:
* Phase 0: Check that the opening tag matches our expectations.
* Phase 1: Processing body and reacting on closing tag.
* Phase 2: Processing inner type.
*/
for(; ctx->phase <= 2;) {
pxer_chunk_type_e ch_type; /* XER chunk type */
ssize_t ch_size; /* Chunk size */
xer_check_tag_e tcv; /* Tag check value */
/*
* Go inside the inner member of a set.
*/
if(ctx->phase == 2) {
asn_dec_rval_t tmprval;
/* Invoke the inner type decoder, m.b. multiple times */
ASN_DEBUG("XER/SET OF element [%s]", elm_tag);
tmprval = element->type->xer_decoder(opt_codec_ctx,
element->type, &ctx->ptr, elm_tag,
buf_ptr, size);
if(tmprval.code == RC_OK) {
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
ctx->ptr = 0;
XER_ADVANCE(tmprval.consumed);
} else {
XER_ADVANCE(tmprval.consumed);
RETURN(tmprval.code);
}
ctx->phase = 1; /* Back to body processing */
ASN_DEBUG("XER/SET OF phase => %d", ctx->phase);
/* Fall through */
}
/*
* Get the next part of the XML stream.
*/
ch_size = xer_next_token(&ctx->context,
buf_ptr, size, &ch_type);
switch(ch_size) {
case -1: RETURN(RC_FAIL);
case 0: RETURN(RC_WMORE);
default:
switch(ch_type) {
case PXER_COMMENT: /* Got XML comment */
case PXER_TEXT: /* Ignore free-standing text */
XER_ADVANCE(ch_size); /* Skip silently */
continue;
case PXER_TAG:
break; /* Check the rest down there */
}
}
tcv = xer_check_tag(buf_ptr, ch_size, xml_tag);
ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s",
tcv, ctx->phase, xml_tag);
switch(tcv) {
case XCT_CLOSING:
if(ctx->phase == 0) break;
ctx->phase = 0;
/* Fall through */
case XCT_BOTH:
if(ctx->phase == 0) {
/* No more things to decode */
XER_ADVANCE(ch_size);
ctx->phase = 3; /* Phase out */
RETURN(RC_OK);
}
/* Fall through */
case XCT_OPENING:
if(ctx->phase == 0) {
XER_ADVANCE(ch_size);
ctx->phase = 1; /* Processing body phase */
continue;
}
/* Fall through */
case XCT_UNKNOWN_OP:
case XCT_UNKNOWN_BO:
ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase);
if(ctx->phase == 1) {
/*
* Process a single possible member.
*/
ctx->phase = 2;
continue;
}
/* Fall through */
default:
break;
}
ASN_DEBUG("Unexpected XML tag in SET OF");
break;
}
ctx->phase = 3; /* "Phase out" on hard failure */
RETURN(RC_FAIL);
}
typedef struct xer_tmp_enc_s {
void *buffer;
size_t offset;
size_t size;
} xer_tmp_enc_t;
static int
SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) {
xer_tmp_enc_t *t = (xer_tmp_enc_t *)key;
if(t->offset + size >= t->size) {
size_t newsize = (t->size << 2) + size;
void *p = REALLOC(t->buffer, newsize);
if(!p) return -1;
t->buffer = p;
t->size = newsize;
}
memcpy((char *)t->buffer + t->offset, buffer, size);
t->offset += size;
return 0;
}
static int
SET_OF_xer_order(const void *aptr, const void *bptr) {
const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr;
const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr;
size_t minlen = a->offset;
int ret;
if(b->offset < minlen) minlen = b->offset;
/* Well-formed UTF-8 has this nice lexicographical property... */
ret = memcmp(a->buffer, b->buffer, minlen);
if(ret != 0) return ret;
if(a->offset == b->offset)
return 0;
if(a->offset == minlen)
return -1;
return 1;
}
asn_enc_rval_t
SET_OF_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_enc_rval_t er;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(sptr);
const char *mname = specs->as_XMLValueList
? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag);
size_t mlen = mname ? strlen(mname) : 0;
int xcan = (flags & XER_F_CANONICAL);
xer_tmp_enc_t *encs = 0;
size_t encs_count = 0;
void *original_app_key = app_key;
asn_app_consume_bytes_f *original_cb = cb;
int i;
if(!sptr) _ASN_ENCODE_FAILED;
if(xcan) {
encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0]));
if(!encs) _ASN_ENCODE_FAILED;
cb = SET_OF_encode_xer_callback;
}
er.encoded = 0;
for(i = 0; i < list->count; i++) {
asn_enc_rval_t tmper;
void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
if(encs) {
memset(&encs[encs_count], 0, sizeof(encs[0]));
app_key = &encs[encs_count];
encs_count++;
}
if(mname) {
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel);
_ASN_CALLBACK3("<", 1, mname, mlen, ">", 1);
}
if(!xcan && specs->as_XMLValueList == 1)
_i_ASN_TEXT_INDENT(1, ilevel + 1);
tmper = elm->type->xer_encoder(elm->type, memb_ptr,
ilevel + (specs->as_XMLValueList != 2),
flags, cb, app_key);
if(tmper.encoded == -1) {
td = tmper.failed_type;
sptr = tmper.structure_ptr;
goto cb_failed;
}
if(tmper.encoded == 0 && specs->as_XMLValueList) {
const char *name = elm->type->xml_tag;
size_t len = strlen(name);
_ASN_CALLBACK3("<", 1, name, len, "/>", 2);
}
if(mname) {
_ASN_CALLBACK3("</", 2, mname, mlen, ">", 1);
er.encoded += 5;
}
er.encoded += (2 * mlen) + tmper.encoded;
}
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel - 1);
if(encs) {
xer_tmp_enc_t *enc = encs;
xer_tmp_enc_t *end = encs + encs_count;
ssize_t control_size = 0;
cb = original_cb;
app_key = original_app_key;
qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order);
for(; enc < end; enc++) {
_ASN_CALLBACK(enc->buffer, enc->offset);
FREEMEM(enc->buffer);
enc->buffer = 0;
control_size += enc->offset;
}
assert(control_size == er.encoded);
}
goto cleanup;
cb_failed:
er.encoded = -1;
er.failed_type = td;
er.structure_ptr = sptr;
cleanup:
if(encs) {
while(encs_count-- > 0) {
if(encs[encs_count].buffer)
FREEMEM(encs[encs_count].buffer);
}
FREEMEM(encs);
}
_ASN_ENCODED_OK(er);
}
int
SET_OF_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int ret;
int i;
if(!sptr) return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
/* Dump preamble */
if(cb(td->name, strlen(td->name), app_key) < 0
|| cb(" ::= {", 6, app_key) < 0)
return -1;
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
_i_INDENT(1);
ret = elm->type->print_struct(elm->type, memb_ptr,
ilevel + 1, cb, app_key);
if(ret) return ret;
}
ilevel--;
_i_INDENT(1);
return (cb("}", 1, app_key) < 0) ? -1 : 0;
}
void
SET_OF_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(td && ptr) {
asn_SET_OF_specifics_t *specs;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
asn_struct_ctx_t *ctx; /* Decoder context */
int i;
/*
* Could not use set_of_empty() because of (*free)
* incompatibility.
*/
for(i = 0; i < list->count; i++) {
void *memb_ptr = list->array[i];
if(memb_ptr)
ASN_STRUCT_FREE(*elm->type, memb_ptr);
}
list->count = 0; /* No meaningful elements left */
asn_set_empty(list); /* Remove (list->array) */
specs = (asn_SET_OF_specifics_t *)td->specifics;
ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset);
if(ctx->ptr) {
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
}
if(!contents_only) {
FREEMEM(ptr);
}
}
}
int
SET_OF_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
asn_constr_check_f *constr;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int i;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
constr = elm->memb_constraints;
if(!constr) constr = elm->type->check_constraints;
/*
* Iterate over the members of an array.
* Validate each in turn, until one fails.
*/
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
int ret;
if(!memb_ptr) continue;
ret = constr(elm->type, memb_ptr, ctfailcb, app_key);
if(ret) return ret;
}
/*
* Cannot inherit it eralier:
* need to make sure we get the updated version.
*/
if(!elm->memb_constraints)
elm->memb_constraints = elm->type->check_constraints;
return 0;
}
asn_dec_rval_t
SET_OF_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
_ASN_DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) _ASN_DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->per_constraints) ct = &td->per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) _ASN_DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
nelems = per_get_few_bits(pd, ct->effective_bits);
ASN_DEBUG("Preparing to fetch %ld+%"PRIdMAX" elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) _ASN_DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = uper_get_length(pd,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, (int)(ct ? ct->effective_bits : -1));
if(nelems < 0) _ASN_DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->uper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
asn_dec_rval_t
SET_OF_decode_aper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
_ASN_DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) _ASN_DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->per_constraints) ct = &td->per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) _ASN_DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
// nelems = per_get_few_bits(pd, ct->effective_bits);
nelems = aper_get_nsnnwn(pd, ct->upper_bound - ct->lower_bound);
ASN_DEBUG("Preparing to fetch %ld+%"PRIdMAX" elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) _ASN_DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = aper_get_length(pd, ct ? ct->upper_bound - ct->lower_bound + 1 : -1,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, ct ? ct->effective_bits : -1);
if(nelems < 0) _ASN_DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->aper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
1007c1007
< (int)nelems, (int)ct ? ct->effective_bits : -1);
---
> (int)nelems, ct ? ct->effective_bits : -1);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment