Commit 0d383484 authored by Matthieu Kanj's avatar Matthieu Kanj

adding new file openair1/PHY/LTE_TRANSPORT/ulsch_decoding_NB_IoT.c

+ modifiying structure name
parent 517d4122
......@@ -1019,6 +1019,7 @@ set(PHY_SRC
${OPENAIR1_DIR}/PHY/LTE_TRANSPORT/ulsch_demodulation.c
${OPENAIR1_DIR}/PHY/LTE_TRANSPORT/ulsch_coding.c
${OPENAIR1_DIR}/PHY/LTE_TRANSPORT/ulsch_decoding.c
${OPENAIR1_DIR}/PHY/LTE_TRANSPORT/ulsch_decoding_NB_IoT.c
${OPENAIR1_DIR}/PHY/LTE_TRANSPORT/rar_tools.c
${OPENAIR1_DIR}/PHY/LTE_TRANSPORT/print_stats.c
${OPENAIR1_DIR}/PHY/LTE_TRANSPORT/initial_sync.c
......
......@@ -65,7 +65,7 @@ void add_dci_NB_IoT(DCI_PDU_NB *DCI_pdu,void *pdu,rnti_t rnti,unsigned char dci_
int generate_eNB_ulsch_params_from_dci_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
eNB_rxtx_proc_NB_IoT_t *proc,
DCI_CONTENT *DCI_Content,
uint16_t rnti,
DCI_format_NB_IoT_t dci_format,
......
......@@ -101,7 +101,7 @@ void add_dci_NB_IoT(DCI_PDU_NB *DCI_pdu,
/*Use the UL DCI Information to configure PHY and also Pack the DCI*/
int generate_eNB_ulsch_params_from_dci_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
eNB_rxtx_proc_NB_IoT_t *proc,
DCI_CONTENT *DCI_Content,
uint16_t rnti,
DCI_format_NB_IoT_t dci_format,
......@@ -131,6 +131,25 @@ uint8_t generate_dci_top_NB_IoT(NB_IoT_eNB_NPDCCH_t* npdcch,
uint32_t subframe,
uint8_t npdcch_start_symbol);
/*!
\brief Decoding of PUSCH/ACK/RI/ACK from 36-212.
@param phy_vars_eNB Pointer to eNB top-level descriptor
@param proc Pointer to RXTX proc variables
@param UE_id ID of UE transmitting this PUSCH
@param subframe Index of subframe for PUSCH
@param control_only_flag Receive PUSCH with control information only
@param Nbundled Nbundled parameter for ACK/NAK scrambling from 36-212/36-213
@param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
@returns 0 on success
*/
unsigned int ulsch_decoding_NB_IoT(PHY_VARS_eNB_NB_IoT *phy_vars_eNB,
eNB_rxtx_proc_NB_IoT_t *proc,
uint8_t UE_id,
uint8_t control_only_flag,
uint8_t Nbundled,
uint8_t llr8_flag);
#endif
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/LTE_TRANSPORT/ulsch_decoding.c
* \brief Top-level routines for decoding the ULSCH transport channel from 36.212 V8.6 2009-03
* \author R. Knopp
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
//#include "defs.h"
#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/extern.h"
#include "PHY/CODING/extern.h"
#include "extern.h"
#include "SCHED/extern.h"
#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#endif
#ifdef PHY_ABSTRACTION
#include "UTIL/OCG/OCG.h"
#include "UTIL/OCG/OCG_extern.h"
#endif
#include "UTIL/LOG/vcd_signal_dumper.h"
//#define DEBUG_ULSCH_DECODING
/*
void free_eNB_ulsch(LTE_eNB_ULSCH_t *ulsch)
{
int i,r;
if (ulsch) {
for (i=0; i<8; i++) {
if (ulsch->harq_processes[i]) {
if (ulsch->harq_processes[i]->b) {
free16(ulsch->harq_processes[i]->b,MAX_ULSCH_PAYLOAD_BYTES);
ulsch->harq_processes[i]->b = NULL;
}
for (r=0; r<MAX_NUM_ULSCH_SEGMENTS; r++) {
free16(ulsch->harq_processes[i]->c[r],((r==0)?8:0) + 768);
ulsch->harq_processes[i]->c[r] = NULL;
}
for (r=0; r<MAX_NUM_ULSCH_SEGMENTS; r++)
if (ulsch->harq_processes[i]->d[r]) {
free16(ulsch->harq_processes[i]->d[r],((3*8*6144)+12+96)*sizeof(short));
ulsch->harq_processes[i]->d[r] = NULL;
}
free16(ulsch->harq_processes[i],sizeof(LTE_UL_eNB_HARQ_t));
ulsch->harq_processes[i] = NULL;
}
}
free16(ulsch,sizeof(LTE_eNB_ULSCH_t));
ulsch = NULL;
}
}
LTE_eNB_ULSCH_t *new_eNB_ulsch(uint8_t max_turbo_iterations,uint8_t N_RB_UL, uint8_t abstraction_flag)
{
LTE_eNB_ULSCH_t *ulsch;
uint8_t exit_flag = 0,i,r;
unsigned char bw_scaling =1;
switch (N_RB_UL) {
case 6:
bw_scaling =16;
break;
case 25:
bw_scaling =4;
break;
case 50:
bw_scaling =2;
break;
default:
bw_scaling =1;
break;
}
ulsch = (LTE_eNB_ULSCH_t *)malloc16(sizeof(LTE_eNB_ULSCH_t));
if (ulsch) {
memset(ulsch,0,sizeof(LTE_eNB_ULSCH_t));
ulsch->max_turbo_iterations = max_turbo_iterations;
ulsch->Mlimit = 4;
for (i=0; i<8; i++) {
// printf("new_ue_ulsch: Harq process %d\n",i);
ulsch->harq_processes[i] = (LTE_UL_eNB_HARQ_t *)malloc16(sizeof(LTE_UL_eNB_HARQ_t));
if (ulsch->harq_processes[i]) {
memset(ulsch->harq_processes[i],0,sizeof(LTE_UL_eNB_HARQ_t));
ulsch->harq_processes[i]->b = (uint8_t*)malloc16(MAX_ULSCH_PAYLOAD_BYTES/bw_scaling);
if (ulsch->harq_processes[i]->b)
memset(ulsch->harq_processes[i]->b,0,MAX_ULSCH_PAYLOAD_BYTES/bw_scaling);
else
exit_flag=3;
if (abstraction_flag==0) {
for (r=0; r<MAX_NUM_ULSCH_SEGMENTS/bw_scaling; r++) {
ulsch->harq_processes[i]->c[r] = (uint8_t*)malloc16(((r==0)?8:0) + 3+768);
if (ulsch->harq_processes[i]->c[r])
memset(ulsch->harq_processes[i]->c[r],0,((r==0)?8:0) + 3+768);
else
exit_flag=2;
ulsch->harq_processes[i]->d[r] = (short*)malloc16(((3*8*6144)+12+96)*sizeof(short));
if (ulsch->harq_processes[i]->d[r])
memset(ulsch->harq_processes[i]->d[r],0,((3*8*6144)+12+96)*sizeof(short));
else
exit_flag=2;
}
ulsch->harq_processes[i]->subframe_scheduling_flag = 0;
}
} else {
exit_flag=1;
}
}
if (exit_flag==0)
return(ulsch);
}
LOG_E(PHY,"new_ue_ulsch: exit_flag = %d\n",exit_flag);
free_eNB_ulsch(ulsch);
return(NULL);
}
///
NB_IoT_eNB_NULSCH_t *new_eNB_ulsch_NB(uint8_t abstraction_flag)
{
NB_IoT_eNB_NULSCH_t *ulsch;
uint8_t exit_flag = 0,i,r;
unsigned char bw_scaling =1;
// switch (N_RB_UL) {
// case 6:
// bw_scaling =16;
// break;
//
// case 25:
// bw_scaling =4;
// break;
//
// case 50:
// bw_scaling =2;
// break;
//
// default:
// bw_scaling =1;
// break;
// }
ulsch = (NB_IoT_eNB_NULSCH_t *)malloc16(sizeof(NB_IoT_eNB_NULSCH_t));
if (ulsch) {
memset(ulsch,0,sizeof(LTE_eNB_ULSCH_t));
//MP: add some parameters in npusch structure for convolutional coding to be set
ulsch->Mlimit = 4;
ulsch->harq_process = (LTE_UL_eNB_HARQ_t *)malloc16(sizeof(LTE_UL_eNB_HARQ_t));
if (ulsch->harq_process) {
memset(ulsch->harq_process,0,sizeof(LTE_UL_eNB_HARQ_t));
ulsch->harq_process->b = (uint8_t*)malloc16(MAX_ULSCH_PAYLOAD_BYTES/bw_scaling);
if (ulsch->harq_process->b)
memset(ulsch->harq_process->b,0,MAX_ULSCH_PAYLOAD_BYTES/bw_scaling);
else
exit_flag=3;
if (abstraction_flag==0) {
for (r=0; r<MAX_NUM_ULSCH_SEGMENTS/bw_scaling; r++) {
ulsch->harq_process->c[r] = (uint8_t*)malloc16(((r==0)?8:0) + 3+768);
if (ulsch->harq_process->c[r])
memset(ulsch->harq_process->c[r],0,((r==0)?8:0) + 3+768);
else
exit_flag=2;
ulsch->harq_process->d[r] = (short*)malloc16(((3*8*6144)+12+96)*sizeof(short));
if (ulsch->harq_process->d[r])
memset(ulsch->harq_process->d[r],0,((3*8*6144)+12+96)*sizeof(short));
else
exit_flag=2;
}
ulsch->harq_process->subframe_scheduling_flag = 0;
}
} else {
exit_flag=1;
}
if (exit_flag==0)
return(ulsch);
}
LOG_E(PHY,"new_ue_ulsch: exit_flag = %d\n",exit_flag);
free_eNB_ulsch(ulsch);
return(NULL);
}
void clean_eNb_ulsch(LTE_eNB_ULSCH_t *ulsch)
{
unsigned char i;
//ulsch = (LTE_eNB_ULSCH_t *)malloc16(sizeof(LTE_eNB_ULSCH_t));
if (ulsch) {
ulsch->rnti = 0;
for (i=0; i<8; i++) {
if (ulsch->harq_processes[i]) {
// ulsch->harq_processes[i]->Ndi = 0;
ulsch->harq_processes[i]->status = 0;
ulsch->harq_processes[i]->subframe_scheduling_flag = 0;
//ulsch->harq_processes[i]->phich_active = 0; //this will be done later after transmission of PHICH
ulsch->harq_processes[i]->phich_ACK = 0;
ulsch->harq_processes[i]->round = 0;
}
}
}
}
*/
uint8_t extract_cqi_crc_NB_IoT(uint8_t *cqi,uint8_t CQI_LENGTH)
{
uint8_t crc;
crc = cqi[CQI_LENGTH>>3];
// printf("crc1: %x, shift %d\n",crc,CQI_LENGTH&0x7);
crc = (crc<<(CQI_LENGTH&0x7));
// clear crc bits
// ((char *)cqi)[CQI_LENGTH>>3] &= 0xff>>(8-(CQI_LENGTH&0x7));
// printf("crc2: %x, cqi0 %x\n",crc,cqi[1+(CQI_LENGTH>>3)]);
crc |= (cqi[1+(CQI_LENGTH>>3)])>>(8-(CQI_LENGTH&0x7));
// clear crc bits
//(((char *)cqi)[1+(CQI_LENGTH>>3)]) = 0;
// printf("crc : %x\n",crc);
return(crc);
}
/*
int ulsch_decoding_data_2thread0(td_params* tdp) {
PHY_VARS_eNB *eNB = tdp->eNB;
int UE_id = tdp->UE_id;
int harq_pid = tdp->harq_pid;
int llr8_flag = tdp->llr8_flag;
unsigned int r,r_offset=0,Kr,Kr_bytes,iind;
uint8_t crc_type;
int offset = 0;
int ret = 1;
int16_t dummy_w[MAX_NUM_ULSCH_SEGMENTS][3*(6144+64)];
LTE_eNB_ULSCH_t *ulsch = eNB->ulsch[UE_id];
LTE_UL_eNB_HARQ_t *ulsch_harq = ulsch->harq_processes[harq_pid];
int Q_m = get_Qm_ul(ulsch_harq->mcs);
int G = ulsch_harq->G;
uint32_t E;
uint32_t Gp,GpmodC,Nl=1;
uint32_t C = ulsch_harq->C;
uint8_t (*tc)(int16_t *y,
uint8_t *,
uint16_t,
uint16_t,
uint16_t,
uint8_t,
uint8_t,
uint8_t,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *);
if (llr8_flag == 0)
tc = phy_threegpplte_turbo_decoder16;
else
tc = phy_threegpplte_turbo_decoder8;
// go through first half of segments to get r_offset
for (r=0; r<(ulsch_harq->C/2); r++) {
// Get Turbo interleaver parameters
if (r<ulsch_harq->Cminus)
Kr = ulsch_harq->Kminus;
else
Kr = ulsch_harq->Kplus;
Kr_bytes = Kr>>3;
if (Kr_bytes<=64)
iind = (Kr_bytes-5);
else if (Kr_bytes <=128)
iind = 59 + ((Kr_bytes-64)>>1);
else if (Kr_bytes <= 256)
iind = 91 + ((Kr_bytes-128)>>2);
else if (Kr_bytes <= 768)
iind = 123 + ((Kr_bytes-256)>>3);
else {
LOG_E(PHY,"ulsch_decoding: Illegal codeword size %d!!!\n",Kr_bytes);
return(-1);
}
// This is stolen from rate-matching algorithm to get the value of E
Gp = G/Nl/Q_m;
GpmodC = Gp%C;
if (r < (C-(GpmodC)))
E = Nl*Q_m * (Gp/C);
else
E = Nl*Q_m * ((GpmodC==0?0:1) + (Gp/C));
r_offset += E;
if (r==0) {
offset = Kr_bytes - (ulsch_harq->F>>3) - ((ulsch_harq->C>1)?3:0);
} else {
offset += (Kr_bytes- ((ulsch_harq->C>1)?3:0));
}
}
// go through second half of segments
for (; r<(ulsch_harq->C); r++) {
// printf("before subblock deinterleaving c[%d] = %p\n",r,ulsch_harq->c[r]);
// Get Turbo interleaver parameters
if (r<ulsch_harq->Cminus)
Kr = ulsch_harq->Kminus;
else
Kr = ulsch_harq->Kplus;
Kr_bytes = Kr>>3;
if (Kr_bytes<=64)
iind = (Kr_bytes-5);
else if (Kr_bytes <=128)
iind = 59 + ((Kr_bytes-64)>>1);
else if (Kr_bytes <= 256)
iind = 91 + ((Kr_bytes-128)>>2);
else if (Kr_bytes <= 768)
iind = 123 + ((Kr_bytes-256)>>3);
else {
LOG_E(PHY,"ulsch_decoding: Illegal codeword size %d!!!\n",Kr_bytes);
return(-1);
}
#ifdef DEBUG_ULSCH_DECODING
printf("f1 %d, f2 %d, F %d\n",f1f2mat_old[2*iind],f1f2mat_old[1+(2*iind)],(r==0) ? ulsch_harq->F : 0);
#endif
memset(&dummy_w[r][0],0,3*(6144+64)*sizeof(short));
ulsch_harq->RTC[r] = generate_dummy_w(4+(Kr_bytes*8),
(uint8_t*)&dummy_w[r][0],
(r==0) ? ulsch_harq->F : 0);
#ifdef DEBUG_ULSCH_DECODING
printf("Rate Matching Segment %d (coded bits (G) %d,unpunctured/repeated bits %d, Q_m %d, nb_rb %d, Nl %d)...\n",
r, G,
Kr*3,
Q_m,
nb_rb,
ulsch_harq->Nl);
#endif
if (lte_rate_matching_turbo_rx(ulsch_harq->RTC[r],
G,
ulsch_harq->w[r],
(uint8_t*) &dummy_w[r][0],
ulsch_harq->e+r_offset,
ulsch_harq->C,
NSOFT,
0, //Uplink
1,
ulsch_harq->rvidx,
(ulsch_harq->round==0)?1:0, // clear
get_Qm_ul(ulsch_harq->mcs),
1,
r,
&E)==-1) {
LOG_E(PHY,"ulsch_decoding.c: Problem in rate matching\n");
return(-1);
}
r_offset += E;
sub_block_deinterleaving_turbo(4+Kr,
&ulsch_harq->d[r][96],
ulsch_harq->w[r]);
if (ulsch_harq->C == 1)
crc_type = CRC24_A;
else
crc_type = CRC24_B;
ret = tc(&ulsch_harq->d[r][96],
ulsch_harq->c[r],
Kr,
f1f2mat_old[iind*2],
f1f2mat_old[(iind*2)+1],
ulsch->max_turbo_iterations,//MAX_TURBO_ITERATIONS,
crc_type,
(r==0) ? ulsch_harq->F : 0,
&eNB->ulsch_tc_init_stats,
&eNB->ulsch_tc_alpha_stats,
&eNB->ulsch_tc_beta_stats,
&eNB->ulsch_tc_gamma_stats,
&eNB->ulsch_tc_ext_stats,
&eNB->ulsch_tc_intl1_stats,
&eNB->ulsch_tc_intl2_stats);
// Reassembly of Transport block here
if (ret != (1+ulsch->max_turbo_iterations)) {
if (r<ulsch_harq->Cminus)
Kr = ulsch_harq->Kminus;
else
Kr = ulsch_harq->Kplus;
Kr_bytes = Kr>>3;
memcpy(ulsch_harq->b+offset,
ulsch_harq->c[r],
Kr_bytes - ((ulsch_harq->C>1)?3:0));
offset += (Kr_bytes- ((ulsch_harq->C>1)?3:0));
} else {
break;
}
}
return(ret);
}
extern int oai_exit;
void *td_thread(void *param) {
pthread_setname_np( pthread_self(), "td processing");
PHY_VARS_eNB *eNB = ((td_params*)param)->eNB;
eNB_proc_t *proc = &eNB->proc;
while (!oai_exit) {
if (wait_on_condition(&proc->mutex_td,&proc->cond_td,&proc->instance_cnt_td,"td thread")<0) break;
((td_params*)param)->ret = ulsch_decoding_data_2thread0((td_params*)param);
if (release_thread(&proc->mutex_td,&proc->instance_cnt_td,"td thread")<0) break;
if (pthread_cond_signal(&proc->cond_td) != 0) {
printf("[eNB] ERROR pthread_cond_signal for td thread exit\n");
exit_fun( "ERROR pthread_cond_signal" );
return(NULL);
}
}
return(NULL);
}
int ulsch_decoding_data_2thread(PHY_VARS_eNB *eNB,int UE_id,int harq_pid,int llr8_flag) {
eNB_proc_t *proc = &eNB->proc;
unsigned int r,r_offset=0,Kr,Kr_bytes,iind;
uint8_t crc_type;
int offset = 0;
int ret = 1;
int16_t dummy_w[MAX_NUM_ULSCH_SEGMENTS][3*(6144+64)];
LTE_eNB_ULSCH_t *ulsch = eNB->ulsch[UE_id];
LTE_UL_eNB_HARQ_t *ulsch_harq = ulsch->harq_processes[harq_pid];
//int Q_m = get_Qm_ul(ulsch_harq->mcs);
int G = ulsch_harq->G;
unsigned int E;
int Cby2;
uint8_t (*tc)(int16_t *y,
uint8_t *,
uint16_t,
uint16_t,
uint16_t,
uint8_t,
uint8_t,
uint8_t,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *);
struct timespec wait;
wait.tv_sec=0;
wait.tv_nsec=5000000L;
if (llr8_flag == 0)
tc = phy_threegpplte_turbo_decoder16;
else
tc = phy_threegpplte_turbo_decoder8;
if (ulsch_harq->C>1) { // wakeup worker if more than 1 segment
if (pthread_mutex_timedlock(&proc->mutex_td,&wait) != 0) {
printf("[eNB] ERROR pthread_mutex_lock for TD thread (IC %d)\n", proc->instance_cnt_td);
exit_fun( "error locking mutex_fep" );
return -1;
}
if (proc->instance_cnt_td==0) {
printf("[eNB] TD thread busy\n");
exit_fun("TD thread busy");
pthread_mutex_unlock( &proc->mutex_td );
return -1;
}
++proc->instance_cnt_td;
proc->tdp.eNB = eNB;
proc->tdp.UE_id = UE_id;
proc->tdp.harq_pid = harq_pid;
proc->tdp.llr8_flag = llr8_flag;
// wakeup worker to do second half segments
if (pthread_cond_signal(&proc->cond_td) != 0) {
printf("[eNB] ERROR pthread_cond_signal for td thread exit\n");
exit_fun( "ERROR pthread_cond_signal" );
return (1+ulsch->max_turbo_iterations);
}
pthread_mutex_unlock( &proc->mutex_td );
Cby2 = ulsch_harq->C/2;
}
else {
Cby2 = 1;
}
// go through first half of segments in main thread
for (r=0; r<Cby2; r++) {
// printf("before subblock deinterleaving c[%d] = %p\n",r,ulsch_harq->c[r]);
// Get Turbo interleaver parameters
if (r<ulsch_harq->Cminus)
Kr = ulsch_harq->Kminus;
else
Kr = ulsch_harq->Kplus;
Kr_bytes = Kr>>3;
if (Kr_bytes<=64)
iind = (Kr_bytes-5);
else if (Kr_bytes <=128)
iind = 59 + ((Kr_bytes-64)>>1);
else if (Kr_bytes <= 256)
iind = 91 + ((Kr_bytes-128)>>2);
else if (Kr_bytes <= 768)
iind = 123 + ((Kr_bytes-256)>>3);
else {
LOG_E(PHY,"ulsch_decoding: Illegal codeword size %d!!!\n",Kr_bytes);
return(-1);
}
#ifdef DEBUG_ULSCH_DECODING
printf("f1 %d, f2 %d, F %d\n",f1f2mat_old[2*iind],f1f2mat_old[1+(2*iind)],(r==0) ? ulsch_harq->F : 0);
#endif
memset(&dummy_w[r][0],0,3*(6144+64)*sizeof(short));
ulsch_harq->RTC[r] = generate_dummy_w(4+(Kr_bytes*8),
(uint8_t*)&dummy_w[r][0],
(r==0) ? ulsch_harq->F : 0);
#ifdef DEBUG_ULSCH_DECODING
printf("Rate Matching Segment %d (coded bits (G) %d,unpunctured/repeated bits %d, Q_m %d, nb_rb %d, Nl %d)...\n",
r, G,
Kr*3,
Q_m,
nb_rb,
ulsch_harq->Nl);
#endif
start_meas(&eNB->ulsch_rate_unmatching_stats);
if (lte_rate_matching_turbo_rx(ulsch_harq->RTC[r],
G,
ulsch_harq->w[r],
(uint8_t*) &dummy_w[r][0],
ulsch_harq->e+r_offset,
ulsch_harq->C,
NSOFT,
0, //Uplink
1,
ulsch_harq->rvidx,
(ulsch_harq->round==0)?1:0, // clear
get_Qm_ul(ulsch_harq->mcs),
1,
r,
&E)==-1) {
LOG_E(PHY,"ulsch_decoding.c: Problem in rate matching\n");
return(-1);
}
stop_meas(&eNB->ulsch_rate_unmatching_stats);
r_offset += E;
start_meas(&eNB->ulsch_deinterleaving_stats);
sub_block_deinterleaving_turbo(4+Kr,
&ulsch_harq->d[r][96],
ulsch_harq->w[r]);
stop_meas(&eNB->ulsch_deinterleaving_stats);
if (ulsch_harq->C == 1)
crc_type = CRC24_A;
else
crc_type = CRC24_B;
start_meas(&eNB->ulsch_turbo_decoding_stats);
ret = tc(&ulsch_harq->d[r][96],
ulsch_harq->c[r],
Kr,
f1f2mat_old[iind*2],
f1f2mat_old[(iind*2)+1],
ulsch->max_turbo_iterations,//MAX_TURBO_ITERATIONS,
crc_type,
(r==0) ? ulsch_harq->F : 0,
&eNB->ulsch_tc_init_stats,
&eNB->ulsch_tc_alpha_stats,
&eNB->ulsch_tc_beta_stats,
&eNB->ulsch_tc_gamma_stats,
&eNB->ulsch_tc_ext_stats,
&eNB->ulsch_tc_intl1_stats,
&eNB->ulsch_tc_intl2_stats);
// Reassembly of Transport block here
if (ret != (1+ulsch->max_turbo_iterations)) {
if (r<ulsch_harq->Cminus)
Kr = ulsch_harq->Kminus;
else
Kr = ulsch_harq->Kplus;
Kr_bytes = Kr>>3;
if (r==0) {
memcpy(ulsch_harq->b,
&ulsch_harq->c[0][(ulsch_harq->F>>3)],
Kr_bytes - (ulsch_harq->F>>3) - ((ulsch_harq->C>1)?3:0));
offset = Kr_bytes - (ulsch_harq->F>>3) - ((ulsch_harq->C>1)?3:0);
} else {
memcpy(ulsch_harq->b+offset,
ulsch_harq->c[r],
Kr_bytes - ((ulsch_harq->C>1)?3:0));
offset += (Kr_bytes- ((ulsch_harq->C>1)?3:0));
}
} else {
break;
}
stop_meas(&eNB->ulsch_turbo_decoding_stats);
}
// wait for worker to finish
wait_on_busy_condition(&proc->mutex_td,&proc->cond_td,&proc->instance_cnt_td,"td thread");
return( (ret>proc->tdp.ret) ? ret : proc->tdp.ret );
}
int ulsch_decoding_data_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int UE_id,int harq_pid,int llr8_flag) {
unsigned int r,r_offset=0,Kr,Kr_bytes,iind;
uint8_t crc_type;
int offset = 0;
int ret = 1;
int16_t dummy_w[MAX_NUM_ULSCH_SEGMENTS][3*(6144+64)];
LTE_eNB_ULSCH_t *ulsch = eNB->ulsch[UE_id];
LTE_UL_eNB_HARQ_t *ulsch_harq = ulsch->harq_processes[harq_pid];
//int Q_m = get_Qm_ul(ulsch_harq->mcs);
int G = ulsch_harq->G;
unsigned int E;
uint8_t (*tc)(int16_t *y,
uint8_t *,
uint16_t,
uint16_t,
uint16_t,
uint8_t,
uint8_t,
uint8_t,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *,
time_stats_t *);
if (llr8_flag == 0)
tc = phy_threegpplte_turbo_decoder16;
else
tc = phy_threegpplte_turbo_decoder8;
for (r=0; r<ulsch_harq->C; r++) {
// printf("before subblock deinterleaving c[%d] = %p\n",r,ulsch_harq->c[r]);
// Get Turbo interleaver parameters
if (r<ulsch_harq->Cminus)
Kr = ulsch_harq->Kminus;
else
Kr = ulsch_harq->Kplus;
Kr_bytes = Kr>>3;
if (Kr_bytes<=64)
iind = (Kr_bytes-5);
else if (Kr_bytes <=128)
iind = 59 + ((Kr_bytes-64)>>1);
else if (Kr_bytes <= 256)
iind = 91 + ((Kr_bytes-128)>>2);
else if (Kr_bytes <= 768)
iind = 123 + ((Kr_bytes-256)>>3);
else {
LOG_E(PHY,"ulsch_decoding: Illegal codeword size %d!!!\n",Kr_bytes);
return(-1);
}
#ifdef DEBUG_ULSCH_DECODING
printf("f1 %d, f2 %d, F %d\n",f1f2mat_old[2*iind],f1f2mat_old[1+(2*iind)],(r==0) ? ulsch_harq->F : 0);
#endif
memset(&dummy_w[r][0],0,3*(6144+64)*sizeof(short));
ulsch_harq->RTC[r] = generate_dummy_w(4+(Kr_bytes*8),
(uint8_t*)&dummy_w[r][0],
(r==0) ? ulsch_harq->F : 0);
#ifdef DEBUG_ULSCH_DECODING
printf("Rate Matching Segment %d (coded bits (G) %d,unpunctured/repeated bits %d, Q_m %d, nb_rb %d, Nl %d)...\n",
r, G,
Kr*3,
Q_m,
nb_rb,
ulsch_harq->Nl);
#endif
start_meas(&eNB->ulsch_rate_unmatching_stats);
if (lte_rate_matching_turbo_rx(ulsch_harq->RTC[r],
G,
ulsch_harq->w[r],
(uint8_t*) &dummy_w[r][0],
ulsch_harq->e+r_offset,
ulsch_harq->C,
NSOFT,
0, //Uplink
1,
ulsch_harq->rvidx,
(ulsch_harq->round==0)?1:0, // clear
get_Qm_ul(ulsch_harq->mcs),
1,
r,
&E)==-1) {
LOG_E(PHY,"ulsch_decoding.c: Problem in rate matching\n");
return(-1);
}
stop_meas(&eNB->ulsch_rate_unmatching_stats);
r_offset += E;
start_meas(&eNB->ulsch_deinterleaving_stats);
sub_block_deinterleaving_turbo(4+Kr,
&ulsch_harq->d[r][96],
ulsch_harq->w[r]);
stop_meas(&eNB->ulsch_deinterleaving_stats);
if (ulsch_harq->C == 1)
crc_type = CRC24_A;
else
crc_type = CRC24_B;
start_meas(&eNB->ulsch_turbo_decoding_stats);
ret = tc(&ulsch_harq->d[r][96],
ulsch_harq->c[r],
Kr,
f1f2mat_old[iind*2],
f1f2mat_old[(iind*2)+1],
ulsch->max_turbo_iterations,//MAX_TURBO_ITERATIONS,
crc_type,
(r==0) ? ulsch_harq->F : 0,
&eNB->ulsch_tc_init_stats,
&eNB->ulsch_tc_alpha_stats,
&eNB->ulsch_tc_beta_stats,
&eNB->ulsch_tc_gamma_stats,
&eNB->ulsch_tc_ext_stats,
&eNB->ulsch_tc_intl1_stats,
&eNB->ulsch_tc_intl2_stats);
stop_meas(&eNB->ulsch_turbo_decoding_stats);
// Reassembly of Transport block here
if (ret != (1+ulsch->max_turbo_iterations)) {
if (r<ulsch_harq->Cminus)
Kr = ulsch_harq->Kminus;
else
Kr = ulsch_harq->Kplus;
Kr_bytes = Kr>>3;
if (r==0) {
memcpy(ulsch_harq->b,
&ulsch_harq->c[0][(ulsch_harq->F>>3)],
Kr_bytes - (ulsch_harq->F>>3) - ((ulsch_harq->C>1)?3:0));
offset = Kr_bytes - (ulsch_harq->F>>3) - ((ulsch_harq->C>1)?3:0);
} else {
memcpy(ulsch_harq->b+offset,
ulsch_harq->c[r],
Kr_bytes - ((ulsch_harq->C>1)?3:0));
offset += (Kr_bytes- ((ulsch_harq->C>1)?3:0));
}
} else {
break;
}
}
return(ret);
}
*/
static inline unsigned int lte_gold_unscram_NB_IoT(unsigned int *x1, unsigned int *x2, unsigned char reset) __attribute__((always_inline));
static inline unsigned int lte_gold_unscram_NB_IoT(unsigned int *x1, unsigned int *x2, unsigned char reset)
{
int n;
if (reset) {
*x1 = 1+ (1<<31);
*x2=*x2 ^ ((*x2 ^ (*x2>>1) ^ (*x2>>2) ^ (*x2>>3))<<31);
// skip first 50 double words (1600 bits)
// printf("n=0 : x1 %x, x2 %x\n",x1,x2);
for (n=1; n<50; n++) {
*x1 = (*x1>>1) ^ (*x1>>4);
*x1 = *x1 ^ (*x1<<31) ^ (*x1<<28);
*x2 = (*x2>>1) ^ (*x2>>2) ^ (*x2>>3) ^ (*x2>>4);
*x2 = *x2 ^ (*x2<<31) ^ (*x2<<30) ^ (*x2<<29) ^ (*x2<<28);
}
}
*x1 = (*x1>>1) ^ (*x1>>4);
*x1 = *x1 ^ (*x1<<31) ^ (*x1<<28);
*x2 = (*x2>>1) ^ (*x2>>2) ^ (*x2>>3) ^ (*x2>>4);
*x2 = *x2 ^ (*x2<<31) ^ (*x2<<30) ^ (*x2<<29) ^ (*x2<<28);
return(*x1^*x2);
// printf("n=%d : c %x\n",n,x1^x2);
}
unsigned int ulsch_decoding_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_NB_IoT_t *proc,
uint8_t UE_id,
uint8_t control_only_flag,
uint8_t Nbundled,
uint8_t llr8_flag)
{
int16_t *ulsch_llr = eNB->pusch_vars[UE_id]->llr;
NB_IoT_DL_FRAME_PARMS *frame_parms = &eNB->frame_parms;
LTE_eNB_ULSCH_t *ulsch = eNB->ulsch[UE_id];
uint8_t harq_pid;
unsigned short nb_rb;
unsigned int A;
uint8_t Q_m;
unsigned int i,i2,q,j,j2;
int iprime;
unsigned int ret=0;
// uint8_t dummy_channel_output[(3*8*block_length)+12];
int r,Kr;
uint8_t *columnset;
unsigned int sumKr=0;
unsigned int Qprime,L,G,Q_CQI,Q_RI,H,Hprime,Hpp,Cmux,Rmux_prime,O_RCC;
unsigned int Qprime_ACK,Qprime_RI,len_ACK=0,len_RI=0;
// uint8_t q_ACK[MAX_ACK_PAYLOAD],q_RI[MAX_RI_PAYLOAD];
int metric,metric_new;
uint8_t o_flip[8];
uint32_t x1, x2, s=0;
int16_t ys,c;
uint32_t wACK_idx;
uint8_t dummy_w_cc[3*(MAX_CQI_BITS+8+32)];
int16_t y[6*14*1200] __attribute__((aligned(32)));
uint8_t ytag[14*1200];
// uint8_t ytag2[6*14*1200],*ytag2_ptr;
int16_t cseq[6*14*1200];
int off;
int subframe = proc->subframe_rx;
LTE_UL_eNB_HARQ_t *ulsch_harq;
harq_pid = subframe2harq_pid(frame_parms,proc->frame_rx,subframe);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_ULSCH_DECODING0+harq_pid,1);
// x1 is set in lte_gold_generic
x2 = ((uint32_t)ulsch->rnti<<14) + ((uint32_t)subframe<<9) + frame_parms->Nid_cell; //this is c_init in 36.211 Sec 6.3.1
ulsch_harq = ulsch->harq_processes[harq_pid];
if (harq_pid==255) {
LOG_E(PHY, "FATAL ERROR: illegal harq_pid, returning\n");
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_ULSCH_DECODING0+harq_pid,0);
return -1;
}
if (ulsch_harq->Nsymb_pusch == 0) {
LOG_E(PHY, "FATAL ERROR: harq_pid %d, Nsymb 0!\n",harq_pid);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_ULSCH_DECODING0+harq_pid,0);
return 1+ulsch->max_turbo_iterations;
}
nb_rb = ulsch_harq->nb_rb;
A = ulsch_harq->TBS;
Q_m = get_Qm_ul(ulsch_harq->mcs);
G = nb_rb * (12 * Q_m) * ulsch_harq->Nsymb_pusch;
#ifdef DEBUG_ULSCH_DECODING
printf("ulsch_decoding (Nid_cell %d, rnti %x, x2 %x): round %d, RV %d, mcs %d, O_RI %d, O_ACK %d, G %d, subframe %d\n",
frame_parms->Nid_cell,ulsch->rnti,x2,
ulsch_harq->round,
ulsch_harq->rvidx,
ulsch_harq->mcs,
ulsch_harq->O_RI,
ulsch_harq->O_ACK,
G,
subframe);
#endif
if (ulsch_harq->round == 0) {
// This is a new packet, so compute quantities regarding segmentation
ulsch_harq->B = A+24;
lte_segmentation(NULL,
NULL,
ulsch_harq->B,
&ulsch_harq->C,
&ulsch_harq->Cplus,
&ulsch_harq->Cminus,
&ulsch_harq->Kplus,
&ulsch_harq->Kminus,
&ulsch_harq->F);
// CLEAR LLR's HERE for first packet in process
}
// printf("after segmentation c[%d] = %p\n",0,ulsch_harq->c[0]);
sumKr = 0;
for (r=0; r<ulsch_harq->C; r++) {
if (r<ulsch_harq->Cminus)
Kr = ulsch_harq->Kminus;
else
Kr = ulsch_harq->Kplus;
sumKr += Kr;
}
if (sumKr==0) {
LOG_N(PHY,"[eNB %d] ulsch_decoding.c: FATAL sumKr is 0!\n",eNB->Mod_id);
LOG_D(PHY,"ulsch_decoding (Nid_cell %d, rnti %x, x2 %x): harq_pid %d round %d, RV %d, mcs %d, O_RI %d, O_ACK %d, G %d, subframe %d\n",
frame_parms->Nid_cell,ulsch->rnti,x2,
harq_pid,
ulsch_harq->round,
ulsch_harq->rvidx,
ulsch_harq->mcs,
ulsch_harq->O_RI,
ulsch_harq->O_ACK,
G,
subframe);
mac_xface->macphy_exit("ulsch_decoding.c: FATAL sumKr is 0!");
return(-1);
}
// Compute Q_ri
Qprime = ulsch_harq->O_RI*ulsch_harq->Msc_initial*ulsch_harq->Nsymb_initial * ulsch->beta_offset_ri_times8;
if (Qprime > 0 ) {
if ((Qprime % (8*sumKr)) > 0)
Qprime = 1+(Qprime/(8*sumKr));
else
Qprime = Qprime/(8*sumKr);
if (Qprime > 4*nb_rb * 12)
Qprime = 4*nb_rb * 12;
}
Q_RI = Q_m*Qprime;
Qprime_RI = Qprime;
// Compute Q_ack
Qprime = ulsch_harq->O_ACK*ulsch_harq->Msc_initial*ulsch_harq->Nsymb_initial * ulsch->beta_offset_harqack_times8;
if (Qprime > 0) {
if ((Qprime % (8*sumKr)) > 0)
Qprime = 1+(Qprime/(8*sumKr));
else
Qprime = Qprime/(8*sumKr);
if (Qprime > (4*nb_rb * 12))
Qprime = 4*nb_rb * 12;
}
// Q_ACK = Qprime * Q_m;
Qprime_ACK = Qprime;
#ifdef DEBUG_ULSCH_DECODING
printf("ulsch_decoding.c: Qprime_ACK %d, Msc_initial %d, Nsymb_initial %d, sumKr %d\n",
Qprime_ACK,ulsch_harq->Msc_initial,ulsch_harq->Nsymb_initial,sumKr);
#endif
// Compute Q_cqi
if (ulsch_harq->Or1 < 12)
L=0;
else
L=8;
// NOTE: we have to handle the case where we have a very small number of bits (condition on pg. 26 36.212)
if (ulsch_harq->Or1 > 0)
Qprime = (ulsch_harq->Or1 + L) * ulsch_harq->Msc_initial*ulsch_harq->Nsymb_initial * ulsch->beta_offset_cqi_times8;
else
Qprime=0;
if (Qprime > 0) { // check if ceiling is larger than floor in Q' expression
if ((Qprime % (8*sumKr)) > 0)
Qprime = 1+(Qprime/(8*sumKr));
else
Qprime = Qprime/(8*sumKr);
}
G = nb_rb * (12 * Q_m) * (ulsch_harq->Nsymb_pusch);
Q_CQI = Q_m * Qprime;
#ifdef DEBUG_ULSCH_DECODING
printf("ulsch_decoding: G %d, Q_RI %d, Q_CQI %d (L %d, Or1 %d) O_ACK %d\n",G,Q_RI,Q_CQI,L,ulsch_harq->Or1,ulsch_harq->O_ACK);
#endif
G = G - Q_RI - Q_CQI;
ulsch_harq->G = G;
if ((int)G < 0) {
LOG_E(PHY,"FATAL: ulsch_decoding.c G < 0 (%d) : Q_RI %d, Q_CQI %d\n",G,Q_RI,Q_CQI);
return(-1);
}
H = G + Q_CQI;
Hprime = H/Q_m;
// Demultiplexing/Deinterleaving of PUSCH/ACK/RI/CQI
start_meas(&eNB->ulsch_demultiplexing_stats);
Hpp = Hprime + Qprime_RI;
Cmux = ulsch_harq->Nsymb_pusch;
Rmux_prime = Hpp/Cmux;
// Clear "tag" interleaving matrix to allow for CQI/DATA identification
memset(ytag,0,Cmux*Rmux_prime);
i=0;
memset(y,LTE_NULL,Q_m*Hpp);
// read in buffer and unscramble llrs for everything but placeholder bits
// llrs stored per symbol correspond to columns of interleaving matrix
s = lte_gold_unscram_NB_IoT(&x1, &x2, 1);
i2=0;
for (i=0; i<((Hpp*Q_m)>>5); i++) {
/*
for (j=0; j<32; j++) {
cseq[i2++] = (int16_t)((((s>>j)&1)<<1)-1);
}
*/
#if defined(__x86_64__) || defined(__i386__)
#ifndef __AVX2__
((__m128i*)cseq)[i2++] = ((__m128i*)unscrambling_lut)[(s&65535)<<1];
((__m128i*)cseq)[i2++] = ((__m128i*)unscrambling_lut)[1+((s&65535)<<1)];
s>>=16;
((__m128i*)cseq)[i2++] = ((__m128i*)unscrambling_lut)[(s&65535)<<1];
((__m128i*)cseq)[i2++] = ((__m128i*)unscrambling_lut)[1+((s&65535)<<1)];
#else
((__m256i*)cseq)[i2++] = ((__m256i*)unscrambling_lut)[s&65535];
((__m256i*)cseq)[i2++] = ((__m256i*)unscrambling_lut)[(s>>16)&65535];
#endif
#elif defined(__arm__)
((int16x8_t*)cseq)[i2++] = ((int16x8_t*)unscrambling_lut)[(s&65535)<<1];
((int16x8_t*)cseq)[i2++] = ((int16x8_t*)unscrambling_lut)[1+((s&65535)<<1)];
s>>=16;
((int16x8_t*)cseq)[i2++] = ((int16x8_t*)unscrambling_lut)[(s&65535)<<1];
((int16x8_t*)cseq)[i2++] = ((int16x8_t*)unscrambling_lut)[1+((s&65535)<<1)];
#endif
s = lte_gold_unscram_NB_IoT(&x1, &x2, 0);
}
// printf("after unscrambling c[%d] = %p\n",0,ulsch_harq->c[0]);
if (frame_parms->Ncp == 0)
columnset = cs_ri_normal;
else
columnset = cs_ri_extended;
j=0;
for (i=0; i<Qprime_RI; i++) {
r = Rmux_prime - 1 - (i>>2);
/*
for (q=0;q<Q_m;q++)
ytag2[q+(Q_m*((r*Cmux) + columnset[j]))] = q_RI[(q+(Q_m*i))%len_RI];
*/
off =((Rmux_prime*Q_m*columnset[j])+(r*Q_m));
cseq[off+1] = cseq[off]; // PUSCH_y
for (q=2; q<Q_m; q++)
cseq[off+q] = -1; // PUSCH_x
j=(j+3)&3;
}
// printf("after RI c[%d] = %p\n",0,ulsch_harq->c[0]);
// HARQ-ACK Bits (Note these overwrite some bits)
if (frame_parms->Ncp == 0)
columnset = cs_ack_normal;
else
columnset = cs_ack_extended;
j=0;
for (i=0; i<Qprime_ACK; i++) {
r = Rmux_prime - 1 - (i>>2);
off =((Rmux_prime*Q_m*columnset[j])+(r*Q_m));
if (ulsch_harq->O_ACK == 1) {
if (ulsch->bundling==0)
cseq[off+1] = cseq[off]; // PUSCH_y
for (q=2; q<Q_m; q++)
cseq[off+q] = -1; // PUSCH_x
} else if (ulsch_harq->O_ACK == 2) {
for (q=2; q<Q_m; q++)
cseq[off+q] = -1; // PUSCH_x
}
#ifdef DEBUG_ULSCH_DECODING
printf("ulsch_decoding.c: ACK i %d, r %d, j %d, ColumnSet[j] %d\n",i,r,j,columnset[j]);
#endif
j=(j+3)&3;
}
i=0;
switch (Q_m) {
case 2:
for (j=0; j<Cmux; j++) {
i2=j<<1;
for (r=0; r<Rmux_prime; r++) {
c = cseq[i];
// printf("ulsch %d: %d * ",i,c);
y[i2++] = c*ulsch_llr[i++];
// printf("%d\n",ulsch_llr[i-1]);
c = cseq[i];
// printf("ulsch %d: %d * ",i,c);
y[i2] = c*ulsch_llr[i++];
// printf("%d\n",ulsch_llr[i-1]);
i2=(i2+(Cmux<<1)-1);
}
}
break;
case 4:
for (j=0; j<Cmux; j++) {
i2=j<<2;
for (r=0; r<Rmux_prime; r++) {
/*
c = cseq[i];
y[i2++] = c*ulsch_llr[i++];
c = cseq[i];
y[i2++] = c*ulsch_llr[i++];
c = cseq[i];
y[i2++] = c*ulsch_llr[i++];
c = cseq[i];
y[i2] = c*ulsch_llr[i++];
i2=(i2+(Cmux<<2)-3);
*/
// slightly more optimized version (equivalent to above) for 16QAM to improve computational performance
*(__m64 *)&y[i2] = _mm_sign_pi16(*(__m64*)&ulsch_llr[i],*(__m64*)&cseq[i]);i+=4;i2+=(Cmux<<2);
}
}
break;
case 6:
for (j=0; j<Cmux; j++) {
i2=j*6;
for (r=0; r<Rmux_prime; r++) {
c = cseq[i];
y[i2++] = c*ulsch_llr[i++];
c = cseq[i];
y[i2++] = c*ulsch_llr[i++];
c = cseq[i];
y[i2++] = c*ulsch_llr[i++];
c = cseq[i];
y[i2++] = c*ulsch_llr[i++];
c = cseq[i];
y[i2++] = c*ulsch_llr[i++];
c = cseq[i];
y[i2] = c*ulsch_llr[i++];
i2=(i2+(Cmux*6)-5);
}
}
break;
}
if (i!=(H+Q_RI))
LOG_D(PHY,"ulsch_decoding.c: Error in input buffer length (j %d, H+Q_RI %d)\n",i,H+Q_RI);
// HARQ-ACK Bits (LLRs are nulled in overwritten bits after copying HARQ-ACK LLR)
if (frame_parms->Ncp == 0)
columnset = cs_ack_normal;
else
columnset = cs_ack_extended;
j=0;
if (ulsch_harq->O_ACK == 1) {
switch (Q_m) {
case 2:
len_ACK = 2;
break;
case 4:
len_ACK = 4;
break;
case 6:
len_ACK = 6;
break;
}
}
if (ulsch_harq->O_ACK == 2) {
switch (Q_m) {
case 2:
len_ACK = 6;
break;
case 4:
len_ACK = 12;
break;
case 6:
len_ACK = 18;
break;
}
}
if (ulsch_harq->O_ACK > 2) {
LOG_E(PHY,"ulsch_decoding: FATAL, ACK cannot be more than 2 bits yet\n");
return(-1);
}
for (i=0; i<len_ACK; i++)
ulsch_harq->q_ACK[i] = 0;
for (i=0; i<Qprime_ACK; i++) {
r = Rmux_prime -1 - (i>>2);
for (q=0; q<Q_m; q++) {
if (y[q+(Q_m*((r*Cmux) + columnset[j]))]!=0)
ulsch_harq->q_ACK[(q+(Q_m*i))%len_ACK] += y[q+(Q_m*((r*Cmux) + columnset[j]))];
y[q+(Q_m*((r*Cmux) + columnset[j]))]=0; // NULL LLRs in ACK positions
}
j=(j+3)&3;
}
// printf("after ACKNAK c[%d] = %p\n",0,ulsch_harq->c[0]);
// RI BITS
if (ulsch_harq->O_RI == 1) {
switch (Q_m) {
case 2:
len_RI=2;
break;
case 4:
len_RI=4;
break;
case 6:
len_RI=6;
break;
}
}
if (ulsch_harq->O_RI > 1) {
LOG_E(PHY,"ulsch_decoding: FATAL, RI cannot be more than 1 bit yet\n");
return(-1);
}
for (i=0; i<len_RI; i++)
ulsch_harq->q_RI[i] = 0;
if (frame_parms->Ncp == 0)
columnset = cs_ri_normal;
else
columnset = cs_ri_extended;
j=0;
for (i=0; i<Qprime_RI; i++) {
r = Rmux_prime -1 - (i>>2);
for (q=0; q<Q_m; q++)
ulsch_harq->q_RI[(q+(Q_m*i))%len_RI] += y[q+(Q_m*((r*Cmux) + columnset[j]))];
ytag[(r*Cmux) + columnset[j]] = LTE_NULL;
j=(j+3)&3;
}
// printf("after RI2 c[%d] = %p\n",0,ulsch_harq->c[0]);
// CQI and Data bits
j=0;
j2=0;
// r=0;
if (Q_RI>0) {
for (i=0; i<(Q_CQI/Q_m); i++) {
while (ytag[j]==LTE_NULL) {
j++;
j2+=Q_m;
}
for (q=0; q<Q_m; q++) {
// ys = y[q+(Q_m*((r*Cmux)+j))];
ys = y[q+j2];
if (ys>127)
ulsch_harq->q[q+(Q_m*i)] = 127;
else if (ys<-128)
ulsch_harq->q[q+(Q_m*i)] = -128;
else
ulsch_harq->q[q+(Q_m*i)] = ys;
}
j2+=Q_m;
}
switch (Q_m) {
case 2:
for (iprime=0; iprime<G;) {
while (ytag[j]==LTE_NULL) {
j++;
j2+=2;
}
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
}
break;
case 4:
for (iprime=0; iprime<G;) {
while (ytag[j]==LTE_NULL) {
j++;
j2+=4;
}
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
}
break;
case 6:
for (iprime=0; iprime<G;) {
while (ytag[j]==LTE_NULL) {
j++;
j2+=6;
}
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
ulsch_harq->e[iprime++] = y[j2++];
}
break;
}
} // Q_RI>0
else {
for (i=0; i<(Q_CQI/Q_m); i++) {
for (q=0; q<Q_m; q++) {
ys = y[q+j2];
if (ys>127)
ulsch_harq->q[q+(Q_m*i)] = 127;
else if (ys<-128)
ulsch_harq->q[q+(Q_m*i)] = -128;
else
ulsch_harq->q[q+(Q_m*i)] = ys;
}
j2+=Q_m;
}
/* To be improved according to alignment of j2
#if defined(__x86_64__)||defined(__i386__)
#ifndef __AVX2__
for (iprime=0; iprime<G;iprime+=8,j2+=8)
*((__m128i *)&ulsch_harq->e[iprime]) = *((__m128i *)&y[j2]);
#else
for (iprime=0; iprime<G;iprime+=16,j2+=16)
*((__m256i *)&ulsch_harq->e[iprime]) = *((__m256i *)&y[j2]);
#endif
#elif defined(__arm__)
for (iprime=0; iprime<G;iprime+=8,j2+=8)
*((int16x8_t *)&ulsch_harq->e[iprime]) = *((int16x8_t *)&y[j2]);
#endif
*/
int16_t *yp,*ep;
for (iprime=0,yp=&y[j2],ep=&ulsch_harq->e[0];
iprime<G;
iprime+=8,j2+=8,ep+=8,yp+=8) {
ep[0] = yp[0];
ep[1] = yp[1];
ep[2] = yp[2];
ep[3] = yp[3];
ep[4] = yp[4];
ep[5] = yp[5];
ep[6] = yp[6];
ep[7] = yp[7];
}
}
stop_meas(&eNB->ulsch_demultiplexing_stats);
// printf("after ACKNAK2 c[%d] = %p (iprime %d, G %d)\n",0,ulsch_harq->c[0],iprime,G);
// Do CQI/RI/HARQ-ACK Decoding first and pass to MAC
// HARQ-ACK
wACK_idx = (ulsch->bundling==0) ? 4 : ((Nbundled-1)&3);
if (ulsch_harq->O_ACK == 1) {
ulsch_harq->q_ACK[0] *= wACK_RX[wACK_idx][0];
ulsch_harq->q_ACK[0] += (ulsch->bundling==0) ? ulsch_harq->q_ACK[1]*wACK_RX[wACK_idx][0] : ulsch_harq->q_ACK[1]*wACK_RX[wACK_idx][1];
if (ulsch_harq->q_ACK[0] < 0)
ulsch_harq->o_ACK[0] = 0;
else
ulsch_harq->o_ACK[0] = 1;
}
if (ulsch_harq->O_ACK == 2) {
switch (Q_m) {
case 2:
ulsch_harq->q_ACK[0] = ulsch_harq->q_ACK[0]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[3]*wACK_RX[wACK_idx][1];
ulsch_harq->q_ACK[1] = ulsch_harq->q_ACK[1]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[4]*wACK_RX[wACK_idx][1];
ulsch_harq->q_ACK[2] = ulsch_harq->q_ACK[2]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[5]*wACK_RX[wACK_idx][1];
break;
case 4:
ulsch_harq->q_ACK[0] = ulsch_harq->q_ACK[0]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[5]*wACK_RX[wACK_idx][1];
ulsch_harq->q_ACK[1] = ulsch_harq->q_ACK[1]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[8]*wACK_RX[wACK_idx][1];
ulsch_harq->q_ACK[2] = ulsch_harq->q_ACK[4]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[9]*wACK_RX[wACK_idx][1];
break;
case 6:
ulsch_harq->q_ACK[0] = ulsch_harq->q_ACK[0]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[7]*wACK_RX[wACK_idx][1];
ulsch_harq->q_ACK[1] = ulsch_harq->q_ACK[1]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[12]*wACK_RX[wACK_idx][1];
ulsch_harq->q_ACK[2] = ulsch_harq->q_ACK[6]*wACK_RX[wACK_idx][0] + ulsch_harq->q_ACK[13]*wACK_RX[wACK_idx][1];
break;
}
ulsch_harq->o_ACK[0] = 1;
ulsch_harq->o_ACK[1] = 1;
metric = ulsch_harq->q_ACK[0]+ulsch_harq->q_ACK[1]-ulsch_harq->q_ACK[2];
metric_new = -ulsch_harq->q_ACK[0]+ulsch_harq->q_ACK[1]+ulsch_harq->q_ACK[2];
if (metric_new > metric) {
ulsch_harq->o_ACK[0]=0;
ulsch_harq->o_ACK[1]=1;
metric = metric_new;
}
metric_new = ulsch_harq->q_ACK[0]-ulsch_harq->q_ACK[1]+ulsch_harq->q_ACK[2];
if (metric_new > metric) {
ulsch_harq->o_ACK[0] = 1;
ulsch_harq->o_ACK[1] = 0;
metric = metric_new;
}
metric_new = -ulsch_harq->q_ACK[0]-ulsch_harq->q_ACK[1]-ulsch_harq->q_ACK[2];
if (metric_new > metric) {
ulsch_harq->o_ACK[0] = 0;
ulsch_harq->o_ACK[1] = 0;
metric = metric_new;
}
}
// RI
// rank 1
if ((ulsch_harq->O_RI == 1) && (Qprime_RI > 0)) {
ulsch_harq->o_RI[0] = ((ulsch_harq->q_RI[0] + ulsch_harq->q_RI[Q_m/2]) > 0) ? 0 : 1;
}
// CQI
// printf("before cqi c[%d] = %p\n",0,ulsch_harq->c[0]);
ulsch_harq->cqi_crc_status = 0;
if (Q_CQI>0) {
memset((void *)&dummy_w_cc[0],0,3*(ulsch_harq->Or1+8+32));
O_RCC = generate_dummy_w_cc(ulsch_harq->Or1+8,
&dummy_w_cc[0]);
lte_rate_matching_cc_rx(O_RCC,
Q_CQI,
ulsch_harq->o_w,
dummy_w_cc,
ulsch_harq->q);
sub_block_deinterleaving_cc((unsigned int)(ulsch_harq->Or1+8),
&ulsch_harq->o_d[96],
&ulsch_harq->o_w[0]);
memset(o_flip,0,1+((8+ulsch_harq->Or1)/8));
phy_viterbi_lte_sse2(ulsch_harq->o_d+96,o_flip,8+ulsch_harq->Or1);
if (extract_cqi_crc_NB_IoT(o_flip,ulsch_harq->Or1) == (crc8(o_flip,ulsch_harq->Or1)>>24))
ulsch_harq->cqi_crc_status = 1;
if (ulsch->harq_processes[harq_pid]->Or1<=32) {
ulsch_harq->o[3] = o_flip[0] ;
ulsch_harq->o[2] = o_flip[1] ;
ulsch_harq->o[1] = o_flip[2] ;
ulsch_harq->o[0] = o_flip[3] ;
} else {
ulsch_harq->o[7] = o_flip[0] ;
ulsch_harq->o[6] = o_flip[1] ;
ulsch_harq->o[5] = o_flip[2] ;
ulsch_harq->o[4] = o_flip[3] ;
ulsch_harq->o[3] = o_flip[4] ;
ulsch_harq->o[2] = o_flip[5] ;
ulsch_harq->o[1] = o_flip[6] ;
ulsch_harq->o[0] = o_flip[7] ;
}
#ifdef DEBUG_ULSCH_DECODING
printf("ulsch_decoding: Or1=%d\n",ulsch_harq->Or1);
for (i=0; i<1+((8+ulsch_harq->Or1)/8); i++)
printf("ulsch_decoding: O[%d] %d\n",i,ulsch_harq->o[i]);
if (ulsch_harq->cqi_crc_status == 1)
printf("RX CQI CRC OK (%x)\n",extract_cqi_crc_NB_IoT(o_flip,ulsch_harq->Or1));
else
printf("RX CQI CRC NOT OK (%x)\n",extract_cqi_crc_NB_IoT(o_flip,ulsch_harq->Or1));
#endif
}
// Do ULSCH Decoding for data portion
ret = eNB->td(eNB,UE_id,harq_pid,llr8_flag);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_ULSCH_DECODING0+harq_pid,0);
return(ret);
}
/*
#ifdef PHY_ABSTRACTION
#ifdef PHY_ABSTRACTION_UL
int ulsch_abstraction(double* sinr_dB, uint8_t TM, uint8_t mcs,uint16_t nrb, uint16_t frb)
{
int index,ii;
double sinr_eff = 0;
int rb_count = 0;
int offset;
double bler = 0;
TM = TM-1;
sinr_eff = sinr_dB[frb]; //the single sinr_eff value we calculated with MMSE FDE formula in init_snr_up function
sinr_eff *= 10;
sinr_eff = floor(sinr_eff);
sinr_eff /= 10;
LOG_D(PHY,"[ABSTRACTION] sinr_eff after rounding = %f\n",sinr_eff);
for (index = 0; index < 16; index++) {
if(index == 0) {
if (sinr_eff < sinr_bler_map_up[mcs][0][index]) {
bler = 1;
break;
}
}
if (sinr_eff == sinr_bler_map_up[mcs][0][index]) {
bler = sinr_bler_map_up[mcs][1][index];
}
}
#ifdef USER_MODE // need to be adapted for the emulation in the kernel space
if (uniformrandom() < bler) {
LOG_I(OCM,"abstraction_decoding failed (mcs=%d, sinr_eff=%f, bler=%f)\n",mcs,sinr_eff,bler);
return(0);
} else {
LOG_I(OCM,"abstraction_decoding successful (mcs=%d, sinr_eff=%f, bler=%f)\n",mcs,sinr_eff,bler);
return(1);
}
#endif
}
int ulsch_abstraction_MIESM(double* sinr_dB,uint8_t TM, uint8_t mcs,uint16_t nrb, uint16_t frb)
{
int index;
double sinr_eff = 0;
double sinr_db1 = 0;
double sinr_db2 = 0;
double SI=0;
double RBIR=0;
int rb_count = 0;
int offset, M=0;
double bler = 0;
int start,middle,end;
TM = TM-1;
for (offset = frb; offset <= (frb + nrb -1); offset++) {
rb_count++;
//we need to do the table lookups here for the mutual information corresponding to the certain sinr_dB.
sinr_db1 = sinr_dB[offset*2];
sinr_db2 = sinr_dB[offset*2+1];
printf("sinr_db1=%f\n,sinr_db2=%f\n",sinr_db1,sinr_db2);
//rounding up for the table lookup
sinr_db1 *= 10;
sinr_db2 *= 10;
sinr_db1 = floor(sinr_db1);
sinr_db2 = floor(sinr_db2);
if ((int)sinr_db1%2) {
sinr_db1 += 1;
}
if ((int)sinr_db2%2) {
sinr_db2 += 1;
}
sinr_db1 /= 10;
sinr_db2 /= 10;
if(mcs<10) {
//for sinr_db1
for (index = 0; index < 162; index++) {
if (sinr_db1 < MI_map_4qam[0][0]) {
SI += (MI_map_4qam[1][0]/beta1_dlsch_MI[TM][mcs]);
M +=2;
break;
}
if (sinr_db1 > MI_map_4qam[0][161]) {
SI += (MI_map_4qam[1][161]/beta1_dlsch_MI[TM][mcs]);
M +=2;
break;
}
if (sinr_db1 == MI_map_4qam[0][index]) {
SI += (MI_map_4qam[1][index]/beta1_dlsch_MI[TM][mcs]);
M +=2;
break;
}
}
//for sinr_db2
for (index = 0; index < 162; index++) {
if (sinr_db2 < MI_map_4qam[0][0]) {
SI += (MI_map_4qam[1][0]/beta1_dlsch_MI[TM][mcs]);
M +=2;
break;
}
if (sinr_db2 > MI_map_4qam[0][161]) {
SI += (MI_map_4qam[1][161]/beta1_dlsch_MI[TM][mcs]);
M +=2;
break;
}
if (sinr_db2 == MI_map_4qam[0][index]) {
SI += (MI_map_4qam[1][index]/beta1_dlsch_MI[TM][mcs]);
M +=2;
break;
}
}
} else if(mcs>9 && mcs<17) {
//for sinr_db1
for (index = 0; index < 197; index++) {
if (sinr_db1 < MI_map_16qam[0][0]) {
SI += (MI_map_16qam[1][0]/beta1_dlsch_MI[TM][mcs]);
M +=4;
break;
}
if (sinr_db1 > MI_map_16qam[0][196]) {
SI += (MI_map_16qam[1][196]/beta1_dlsch_MI[TM][mcs]);
M +=4;
break;
}
if (sinr_db1 == MI_map_16qam[0][index]) {
SI += (MI_map_16qam[1][index]/beta1_dlsch_MI[TM][mcs]);
M +=4;
break;
}
}
//for sinr_db2
for (index = 0; index < 197; index++) {
if (sinr_db2 < MI_map_16qam[0][0]) {
SI += (MI_map_16qam[1][0]/beta1_dlsch_MI[TM][mcs]);
M +=4;
break;
}
if (sinr_db2 > MI_map_16qam[0][196]) {
SI += (MI_map_16qam[1][196]/beta1_dlsch_MI[TM][mcs]);
M +=4;
break;
}
if (sinr_db2 == MI_map_16qam[0][index]) {
SI += (MI_map_16qam[1][index]/beta1_dlsch_MI[TM][mcs]);
M +=4;
break;
}
}
} else if(mcs>16 && mcs<22) {
//for sinr_db1
for (index = 0; index < 227; index++) {
if (sinr_db1 < MI_map_64qam[0][0]) {
SI += (MI_map_64qam[1][0]/beta1_dlsch_MI[TM][mcs]);
M +=6;
break;
}
if (sinr_db1 > MI_map_64qam[0][226]) {
SI += (MI_map_64qam[1][226]/beta1_dlsch_MI[TM][mcs]);
M +=6;
break;
}
if (sinr_db1 == MI_map_64qam[0][index]) {
SI += (MI_map_64qam[1][index]/beta1_dlsch_MI[TM][mcs]);
M +=6;
break;
}
}
//for sinr_db2
for (index = 0; index < 227; index++) {
if (sinr_db2 < MI_map_64qam[0][0]) {
SI += (MI_map_64qam[1][0]/beta1_dlsch_MI[TM][mcs]);
M +=6;
break;
}
if (sinr_db2 > MI_map_64qam[0][226]) {
SI += (MI_map_64qam[1][226]/beta1_dlsch_MI[TM][mcs]);
M +=6;
break;
}
if (sinr_db2 == MI_map_64qam[0][index]) {
SI += (MI_map_64qam[1][index]/beta1_dlsch_MI[TM][mcs]);
M +=6;
break;
}
}
}
}
// }
RBIR = SI/M;
//Now RBIR->SINR_effective Mapping
//binary search method is performed here
if(mcs<10) {
start = 0;
end = 161;
middle = end/2;
if (RBIR <= MI_map_4qam[2][start]) {
sinr_eff = MI_map_4qam[0][start];
} else {
if (RBIR >= MI_map_4qam[2][end])
sinr_eff = MI_map_4qam[0][end];
else {
//while((end-start > 1) && (RBIR >= MI_map_4qam[2]))
if (RBIR < MI_map_4qam[2][middle]) {
end = middle;
middle = end/2;
} else {
start = middle;
middle = (end-middle)/2;
}
}
for (; end>start; end--) {
if ((RBIR < MI_map_4qam[2][end]) && (RBIR > MI_map_4qam[2][end-2])) {
sinr_eff = MI_map_4qam[0][end-1];
break;
}
}
}
sinr_eff = sinr_eff * beta2_dlsch_MI[TM][mcs];
}
else if (mcs>9 && mcs<17) {
start = 0;
end = 196;
middle = end/2;
if (RBIR <= MI_map_16qam[2][start]) {
sinr_eff = MI_map_16qam[0][start];
} else {
if (RBIR >= MI_map_16qam[2][end])
sinr_eff = MI_map_16qam[0][end];
else {
//while((end-start > 1) && (RBIR >= MI_map_4qam[2]))
if (RBIR < MI_map_16qam[2][middle]) {
end = middle;
middle = end/2;
} else {
start = middle;
middle = (end-middle)/2;
}
}
for (; end>start; end--) {
if ((RBIR < MI_map_16qam[2][end]) && (RBIR > MI_map_16qam[2][end-2])) {
sinr_eff = MI_map_16qam[0][end-1];
break;
}
}
}
sinr_eff = sinr_eff * beta2_dlsch_MI[TM][mcs];
} else if (mcs>16) {
start = 0;
end = 226;
middle = end/2;
if (RBIR <= MI_map_64qam[2][start]) {
sinr_eff = MI_map_64qam[0][start];
} else {
if (RBIR >= MI_map_64qam[2][end])
sinr_eff = MI_map_64qam[0][end];
else {
//while((end-start > 1) && (RBIR >= MI_map_4qam[2]))
if (RBIR < MI_map_64qam[2][middle]) {
end = middle;
middle = end/2;
} else {
start = middle;
middle = (end-middle)/2;
}
}
for (; end>start; end--) {
if ((RBIR < MI_map_64qam[2][end]) && (RBIR > MI_map_64qam[2][end-2])) {
sinr_eff = MI_map_64qam[0][end-1];
break;
}
}
}
sinr_eff = sinr_eff * beta2_dlsch_MI[TM][mcs];
}
printf("SINR_Eff = %e\n",sinr_eff);
sinr_eff *= 10;
sinr_eff = floor(sinr_eff);
// if ((int)sinr_eff%2) {
// sinr_eff += 1;
// }
sinr_eff /= 10;
printf("sinr_eff after rounding = %f\n",sinr_eff);
for (index = 0; index < 16; index++) {
if(index == 0) {
if (sinr_eff < sinr_bler_map_up[mcs][0][index]) {
bler = 1;
break;
}
}
if (sinr_eff == sinr_bler_map_up[mcs][0][index]) {
bler = sinr_bler_map_up[mcs][1][index];
}
}
#ifdef USER_MODE // need to be adapted for the emulation in the kernel space
if (uniformrandom() < bler) {
printf("abstraction_decoding failed (mcs=%d, sinr_eff=%f, bler=%f)\n",mcs,sinr_eff,bler);
return(0);
} else {
printf("abstraction_decoding successful (mcs=%d, sinr_eff=%f, bler=%f)\n",mcs,sinr_eff,bler);
return(1);
}
#endif
}
#endif
uint32_t ulsch_decoding_emul(PHY_VARS_eNB *eNB, eNB_rxtx_proc_t *proc,
uint8_t UE_index,
uint16_t *crnti)
{
uint8_t UE_id;
uint16_t rnti;
int subframe = proc->subframe_rx;
uint8_t harq_pid;
uint8_t CC_id = eNB->CC_id;
harq_pid = subframe2harq_pid(&eNB->frame_parms,proc->frame_rx,subframe);
rnti = eNB->ulsch[UE_index]->rnti;
#ifdef DEBUG_PHY
LOG_D(PHY,"[eNB %d] ulsch_decoding_emul : subframe %d UE_index %d harq_pid %d rnti %x\n",eNB->Mod_id,subframe,UE_index,harq_pid,rnti);
#endif
for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {
if (rnti == PHY_vars_UE_g[UE_id][CC_id]->pdcch_vars[subframe & 0x1][0]->crnti)
break;
}
if (UE_id==NB_UE_INST) {
LOG_W(PHY,"[eNB %d] ulsch_decoding_emul: FATAL, didn't find UE with rnti %x (UE index %d)\n",
eNB->Mod_id, rnti, UE_index);
return(1+eNB->ulsch[UE_id]->max_turbo_iterations);
} else {
LOG_D(PHY,"[eNB %d] Found UE with rnti %x => UE_id %d\n",eNB->Mod_id, rnti, UE_id);
}
if (PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->harq_processes[harq_pid]->status == CBA_ACTIVE) {
*crnti = rnti;
PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->harq_processes[harq_pid]->status=IDLE;
} else
*crnti = 0x0;
// Do abstraction here to determine if packet it in error
/// if (ulsch_abstraction_MIESM(eNB->sinr_dB_eNB,1, eNB->ulsch[UE_id]->harq_processes[harq_pid]->mcs,eNB->ulsch[UE_id]->harq_processes[harq_pid]->nb_rb, eNB->ulsch[UE_id]->harq_processes[harq_pid]->first_rb) == 1)
flag = 1;
else flag = 0;///
//SINRdbPost = eNB->sinr_dB_eNB;
mcsPost = eNB->ulsch[UE_id]->harq_processes[harq_pid]->mcs,
nrbPost = eNB->ulsch[UE_id]->harq_processes[harq_pid]->nb_rb;
frbPost = eNB->ulsch[UE_id]->harq_processes[harq_pid]->first_rb;
if(nrbPost > 0)
{
SINRdbPost = eNB->sinr_dB_eNB;
ULflag1 = 1;
}
else
{
SINRdbPost = NULL ;
ULflag1 = 0 ;
}//
//
// write_output("postprocSINR.m","SINReNB",eNB->sinr_dB,301,1,7);
//Yazdir buraya her frame icin 300 eNb
// fprintf(SINRrx,"%e,%e,%e,%e;\n",SINRdbPost);
//fprintf(SINRrx,"%e\n",SINRdbPost);
// fprintf(csv_fd,"%e+i*(%e),",channelx,channely);
// if (ulsch_abstraction(eNB->sinr_dB,1, eNB->ulsch[UE_id]->harq_processes[harq_pid]->mcs,eNB->ulsch[UE_id]->harq_processes[harq_pid]->nb_rb, eNB->ulsch[UE_id]->harq_processes[harq_pid]->first_rb) == 1) {
if (1) {
LOG_D(PHY,"ulsch_decoding_emul abstraction successful\n");
memcpy(eNB->ulsch[UE_index]->harq_processes[harq_pid]->b,
PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->harq_processes[harq_pid]->b,
eNB->ulsch[UE_index]->harq_processes[harq_pid]->TBS>>3);
// get local ue's ack
if ((UE_index >= oai_emulation.info.first_ue_local) ||(UE_index <(oai_emulation.info.first_ue_local+oai_emulation.info.nb_ue_local))) {
get_ack(&eNB->frame_parms,
PHY_vars_UE_g[UE_id][CC_id]->dlsch[0][0][0]->harq_ack,
proc->subframe_tx,
proc->subframe_rx,
eNB->ulsch[UE_index]->harq_processes[harq_pid]->o_ACK,0);
} else { // get remote UEs' ack
eNB->ulsch[UE_index]->harq_processes[harq_pid]->o_ACK[0] = PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->o_ACK[0];
eNB->ulsch[UE_index]->harq_processes[harq_pid]->o_ACK[1] = PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->o_ACK[1];
}
// Do abstraction of PUSCH feedback
#ifdef DEBUG_PHY
LOG_D(PHY,"[eNB %d][EMUL] ue index %d UE_id %d: subframe %d : o_ACK (%d %d), cqi (val %d, len %d)\n",
eNB->Mod_id,UE_index, UE_id, subframe,eNB->ulsch[UE_index]->harq_processes[harq_pid]->o_ACK[0],
eNB->ulsch[UE_index]->harq_processes[harq_pid]->o_ACK[1],
((HLC_subband_cqi_rank1_2A_5MHz *)PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->o)->cqi1,
PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->O);
#endif
eNB->ulsch[UE_index]->harq_processes[harq_pid]->Or1 = PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->O;
eNB->ulsch[UE_index]->harq_processes[harq_pid]->Or2 = PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->O;
eNB->ulsch[UE_index]->harq_processes[harq_pid]->uci_format = PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->uci_format;
memcpy(eNB->ulsch[UE_index]->harq_processes[harq_pid]->o,PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->o,MAX_CQI_BYTES);
memcpy(eNB->ulsch[UE_index]->harq_processes[harq_pid]->o_RI,PHY_vars_UE_g[UE_id][CC_id]->ulsch[0]->o_RI,2);
eNB->ulsch[UE_index]->harq_processes[harq_pid]->cqi_crc_status = 1;
return(1);
} else {
LOG_W(PHY,"[eNB %d] ulsch_decoding_emul abstraction failed for UE %d\n",eNB->Mod_id,UE_index);
eNB->ulsch[UE_index]->harq_processes[harq_pid]->cqi_crc_status = 0;
// retransmission
return(1+eNB->ulsch[UE_index]->max_turbo_iterations);
}
}
#endif
*/
\ No newline at end of file
......@@ -217,12 +217,6 @@ typedef struct {
/// scheduling parameters for RXn-TXnp4 thread
struct sched_param sched_param_rxtx;
/// NB-IoT for IF_Module
pthread_t pthread_l2;
pthread_cond_t cond_l2;
pthread_mutex_t mutex_l2;
int instance_cnt_l2;
pthread_attr_t attr_l2;
} eNB_rxtx_proc_t;
typedef struct {
......
......@@ -226,7 +226,7 @@ typedef struct {
pthread_mutex_t mutex_l2;
int instance_cnt_l2;
pthread_attr_t attr_l2;
} eNB_rxtx_proc_NB_t;
} eNB_rxtx_proc_NB_IoT_t;
/*
typedef struct {
struct PHY_VARS_eNB_NB_IoT_s *eNB;
......@@ -244,7 +244,7 @@ typedef struct {
*/
/// Context data structure for eNB subframe processing
typedef struct eNB_proc_NB_t_s {
typedef struct eNB_proc_NB_IoT_t_s {
/// Component Carrier index
uint8_t CC_id;
/// thread index
......@@ -373,9 +373,9 @@ typedef struct eNB_proc_NB_t_s {
struct eNB_proc_t_s **slave_proc;
/// set of scheduling variables RXn-TXnp4 threads
// newly added for NB_IoT
eNB_rxtx_proc_NB_t proc_rxtx[2];
eNB_rxtx_proc_NB_IoT_t proc_rxtx[2];
} eNB_proc_NB_t;
} eNB_proc_NB_IoT_t;
/*
/// Context data structure for RX/TX portion of subframe processing
......@@ -463,19 +463,19 @@ typedef struct PHY_VARS_eNB_NB_IoT_s {
// indicator for precoding function (eNB,3GPP_eNB_BBU)
int do_precoding;
void (*do_prach)(struct PHY_VARS_eNB_NB_IoT_s *eNB,int frame,int subframe);
void (*fep)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_t *proc);
void (*fep)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_NB_IoT_t *proc);
int (*td)(struct PHY_VARS_eNB_NB_IoT_s *eNB,int UE_id,int harq_pid,int llr8_flag);
int (*te)(struct PHY_VARS_eNB_NB_IoT_s *,uint8_t *,uint8_t,LTE_eNB_DLSCH_t *,int,uint8_t,time_stats_t *,time_stats_t *,time_stats_t *);
void (*proc_uespec_rx)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_t *proc,const relaying_type_t r_type);
void (*proc_tx)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_t *proc,relaying_type_t r_type,PHY_VARS_RN *rn);
void (*tx_fh)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_t *proc);
void (*proc_uespec_rx)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_NB_IoT_t *proc,const relaying_type_t r_type);
void (*proc_tx)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_NB_IoT_t *proc,relaying_type_t r_type,PHY_VARS_RN *rn);
void (*tx_fh)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_NB_IoT_t *proc);
void (*rx_fh)(struct PHY_VARS_eNB_NB_IoT_s *eNB,int *frame, int *subframe);
int (*start_rf)(struct PHY_VARS_eNB_NB_IoT_s *eNB);
int (*start_if)(struct PHY_VARS_eNB_NB_IoT_s *eNB);
void (*fh_asynch)(struct PHY_VARS_eNB_NB_IoT_s *eNB,int *frame, int *subframe);
uint8_t local_flag;
uint32_t rx_total_gain_dB;
LTE_DL_FRAME_PARMS frame_parms;
NB_IoT_DL_FRAME_PARMS frame_parms;
PHY_MEASUREMENTS_eNB measurements[NUMBER_OF_eNB_SECTORS_MAX_NB_IoT]; /// Measurement variables
LTE_eNB_COMMON common_vars;
LTE_eNB_SRS srs_vars[NUMBER_OF_UE_MAX_NB_IoT];
......
......@@ -12,7 +12,7 @@
void handle_nfapi_dlsch_pdu_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
eNB_rxtx_proc_NB_IoT_t *proc,
nfapi_dl_config_request_pdu_t *dl_config_pdu,
uint8_t *sdu)
{
......@@ -171,7 +171,7 @@ void schedule_response(Sched_Rsp_t *Sched_INFO)
//XXX check if correct to take eNB like this
PHY_VARS_eNB_NB_IoT *eNB = PHY_vars_eNB_NB_IoT_g[0][Sched_INFO->CC_id];
eNB_rxtx_proc_t *proc = &eNB->proc.proc_rxtx[0];
eNB_rxtx_proc_NB_IoT_t *proc = &eNB->proc.proc_rxtx[0];
NB_IoT_eNB_NPBCH_t *npbch;
int i;
......
......@@ -15,7 +15,7 @@ void schedule_response(Sched_Rsp_t *Sched_INFO);
void PHY_config_req(PHY_Config_t* config_INFO);
void handle_nfapi_dlsch_pdu_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
eNB_rxtx_proc_NB_IoT_t *proc,
nfapi_dl_config_request_pdu_t *dl_config_pdu,
uint8_t *sdu);
......
......@@ -9,22 +9,22 @@
void process_schedule_rsp_NB_IoT(Sched_Rsp_t *sched_rsp,
PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc);
eNB_rxtx_proc_NB_IoT_t *proc);
/*Processing the ue-specific resources for uplink in NB-IoT*/
void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc, UL_IND_t *UL_INFO);
void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc, UL_IND_t *UL_INFO);
/* For NB-IoT, we put NPBCH in later part, since it would be scheduled by MAC scheduler,this generates NRS/NPSS/NSSS*/
void common_signal_procedures_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc);
void common_signal_procedures_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc);
/*Generate the ulsch params and do the mapping for the FAPI style parameters to OAI, and then do the packing*/
void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc,nfapi_hi_dci0_request_pdu_t *hi_dci0_pdu);
void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc,nfapi_hi_dci0_request_pdu_t *hi_dci0_pdu);
/*Generate the dlsch params and do the mapping for the FAPI style parameters to OAI, and then do the packing*/
void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t * proc,nfapi_dl_config_request_pdu_t *dl_config_pdu);
void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t * proc,nfapi_dl_config_request_pdu_t *dl_config_pdu);
/*Process all the scheduling result from MAC and also common signals.*/
void phy_procedures_eNB_TX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc,int do_meas);
void phy_procedures_eNB_TX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc,int do_meas);
int8_t find_ue_NB_IoT(uint16_t rnti, PHY_VARS_eNB_NB_IoT *eNB);
......
......@@ -104,7 +104,7 @@ extern int rx_sig_fifo;
* It generates NRS/NPSS/NSSS
*
*/
void common_signal_procedures_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc)
void common_signal_procedures_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc)
{
NB_IoT_DL_FRAME_PARMS *fp=&eNB->frame_parms_NB_IoT;
int **txdataF = eNB->common_vars.txdataF[0];
......@@ -160,7 +160,7 @@ void common_signal_procedures_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *p
}
void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc,UL_IND_t *UL_INFO)
void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc,UL_IND_t *UL_INFO)
{
//RX processing for ue-specific resources (i
......@@ -270,7 +270,7 @@ void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_
eNB->ulsch,
0);
ret = ulsch_decoding(eNB,proc,
ret = ulsch_decoding_NB_IoT(eNB,proc,
i,
0, // control_only_flag
eNB->ulsch[i]->harq_processes[harq_pid]->V_UL_DAI,
......@@ -481,7 +481,7 @@ void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_
/*Generate eNB ndlsch params for NB-IoT from the NPDCCH PDU of the DCI, modify the input to the Sched Rsp variable*/
void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t * proc,nfapi_dl_config_request_pdu_t *dl_config_pdu)
void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t * proc,nfapi_dl_config_request_pdu_t *dl_config_pdu)
{
int UE_id = -1;
NB_IoT_DL_FRAME_PARMS *fp=&eNB->frame_parms_NB_IoT;
......@@ -613,7 +613,7 @@ void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *
void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc,nfapi_hi_dci0_request_pdu_t *hi_dci0_pdu) {
void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc,nfapi_hi_dci0_request_pdu_t *hi_dci0_pdu) {
int UE_id = -1;
//int harq_pid = 0;
......@@ -669,7 +669,7 @@ void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *
* ** redundancy version exist only in UL for NB-IoT and not in DL
*/
void npdsch_procedures(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc, //Context data structure for RX/TX portion of subframe processing
eNB_rxtx_proc_NB_IoT_t *proc, //Context data structure for RX/TX portion of subframe processing
NB_IoT_eNB_NDLSCH_t *ndlsch,
//int num_pdcch_symbols, (BCOM says are not needed
uint8_t* pdu
......@@ -935,7 +935,7 @@ extern int oai_exit;
*/
void phy_procedures_eNB_TX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
eNB_rxtx_proc_NB_IoT_t *proc,
int do_meas)
{
int frame = proc->frame_tx;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment