Commit 23c63fda authored by Florian Kaltenberger's avatar Florian Kaltenberger

moving old simulators

git-svn-id: http://svn.eurecom.fr/openair4G/trunk@7230 818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent afa3a973
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
# Doxyfile 1.3.8
#---------------------------------------------------------------------------
# Project related configuration options
#---------------------------------------------------------------------------
PROJECT_NAME = FEMTOSIM
PROJECT_NUMBER =
OUTPUT_DIRECTORY =
CREATE_SUBDIRS = NO
OUTPUT_LANGUAGE = English
BRIEF_MEMBER_DESC = YES
REPEAT_BRIEF = YES
ABBREVIATE_BRIEF =
ALWAYS_DETAILED_SEC = NO
INLINE_INHERITED_MEMB = NO
FULL_PATH_NAMES = YES
STRIP_FROM_PATH =
STRIP_FROM_INC_PATH =
SHORT_NAMES = NO
JAVADOC_AUTOBRIEF = YES
MULTILINE_CPP_IS_BRIEF = NO
INHERIT_DOCS = NO
DISTRIBUTE_GROUP_DOC = NO
TAB_SIZE = 8
ALIASES =
OPTIMIZE_OUTPUT_FOR_C = YES
OPTIMIZE_OUTPUT_JAVA = NO
SUBGROUPING = YES
#---------------------------------------------------------------------------
# Build related configuration options
#---------------------------------------------------------------------------
EXTRACT_ALL = YES
EXTRACT_PRIVATE = NO
EXTRACT_STATIC = NO
EXTRACT_LOCAL_CLASSES = YES
EXTRACT_LOCAL_METHODS = YES
HIDE_UNDOC_MEMBERS = YES
HIDE_UNDOC_CLASSES = YES
HIDE_FRIEND_COMPOUNDS = NO
HIDE_IN_BODY_DOCS = NO
INTERNAL_DOCS = NO
CASE_SENSE_NAMES = YES
HIDE_SCOPE_NAMES = NO
SHOW_INCLUDE_FILES = NO
INLINE_INFO = YES
SORT_MEMBER_DOCS = NO
SORT_BRIEF_DOCS = NO
SORT_BY_SCOPE_NAME = NO
GENERATE_TODOLIST = YES
GENERATE_TESTLIST = NO
GENERATE_BUGLIST = YES
GENERATE_DEPRECATEDLIST= NO
ENABLED_SECTIONS =
MAX_INITIALIZER_LINES = 30
SHOW_USED_FILES = NO
#---------------------------------------------------------------------------
# configuration options related to warning and progress messages
#---------------------------------------------------------------------------
QUIET = NO
WARNINGS = YES
WARN_IF_UNDOCUMENTED = YES
WARN_IF_DOC_ERROR = YES
WARN_FORMAT = "$file:$line: $text"
WARN_LOGFILE =
#---------------------------------------------------------------------------
# configuration options related to the input files
#---------------------------------------------------------------------------
INPUT = $(OPENAIR1_DIR)/SIMULATION/LTE_FEMTO/
FILE_PATTERNS = *.h
RECURSIVE = NO
EXCLUDE =
EXCLUDE_SYMLINKS = NO
EXCLUDE_PATTERNS =
EXAMPLE_PATH =
EXAMPLE_PATTERNS =
EXAMPLE_RECURSIVE = NO
IMAGE_PATH = images
INPUT_FILTER =
FILTER_PATTERNS =
FILTER_SOURCE_FILES = NO
#---------------------------------------------------------------------------
# configuration options related to source browsing
#---------------------------------------------------------------------------
SOURCE_BROWSER = NO
INLINE_SOURCES = NO
STRIP_CODE_COMMENTS = YES
REFERENCED_BY_RELATION = NO
REFERENCES_RELATION = NO
VERBATIM_HEADERS = YES
#---------------------------------------------------------------------------
# configuration options related to the alphabetical class index
#---------------------------------------------------------------------------
ALPHABETICAL_INDEX = NO
COLS_IN_ALPHA_INDEX = 5
IGNORE_PREFIX =
#---------------------------------------------------------------------------
COLS_IN_ALPHA_INDEX = 5
IGNORE_PREFIX =
#---------------------------------------------------------------------------
# configuration options related to the alphabetical class index
#---------------------------------------------------------------------------
ALPHABETICAL_INDEX = NO
COLS_IN_ALPHA_INDEX = 5
IGNORE_PREFIX =
#---------------------------------------------------------------------------
# configuration options related to the HTML output
#---------------------------------------------------------------------------
GENERATE_HTML = YES
HTML_OUTPUT = html
HTML_FILE_EXTENSION = .html
HTML_HEADER =
HTML_FOOTER =
HTML_STYLESHEET =
HTML_ALIGN_MEMBERS = YES
GENERATE_HTMLHELP = YES
CHM_FILE = irs_openair.chm
HHC_LOCATION =
GENERATE_CHI = NO
BINARY_TOC = NO
TOC_EXPAND = NO
DISABLE_INDEX = NO
ENUM_VALUES_PER_LINE = 4
GENERATE_TREEVIEW = YES
TREEVIEW_WIDTH = 250
#---------------------------------------------------------------------------
# configuration options related to the LaTeX output
#---------------------------------------------------------------------------
GENERATE_LATEX = NO
LATEX_OUTPUT = latex
LATEX_CMD_NAME = latex
MAKEINDEX_CMD_NAME = makeindex
COMPACT_LATEX = NO
PAPER_TYPE = a4wide
EXTRA_PACKAGES = amsmath amssymb
LATEX_HEADER = header.tex
PDF_HYPERLINKS = YES
USE_PDFLATEX = YES
LATEX_BATCHMODE = NO
LATEX_HIDE_INDICES = NO
#---------------------------------------------------------------------------
# configuration options related to the RTF output
#---------------------------------------------------------------------------
GENERATE_RTF = NO
RTF_OUTPUT = rtf
COMPACT_RTF = YES
RTF_HYPERLINKS = YES
RTF_STYLESHEET_FILE =
RTF_EXTENSIONS_FILE =
#---------------------------------------------------------------------------
# configuration options related to the man page output
#---------------------------------------------------------------------------
GENERATE_MAN = NO
MAN_OUTPUT = man
MAN_EXTENSION = .3
MAN_LINKS = NO
#---------------------------------------------------------------------------
# configuration options related to the XML output
#---------------------------------------------------------------------------
GENERATE_XML = NO
XML_OUTPUT = xml
XML_SCHEMA =
XML_DTD =
XML_PROGRAMLISTING = YES
#---------------------------------------------------------------------------
# configuration options for the AutoGen Definitions output
#---------------------------------------------------------------------------
GENERATE_AUTOGEN_DEF = NO
#---------------------------------------------------------------------------
# configuration options related to the Perl module output
#---------------------------------------------------------------------------
GENERATE_PERLMOD = NO
PERLMOD_LATEX = NO
PERLMOD_PRETTY = YES
PERLMOD_MAKEVAR_PREFIX =
#---------------------------------------------------------------------------
# Configuration options related to the preprocessor
#---------------------------------------------------------------------------
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = YES
EXPAND_ONLY_PREDEF = YES
SEARCH_INCLUDES = YES
INCLUDE_PATH =
INCLUDE_FILE_PATTERNS =
PREDEFINED = OPENAIR_LTE=1 RLC_MODULE=1 RLC_C=1 RLC_MAC_C=1 RLC_RRC_C=1 RLC_AM_C=1 RLC_AM_MODULE=1 RLC_AM_REASSEMBLY_C=1 RLC_AM_IN_SDU_C=1 RLC_AM_RETRANSMIT_C=1 RLC_AM_RX_LIST_C=1 RLC_AM_SEGMENT_C=1 RLC_AM_SEGMENT_HOLES_C=1 RLC_AM_STATUS_REPORT_C=1 RLC_AM_TIMER_POLL_RETRANSMIT_C=1 RLC_AM_TIMER_POLL_REORDERING_C=1 RLC_AM_TIMER_STATUS_PROHIBIT_C=1 RLC_AM_WINDOWS_C=1 RLC_UM_MODULE=1 RLC_UM_C=1 RLC_TM_MODULE=1 RLC_UM_C=1 public_rlc(x)=x protected_rlc private_rlc(x)=x public_rlc_mac(x)=x protected_rlc_mac(x)=x private_rlc_mac(x)=x public_rlc_rrc(x)=x protected_rlc_rrc(x)=x private_rlc_rrc(x)=x public_rlc_am(x)=x protected_rlc_am(x)=x private_rlc_am(x)=x public_rlc_am_reassembly(x)=x protected_rlc_am_reassembly(x)=x private_rlc_am_reassembly(x)=x public_rlc_am_in_sdu(x)=x protected_rlc_am_in_sdu(x)=x private_rlc_am_in_sdu(x)=x private_rlc_am_receiver(x)=x protected_rlc_am_receiver(x)=x public_rlc_am_receiver(x)=x private_rlc_am_retransmit(x)=x protected_rlc_am_retransmit(x)=x public_rlc_am_retransmit(x)=x private_rlc_am_rx_list(x)=x protected_rlc_am_rx_list(x)=x public_rlc_am_rx_list(x)=x private_rlc_am_segment(x)=x protected_rlc_am_segment(x)=x public_rlc_am_segment(x)=x private_rlc_am_segments_holes(x)=x protected_rlc_am_segments_holes(x)=x public_rlc_am_segments_holes(x)=x private_rlc_am_status_report(x)=x protected_rlc_am_status_report(x)=x public_rlc_am_status_report(x)=x private_rlc_am_timer_poll_retransmit(x)=x protected_rlc_am_timer_poll_retransmit(x)=x public_rlc_am_timer_poll_retransmit(x)=x private_rlc_am_timer_reordering(x)=x protected_rlc_am_timer_reordering(x)=x public_rlc_am_timer_reordering(x)=x private_rlc_am_timer_status_prohibit(x)=x protected_rlc_am_timer_status_prohibit(x)=x public_rlc_am_timer_status_prohibit(x)=x private_rlc_am_windows(x)=x protected_rlc_am_windows(x)=x public_rlc_am_windows(x)=x public_rlc_um(x)=x protected_rlc_um(x)=x private_rlc_um(x)=x
EXPAND_AS_DEFINED = public_rlc(x)=x protected_rlc(x)=x private_rlc(x)=x public_rlc_mac(x)=x protected_rlc_mac(x)=x private_rlc_mac(x)=x public_rlc_rrc(x)=x protected_rlc_rrc(x)=x private_rlc_rrc(x)=x public_rlc_am(x)=x protected_rlc_am(x)=x private_rlc_am(x)=x public_rlc_am_reassembly(x)=x protected_rlc_am_reassembly(x)=x private_rlc_am_reassembly(x)=x public_rlc_am_in_sdu(x)=x protected_rlc_am_in_sdu(x)=x private_rlc_am_in_sdu(x)=x private_rlc_am_receiver(x)=x protected_rlc_am_receiver(x)=x public_rlc_am_receiver(x)=x private_rlc_am_retransmit(x)=x protected_rlc_am_retransmit(x)=x public_rlc_am_retransmit(x)=x private_rlc_am_rx_list(x)=x protected_rlc_am_rx_list(x)=x public_rlc_am_rx_list(x)=x private_rlc_am_segment(x)=x protected_rlc_am_segment(x)=x public_rlc_am_segment(x)=x private_rlc_am_segments_holes(x)=x protected_rlc_am_segments_holes(x)=x public_rlc_am_segments_holes(x)=x private_rlc_am_status_report(x)=x protected_rlc_am_status_report(x)=x public_rlc_am_status_report(x)=x private_rlc_am_timer_poll_retransmit(x)=x protected_rlc_am_timer_poll_retransmit(x)=x public_rlc_am_timer_poll_retransmit(x)=x private_rlc_am_timer_reordering(x)=x protected_rlc_am_timer_reordering(x)=x public_rlc_am_timer_reordering(x)=x private_rlc_am_timer_status_prohibit(x)=x protected_rlc_am_timer_status_prohibit(x)=x public_rlc_am_timer_status_prohibit(x)=x private_rlc_am_windows(x)=x protected_rlc_am_windows(x)=x public_rlc_am_windows(x)=x public_rlc_um(x)=x protected_rlc_um(x)=x private_rlc_um(x)=x
SKIP_FUNCTION_MACROS = YES
#---------------------------------------------------------------------------
# Configuration::additions related to external references
#---------------------------------------------------------------------------
TAGFILES =
GENERATE_TAGFILE =
ALLEXTERNALS = NO
EXTERNAL_GROUPS = YES
PERL_PATH = /usr/bin/perl
#---------------------------------------------------------------------------
# Configuration options related to the dot tool
#---------------------------------------------------------------------------
CLASS_DIAGRAMS = NO
HIDE_UNDOC_RELATIONS = NO
HAVE_DOT = NO
CLASS_GRAPH = NO
COLLABORATION_GRAPH = NO
UML_LOOK = NO
TEMPLATE_RELATIONS = NO
INCLUDE_GRAPH = NO
INCLUDED_BY_GRAPH = NO
CALL_GRAPH = NO
GRAPHICAL_HIERARCHY = NO
DOT_IMAGE_FORMAT = jpg
DOT_PATH = "/usr/bin"
DOTFILE_DIRS = ../docs/dotfiles
include $(OPENAIR_HOME)/common/utils/Makefile.inc
TOP_DIR = $(OPENAIR1_DIR)
OPENAIR1_TOP = $(OPENAIR1_DIR)
OPENAIR2_TOP = $(OPENAIR2_DIR)
OPENAIR3 = $(OPENAIR3_DIR)
CFLAGS += -m32 -DPHYSIM -DNODE_RG -DUSER_MODE -DPC_TARGET -DPC_DSP -DNB_ANTENNAS_RX=2 -DNB_ANTENNAS_TXRX=2 -DNB_ANTENNAS_TX=2 -DPHY_CONTEXT=1 -DMALLOC_CHECK_=1 # -Wno-packed-bitfield-compat -O2
CFLAGS += -DNEW_FFT
LFLAGS = -lm -lblas -lxml2 -lrt
ifdef GPIB
LFLAGS += -lgpib
endif
CFLAGS += -DOPENAIR_LTE #-DOFDMA_ULSCH #-DIFFT_FPGA -DIFFT_FPGA_UE
#CFLAGS += -DTBS_FIX
CFLAGS += -DCELLULAR
ASN1_MSG_INC = $(OPENAIR2_DIR)/RRC/LITE/MESSAGES
ifdef EMOS
CFLAGS += -DEMOS
endif
ifdef DEBUG_PHY
CFLAGS += -DDEBUG_PHY
endif
ifdef MeNBMUE
CFLAGS += -DMeNBMUE
endif
ifdef MU_RECEIVER
CFLAGS += -DMU_RECEIVER
endif
ifdef ZBF_ENABLED
CFLAGS += -DNULL_SHAPE_BF_ENABLED
endif
ifdef RANDOM_BF
CFLAGS += -DRANDOM_BF
endif
ifdef PBS_SIM
CFLAGS += -DPBS_SIM
endif
ifdef XFORMS
CFLAGS += -DXFORMS
LFLAGS += -lforms
endif
ifdef PERFECT_CE
CFLAGS += -DPERFECT_CE
endif
ifdef BIT8_TX
CFLAGS += -DBIT8_TX
endif
CFLAGS += -DNO_RRM -DOPENAIR1 #-DOPENAIR2 #-DPHY_ABSTRACTION
CFLAGS += -I/usr/include/X11 -I/usr/X11R6/include
ifdef ENABLE_FXP
CFLAGS += -DENABLE_FXP # Fxp only
else
ifdef ENABLE_FLP
CFLAGS += -DENABLE_FLP # dual_stream_correlation(), channel_compensation_prec() and qam16_qam16_mu_mimo() are flp (independently)
else
ifdef ENABLE_FULL_FLP
CFLAGS += -DENABLE_FULL_FLP # Flp inside of rx_pdsch() (dlsch_detection_mrc(), dual_stream_correlation(), channel_compensation_prec(), qam16_qam16_mu_mimo() and dlsch_16qam_16qam_llr)
else
CFLAGS += -DENABLE_FXP # Fxp only by default
endif
endif
endif
ifdef COMPARE_FLP_AND_FXP
CFLAGS += -DCOMPARE_FLP_AND_FXP
endif
ifdef RTAI
CFLAGS += -DRTAI_ENABLED -D__IN_RTAI__ $(shell rtai-config --lxrt-cflags)
LFLAGS += $(shell rtai-config --lxrt-ldflags) -llxrt
endif
include $(TOP_DIR)/PHY/Makefile.inc
SCHED_OBJS = $(TOP_DIR)/SCHED/phy_procedures_lte_common.o #$(TOP_DIR)/SCHED/phy_procedures_lte_eNb.o $(TOP_DIR)/SCHED/phy_procedures_lte_ue.o
#include $(TOP_DIR)/SCHED/Makefile.inc
include $(TOP_DIR)/SIMULATION/Makefile.inc
include $(OPENAIR2_DIR)/LAYER2/Makefile.inc
include $(OPENAIR2_DIR)/UTIL/Makefile.inc
include $(OPENAIR2_DIR)/RRC/LITE/MESSAGES/Makefile.inc
CFLAGS += $(L2_incl) -I$(ASN1_MSG_INC) -I$(TOP_DIR) -I$(OPENAIR3) $(UTIL_incl)
# EXTRA_CFLAGS =
#STATS_OBJS += $(TOP_DIR)/ARCH/CBMIMO1/DEVICE_DRIVER/cbmimo1_proc.o
OBJ = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS) $(SCHED_OBJS) $(LAYER2_OBJ) $(LOG_OBJS)
ifdef GPIB
OBJ += LTE_Configuration.o
endif
#OBJ2 = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS)
ifdef XFORMS
OBJ += ../../USERSPACE_TOOLS/SCOPE/lte_scope.o
endif
OBJ += $(LOG_DIR)/vcd_signal_dumper.o
all: femtosim
#$(OBJ)
femtosim : femtoUtils.o femtosim.c
@echo "Compiling femtosim.c"
@$(CC) -o femtosim femtosim.c femtoUtils.o $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas #-lm -lblas
femtoUtils.o: $(OBJ) femtoUtils.h femtoUtils.c
@echo "Compiling femtoUtils.c"
@$(CC) -c femtoUtils.c $(CFLAGS) $(OBJ) $(LFLAGS) -L/usr/lib/libblas #-lm -lblas -DPERFECT_CE
Tester: Tester.c
@$(CC) Tester.c -o Tester $(CFLAGS)
ComparaFile: ComparaFile.c
@$(CC) ComparaFile.c -o ComparaFile
clean :
rm -f $(OBJ)
rm -f *.o
cleanall : clean
rm -f femtosim
rm -f *.exe*
#showflags :
#@echo $(CFLAGS)
#@echo $(LFLAGS)
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <stdlib.h>
#include <time.h>
#include <stdio.h>
void main( int argc, char **argv)
{
clock_t t_ini, t_fin;
time_t tiempo = time(0);
struct tm *tlocal ;
char output[128];
int i,j,h,x,z;
int interferencias[11];
interferencias[0]=-15;
interferencias[1]=-5;
interferencias[2]=-3;
interferencias[3]=-2;
interferencias[4]=-1;
interferencias[5]=0;
interferencias[6]=1;
interferencias[7]=2;
interferencias[8]=3;
interferencias[9]=5;
interferencias[10]=15;
FILE *output_fd ;
output_fd= fopen("TesterControl.txt","w");
double secs;
char **pruebas;
int n=(4*8*4*11)+1;
pruebas= (char **) malloc(n*sizeof(char *));
for(i=0; i<n; i++) {
pruebas[i]=(char*)malloc(200*sizeof(char));
}
pruebas[0]= "./femtosim -n1000 -s0 -S25 -b0";
i=1;
x=1;
for(j=0; j<8; j++) {
for(h=0; h<4; h++) {
for( z=0; z<11; z++) {
//printf(" %d %d %d %d %d %d\n",interferencias[z],x,j,h,i,n);
sprintf(pruebas[i],"./femtosim -n1000 -s0 -S25 -a -I1 -w%d -b100%d -p%d,%d",interferencias[z],x,j,h);
i++;
sprintf(pruebas[i],"./femtosim -n1000 -s0 -S25 -a -I1 -w%d -b200%d -p%d,%d -A1 -D",interferencias[z],x,j,h);
i++;
sprintf(pruebas[i],"./femtosim -n1000 -s0 -S25 -I1 -w%d -b300%d -p%d,%d",interferencias[z],x,j,h);
i++;
sprintf(pruebas[i],"./femtosim -n1000 -s0 -S25 -I1 -w%d -b400%d -p%d,%d -A1 -D",interferencias[z],x,j,h);
i++;
x++;
}
}
}
for(i=0; i<n; i++) {
printf("\n%s",pruebas[i]);
t_ini = clock();
fprintf(output_fd,"\n%s",pruebas[i]);
tiempo = time(0);
tlocal = localtime(&tiempo);
strftime(output,128,"%d/%m/%y %H:%M:%S",tlocal);
fprintf(output_fd,"\n\tInicio: \t%s",output);
system(pruebas[i]);
tiempo = time(0);
tlocal = localtime(&tiempo);
strftime(output,128,"%d/%m/%y %H:%M:%S",tlocal);
fprintf(output_fd,"\n\tFin: \t%s",output);
}
fclose(output_fd);
}
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <string.h>
#include <math.h>
#include <sys/stat.h>
#include "femtoUtils.h"
#ifndef _FEMTO_UTILS
#include "PHY/types.h"
#include "SIMULATION/TOOLS/defs.h"
#include "UTIL/LOG/vcd_signal_dumper.h" //TVT:Navid
#endif
void _parseOptions(options_t *opts, int argc, char ** argv)
{
char c;
char aux[100];
//int prob_flag=0;
static struct option long_options[] = {
{"h", no_argument, 0, 'h'},
{"s", required_argument, 0, 's'},
{"S", required_argument, 0, 'S'},
{"T", required_argument, 0, 'T'},
{"n", required_argument, 0, 'n'},
{"x", no_argument, 0, 'x'},
{"d", no_argument, 0, 'd'},
{"t", required_argument, 0, 't'},
{"y", required_argument, 0, 'y'},
{"z", required_argument, 0, 'z'},
{"I", required_argument, 0, 'I'},
{"j", required_argument, 0, 'j'},
{"N", required_argument, 0, 'N'},
{"o", required_argument, 0, 'o'},
{"g", required_argument, 0, 'g'},
{"f", no_argument, 0, 'f'},
{"a", no_argument, 0, 'a'},
{"i", no_argument, 0, 'i'},
{"b", required_argument, 0, 'b'},
{"w", required_argument, 0, 'w'},
{"k", required_argument, 0, 'k'},
{"c", required_argument, 0, 'c'},
{"e", no_argument, 0, 'e'},
{"m", required_argument, 0, 'm'},
{"A", required_argument, 0, 'A'},
{"D", no_argument, 0, 'D'},
{"p", no_argument, 0, 'p'},
{"r", required_argument, 0, 'r'},
{"p", required_argument, 0, 'p'},
{"Q", required_argument, 0, 'Q'},
{"O", required_argument, 0, 'O'},
{0, 0, 0, 0}
};
int option_index = 0;
while ((c = getopt_long (argc, argv, "hs:S:T:n:xdt:y:z:I:j:N:o:g:faib:r:R:w:c:em:A:Dp:B:k:Q:O:",long_options, &option_index)) != -1) {
//printf("%c %s\n",c,optarg);
switch (c) {
case 'a':
opts->awgn_flag=1;
opts->channel_model=AWGN;
sprintf(opts->parameters,"%s -a",opts->parameters);
break;
case 'i':
opts->awgn_flagi=1;
opts->channel_modeli=AWGN;
sprintf(opts->parameters,"%s -i",opts->parameters);
break;
case 'B':
opts->N_RB_DL=atoi(optarg);
break;
case 'f':
opts->fixed_channel_flag=1;
sprintf(opts->parameters,"%s -f",opts->parameters);
break;
case 'D':
if(opts->n_adj_cells==0 ) {
msg("First specify the number of adjuncts cells to estimate channel using -A #!\n");
exit(-1);
}
opts->dual_stream_UE=1;
sprintf(opts->parameters,"%s -D",opts->parameters);
break;
case 'e':
opts->dci_flag=1;
sprintf(opts->parameters,"%s -d",opts->parameters);
break;
case 'r':
opts->DLSCH_RB_ALLOC = atoi(optarg);
opts->rballocset = 1;
break;
case 's':
opts->snr_init=atof(optarg);
//opts->snr_max= opts->snr_init+5;
sprintf(opts->parameters,"%s -s%f",opts->parameters,opts->snr_init);
break;
case 'S':
opts->snr_max=atof(optarg);
sprintf(opts->parameters,"%s -S%f",opts->parameters,opts->snr_max);
break;
case 'Q':
opts->ratio=atoi(optarg);
break;
case 'O':
opts->nprb1=atoi(optarg);
opts->search_prb2=1;
break;
case 'T':
opts->snr_step=atof(optarg);
sprintf(opts->parameters,"%s -T%f",opts->parameters,opts->snr_step);
break;
case 'n':
opts->nframes=atoi(optarg);
sprintf(opts->parameters,"%s -n%d",opts->parameters,opts->nframes);
break;
case 'x':
opts->extended_prefix_flag=1;
sprintf(opts->parameters,"%s -x",opts->parameters);
if (opts->extended_prefix_flag == 0) {
opts->nsymb = 14 ;
opts->pilot1 = 4;
opts->pilot2 = 7;
opts->pilot3 = 11;
} else {
opts->nsymb = 12;
opts->pilot1 = 3;
opts->pilot2 = 6;
opts->pilot3 = 9;
}
break;
case 'd':
opts->frame_type= 1;
sprintf(opts->parameters,"%s -d",opts->parameters);
break;
case 't':
opts->transmission_mode=atoi(optarg);
sprintf(opts->parameters,"%s -t%d",opts->parameters,opts->transmission_mode);
if ((opts->transmission_mode!=1) && (opts->transmission_mode!=2) && (opts->transmission_mode!=6)) {
printf("Unsupported transmission mode %d\n",opts->transmission_mode);
exit(-1);
}
break;
case 'y':
opts->n_tx=atoi(optarg);
sprintf(opts->parameters,"%s -y%d",opts->parameters,opts->n_tx);
break;
case 'z':
opts->n_rx=atoi(optarg);
sprintf(opts->parameters,"%s -z%d",opts->parameters, opts->n_rx);
break;
case 'I':
opts->nInterf=atoi(optarg);
sprintf(opts->parameters,"%s -I%d",opts->parameters, opts->nInterf);
if(opts->nInterf>5 ) {
msg("Max num interferer = 5 \n");
exit(-1);
}
break;
case 'w':
if(opts->nInterf==0 ) {
msg("First specify the number of interferer with -I# \n");
exit(-1);
}
sprintf(aux,"%s",optarg);
strcpy(opts->interfLevels,aux);
sprintf(opts->parameters,"%s -w%s", opts->parameters,opts->interfLevels);
break;
case 'k':
if(opts->nInterf==0 ) {
msg("First specify the number of interferer with -I# \n");
exit(-1);
}
sprintf(aux,"%s",optarg);
strcpy(opts->interfProbability,aux);
sprintf(opts->parameters,"%s -k%s", opts->parameters,opts->interfProbability);
opts->prob_flag=1;
break;
case 'N':
opts->Nid_cell = atoi(optarg);
sprintf(opts->parameters,"%s -N%d",opts->parameters, opts->Nid_cell);
break;
case 'c':
opts->interCellId = atoi(optarg);
sprintf(opts->parameters,"%s -c%d",opts->parameters, opts->interCellId);
break;
case 'o':
opts->oversampling=atoi(optarg);
sprintf(opts->parameters,"%s -o%d",opts->parameters, opts->oversampling);
break;
case 'b':
opts->testNumber=atoi(optarg);
sprintf(opts->parameters,"%s -b%d",opts->parameters, opts->testNumber);
break;
case 'm':
opts->mcs=atoi(optarg);
sprintf(opts->parameters,"%s -b%d",opts->parameters, opts->mcs);
break;
case 'g':
sprintf(opts->parameters,"%s -g%s",opts->parameters, optarg);
switch ((char)*optarg) {
case 'A':
opts->channel_model=SCM_A;
break;
case 'B':
opts->channel_model=SCM_B;
break;
case 'C':
opts->channel_model=SCM_C;
break;
case 'D':
opts->channel_model=SCM_D;
break;
case 'E':
opts->channel_model=EPA;
break;
case 'F':
opts->channel_model=EVA;
break;
case 'G':
opts->channel_model=ETU;
break;
case 'H':
opts->channel_model=Rayleigh8;
break;
case 'I':
opts->channel_model=Rayleigh1;
break;
case 'J':
opts->channel_model=Rayleigh1_corr;
break;
case 'K':
opts->channel_model=Rayleigh1_anticorr;
break;
case 'L':
opts->channel_model=Rice8;
break;
case 'M':
opts->channel_model=Rice1;
break;
default:
msg("Unsupported channel model! [A,B,C,D,E,F,G,H,I,J,K,L,M]\n");
exit(-1);
}
break;
case 'A':
opts->n_adj_cells=atoi(optarg);
sprintf(opts->parameters,"%s -b%d",opts->parameters, opts->n_adj_cells);
break;
case 'R':
opts->num_rounds=atoi(optarg);
sprintf(opts->parameters,"%s -R%d",opts->parameters, opts->num_rounds);
if(opts->num_rounds>4 ) {
msg("Max num round = 4 \n");
exit(-1);
}
opts->fix_rounds=1;
break;
case 'p':
sprintf(aux,"%s",optarg);
strcpy(opts->power,aux);
sprintf(opts->parameters,"%s -w%s", opts->parameters,opts->power);
_parsePower(opts);
break;
default:
case 'h':
printf("-h This message\n");
printf("-s Starting SNR default value is %f\n",opts->snr_init);
printf("-S Ending SNR default value is %f\n",opts->snr_max);
printf("-T Step size of SNR, default value is %f\n",opts->snr_step);
printf("-n Number of frames, default value is %d\n",opts->nframes);
printf("-x Use extended prefix mode flag, default value is Normal\n");
printf("-d Use TDD flag\n");
printf("-t Transmission mode (1,2,6 for the moment),default value is %d\n",opts->transmission_mode);
printf("-y Number of TX antennas used in eNB, default value is %d\n",opts->n_tx);
printf("-z Number of RX antennas used in UE, default value is %d\n",opts->n_rx);
printf("-I Number of interference to apply, default value is %d \n",opts->nInterf);
printf("-w Relative strength of inteference list (in dB) separeted by ',' \n");
printf("-N Nid_cell, default value is %d \n",opts->Nid_cell);
printf("-o Oversampling factor (1,2,4,8,16), default value is %d \n",opts->oversampling);
printf("-g [A,B,C,D,E,F,G] Use 3GPP SCM (A,B,C,D) or 36-101 (E-EPA,F-EVA,G-ETU) models (ignores delay spread and Ricean factor), default value is AWGN\n");
// printf("-f Output filename (.txt format) for Pe/SNR results\n");
printf("-a Use AWGN channel and not multipath\n");
printf("-i Use AWGN channel for the interference\n");
printf("-b Test Number\n");
printf("-c CellId Number for interferer\n");
printf("-r ressource block allocation (see section 7.1.6.3 in 36.213\n");
printf("-m MCS\n");
printf("-D Enable interference cancellation\n");
printf("-e Enable verification of DCI\n");
printf("-A Indicates number of interfering to estimate, by default does not estimate the channel from the interfering\n");
printf("-R Number of rounds\n");
printf("-k Probability of each interferer list (0-1) separeted by ',' \n");
printf("-f Use fixed data and channel\n");
printf("-B Number of PRBs depending on the bandwidth\n");
exit (-1);
break;
}
}
sprintf(opts->folderName,"%d_resp",opts->testNumber);
if (opts->nInterf>0) {
_parseInterferenceLevels(opts,opts->interfLevels,opts->nInterf);
_parseInterferenceProbability(opts,opts->interfProbability,opts->nInterf);
}
}
void _printOptions(options_t *opts)
{
int i;
printf("\n----------Options----------");
printf("\nsnr_init:\t\t%f",opts->snr_init);
printf("\nsnr_max:\t\t%f",opts->snr_max);
printf("\nsnr_step:\t\t%f",opts->snr_step);
printf("\nnframes:\t\t%d",opts->nframes);
printf("\nextended_prefix_flag:\t%d",opts->extended_prefix_flag);
printf("\nframe_type:\t\t%d",opts->frame_type);
printf("\ntransmission_mode:\t%d",opts->transmission_mode);
printf("\nn_tx:\t\t\t%d",opts->n_tx);
printf("\nn_rx:\t\t\t%d",opts->n_rx);
printf("\nNid_cell:\t\t%d",opts->Nid_cell);
printf("\noversampling:\t\t%d",opts->oversampling);
printf("\nchannel_model:\t\t%d",opts->channel_model);
printf("\nchannel_modeli:\t\t%d",opts->channel_modeli);
printf("\nawgn_flag:\t\t%d",opts->awgn_flag);
printf("\nawgn_flagi:\t\t%d",opts->awgn_flagi);
printf("\nnInterf:\t\t%d",opts->nInterf);
printf("\nxx:%p",(void *)opts->outputFile);
for (i=0; i<opts->nInterf; i++) {
printf("\n\tInterference n%d:%f (%f)",i+1,opts->dbInterf[i],opts->probabilityInterf[i]);
}
printf("\n");
}
void _parseInterferenceProbability(options_t *opts, char *interfProbability,int nInterf)
{
int i;
char * pch;
opts->probabilityInterf=(double*)malloc(sizeof(double)*nInterf);
for (i=0; i<nInterf; i++) {
opts->probabilityInterf[i]=1.0;
}
if(opts->prob_flag) {
pch = strtok (interfProbability,",");
i=0;
while (pch != NULL) {
opts->probabilityInterf[i]=atof(pch);
i++;
pch = strtok (NULL,",");
}
}
}
void _parseInterferenceLevels(options_t *opts, char *interfLevels,int nInterf)
{
int i;
char * pch;
opts->dbInterf=(double*)malloc(sizeof(double)*nInterf);
for (i=0; i<nInterf; i++) {
opts->dbInterf[i]=0.0;
}
pch = strtok (interfLevels,",");
i=0;
while (pch != NULL) {
opts->dbInterf[i]=atof(pch);
i++;
pch = strtok (NULL,",");
}
}
void _allocData(options_t opts, data_t *data ,uint8_t n_tx,uint8_t n_rx, int Frame_length_complex_samples)
{
int i,j;
data->s_re = (double**)malloc(n_tx*sizeof(double*));
data->s_im = (double**)malloc(n_tx*sizeof(double*));
data->r_re = (double**)malloc(n_rx*sizeof(double*));
data->r_im = (double**)malloc(n_rx*sizeof(double*));
if(opts.nInterf>0) {
data->is_re=(double***)malloc(opts.nInterf*sizeof(double**));
data->is_im=(double***)malloc(opts.nInterf*sizeof(double**));
data->ir_re=(double***)malloc(opts.nInterf*sizeof(double**));
data->ir_im=(double***)malloc(opts.nInterf*sizeof(double**));
for(i=0; i<opts.nInterf; i++) {
data->is_re[i]=(double**)malloc(n_tx*sizeof(double*));
data->is_im[i]=(double**)malloc(n_tx*sizeof(double*));
data->ir_re[i]=(double**)malloc(n_rx*sizeof(double*));
data->ir_im[i]=(double**)malloc(n_rx*sizeof(double*));
}
}
for (i=0; i<n_tx; i++) {
data->s_re[i] =(double*)malloc(Frame_length_complex_samples*sizeof(double));
data->s_im[i] = (double*)malloc(Frame_length_complex_samples*sizeof(double));
bzero(data->s_re[i],Frame_length_complex_samples*sizeof(double));
bzero(data->s_im[i],Frame_length_complex_samples*sizeof(double));
for(j=0; j<opts.nInterf; j++) {
data->is_re[j][i] =(double*)malloc(Frame_length_complex_samples*sizeof(double));
data->is_im[j][i] = (double*)malloc(Frame_length_complex_samples*sizeof(double));
bzero(data->is_re[j][i],Frame_length_complex_samples*sizeof(double));
bzero(data->is_im[j][i],Frame_length_complex_samples*sizeof(double));
}
}
for (i=0; i<n_rx; i++) {
data->r_re[i] =(double*)malloc(Frame_length_complex_samples*sizeof(double));
data->r_im[i] = (double*)malloc(Frame_length_complex_samples*sizeof(double));
bzero(data->r_re[i],Frame_length_complex_samples*sizeof(double));
bzero(data->r_im[i],Frame_length_complex_samples*sizeof(double));
for(j=0; j<opts.nInterf; j++) {
data->ir_re[j][i] =(double*)malloc(Frame_length_complex_samples*sizeof(double));
data->ir_im[j][i] = (double*)malloc(Frame_length_complex_samples*sizeof(double));
bzero(data->ir_re[j][i],Frame_length_complex_samples*sizeof(double));
bzero(data->ir_im[j][i],Frame_length_complex_samples*sizeof(double));
}
}
}
void copyDataFixed(data_t * origin,data_t * destination,options_t *opts, int Frame_length_complex_samples)
{
int i,j;
int sizeData=4*opts->nInterf*sizeof(double**)+
(opts->nInterf+1)*2*(opts->n_tx+opts->n_rx)*(sizeof(double*)+Frame_length_complex_samples*sizeof(double));
printf("Copying sizeData: %d\n",sizeData);
opts->fixed_data_set=1;
}
void _makeOutputDir(options_t *opts)
{
int status;
char auxDir[100];
char auxFile[100];
FILE *controlFile;
status=mkdir ("testResults",S_IRWXU | S_IRWXG | S_IRWXO);
// status=chdir("testResults");
sprintf(auxDir,"%s",opts->folderName);
//status=mkdir(auxDir,S_IRWXU | S_IRWXG | S_IRWXO);
//status=chdir(auxDir);
sprintf(auxFile,"OutpuSimulation_%df_%dI_%sdB_%dch_%d.m",opts->nframes,opts->nInterf,opts->interfLevels,opts->channel_model,opts->testNumber);
sprintf(auxFile,"Bler_%d.m",opts->testNumber);
opts->outputFile =fopen(auxFile,"w");
sprintf(auxFile,"OutputBlerRound_%d.m",opts->testNumber);
opts->outputBler =fopen(auxFile,"w");
fprintf( opts->outputBler,"SNR; rate1;rate2; MCS; TBS; rate; err0; trials0; err1; trials1; err2; trials2; err3; trials3; dci_err; nprb1; nprb2\n");
sprintf(auxFile,"OutputBER_%d.m",opts->testNumber);
opts->outputBer =fopen(auxFile,"w");
sprintf(auxFile,"Throughput_%d.m",opts->testNumber);
opts->outputTrougput =fopen(auxFile,"w");
controlFile=fopen("ControlTest.txt","w");
fprintf(controlFile,"Parameters\n");
fprintf(controlFile,"./femtosim %s\n\n",opts->parameters);
fprintf(controlFile,"testNumber:\t\t\n",opts->testNumber);
fprintf(controlFile,"awgn_flag:\t\t%d\n",opts->awgn_flag);
fprintf(controlFile,"snr_init:\t\t%f\n",opts->snr_init);
fprintf(controlFile,"snr_max;\t\t%f\n",opts->snr_max);
fprintf(controlFile,"snr_step:\t\t%f\n",opts->snr_step);
fprintf(controlFile,"nframes:\t\t%d\n",opts->nframes);
fprintf(controlFile,"extended_prefix_flag:\t\t%d\n",opts->extended_prefix_flag);
fprintf(controlFile,"frame_type:\t\t%d\n",opts->frame_type);
fprintf(controlFile,"transmission_mode:\t\t%d\n",opts->transmission_mode);
fprintf(controlFile,"n_tx:\t\t%d\n",opts->n_tx);
fprintf(controlFile,"n_rx:\t\t%d\n",opts->n_rx);
fprintf(controlFile,"nInterf:\t\t%d\n",opts->nInterf);
fprintf(controlFile,"interfLevels:\t\t%s\n",opts->interfLevels);
fprintf(controlFile,"Nid_cell:\t\t%d\n",opts->Nid_cell);
fprintf(controlFile,"oversampling:\t\t%d\n",opts->oversampling);
fclose(controlFile);
}
void _parsePower(options_t *opts)
{
//printf("opts->power:%s\n",opts->power);
int i;
char * pch;
pch=strtok (opts->power,",");
if (pch != NULL) {
opts->p_a=atoi(pch);
pch=strtok (NULL,",");
opts->p_b=atoi(pch);
opts->d_offset=0;
/* pch=strtok (NULL,",");
opts->d_offset=atoi(pch); */
}
if(opts->p_a< 0 || opts->p_a>7) {
msg("Error -> PA (0...7) (dBm6, dBm477 ,dBm3 ,dBm177 ,dB0 ,dB1 ,dB2 ,dB3 )\n");
exit(1);
}
if(opts->p_b< 0 || opts->p_b>3) {
msg("Error -> PB (0...3)\n");
exit(1);
}
/* if(opts->d_offset< -6 || opts->d_offset>12)
{
msg("Error -> Offset (-6...12)\n");
exit(1);
}*/
}
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include "PHY/types.h"
#include "SIMULATION/TOOLS/defs.h"
#include <stdio.h>
#ifndef _FEMTO_UTILS
#define _FEMTO_UTILS
/*! \file SIMULATION/LTE_FEMTO/femtoUtils.h
* \brief Defines structure and function headers
* \author L. Garcia
* \date 2012
* \version 0.1
* \company Eurecom
* \note
* \warning
*/
///Top-level data Structure for general options of simulation and other global variables
typedef struct {
double snr_init;
double snr_max;
double snr_step;
int nframes;
int interf_count[8];
int fixed_channel_flag;
int fixed_data_set;
int extended_prefix_flag;
///Frame type (0 FDD, 1 TDD).
uint8_t frame_type;
///Transmission mode (1 for the moment)
uint8_t transmission_mode;
///Number of Transmit antennas in node.
uint8_t n_tx;
///Number of Receive antennas in node.
uint8_t n_rx;
///Number of interference to simulate
int nInterf;
///Array with interference level in dB
double *dbInterf;
double *probabilityInterf;
char interfLevels[150];
char interfProbability[150];
uint16_t Nid_cell;
uint16_t tdd_config;
uint8_t oversampling;
SCM_t channel_model;
SCM_t channel_modeli;
int awgn_flag;
int awgn_flagi;
int nsymb;
int num_layers;
uint16_t n_rnti;
///Modulation and code scheme
uint8_t mcs,mcs2;
uint8_t pilot1,pilot2,pilot3;
///Pointer to the output file SNRvsBLER
FILE *outputFile;
///Pointer to the output file errors and trials for each SNR
FILE *outputBler;
FILE *outputBer;
FILE *outputTrougput;
uint8_t num_rounds;
uint8_t fix_rounds;
uint8_t subframe;
// int eNB_id;
/// Amplitude of QPSK symbols
int16_t amp;
///1- Analysis of errors on DCI, 0- No analysis of errors in DCI
uint8_t dci_flag;
int testNumber;
char folderName[50];
char parameters[300];
int SIZE_TXDATAF;
int SIZE_TXDATA;
int SIZE_RXDATA;
int SIZE_RXDATAF;
uint16_t interCellId;
int n_adj_cells;
uint8_t dual_stream_UE;
int perfect_ce;
int common_flag;
int TPC;
uint8_t N_RB_DL;
int rballocset;
uint32_t DLSCH_RB_ALLOC;
PA_t p_a;
uint8_t p_b;
int8_t d_offset;
int ratio;
uint32_t nprb1, nprb2;
int prob_flag;
int search_prb2;
char power[50];
} options_t;
/// Store signal data
typedef struct {
double **s_re;
double **s_im;
double **r_re;
double **r_im;
double ***is_re;
double ***is_im;
double ***ir_re;
double ***ir_im;
} data_t;
/// Parses the command line options and assigns values ​​to pilots, num_symbols, etc. modified by the options selected
void _parseOptions(options_t *opts, int argc, char ** argv);
void _printOptions(options_t *opts);
/// Interference Levels are recivend in form num,num,num this function parse the string and fill dbInterf array
void _parseInterferenceLevels(options_t *opts, char *interfLevels,int nInterf);
void _parseInterferenceProbability(options_t *opts, char *interfLevels,int nInterf);
void _parsePower(options_t *opts);
/// Allocate memory for signal data arrays
void _allocData(options_t opts,data_t *data, uint8_t n_tx,uint8_t n_rx,int Frame_length_complex_samples);
void copyDataFixed(data_t *origin,data_t *destination,options_t *opts, int Frame_length_complex_samples);
/// Generate output dir with the prefix specified in testNumber
void _makeOutputDir(options_t *opts);
/// Initializes lte_frame_parms structure and make the structures of the eNB and EU involved in the simulation, including interference, if any.
LTE_DL_FRAME_PARMS* _lte_param_init(options_t opts);
/// Set defaults values for the simulations
void _initDefaults(options_t *opts);
/// Allocate and fill UL, CCCH and DLSCH structures
void _fill_Ul_CCCH_DLSCH_Alloc(options_t opts);
/// Allocate the eNB2UE structure for transmision and interference
void _generatesRandomChannel(options_t opts);
/** @brief This function allocates structures for a particular DLSCH at eNB.
*
* modifications will be required with more than 2 users
* It's used to generate the dci. they contain informations such as the modulation and coding scheme
* either if the transmit power control is required or not and so on...
* dlsch_eNB can suport 8 users.
* Create transport channel structures for 2 transport blocks (MIMO)
*/
void _allocDLSChannel(options_t opts);
void _generateDCI(options_t opts,DCI_ALLOC_t *dci_alloc,DCI_ALLOC_t *dci_alloc_rx);//,uint8_t **input_buffer);
uint32_t _allocRBs(options_t *opts, int ind);
void _freeMemory(data_t data,options_t opts);
void _makeSimulation(data_t data,options_t opts,DCI_ALLOC_t *dci_alloc,DCI_ALLOC_t *dci_alloc_rx,uint32_t *NB_RB2,LTE_DL_FRAME_PARMS *frame_parms,uint8_t num_pdcch_symbols);
void _printResults(uint32_t *errs,uint32_t *round_trials,uint32_t dci_errors,double rate);
void _printFileResults(double SNR, double rate1,double rate2 , double rate,uint32_t *errs,uint32_t *round_trials,uint32_t dci_errors,options_t opts,double BER);
void _initErrsRoundsTrials(uint32_t **errs,uint32_t **trials,int allocFlag,options_t opts);
void _fillData(options_t opts,data_t data,int numSubFrames);
void _applyNoise(options_t *opts,data_t data,double sigma2,double iqim,int numSubFrames);
uint8_t _generate_dci_top(int num_ue_spec_dci,int num_common_dci,DCI_ALLOC_t *dci_alloc,options_t opts,uint8_t num_pdcch_symbols);
void do_OFDM_mod(mod_sym_t **txdataF, int32_t **txdata, uint16_t next_slot, LTE_DL_FRAME_PARMS *frame_parms);
//void _apply_Multipath_Noise_Interference(options_t opts,data_t data,data_t data_fixed,double sigma2_dB,double sigma2,int numSubFrames);
void _apply_Multipath_Noise_Interference(options_t *opts,data_t data,double sigma2_dB,double sigma2,int numSubFrames,int round);
void _writeOuputOneFrame(options_t opts,uint32_t coded_bits_per_codeword,short *uncoded_ber_bit,uint32_t tbs);
void _dumpTransportBlockSegments(uint32_t C,uint32_t Cminus,uint32_t Kminus,uint32_t Kplus, uint8_t ** c_UE,uint8_t ** c_eNB);
void _applyInterference(options_t *opts,data_t data,double sigma2,double iqim,int numSubFrames,int round);
double compute_ber_soft(uint8_t* ref, int16_t* rec, int n);
void _fillPerfectChannelDescription(options_t opts,uint8_t l);
void _writeTxData(char *num,char *desc, int init, int numframes,options_t opts, int output,int senial);
#endif
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <execinfo.h>
#include <sys/stat.h>
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"
#include "OCG_vars.h"
#include "SCHED/defs.h"
#include "femtoUtils.h"
#include "UTIL/LOG/log.h"
#include "RadioResourceConfigCommonSIB.h"
#include "RadioResourceConfigDedicated.h"
#ifdef XFORMS
#include "forms.h"
#include "../../USERSPACE_TOOLS/SCOPE/lte_scope.h"
PHY/TOOLS/lte_phy_scope.h
#include "UTIL/LOG/vcd_signal_dumper.h" //TVT:Navid
void do_forms(FD_lte_scope *form, LTE_DL_FRAME_PARMS *frame_parms, short **channel,
short **channel_f, short **rx_sig, short **rx_sig_f, short *dlsch_comp,
short* dlsch_comp_i, short* dlsch_rho, short *dlsch_llr, int coded_bits_per_codeword);
#endif
double BW = 7.68; //TVT: 20MHz BW 7.68
#define N_RB 25 //TVT: 50 for 10MHz and 25 for 5 MHz 100 for 20MHz
#define UL_RB_ALLOC 0x1ff;
uint32_t DLSCH_RB_ALLOC = 0x1fff; // TVT: 0x1fff for 5MHz 0x1ffffff for 20MHz
uint32_t DLSCH_RB_ALLOC2[4]; //TVT: RB_ALLOC per round
#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,0,2)
PHY_VARS_eNB *PHY_vars_eNB;
PHY_VARS_UE *PHY_vars_UE;
PHY_VARS_eNB **interf_PHY_vars_eNB;
channel_desc_t *eNB2UE;
channel_desc_t **interf_eNB2UE;
DCI1_5MHz_TDD_t DLSCH_alloc_pdu2_1; // DCI format 1 for BW MHz
uint64_t DLSCH_alloc_pdu_1;
LTE_DL_FRAME_PARMS *frame_parms; //WARNING if you don't put this variable, some functions don't work
int WRITE_FILES =1;
int NOISE=1;
int x=0;
int totErrors=0;
int totBits=0;
#ifdef XFORMS
FD_lte_scope *form;
char title[255];
#endif
int main(int argc,char **argv)
{
options_t opts;
data_t data;
uint16_t NB_RB;
uint32_t NB_RB2[4];
uint8_t num_pdcch_symbols=1;
DCI_ALLOC_t dci_alloc[8],dci_alloc_rx[8];
//Init LOG
logInit();
//VCD_SIGNAL_DUMPER_INIT();
set_comp_log(PHY,LOG_DEBUG,LOG_LOW,1);
//Parse options
_initDefaults(&opts);
_parseOptions(&opts,argc,argv);
_printOptions(&opts);
_makeOutputDir(&opts);
//Init Lte Params
frame_parms=_lte_param_init(opts);
/*printf("frame_parms.pdsch_config_common.p_b:%d\n",frame_parms->pdsch_config_common.p_b);
printf("PHY_vars_UE->pdsch_config_dedicated.p_a:%d\n",PHY_vars_UE->pdsch_config_dedicated[0].p_a);
printf("PHY_vars_eNB->pdsch_config_dedicated.p_a:%d\n",PHY_vars_eNB->pdsch_config_dedicated[0].p_a);
printf("PHY_vars_UE->cqi_report_config.nomPDSCH_RS_EPRE_Offset:%d\n",PHY_vars_UE->cqi_report_config[0].nomPDSCH_RS_EPRE_Offset);
printf("PHY_vars_eNB->cqi_report_config.nomPDSCH_RS_EPRE_Offset:%d\n",PHY_vars_eNB->cqi_report_config[0].nomPDSCH_RS_EPRE_Offset);
*/
opts.SIZE_TXDATAF=FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX;
opts.SIZE_TXDATA=FRAME_LENGTH_COMPLEX_SAMPLES;
opts.SIZE_RXDATAF= (2*(frame_parms->ofdm_symbol_size*opts.nsymb));
opts.SIZE_RXDATA=FRAME_LENGTH_COMPLEX_SAMPLES;
printf("Size txdataF:\t%d \tsymbols x 512 subcarriers = %d OFDBM symbols\n",opts.SIZE_TXDATAF/512,opts.SIZE_TXDATAF);
printf("Size txdata: \t%d \tsamples x frame\n",opts.SIZE_TXDATA);
printf("Size rxdataF:\t%d \tsymbols x 512 subcarriers = %d OFDM symbols just 2 subframes\n", opts.SIZE_RXDATAF/512, opts.SIZE_RXDATAF);
printf("Size rxdata: \t%d \tsamples x frame\n",opts.SIZE_RXDATA);
//****************************************************
if (opts.common_flag == 0) {
switch (opts.N_RB_DL) {
case 6:
if (opts.rballocset==0) {
DLSCH_RB_ALLOC = 0x3f;
}
BW = 1.25;
num_pdcch_symbols = 4;
break;
case 25:
if (opts.rballocset==0) {
DLSCH_RB_ALLOC2[0]=_allocRBs(&opts,0);
DLSCH_RB_ALLOC2[1]= _allocRBs(&opts,1);
}
//DLSCH_RB_ALLOC2[0] = 0x1f80;
//DLSCH_RB_ALLOC2[1] = 0x7f;}
BW = 7.68;
break;
case 50:
if (opts.rballocset==0) {
//DLSCH_RB_ALLOC = 0x1ffff;
DLSCH_RB_ALLOC2[0] = 0x1fe00;
DLSCH_RB_ALLOC2[1] = 0x1ff;
}
BW = 10.00;
break;
case 100:
if (opts.rballocset==0) {
//DLSCH_RB_ALLOC = 0x1ffffff;
DLSCH_RB_ALLOC2[0] = 0x1ffe000;
DLSCH_RB_ALLOC2[1] = 0x1fff;
}
BW = 20.00;
break;
}
DLSCH_RB_ALLOC2[2]=DLSCH_RB_ALLOC2[0];
DLSCH_RB_ALLOC2[3]=DLSCH_RB_ALLOC2[1];
NB_RB2[0]=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC2[0],opts.N_RB_DL);
NB_RB2[1]=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC2[1],opts.N_RB_DL);
NB_RB2[2]=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC2[2],opts.N_RB_DL);
NB_RB2[3]=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC2[3],opts.N_RB_DL);
//NB_RB=conv_nprb(0,DLSCH_RB_ALLOC,opts.N_RB_DL);
} else
NB_RB = 4;
NB_RB2[0]=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC2[0],opts.N_RB_DL);
NB_RB2[1]=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC2[1],opts.N_RB_DL);
NB_RB2[2]=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC2[2],opts.N_RB_DL);
NB_RB2[3]=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC2[3],opts.N_RB_DL);
NB_RB=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC,opts.N_RB_DL);
//****************************************************
#ifdef XFORMS
fl_initialize (&argc, argv, NULL, 0, 0);
form = create_form_lte_scope();
sprintf (title, "LTE DLSIM SCOPE");
fl_show_form (form->lte_scope, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
#endif
_allocData(opts,&data,opts.n_tx,opts.n_rx,FRAME_LENGTH_COMPLEX_SAMPLES);
_fill_Ul_CCCH_DLSCH_Alloc(opts);
_generatesRandomChannel(opts);
_allocDLSChannel(opts); // ??
_generateDCI(opts,dci_alloc,dci_alloc_rx);
fprintf(opts.outputFile,"s%d=[",opts.testNumber);
fprintf(opts.outputBer,"b%d=[",opts.testNumber);
fprintf(opts.outputTrougput,"t%d=[",opts.testNumber);
_makeSimulation(data,opts,dci_alloc,dci_alloc_rx,NB_RB2,frame_parms,num_pdcch_symbols);
_freeMemory(data,opts);
fprintf(opts.outputFile,"];\n");
fprintf(opts.outputBer,"];\n");
fprintf(opts.outputTrougput,"];\n");
fclose(opts.outputFile);
fclose(opts.outputBler);
fclose(opts.outputBer);
fclose(opts.outputTrougput);
return 0;
}
void _initDefaults(options_t *opts)
{
opts->snr_init =0;
opts->snr_max=20;
opts->snr_step=0.1;
opts->nframes=1;
opts->nsymb=14;
opts->frame_type=1; //1 FDD
opts->transmission_mode=1; //
opts->n_tx=1;
opts->n_rx=1;
opts->nInterf=0;
opts->Nid_cell=0;
opts->oversampling=1;
opts->channel_model=Rayleigh1;
opts->channel_modeli=Rayleigh1;
opts->dbInterf=NULL;
opts->awgn_flag=0;
opts->awgn_flagi=0;
opts->common_flag=0;
opts->TPC=0;
opts->n_rnti=0x1234; //Ratio Network Temporary Identifiers
opts->mcs=0;
opts->nprb2=25;
opts->search_prb2=0;
opts->extended_prefix_flag=0; //false
opts->nsymb=14; // Prefix normal
opts->pilot1 = 4;
opts->pilot2 = 7;
opts->pilot3 = 11;
opts->num_rounds=4;
opts->fix_rounds=0;
opts->subframe=7;
opts->amp=AMP; //1024
opts->dci_flag=0;
opts->N_RB_DL=25;
opts->rballocset=0;
opts->DLSCH_RB_ALLOC = 0x1fff;
opts->ratio=1;
opts->prob_flag=0;
opts->testNumber=0;
sprintf(opts->interfLevels," ");
opts->n_adj_cells=0;
opts->dual_stream_UE = 0;
opts->perfect_ce=0;
opts->p_b=0;
opts->p_a=dB0; // To be 0 need
opts->d_offset=0;
}
LTE_DL_FRAME_PARMS* _lte_param_init(options_t opts)
{
int i;
printf("Start lte_param_init\n");
PHY_vars_eNB = malloc(sizeof(PHY_VARS_eNB));
PHY_vars_UE = malloc(sizeof(PHY_VARS_UE));
mac_xface = malloc(sizeof(MAC_xface));
LTE_DL_FRAME_PARMS *lte_frame_parms = &(PHY_vars_eNB->lte_frame_parms);
lte_frame_parms->N_RB_DL = opts.N_RB_DL;
lte_frame_parms->N_RB_UL = opts.N_RB_DL;
lte_frame_parms->Ncp = opts.extended_prefix_flag;
lte_frame_parms->Nid_cell = opts.Nid_cell;
lte_frame_parms->nushift = (opts.Nid_cell)%6;
lte_frame_parms->nb_antennas_tx = opts.n_tx;
lte_frame_parms->nb_antennas_rx = opts.n_rx;
lte_frame_parms->nb_antennas_tx_eNB = opts.n_tx;
lte_frame_parms->phich_config_common.phich_resource = oneSixth; //TODO Why??
lte_frame_parms->tdd_config = 3;
lte_frame_parms->frame_type = opts.frame_type;
lte_frame_parms->mode1_flag = (opts.transmission_mode == 1)? 1 : 0;
srand(1);
randominit(0);
set_taus_seed(0);
init_frame_parms(lte_frame_parms,opts.oversampling);
phy_init_top(lte_frame_parms);
//para que se usan estos ??
lte_frame_parms->twiddle_fft = twiddle_fft;
lte_frame_parms->twiddle_ifft = twiddle_ifft;
lte_frame_parms->rev = rev;
PHY_vars_UE->is_secondary_ue = 0;
PHY_vars_UE->lte_frame_parms = *lte_frame_parms;
PHY_vars_eNB->lte_frame_parms = *lte_frame_parms;
phy_init_lte_top(lte_frame_parms);
dump_frame_parms(lte_frame_parms); //print
//set number of adjacent cell for channel estimation
PHY_vars_UE->PHY_measurements.n_adj_cells=opts.n_adj_cells;
//Init de Cell Id of adjacent cells to estimate
for(i=1; i<=opts.n_adj_cells; i++) {
PHY_vars_UE->PHY_measurements.adj_cell_id[i-1] = (opts.Nid_cell+i)%6;
}
for (i=0; i<3; i++)
lte_gold(lte_frame_parms,PHY_vars_UE->lte_gold_table[i],opts.Nid_cell+i);
phy_init_lte_ue(PHY_vars_UE,2,0);
phy_init_lte_eNB(PHY_vars_eNB,0,0,0);
// Set p_a and p_b
PHY_vars_eNB->lte_frame_parms.pdsch_config_common.p_b=opts.p_b;
PHY_vars_eNB->pdsch_config_dedicated->p_a=opts.p_a;
PHY_vars_UE->lte_frame_parms.pdsch_config_common.p_b=opts.p_b;
PHY_vars_UE->pdsch_config_dedicated->p_a=opts.p_a;
PHY_vars_UE->n_connected_eNB=2;
//Init interference nodes
interf_PHY_vars_eNB=null;
if (opts.nInterf>0) {
interf_PHY_vars_eNB = (PHY_VARS_eNB **)malloc(opts.nInterf*sizeof(PHY_VARS_eNB *));
for (i=0; i<opts.nInterf; i++) {
interf_PHY_vars_eNB[i]=malloc(sizeof(PHY_VARS_eNB));
memcpy(&interf_PHY_vars_eNB[i]->lte_frame_parms,lte_frame_parms,sizeof(LTE_DL_FRAME_PARMS));
interf_PHY_vars_eNB[i]->lte_frame_parms.Nid_cell=opts.Nid_cell+i+1;
interf_PHY_vars_eNB[i]->lte_frame_parms.nushift=(opts.Nid_cell+i+1)%6;
//printf("NRB: %d\n", interf_PHY_vars_eNB[i]->lte_frame_parms.N_RB_DL);
interf_PHY_vars_eNB[i]->Mod_id=i+1;
phy_init_lte_eNB(interf_PHY_vars_eNB[i],0,0,0);
interf_PHY_vars_eNB[i]->lte_frame_parms.pdsch_config_common.p_b=opts.p_b;
interf_PHY_vars_eNB[i]->pdsch_config_dedicated->p_a=opts.p_a;
}
}
// DL power control init
/*pdsch_config_dedicated->p_a = opts.p_a; // 4 = 0dB
pdsch_config_common->p_b = opts.p_b;*/
printf("Done lte_param_init\n");
return &PHY_vars_eNB->lte_frame_parms;
}
void _fill_Ul_CCCH_DLSCH_Alloc(options_t opts)
{
PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = opts.n_rnti;
UL_alloc_pdu.type = 0;
UL_alloc_pdu.hopping = 0;
UL_alloc_pdu.rballoc = UL_RB_ALLOC;
UL_alloc_pdu.mcs = 1;
UL_alloc_pdu.ndi = 1;
UL_alloc_pdu.TPC = 0;
UL_alloc_pdu.cqi_req = 1;
CCCH_alloc_pdu.type = 0;
CCCH_alloc_pdu.vrb_type = 0;
CCCH_alloc_pdu.rballoc = CCCH_RB_ALLOC;
CCCH_alloc_pdu.ndi = 1;
CCCH_alloc_pdu.mcs = 1;
CCCH_alloc_pdu.harq_pid = 0;
DLSCH_alloc_pdu2_1.rah = 0;
DLSCH_alloc_pdu2_1.rballoc = DLSCH_RB_ALLOC;
DLSCH_alloc_pdu2_1.TPC = 0;
DLSCH_alloc_pdu2_1.dai = 0;
DLSCH_alloc_pdu2_1.harq_pid = 0;
//DLSCH_alloc_pdu2_1E.tb_swap = 0;
DLSCH_alloc_pdu2_1.mcs = opts.mcs;
DLSCH_alloc_pdu2_1.ndi = 1;
DLSCH_alloc_pdu2_1.rv = 0;
// Forget second codeword
//TVT: is this needed? DLSCH_alloc_pdu2_1.tpmi = (opts.transmission_mode>=5 ? 5 : 0); // precoding
//TVT: is this needed? DLSCH_alloc_pdu2_1.dl_power_off = (opts.transmission_mode==5 ? 0 : 1);
}
void _generatesRandomChannel(options_t opts)
{
int i;
eNB2UE = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
PHY_vars_UE->lte_frame_parms.nb_antennas_rx,
opts.channel_model,
BW,0.0,0,0);
if (eNB2UE==NULL) {
msg("Problem generating channel model. Exiting.\n");
exit(-1);
}
//Channel of interferents
interf_eNB2UE=malloc(opts.nInterf*sizeof(channel_desc_t));
for(i=0; i<opts.nInterf; i++) {
interf_eNB2UE[i]=new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
PHY_vars_UE->lte_frame_parms.nb_antennas_rx,
opts.channel_modeli,BW,0,0,0);
if (interf_eNB2UE[i]==NULL) {
msg("Problem generating channel model. For interferent %d Exiting.\n",i+1);
exit(-1);
}
}
}
void _allocDLSChannel(options_t opts)
{
int i,j;
for (i=0; i<2; i++) {
//eNB
PHY_vars_eNB->dlsch_eNB[0][i] = new_eNB_dlsch(1,8,opts.N_RB_DL,0);
PHY_vars_eNB->dlsch_eNB[0][i]->dl_power_off =1;
if (!PHY_vars_eNB->dlsch_eNB[0][i]) {
printf("Can't get eNB dlsch structures\n");
exit(-1);
}
PHY_vars_eNB->dlsch_eNB[0][i]->rnti = opts.n_rnti;
//computeRhoA_eNB(PHY_vars_eNB->pdsch_config_dedicated,PHY_vars_eNB->dlsch_eNB[0][i]);
// computeRhoB_eNB(PHY_vars_eNB->pdsch_config_dedicated,&PHY_vars_eNB->lte_frame_parms.pdsch_config_common,PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,PHY_vars_eNB->dlsch_eNB[0][i]);
for(j=0; j<opts.nInterf; j++) {
interf_PHY_vars_eNB[j]->dlsch_eNB[0][i]=new_eNB_dlsch(1,8,opts.N_RB_DL,0);
interf_PHY_vars_eNB[j]->dlsch_eNB[0][i]->dl_power_off =1;
if (!interf_PHY_vars_eNB[j]->dlsch_eNB[0][i]) {
printf("Can't get interferer eNB dlsch structures\n");
exit(-1);
}
interf_PHY_vars_eNB[j]->dlsch_eNB[0][i]->rnti = opts.n_rnti;
// computeRhoA_eNB(interf_PHY_vars_eNB[j]->pdsch_config_dedicated,interf_PHY_vars_eNB[j]->dlsch_eNB[0][i]);
// computeRhoB_eNB(interf_PHY_vars_eNB[j]->pdsch_config_dedicated,&interf_PHY_vars_eNB[j]->lte_frame_parms.pdsch_config_common,interf_PHY_vars_eNB[j]->lte_frame_parms.nb_antennas_tx,interf_PHY_vars_eNB[j]->dlsch_eNB[0][i]);
}
//UE
PHY_vars_UE->dlsch_ue[0][i] = new_ue_dlsch(1,8,MAX_TURBO_ITERATIONS,opts.N_RB_DL,0);
// PHY_vars_UE->dlsch_ue[0][i] = new_ue_dlsch(1,8,MAX_TURBO_ITERATIONS,0);
if (!PHY_vars_UE->dlsch_ue[0][i]) {
printf("Can't get ue dlsch structures\n");
exit(-1);
}
PHY_vars_UE->dlsch_ue[0][i]->rnti = opts.n_rnti;
// computeRhoA_UE(PHY_vars_UE->pdsch_config_dedicated,PHY_vars_UE->dlsch_ue[0][i]);
// computeRhoB_UE(PHY_vars_UE->pdsch_config_dedicated,&PHY_vars_UE->lte_frame_parms.pdsch_config_common,PHY_vars_UE->lte_frame_parms.nb_antennas_tx,PHY_vars_UE->dlsch_ue[0][i]);
}
//TVT: this is for DCI format 1B,D and 2 ----------------------
//if (DLSCH_alloc_pdu2_1.tpmi == 5)
//PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff);//DL PMI Single Stream. (precoding matrix indicator)
//else
//PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = 0;
// compute_sqrt_RhoAoRhoB( PHY_vars_eNB->pdsch_config_dedicated,
// &PHY_vars_eNB->lte_frame_parms.pdsch_config_common,opts.n_tx,PHY_vars_UE->dlsch_ue[0][0]);
//---------------------------------
}
void _generateDCI(options_t opts,DCI_ALLOC_t *dci_alloc,DCI_ALLOC_t *dci_alloc_rx)
{
int num_dci = 0,i;
int dci_length_bytes=0,dci_length=0;
// UE specific DCI
//*******************************************************
if (opts.common_flag == 0) {
if (PHY_vars_eNB->lte_frame_parms.frame_type == TDD) {
switch (PHY_vars_eNB->lte_frame_parms.N_RB_DL) {
case 6:
dci_length = sizeof_DCI1_1_5MHz_TDD_t;
dci_length_bytes = sizeof(DCI1_1_5MHz_TDD_t);
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rah = 0;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->TPC = 0;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->dai = 0;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->harq_pid = 0;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
break;
case 25:
dci_length = sizeof_DCI1_5MHz_TDD_t;
dci_length_bytes = sizeof(DCI1_5MHz_TDD_t);
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rah = 0;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->TPC = 0;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->dai = 0;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->harq_pid = 0;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
break;
case 50:
dci_length = sizeof_DCI1_10MHz_TDD_t;
dci_length_bytes = sizeof(DCI1_10MHz_TDD_t);
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rah = 0;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->TPC = 0;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->dai = 0;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->harq_pid = 0;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
break;
case 100:
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rah = 0;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->TPC = 0;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->dai = 0;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->harq_pid = 0;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
dci_length = sizeof_DCI1_20MHz_TDD_t;
dci_length_bytes = sizeof(DCI1_20MHz_TDD_t);
break;
}
} else {
switch (PHY_vars_eNB->lte_frame_parms.N_RB_DL) {
case 6:
dci_length = sizeof_DCI1_1_5MHz_FDD_t;
dci_length_bytes = sizeof(DCI1_1_5MHz_FDD_t);
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rah = 0;
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC;
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->TPC = 0;
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->harq_pid = 0;
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
break;
case 25:
dci_length = sizeof_DCI1_5MHz_FDD_t;
dci_length_bytes = sizeof(DCI1_5MHz_FDD_t);
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rah = 0;
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC;
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->TPC = 0;
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->harq_pid = 0;
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
break;
case 50:
dci_length = sizeof_DCI1_10MHz_FDD_t;
dci_length_bytes = sizeof(DCI1_10MHz_FDD_t);
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rah = 0;
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC;
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->TPC = 0;
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->harq_pid = 0;
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
break;
case 100:
dci_length = sizeof_DCI1_20MHz_FDD_t;
dci_length_bytes = sizeof(DCI1_20MHz_FDD_t);
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rah = 0;
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC;
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->TPC = 0;
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->harq_pid = 0;
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
break;
}
}
//*******************************************************
memcpy(&dci_alloc[num_dci].dci_pdu[0],&DLSCH_alloc_pdu_1,dci_length_bytes);
dci_alloc[num_dci].dci_length = dci_length;
dci_alloc[num_dci].L = 2;
dci_alloc[num_dci].rnti = opts.n_rnti;
dci_alloc[num_dci].nCCE = 0;
dci_alloc[num_dci].format = format1;//TVT: E_2A_M10PRB; for format 1 instead of 1E
}
generate_eNB_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu_1,
opts.n_rnti,
format1,//TVT:E_2A_M10PRB,
PHY_vars_eNB->dlsch_eNB[0],
&PHY_vars_eNB->lte_frame_parms, PHY_vars_eNB->pdsch_config_dedicated,
SI_RNTI,
0,
P_RNTI,
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single);
for(i=0; i<opts.nInterf; i++) {
generate_eNB_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu_1,
opts.n_rnti,
format1,//TVT: E_2A_M10PRB,
interf_PHY_vars_eNB[i]->dlsch_eNB[0],
&(interf_PHY_vars_eNB[i])->lte_frame_parms, PHY_vars_eNB->pdsch_config_dedicated,
SI_RNTI,
0,
P_RNTI,
interf_PHY_vars_eNB[i]->eNB_UE_stats[0].DL_pmi_single);
}
}
void _freeMemory(data_t data,options_t opts)
{
int i;
printf("Freeing channel I/O\n");
for (i=0; i<opts.n_tx; i++) {
free(data.s_re[i]);
free(data.s_im[i]);
free(data.r_re[i]);
free(data.r_im[i]);
}
free(data.s_re);
free(data.s_im);
free(data.r_re);
free(data.r_im);
printf("Freeing dlsch structures\n");
for (i=0; i<2; i++) {
printf("eNB %d\n",i);
free_eNB_dlsch(PHY_vars_eNB->dlsch_eNB[0][i]);
printf("UE %d\n",i);
free_ue_dlsch(PHY_vars_UE->dlsch_ue[0][i]);
}
}
void _printResults(uint32_t *errs,uint32_t *round_trials,uint32_t dci_errors,double rate)
{
printf("\tErrors/trials (%d/%d, %d/%d ,%d/%d ,%d/%d) Pe = (%e,%e,%e,%e) \n\tdci_errors %d/%d, Pe = %e \n\teffective rate \t%f (%f) \n\tnormalized delay\t %f (%f)\n",
errs[0],
round_trials[0],
errs[1],
round_trials[1],
errs[2],
round_trials[2],
errs[3],
round_trials[3],
(double)errs[0]/(round_trials[0]),
(double)errs[1]/(round_trials[0]+round_trials[1]),
(double)errs[2]/(round_trials[0]+round_trials[1]+round_trials[2]),
(double)errs[3]/(round_trials[0]+round_trials[1]+round_trials[2]+round_trials[3]),
dci_errors,
round_trials[0],
(double)dci_errors/(round_trials[0]),
rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])),
rate,
(1.0*(round_trials[0]-errs[0])+2.0*(round_trials[1]-errs[1])+3.0*(round_trials[2]-errs[2])+4.0*(round_trials[3]-errs[3]))/((double)round_trials[0])/
(double)PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
(1.0*(round_trials[0]-errs[0])+2.0*(round_trials[1]-errs[1])+3.0*(round_trials[2]-errs[2])+4.0*(round_trials[3]-errs[3]))/((double)round_trials[0]));
}
void _printFileResults(double SNR,double rate1, double rate2, double rate,uint32_t *errs,uint32_t *round_trials,uint32_t dci_errors,options_t opts,double BER)
{
double pout1=0.0,pout2=0.0,spec_eff;
fprintf(opts.outputFile,"%f %f;\n", SNR, (float)errs[0]/round_trials[0]);
pout1=(double)errs[0]/(round_trials[0]);
pout2=(double)errs[1]/(round_trials[1]);
spec_eff=((1-pout1)*rate1)+(pout1*(1-pout2)*rate2);
fprintf(opts.outputBler,"%f;%f;%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d;%d;%d;%d;%f\n",
SNR,
rate1,
rate2,
opts.mcs,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
rate,
errs[0],
round_trials[0],
errs[1],
round_trials[1],
errs[2],
round_trials[2],
errs[3],
round_trials[3],
dci_errors,
opts.nprb1,
opts.nprb2,
spec_eff);
fprintf(opts.outputBer,"%f %f;\n",SNR, BER);
}
void _initErrsRoundsTrials(uint32_t **errs,uint32_t **trials,int allocFlag,options_t opts)
{
int i=0;
if (allocFlag==1) {
*errs=(uint32_t*)malloc(4*sizeof(uint32_t));
*trials=(uint32_t*)malloc(4*sizeof(uint32_t));
}
for (i=0; i<4; i++) {
(*errs)[i]=0;
(*trials)[i]=0;
}
}
void _fillData(options_t opts,data_t data,int numSubFrames)
{
uint32_t aux=2*opts.subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti;
int i,aa,j;
//Copy numframes
for (i=0; i<numSubFrames*frame_parms->samples_per_tti; i++) { // Size of one subframe * numframes
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
data.s_re[aa][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[0][aa]))[aux + (i<<1)]);
data.s_im[aa][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[0][aa]))[aux +(i<<1)+1]);
for(j=0; j<opts.nInterf; j++) {
data.is_re[j][aa][i] = ((double)(((short *)interf_PHY_vars_eNB[j]->lte_eNB_common_vars.txdata[0][aa]))[aux + (i<<1)]);
data.is_im[j][aa][i] = ((double)(((short *)interf_PHY_vars_eNB[j]->lte_eNB_common_vars.txdata[0][aa]))[aux +(i<<1)+1]);
}
}
}
}
void _applyInterference(options_t *opts,data_t data,double sigma2,double iqim,int numSubFrames,int round)
{
int i,aa,j,Intf[opts->nInterf];
if(opts->nInterf<=0)
return;
for(j=0; j<opts->nInterf; j++) {
if(opts->probabilityInterf[j]>((double)rand() / (double)RAND_MAX) ) {
if(j==0) {
opts->interf_count[round]++;
//printf("round: %d, counter:%d \n",round,opts->interf_count[round]);
}
Intf[j]=1;
} else
Intf[j]=0;
}
for (i=0; i<numSubFrames*frame_parms->samples_per_tti; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
for(j=0; j<opts->nInterf; j++) {
//prob_flag=1 means that interference is active with a probability of opts->probabilityInterf[i]
if(opts->prob_flag) {
//printf("\n interf probability: %f",opts.probabilityInterf[j]);
if(Intf[j]==1) {
data.r_re[aa][i] += (pow(10.0,.05*opts->dbInterf[j])*data.ir_re[j][aa][i]);
data.r_im[aa][i] += (pow(10.0,.05*opts->dbInterf[j])*data.ir_im[j][aa][i]);
}
} else {
//printf("caso anterior \n");
data.r_re[aa][i] += (pow(10.0,.05*opts->dbInterf[j])*data.ir_re[j][aa][i]);
data.r_im[aa][i] += (pow(10.0,.05*opts->dbInterf[j])*data.ir_im[j][aa][i]);
}
//printf("no aplica interf \n");
}
}
}
}
void _applyNoise(options_t *opts, data_t data,double sigma2,double iqim,int numSubFrames)
{
uint32_t aux=2*opts->subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti;
// printf("\naux:%d\n",aux);
int i,aa;
for (i=0; i<numSubFrames*frame_parms->samples_per_tti; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
if( NOISE) {
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(aux)+2*i] = (short) (data.r_re[aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(aux)+2*i+1] = (short) (data.r_im[aa][i] + (iqim*data.r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
} else {
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(aux)+2*i] = (short) (data.r_re[aa][i]);
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(aux)+2*i+1] = (short) (data.r_im[aa][i]) ;
}
}
}
}
uint8_t _generate_dci_top(int num_ue_spec_dci,int num_common_dci,DCI_ALLOC_t *dci_alloc,options_t opts,uint8_t num_pdcch_symbols)
{
uint8_t num_pdcch_symbols_2=0,aux=0;
int i;
//TODO: We apply rho_b to DCI information because we part that in this simulation we
//use just the first symbol, but in other simulation that use more than one, it's necesary
//change the function to apply rho_b or rho_a in the correct symbol
//This routine codes an set of DCI PDUs and performs PDCCH modulation, interleaving and mapping.
num_pdcch_symbols_2= generate_dci_top(num_ue_spec_dci,
num_common_dci,
dci_alloc,
0,
1024,//(int16_t)(((int32_t)AMP*PHY_vars_eNB->dlsch_eNB[0][0]->sqrt_rho_b)>>13),
&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.Nid_cell],
opts.subframe);
//
//printf("num_pdcch_symbols %d , num_pdcch_symbols_2 %d=> ",num_pdcch_symbols,num_pdcch_symbols_2);
if (num_pdcch_symbols_2 > num_pdcch_symbols) {
msg("Error: given num_pdcch_symbols not big enough\n");
exit(-1);
}
for(i=0; i<opts.nInterf; i++) {
aux=generate_dci_top(num_ue_spec_dci,
num_common_dci,
dci_alloc,
0,
0,//(int16_t)(((int32_t)AMP*PHY_vars_eNB->dlsch_eNB[0][0]->sqrt_rho_b)>>13),
&PHY_vars_eNB->lte_frame_parms,
interf_PHY_vars_eNB[i]->lte_eNB_common_vars.txdataF[0],
opts.subframe);
if (aux > num_pdcch_symbols) {
msg("Error: given num_pdcch_symbols not big enough ...interferer %d\n",i);
exit(-1);
}
}
return num_pdcch_symbols_2;
}
uint32_t _allocRBs(options_t *opts,int ind)
{
static uint32_t allocRB;
static uint32_t allocRBs[25]= {1,2,3,6,7,14,15,30,31,62,63,126,127,254,255,510,511,1022,1023,2046,2047,4094,4095,8190,8191};
switch (opts->N_RB_DL) {
case 6:
break;
case 25: //search_prb2 is a flag that means nprb2 will be optimized
if (opts->search_prb2) {
switch(ind) {
case 0:
case 2:
case 4:
case 6:
allocRB=allocRBs[opts->nprb1-1];
//printf("nprb1: %d, mcs: %d, allocRB: %X\n",opts->nprb1,opts->mcs,allocRB);
break;
case 1:
case 3:
case 5:
case 7:
allocRB=allocRBs[opts->nprb2-1];
opts->mcs2=29;
//printf("nprb2: %d, mcs: %d, allocRB: %X\n",opts->nprb2,opts->mcs,allocRB);
break;
}
} else {
switch (opts->ratio) {
case 1: // # of dimensions per round: 13/12
if (ind==0) {
allocRB=0x7f;
opts->mcs=4;
} else {
allocRB=0x1f80;
opts->mcs2=opts->mcs;
}
break;
case 2: // 12/13
if (ind==0) {
allocRB=0x1f80;
opts->mcs=5;
} else {
allocRB=0x7f;
opts->mcs2=opts->mcs;
}
break;
case 3: // 10/15
if (ind==0) {
allocRB=0x1f00;
opts->mcs=6;
} else {
allocRB=0xff;
opts->mcs2=opts->mcs;
}
break;
case 4: // 8/17
if (ind==0) {
allocRB=0x1e00;
opts->mcs=7;
} else {
allocRB=0x1ff;
opts->mcs2=opts->mcs;
}
break;
case 5: // 6/19
if (ind==0) {
allocRB=0x1c00;
opts->mcs=11;
} else {
allocRB=0x3ff;
opts->mcs2=opts->mcs;
}
break;
case 6: // 4/21
if (ind==0) {
allocRB=0x1800;
opts->mcs=14;
} else {
allocRB=0x7ff;
opts->mcs2=opts->mcs;
}
break;
case 7: // 2/23
if (ind==0) {
allocRB=0x1000;
opts->mcs=23;
} else {
allocRB=0xfff;
opts->mcs2=opts->mcs;
}
break;
case 8: // 15/10
if (ind==0) {
allocRB=0xff;
opts->mcs=4;
} else {
allocRB=0x1f00;
opts->mcs2=opts->mcs;
}
break;
case 9: // 17/8
if (ind==0) {
allocRB=0x1ff;
opts->mcs=3;
} else {
allocRB=0x1e00;
opts->mcs2=opts->mcs;
}
break;
case 91: // 2/23 force the 2nd round with QPSK and llrclear
if (ind==0) {
allocRB=0x1000;
opts->mcs=23;
} else {
allocRB=0xfff;
opts->mcs2=29;
}
break;
case 92: // 6/19 force the 2nd round with QPSK
if (ind==0) {
allocRB=0x1c00;
opts->mcs=11;
} else {
allocRB=0x3ff;
opts->mcs2=29;
}
break;
case 93: // 4/21 force the 2nd round with QPSK
if (ind==0) {
allocRB=0x1800;
opts->mcs=14;
} else {
allocRB=0x7ff;
opts->mcs2=29;
}
break;
case 94: // 2/23 force the 2nd round with 16QAM
if (ind==0) {
allocRB=0x1000;
opts->mcs=23;
} else {
allocRB=0xfff;
opts->mcs2=30;
}
break;
case 10: // 19/6
if (ind==0) {
allocRB=0x3ff;
opts->mcs=3;
} else {
allocRB=0x1c00;
opts->mcs2=opts->mcs;
}
break;
case 11: // 21/4
if (ind==0) {
allocRB=0x7ff;
opts->mcs=2;
} else {
allocRB=0x1800;
opts->mcs2=opts->mcs;
}
break;
case 12: // 5/25
if (ind==0) {
allocRB=0x1801;
opts->mcs=12;
} else {
allocRB=0x7fe;
opts->mcs2=opts->mcs;
}
break;
default:
allocRB = 0x1fff;
opts->mcs=0;
break;
}
}
break;
case 50:
break;
case 100:
break;
}
return allocRB;
}
void _get_nprb1(options_t *opts)
{
static uint32_t nprb1[28]= {25,23,18,14,12,10,8,7,6,6,6,5,4,4,4,3,3,3,3,3,3,2,2,2,2,2,2,1};
opts->nprb1=nprb1[opts->mcs-1];
}
void _makeSimulation(data_t data,options_t opts,DCI_ALLOC_t *dci_alloc,DCI_ALLOC_t *dci_alloc_rx,uint32_t *NB_RB2,LTE_DL_FRAME_PARMS *frame_parms,uint8_t num_pdcch_symbols)
{
uint32_t *errs,*round_trials;
unsigned char *input_buffer;
unsigned char **interferer_input_buffer=null;
unsigned short input_buffer_length;
double raw_ber;
double rawberT;
int numresults;
//Index and counters
int aa; //Antennas index
int i,j;//ind,mcsi[2]={3,4}; //General index for arrays
uint32_t round;
double SNR;
uint32_t dci_errors=0;
uint32_t cont_frames=0;
uint8_t Ns,l,m;
//Variables
uint32_t tbs,tbs1,coded_bits_per_codeword,coded_bits_per_codeword1;
int num_common_dci=0,num_ue_spec_dci=1,aux;
double rate=0,rate1=0,rate2=0.0, sigma2, sigma2_dB=10,uncoded_ber,avg_ber;
short *uncoded_ber_bit;
unsigned int dci_cnt,dlsch_active=0;
unsigned int tx_lev,tx_lev_dB=0,*itx_lev=null,*itxlev_dB=null; // Signal Power
//Other defaults values
uint8_t i_mod = 2,i_mod1=2;
//uint8_t num_pdcch_symbols=1,num_pdcch_symbols_2=0;
uint8_t num_pdcch_symbols_2=0;
int eNB_id_i = 1;//Id Interferer;
int idUser=0; //index of number of user, this program use just one user allowed in position 0 of PHY_vars_eNB->dlsch_eNB
//Just allow transmision mode 1
double numOFDMSymbSubcarrier;
//Status flags
int32_t status;
uint32_t ret;
int re_allocated;
//Init Pointers to 8 HARQ processes for the DLSCH
//printf("PHY_vars_eNB->dlsch_eNB[idUser][0]->harq_processes[0]->TBS: %d\n",(PHY_vars_eNB->dlsch_eNB[idUser][0]->harq_processes[0]->TBS));
input_buffer_length = PHY_vars_eNB->dlsch_eNB[idUser][0]->harq_processes[0]->TBS/8;
input_buffer = (unsigned char *)malloc(input_buffer_length+4);
memset(input_buffer,0,input_buffer_length+4);
for (i=0; i<input_buffer_length; i++) {
input_buffer[i]= (unsigned char)(unsigned char)(taus()&0xff);
}
if(opts.nInterf>0) {
interferer_input_buffer=(unsigned char**)malloc(opts.nInterf);
itx_lev=(unsigned int*)malloc(opts.nInterf*sizeof(unsigned int));
itxlev_dB=(unsigned int*)malloc(opts.nInterf*sizeof(unsigned int));
for(j=0; j<opts.nInterf; j++) {
interferer_input_buffer[j]=(unsigned char *)malloc(input_buffer_length+4);
memset(interferer_input_buffer[j],0,input_buffer_length+4);
}
}
/*********************************************************************************/
/* TVT: this has to be done per round since NB_RB2 will be different
numOFDMSymbSubcarrier=PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(NB_RB2[0]*12);
printf("numOFDMSymbSubcarrier: %d\n",numOFDMSymbSubcarrier);*/
_initErrsRoundsTrials(&errs,&round_trials,1, opts);
//for (ind=1; ind<3; ind++)
//{
// opts.mcs=mcsi[ind-1];
_get_nprb1(&opts);
opts.nprb2=PHY_vars_eNB->lte_frame_parms.N_RB_DL;
for (SNR=opts.snr_init; SNR<=opts.snr_max; SNR+=opts.snr_step) {
//opts.nprb2=PHY_vars_eNB->lte_frame_parms.N_RB_DL;
while(opts.nprb2>0) {
printf("\n\nsnr: %f, nprb1: %d, nprb2: %d, mcs: %d\n",SNR,opts.nprb1,opts.nprb2,opts.mcs);
_initErrsRoundsTrials(&errs,&round_trials,0,opts);
dci_errors=0;
numresults=0;
raw_ber=0;
rawberT=0;
x=0;
totBits=0;
totErrors=0;
avg_ber = 0;
for(aux=0; aux<8; aux++) {
opts.interf_count[aux]=0;
}
for (cont_frames = 0; cont_frames<opts.nframes; cont_frames++) {
round=0;
eNB2UE->first_run = 1;
while (round < opts.num_rounds) {
//printf("interf_counter:%d\n",opts.interf_count[0]);
round_trials[round]++;
tx_lev = 0;
for(i=0; i<opts.nInterf; i++) {
itx_lev[i]=0;
itxlev_dB[i]=0;
}
//Clear the the transmit data in the frequency domain for principal eNB and interferer eNB
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.Nid_cell][aa][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
for(i=0; i<opts.nInterf; i++) {
memset(interf_PHY_vars_eNB[i]->lte_eNB_common_vars.txdataF[0][aa],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
}
}
//Init input buffer for interferer
for(j=0; j<opts.nInterf; j++) {
memset(interferer_input_buffer[j],0,input_buffer_length+4);
for (i=0; i<input_buffer_length; i++) {
interferer_input_buffer[j][i]= (unsigned char)(taus()&0xff);
}
}
/*Lid: Simulate HARQ procedures!!!
if (round == 0) // First round, set Ndi to 1 and rv to floor(round/2)
{
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1;
//Lid:PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round>>1;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round&3;
DLSCH_alloc_pdu2_1.ndi = 1; //New Data Indicator 1.
DLSCH_alloc_pdu2_1.rv = 0; //Redundancy version 0.
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_1,sizeof(DCI1_20MHz_TDD_t));
}
else // set Ndi to 0
{
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0;
//Lid: PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round>>1;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round&3;
DLSCH_alloc_pdu2_1.ndi = 0; //New Data Indicator 0.
//Lid:DLSCH_alloc_pdu2_1E.rv = round>>1; //Redundancy version 1.
DLSCH_alloc_pdu2_1.rv = round&3;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_1,sizeof(DCI1_20MHz_TDD_t));
}*/
//*******************************************************
// TVT: This is the new stuff to change the BW and N_RB_DL
// Simulate HARQ procedures!!!
if (opts.common_flag == 0) {
if (round == 0) { // First round, set Ndi to 1 and rv to floor(round
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round&3;
if (PHY_vars_eNB->lte_frame_parms.frame_type == TDD) {
switch (opts.transmission_mode) {
case 1:
case 2:
switch (PHY_vars_eNB->lte_frame_parms.N_RB_DL) {
case 6:
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_1_5MHz_TDD_t));
break;
case 25:
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
// ((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC2[0];
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = _allocRBs(&opts,0);
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_5MHz_TDD_t));
break;
case 50:
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC2[0];
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_10MHz_TDD_t));
break;
case 100:
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC2[0];
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_20MHz_TDD_t));
break;
}
break;
}
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->first_Qm = get_Qm(opts.mcs);
} else { // FDD TVT:not our case
switch (opts.transmission_mode) {
case 1:
case 2:
switch (PHY_vars_eNB->lte_frame_parms.N_RB_DL) {
case 6:
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_1_5MHz_FDD_t));
break;
case 25:
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_5MHz_FDD_t));
break;
case 50:
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_10MHz_FDD_t));
break;
case 100:
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 1;
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = 0;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_20MHz_FDD_t));
break;
}
break;
}
}
} else { // set Ndi to 0 round>0
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round&3;
if (PHY_vars_eNB->lte_frame_parms.frame_type == TDD) {
switch (opts.transmission_mode) {
case 1:
case 2:
switch (PHY_vars_eNB->lte_frame_parms.N_RB_DL) {
case 6:
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 0;
((DCI1_1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = round&3;;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_1_5MHz_TDD_t));
break;
case 25:
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 0;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = round&3;
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = _allocRBs(&opts,round);
((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->mcs = opts.mcs2;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_5MHz_TDD_t));
//printf("round: %d\n",round);
break;
case 50:
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 0;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = round&3;
((DCI1_10MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC2[round];
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_10MHz_TDD_t));
break;
case 100:
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->ndi = 0;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rv = round&3;
((DCI1_20MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc = DLSCH_RB_ALLOC2[round];
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_20MHz_TDD_t));
break;
}
break;
}
} else { //FDD TVT:not our case
switch (opts.transmission_mode) {
case 1:
case 2:
switch (PHY_vars_eNB->lte_frame_parms.N_RB_DL) {
case 6:
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 0;
((DCI1_1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = round&3;;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_1_5MHz_FDD_t));
break;
case 25:
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 0;
((DCI1_5MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = round&3;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_5MHz_FDD_t));
break;
case 50:
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 0;
((DCI1_10MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = round&3;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_10MHz_FDD_t));
break;
case 100:
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->ndi = 0;
((DCI1_20MHz_FDD_t *)&DLSCH_alloc_pdu_1)->rv = round&3;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu_1,sizeof(DCI1_20MHz_FDD_t));
break;
}
break;
}
}
}
}
//TVT: since we changed the dci_rballoc, we have to call this function again.
generate_eNB_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu_1,
opts.n_rnti,
format1,
PHY_vars_eNB->dlsch_eNB[0],
&PHY_vars_eNB->lte_frame_parms, PHY_vars_eNB->pdsch_config_dedicated,
SI_RNTI,
0,
P_RNTI,
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single);
//*******************************************************
//printf("PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS: %d \n",PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS);
num_pdcch_symbols_2 = _generate_dci_top(num_ue_spec_dci,num_common_dci,dci_alloc,opts,num_pdcch_symbols);
_writeTxData("1","dci", 0, 2,opts,0,0);
/*****Sending******/ //TVT:force it to use QPSK in the 2nd round
if (round==0) {
i_mod=get_Qm(opts.mcs);
i_mod1=i_mod;
coded_bits_per_codeword1 = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->dlsch_eNB[idUser][0]->nb_rb,
PHY_vars_eNB->dlsch_eNB[idUser][0]->rb_alloc,
i_mod1,
num_pdcch_symbols,0,
opts.subframe);
tbs1 = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[idUser][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[idUser][0]->nb_rb-1];
}//Compute Q (modulation order) based on I_MCS.
else {
i_mod=get_Qm(opts.mcs2);
}
coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->dlsch_eNB[idUser][0]->nb_rb,
PHY_vars_eNB->dlsch_eNB[idUser][0]->rb_alloc,
i_mod,
num_pdcch_symbols,0,
opts.subframe);
tbs = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[idUser][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[idUser][0]->nb_rb-1];
//printf("\nround: %d dlsch_enB=->nb_rb: %d mcs: %d\n",round,PHY_vars_eNB->dlsch_eNB[idUser][0]->nb_rb,opts.mcs);
//printf("PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->MCS %d\n",PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->mcs);
//printf("tbs= %d, G=%d \n",tbs,coded_bits_per_codeword);
rate = (double)tbs1/(double)coded_bits_per_codeword1;
uncoded_ber_bit = (short*) malloc(2*coded_bits_per_codeword);
if (cont_frames==0 && round==0) {
printf("\tRate = %f (%f bits/dim) (G %d, TBS %d, mod %d, pdcch_sym %d)\n",
rate,rate*i_mod1,coded_bits_per_codeword1,tbs1,i_mod1,num_pdcch_symbols);
rate1=rate*i_mod;
} else {
if(round==1) {
rate2= (double)tbs1*((double)i_mod/((double)coded_bits_per_codeword1+(double)coded_bits_per_codeword));
//printf("\t round= %d, Rate1=%f, rate2=%f\n",round,rate1,rate2);
}
}
//TVT: no tpmi in DCI format 1 --------------
// use the PMI from previous trial
//if (DLSCH_alloc_pdu2_1.tpmi == 5)
//{
//PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0);
//PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0);
//}
//----------------------
//encoding dlsch for principal eNB and interferer
status= dlsch_encoding(input_buffer,
&PHY_vars_eNB->lte_frame_parms,num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[idUser][0],0,opts.subframe,
&PHY_vars_eNB->dlsch_rate_matching_stats,
&PHY_vars_eNB->dlsch_turbo_encoding_stats,
&PHY_vars_eNB->dlsch_interleaving_stats);
if (status<0) exit(-1);
for(i=0; i<opts.nInterf; i++) {
status= dlsch_encoding(interferer_input_buffer[i],
&(interf_PHY_vars_eNB[i]->lte_frame_parms),num_pdcch_symbols,
interf_PHY_vars_eNB[i]->dlsch_eNB[0][0],0,opts.subframe,
&interf_PHY_vars_eNB[i]->dlsch_rate_matching_stats,
&interf_PHY_vars_eNB[i]->dlsch_turbo_encoding_stats,
&interf_PHY_vars_eNB[i]->dlsch_interleaving_stats
);
if (status<0) exit(-1);
}
PHY_vars_eNB->dlsch_eNB[idUser][0]->rnti = opts.n_rnti+idUser;
//scrambling
dlsch_scrambling(&PHY_vars_eNB->lte_frame_parms,
0,
PHY_vars_eNB->dlsch_eNB[idUser][0],
coded_bits_per_codeword, 0, opts.subframe<<1);
for(i=0; i<opts.nInterf; i++) {
dlsch_scrambling(&(interf_PHY_vars_eNB[i]->lte_frame_parms),
0,
interf_PHY_vars_eNB[i]->dlsch_eNB[0][0],
coded_bits_per_codeword, 0, opts.subframe<<1);
}
if (opts.nframes==1) {
_dumpTransportBlockSegments(PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->C,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Cminus,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Kminus,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Kplus,
null,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c);
}
//Modulation
re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.Nid_cell],
AMP,
opts.subframe,
&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[idUser][0]);
for(i=0; i<opts.nInterf; i++) {
dlsch_modulation(interf_PHY_vars_eNB[i]->lte_eNB_common_vars.txdataF[0],
AMP,
opts.subframe,
&(interf_PHY_vars_eNB[i])->lte_frame_parms,
num_pdcch_symbols,
interf_PHY_vars_eNB[i]->dlsch_eNB[0][0]);
}
_writeTxData("2","mod", 0, 2,opts,0,0);
/*if (cont_frames==0 && round==0)
printf("re_allocated: %d\n",re_allocated);*/
//Generate pilots
generate_pilots(PHY_vars_eNB,PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.Nid_cell],
AMP,
LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
for(i=0; i<opts.nInterf; i++) {
generate_pilots(interf_PHY_vars_eNB[i],interf_PHY_vars_eNB[i]->lte_eNB_common_vars.txdataF[0],
AMP,
LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
}
_writeTxData("3","pilots", 0, 2,opts,0,0);
//OFDM Modulation
for(i=0; i<3; i++) {
do_OFDM_mod(PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.Nid_cell],
PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.Nid_cell],
(opts.subframe*2)+i,
&PHY_vars_eNB->lte_frame_parms);
for(j=0; j<opts.nInterf; j++) {
do_OFDM_mod(interf_PHY_vars_eNB[j]->lte_eNB_common_vars.txdataF[0],
interf_PHY_vars_eNB[j]->lte_eNB_common_vars.txdata[0],
(opts.subframe*2)+i,
&interf_PHY_vars_eNB[j]->lte_frame_parms);
}
}
_writeTxData("6","ofdm3", 0, 3,opts,0,1);
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
tx_lev += signal_energy(&PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.Nid_cell][aa]
[opts.subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
PHY_vars_eNB->lte_frame_parms.samples_per_tti);
for(i=0; i<opts.nInterf; i++) {
itx_lev[i] += signal_energy(&interf_PHY_vars_eNB[i]->lte_eNB_common_vars.txdata[0][aa]
[opts.subframe*interf_PHY_vars_eNB[i]->lte_frame_parms.samples_per_tti],
interf_PHY_vars_eNB[i]->lte_frame_parms.samples_per_tti);
}
}
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
for(i=0; i<opts.nInterf; i++) {
itxlev_dB[i] = (unsigned int) dB_fixed(itx_lev[i]);
}
if (opts.nframes==1) {
printf("tx_lev = %d (%d dB)\n",tx_lev,tx_lev_dB);
for(i=0; i<opts.nInterf; i++) {
printf("itx_lev[%d] = %d (%d dB)\n",i,itx_lev[i],itxlev_dB[i]);
}
write_output("txsigF0.m","txsF0", &PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.Nid_cell][0][0],opts.SIZE_TXDATAF ,1,1);
if(opts.nInterf>0) {
write_output("txsigF1.m","txsF1", &interf_PHY_vars_eNB[0]->lte_eNB_common_vars.txdataF[opts.Nid_cell][0][0],opts.SIZE_TXDATAF ,1,1);
write_output("txsig1.m","txs1", &interf_PHY_vars_eNB[0]->lte_eNB_common_vars.txdata[opts.Nid_cell][0][0],opts.SIZE_TXDATA/20,1,1);
}
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("txsigF1.m","txsF1", &PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.Nid_cell][1][0],opts.SIZE_TXDATAF,1,1);
write_output("txsig0.m","txs0", &PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.Nid_cell][0][0],opts.SIZE_TXDATA/20,1,1);
}
_fillData(opts,data,2);
NB_RB2[round]=conv_nprb(0,((DCI1_5MHz_TDD_t *)&DLSCH_alloc_pdu_1)->rballoc,opts.N_RB_DL);
numOFDMSymbSubcarrier=(double)PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(NB_RB2[round]*12.0);
sigma2_dB = 10*log10((double)tx_lev) +10*log10(numOFDMSymbSubcarrier) - SNR- get_pa_dB(PHY_vars_eNB->pdsch_config_dedicated);
sigma2 = pow(10,sigma2_dB/10);
//printf("\nround: %d sigma2_dB: %f\n",round,sigma2_dB);
//Noise and Interference
//printf("before multipath\n") ;
_apply_Multipath_Noise_Interference(&opts,data,sigma2_dB,sigma2,2,round);
_writeTxData("7","noise_ch_int", 0, 3,opts,1,1);
/*****End Sending***/
if (opts.nframes==1) {
printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
printf("RX level in null symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("RX level in data symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("rx_level Null symbol %f\n",10*log10(signal_energy_fp(data.r_re,data.r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
printf("rx_level data symbol %f\n",10*log10(signal_energy_fp(data.r_re,data.r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
}
if (round==0)
i_mod = get_Qm(opts.mcs);
else
i_mod = get_Qm(opts.mcs2);
/*********Reciver **************/
//TODO: Optimize and clean code
// Inner receiver scheduling for 3 slots
for (Ns=(2*opts.subframe); Ns<((2*opts.subframe)+3); Ns++) {
for (l=0; l<opts.pilot2 ; l++) {
slot_fep(PHY_vars_UE,l,Ns%20,0,0);
//TODO: Set NCell_id_i = syronger interferer
#ifdef PERFECT_CE
_fillPerfectChannelDescription(opts,l);
#endif
if ((Ns==((2*opts.subframe))) && (l==0)) {
lte_ue_measurements(PHY_vars_UE,opts.subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti,1,0);
}
if ((Ns==(2*opts.subframe)) && (l==opts.pilot1)) {
// process symbols 0,1,2
if (opts.dci_flag == 1) {
rx_pdcch(&PHY_vars_UE->lte_ue_common_vars,
PHY_vars_UE->lte_ue_pdcch_vars,
&PHY_vars_UE->lte_frame_parms,
opts.subframe,
0,
(PHY_vars_UE->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
0);
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
dci_cnt = dci_decoding_procedure(PHY_vars_UE,dci_alloc_rx,1,0,opts.subframe);
//
if (dci_cnt==0) {
dlsch_active = 0;
if (round==0) {
dci_errors++;
round=5;
errs[0]++;
round_trials[0]++;
}
}
for (i=0; i<dci_cnt; i++) {
status =generate_ue_dlsch_params_from_dci(0,dci_alloc_rx[i].dci_pdu,
dci_alloc_rx[i].rnti,dci_alloc_rx[i].format,
PHY_vars_UE->dlsch_ue[0],&PHY_vars_UE->lte_frame_parms,PHY_vars_UE->pdsch_config_dedicated,
SI_RNTI,0,P_RNTI);
if ((dci_alloc_rx[i].rnti == opts.n_rnti) && (status==0)) {
coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->nb_rb,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->rb_alloc,
get_Qm(PHY_vars_UE->dlsch_ue[0][0]->harq_processes[PHY_vars_UE->dlsch_ue[0][0]->current_harq_pid]->mcs),
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
0,opts.subframe);
dlsch_active = 1;
} else {
dlsch_active = 0;
if (round==0) {
dci_errors++;
errs[0]++;
round_trials[0]++;
if (opts.nframes==1) {
printf("DCI misdetection trial %d\n",cont_frames);
round=5;
}
}
}
}
} // if dci_flag==1
else { //dci_flag == 0
PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = opts.n_rnti;
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
generate_ue_dlsch_params_from_dci(0,&DLSCH_alloc_pdu_1,
C_RNTI,
format1,//TVT: E_2A_M10PRB,
PHY_vars_UE->dlsch_ue[0],
&PHY_vars_UE->lte_frame_parms,PHY_vars_UE->pdsch_config_dedicated,
SI_RNTI,
0,
P_RNTI);
dlsch_active = 1;
} // if dci_flag == 1
}
if (dlsch_active == 1) {
if ((Ns==(1+(2*opts.subframe))) && (l==0)) {
// process PDSCH symbols 1,2,3,4,5,(6 Normal Prefix)
for (m=PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols; m<opts.pilot2; m++) {
#if defined ENABLE_FXP || ENABLE_FLP
//printf("fxp or flp release used\n");
if (rx_pdsch(PHY_vars_UE,
PDSCH,
opts.Nid_cell,
eNB_id_i,
opts.subframe,
m,
(m==PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0,
opts.dual_stream_UE,
i_mod,
0)) {
dlsch_active = 0;
break;
}
#endif
#ifdef ENABLE_FULL_FLP
// printf("Full flp release used\n");
if (rx_pdsch_full_flp(PHY_vars_UE,
PDSCH,
opts.Nid_cell,
eNB_id_i,
opts.subframe,
m,
(m==PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0,
opts.dual_stream_UE,
i_mod)) {
dlsch_active = 0;
break;
}
#endif
}
}
if ((Ns==(1+(2*opts.subframe))) && (l==opts.pilot1)) {
// process symbols (6 Extended Prefix),7,8,9
for (m=opts.pilot2; m<opts.pilot3; m++) {
#if defined ENABLE_FXP || ENABLE_FLP
// printf("fxp or flp release used\n");
if (rx_pdsch(PHY_vars_UE,
PDSCH,
opts.Nid_cell,
eNB_id_i,
opts.subframe,
m,
0,
opts.dual_stream_UE,
i_mod,0)==-1) {
dlsch_active=0;
break;
}
#endif
#ifdef ENABLE_FULL_FLP
// printf("Full flp release used\n");
if (rx_pdsch_full_flp(PHY_vars_UE,
PDSCH,
opts.Nid_cell,
eNB_id_i,
opts.subframe,
m,
0,
opts.dual_stream_UE,
i_mod)==-1) {
dlsch_active=0;
break;
}
#endif
}
}
if ((Ns==(2+(2*opts.subframe))) && (l==0)) { // process symbols 10,11,(12,13 Normal Prefix) do deinterleaving for TTI
for (m=opts.pilot3; m<PHY_vars_UE->lte_frame_parms.symbols_per_tti; m++) {
#if defined ENABLE_FXP || ENABLE_FLP
// printf("fxp or flp release used\n");
if (rx_pdsch(PHY_vars_UE,
PDSCH,
opts.Nid_cell,
eNB_id_i,
opts.subframe,
m,
0,
opts.dual_stream_UE,
i_mod,0)==-1) {
dlsch_active=0;
break;
}
#endif
#ifdef ENABLE_FULL_FLP
// printf("Full flp release used\n");
if (rx_pdsch_full_flp(PHY_vars_UE,
PDSCH,
opts.Nid_cell,
eNB_id_i,
opts.subframe,
m,
0,
opts.dual_stream_UE,
i_mod)==-1) {
dlsch_active=0;
break;
}
#endif
}
}
}
}
}
if(opts.nframes==1) {
printf("Dumping DLSCH output\n");
_writeOuputOneFrame(opts,coded_bits_per_codeword,uncoded_ber_bit,tbs);
write_output("fch0e.m","ch0e",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
write_output("fch1e.m","ch1e",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
}
/*if(round==0)
{
raw_ber += compute_ber_soft(PHY_vars_eNB->dlsch_eNB[0][0]->e,
PHY_vars_UE->lte_ue_pdsch_vars[0]->llr[0],
coded_bits_per_codeword);
}*/
//Compute BER
uncoded_ber=0;
for (i=0; i<coded_bits_per_codeword; i++) {
if (PHY_vars_eNB->dlsch_eNB[0][0]->e[i] != (PHY_vars_UE->lte_ue_pdsch_vars[0]->llr[0][i]<0)) {
uncoded_ber_bit[i] = 1;
uncoded_ber++;
} else
uncoded_ber_bit[i] = 0;
}
// printf("uncoded_ber %f coded_bits_per_codeword %d \n ",uncoded_ber,coded_bits_per_codeword);
uncoded_ber/=coded_bits_per_codeword;
avg_ber += uncoded_ber;
numresults++;
// printf("avg_ber: %f\n",avg_ber);
//End compute BER
PHY_vars_UE->dlsch_ue[0][0]->rnti = opts.n_rnti;
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->G = coded_bits_per_codeword;
dlsch_unscrambling(&PHY_vars_UE->lte_frame_parms,
0,
PHY_vars_UE->dlsch_ue[0][0],
coded_bits_per_codeword,
PHY_vars_UE->lte_ue_pdsch_vars[opts.Nid_cell]->llr[0],
0,
opts.subframe<<1);
ret = dlsch_decoding(PHY_vars_UE,
PHY_vars_UE->lte_ue_pdsch_vars[opts.Nid_cell]->llr[0],
&PHY_vars_UE->lte_frame_parms,
PHY_vars_UE->dlsch_ue[0][0],
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0],
opts.subframe,0,
1,0);
#ifdef XFORMS
do_forms(form,
&PHY_vars_UE->lte_frame_parms,
PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates_time[0],
PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0],
PHY_vars_UE->lte_ue_common_vars.rxdata,
PHY_vars_UE->lte_ue_common_vars.rxdataF,
PHY_vars_UE->lte_ue_pdsch_vars[0]->rxdataF_comp[0],
PHY_vars_UE->lte_ue_pdsch_vars[1]->rxdataF_comp[0],
PHY_vars_UE->lte_ue_pdsch_vars[0]->dl_ch_rho_ext[0],
PHY_vars_UE->lte_ue_pdsch_vars[0]->llr[0],coded_bits_per_codeword);
/* printf("Hit a key to continue\n");
char c = getchar();*/
#endif
_writeTxData("8","unsc_undec", 0, 2,opts,1,2);
if (ret <= MAX_TURBO_ITERATIONS) { //No hay errores 4
//round=5;
if (opts.fix_rounds==0)
round=5;
else
round++;
if (opts.nframes==1) {
printf("No DLSCH errors found\n");
_dumpTransportBlockSegments(PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->C,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Cminus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kminus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kplus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c);
}
} else {
errs[round]++;
//Lid: round++;
if (opts.nframes==1) {
printf("DLSCH in error in round %d (ret %d)\n",round,ret);
printf("DLSCH errors found, uncoded ber %f\n",uncoded_ber);
_dumpTransportBlockSegments(PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->C,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Cminus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kminus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kplus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c);
exit(1);
}
round++;
if (opts.nframes==1) printf("DLSCH error in round %d\n",round);
}
free(uncoded_ber_bit);
uncoded_ber_bit = NULL;
//printf("\t count_interf[%d]=%d\n",round, opts.interf_count[round]);
} //round
if ((errs[0]>=opts.nframes/10) && (cont_frames>(opts.nframes/2)))
break;
} //cont_frames
//printf("nprb1: %d, nprb2: %d, mcs: %d, mcs2: %d\n",opts.nprb1,opts.nprb2,opts.mcs, opts.mcs2);
printf("\n---------------------------------------------------------------------\n");
printf("SNR = %f dB (tx_lev %f, sigma2_dB %f) BER (%f/%d=%f) BLER(%d/%d=%f)\n\t T (%d/%d = %f ) \n",
SNR,(double)tx_lev_dB+10*log10(numOFDMSymbSubcarrier),
sigma2_dB,avg_ber,numresults,(avg_ber/numresults),
errs[0],round_trials[0],((float)errs[0]/round_trials[0]),
0,0,0.0);
fprintf(opts.outputTrougput,"%f %f;\n",SNR, rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])));
printf("\t count_interf[0]=%d, count_interf[1]=%d\n",opts.interf_count[0], opts.interf_count[1]);
_printResults(errs,round_trials,dci_errors,rate);
//_printFileResults( SNR, rate1, rate,errs,round_trials, dci_errors, opts,avg_ber/numresults);
//if (((double)errs[0]/(round_trials[0]))<1e-2) break;//IF errors > 1%
//TVT:if the outage is greater than some threshold stop, otherwise decrease the nprb2
if (((double)errs[1]/(round_trials[0]+round_trials[1]))>1e-2) { //IF Pout2 > 1%
printf("\t rate1:%f, rate2:%f \n",rate1,rate2);
_printFileResults( SNR, rate1,rate2, rate,errs,round_trials, dci_errors, opts,avg_ber/numresults);
break;
}
opts.nprb2--;
}//nprb2
if ((double)errs[0]/round_trials[0]<1e-2) //IF Pout1 > 1%
break;
}// SNR
//}//mcs
}
void do_OFDM_mod(mod_sym_t **txdataF, int32_t **txdata, uint16_t next_slot, LTE_DL_FRAME_PARMS *frame_parms)
{
int aa, slot_offset, slot_offset_F;
slot_offset_F = (next_slot)*(frame_parms->ofdm_symbol_size)*((frame_parms->Ncp==1) ? 6 : 7);
slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(&txdataF[aa][slot_offset_F], // input
&txdata[aa][slot_offset], // output
frame_parms->log2_symbol_size, // log2_fft_size
6, // number of symbols
frame_parms->nb_prefix_samples, // number of prefix samples
frame_parms->twiddle_ifft, // IFFT twiddle factors
frame_parms->rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(&txdataF[aa][slot_offset_F],
&txdata[aa][slot_offset],
7,
frame_parms);
}
}
}
void _apply_Multipath_Noise_Interference(options_t *opts,data_t data,double sigma2_dB,double sigma2,int numSubFrames,int round)
{
double iqim=0.0;
int j;
//Multipath channel
//Generates and applys a random frequency selective random channel model.
multipath_channel(eNB2UE,data.s_re,data.s_im,data.r_re,data.r_im,numSubFrames*frame_parms->samples_per_tti,0);
for(j=0; j<opts->nInterf; j++) {
multipath_channel(interf_eNB2UE[j],data.is_re[j],data.is_im[j],data.ir_re[j],data.ir_im[j],numSubFrames*frame_parms->samples_per_tti,0);
}
//Interference
//printf("antes de applyInterf\n");
_applyInterference(opts,data,sigma2,iqim,numSubFrames,round);
//Noise
_applyNoise(opts,data,sigma2,iqim,numSubFrames);
if (opts->nframes==1) {
printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
printf("RX level in null symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("RX level in data symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("rx_level Null symbol %f\n",10*log10(signal_energy_fp(data.r_re,data.r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
printf("rx_level data symbol %f\n",10*log10(signal_energy_fp(data.r_re,data.r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
}
}
void _writeOuputOneFrame(options_t opts,uint32_t coded_bits_per_codeword,short *uncoded_ber_bit,uint32_t tbs)
{
printf("log2_maxh => %d\n",PHY_vars_UE->lte_ue_pdsch_vars[0]->log2_maxh);
write_output("rho.m","rho_0",PHY_vars_UE->lte_ue_pdsch_vars[0]->dl_ch_rho_ext[0],300*((PHY_vars_UE->lte_frame_parms.Ncp == 0) ? 14 : 12),1,1);
if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) {
write_output("dlsch01_ch0.m","dl01_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][1][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
write_output("dlsch10_ch0.m","dl10_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][2][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
write_output("rxsigF1.m","rxsF1", &PHY_vars_UE->lte_ue_common_vars.rxdataF[1][0],opts.SIZE_RXDATAF,1,1);
write_output("rxsig1.m","rxs1", &PHY_vars_UE->lte_ue_common_vars.rxdata[1][0],opts.SIZE_RXDATA,1,1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("dlsch11_ch0.m","dl11_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][3][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
}
write_output("dlsch00_ch0.m","dl00_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
write_output("dlsch00_ch1.m","dl00_ch1",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
write_output("dlsch_e.m","e",PHY_vars_eNB->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4);
write_output("dlsch_ber_bit.m","ber_bit",uncoded_ber_bit,coded_bits_per_codeword,1,0);
write_output("dlsch_eNB_w.m","w",PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->w[0],3*(tbs+64),1,4);
write_output("dlsch_UE_w.m","w",PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->w[0],3*(tbs+64),1,0);
write_output("rxsigF0.m","rxsF0", &PHY_vars_UE->lte_ue_common_vars.rxdataF[0][0],opts.SIZE_RXDATAF,1,1);
write_output("rxsig0.m","rxs0", &PHY_vars_UE->lte_ue_common_vars.rxdata[0][0],opts.SIZE_RXDATA,1,1);
write_output("ch0.m","ch0",eNB2UE->ch[0],eNB2UE->channel_length,1,8);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1) {
write_output("ch1.m","ch1",eNB2UE->ch[PHY_vars_eNB->lte_frame_parms.nb_antennas_rx],eNB2UE->channel_length,1,8);
}
write_output("pdcchF0_ext.m","pdcchF_ext", PHY_vars_UE->lte_ue_pdcch_vars[opts.Nid_cell]->rxdataF_ext[0],2*3*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,1,1);
write_output("pdcch00_ch0_ext.m","pdcch00_ch0_ext",PHY_vars_UE->lte_ue_pdcch_vars[opts.Nid_cell]->dl_ch_estimates_ext[0],300*3,1,1);
write_output("pdcch_rxF_comp0.m","pdcch0_rxF_comp0",PHY_vars_UE->lte_ue_pdcch_vars[opts.Nid_cell]->rxdataF_comp[0],opts.nsymb*300,1,1);
write_output("pdcch_rxF_llr.m","pdcch_llr",PHY_vars_UE->lte_ue_pdcch_vars[opts.Nid_cell]->llr,2400,1,4);
dump_dlsch2(PHY_vars_UE,opts.Nid_cell,coded_bits_per_codeword);
dump_dlsch2(PHY_vars_UE,1,coded_bits_per_codeword);
char fname[32],vname[32];
int i;
for(i=0; i<2; i++) {
sprintf(fname,"dlsch%d_rxF_ext0_%d.m",i,opts.testNumber);
sprintf(vname,"dl%d_rxF_ext0_%d",i,opts.testNumber);
write_output(fname,vname,PHY_vars_UE->lte_ue_pdsch_vars[i]->rxdataF_ext[0],300*opts.nsymb,1,1);
sprintf(fname,"dlsch%d_rxF_comp0_%d.m",i,opts.testNumber);
sprintf(vname,"dl%d_rxF_comp0_%d",i,opts.testNumber);
write_output(fname,vname,PHY_vars_UE->lte_ue_pdsch_vars[i]->rxdataF_comp[0],300*opts.nsymb,1,1);
}
sprintf(fname,"dlsch%d_rxF_llr_%d.m",i,opts.testNumber);
sprintf(vname,"dl%d_llr_%d",i,opts.testNumber);
write_output(fname,vname, PHY_vars_UE->lte_ue_pdsch_vars[0]->llr[0],coded_bits_per_codeword,1,0);
}
void _dumpTransportBlockSegments(uint32_t C,uint32_t Cminus,uint32_t Kminus,uint32_t Kplus, uint8_t ** c_UE, uint8_t ** c_eNB)
{
int i,s;
int Kr,Kr_bytes;
for (s=0; s<C; s++) {
if (s<Cminus)
Kr = Kminus;
else
Kr = Kplus;
Kr_bytes = Kr>>3;
// printf("Decoded_output (Segment %d):\n",s);
for (i=0; i<Kr_bytes; i++) {
if ( c_UE !=NULL)
printf("%d : %x (%x)\n",i,c_UE[s][i],c_UE[s][i]^c_eNB[s][i]);
else
printf("%d : (%x)\n",i,c_eNB[s][i]);
}
}
}
void _writeTxData(char *num,char *desc, int init, int numframes,options_t opts, int output,int senial)
{
char fileName[80], vectorName[80];
int i;
if(WRITE_FILES && opts.nframes==1) {
if(!output) {
if(senial==0 || senial==2) {
sprintf(fileName,"log%s_txsigF_%s.m",num,desc);
sprintf(vectorName,"txF%s",num);
write_output(fileName,vectorName, &PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.Nid_cell][0][0],(opts.SIZE_TXDATAF/10)*numframes ,1,1);
}
if(senial==1 || senial==2) {
sprintf(fileName,"log%s_txsig_%s.m",num,desc);
sprintf(vectorName,"tx%s",num);
write_output(fileName,vectorName, &PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.Nid_cell][0][0],opts.SIZE_TXDATA,1,1);
}
for(i=0; i<opts.nInterf; i++) {
if(senial==0 || senial==2) {
sprintf(fileName,"i%dlog%s_txsigF_%s.m",i,num,desc);
sprintf(vectorName,"i%dtxF%s",i,num);
write_output(fileName,vectorName, &(interf_PHY_vars_eNB[i]->lte_eNB_common_vars.txdataF[opts.Nid_cell][0][0]),(opts.SIZE_TXDATAF/10)*numframes ,1,1);
}
if(senial==1 || senial==2) {
sprintf(fileName,"i%dog%s_txsig_%s.m",i,num,desc);
sprintf(vectorName,"i%tx%s",i,num);
write_output(fileName,vectorName, &interf_PHY_vars_eNB[i]->lte_eNB_common_vars.txdata[opts.Nid_cell][0][0],opts.SIZE_TXDATA,1,1);
}
}
} else {
sprintf(fileName,"log%s_rxsigF_%s.m",num,desc);
sprintf(vectorName,"rxF%s",num);
write_output(fileName,vectorName,&PHY_vars_UE->lte_ue_common_vars.rxdataF[0][0],opts.SIZE_RXDATAF,1,1);
sprintf(fileName,"log%s_rxsig_%s.m",num,desc);
sprintf(vectorName,"rx%s",num);
write_output(fileName,vectorName, &PHY_vars_UE->lte_ue_common_vars.rxdata[0][0],opts.SIZE_RXDATA,1,1);
}
}
}
double compute_ber_soft(uint8_t* ref, int16_t* rec, int n)
{
int k;
int e = 0;
for(k = 0; k < n; k++) {
if((ref[k]==1) != (rec[k]<0)) {
#ifdef SIG_DEBUG
printf("error pos %d ( %d => %d)\n",k,ref[k],rec[k]);
#endif
e++;
}
}
//printf("ber:%d ,%d , %f\t\n",x++,e ,(double)n);
return (double)e / (double)n;
}
void _fillPerfectChannelDescription(options_t opts,uint8_t l)
{
//printf("Algo con la inter : %f",pow(10.0,.05*opts.dbInterf[0]));
int aa, aarx,i,j;
//init_freq_channel(eNB2UE,PHY_vars_UE->lte_frame_parms.N_RB_DL,12*PHY_vars_UE->lte_frame_parms.N_RB_DL + 1);
freq_channel(eNB2UE,PHY_vars_UE->lte_frame_parms.N_RB_DL,12*PHY_vars_UE->lte_frame_parms.N_RB_DL + 1);
for(j=0; j<opts.nInterf; j++) {
//init_freq_channel(interf_eNB2UE[j],PHY_vars_UE->lte_frame_parms.N_RB_DL,12*PHY_vars_UE->lte_frame_parms.N_RB_DL + 1);
freq_channel(interf_eNB2UE[j],PHY_vars_UE->lte_frame_parms.N_RB_DL,12*PHY_vars_UE->lte_frame_parms.N_RB_DL + 1);
}
printf("PHY_vars_UE->dlsch_ue[0][0]->sqrt_rho_b %d",PHY_vars_UE->dlsch_ue[0][0]->sqrt_rho_b);
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
for (i=0; i<frame_parms->N_RB_DL*12; i++) {
if (opts.awgn_flag==0) {
/*((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2);
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2) ;
*/
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2);
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2) ;
if(opts.nInterf>0) { //Max num interferer
if(opts.awgn_flagi==0) {
if(j==opts.Nid_cell) continue;
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
interf_eNB2UE[0]->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2)*pow(10.0,.05*opts.dbInterf[0]);
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
interf_eNB2UE[0]->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2)*pow(10.0,.05*opts.dbInterf[0]) ;
} else {
if(j==opts.Nid_cell) continue;
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(short)((AMP/2)*(pow(10.0,.05*opts.dbInterf[0])));
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0;
}
}
} else {
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.Nid_cell][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=AMP/2;
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0;
if(opts.nInterf>0) { //Max num interferer
/*if(j==opts.Nid_cell) continue;
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(short)((AMP/2)*(pow(10.0,.05*opts.dbInterf[0])));
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0;
*/
if(opts.awgn_flagi==0) {
if(j==opts.Nid_cell) continue;
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
interf_eNB2UE[0]->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2)*pow(10.0,.05*opts.dbInterf[0]);
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
interf_eNB2UE[0]->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2)*pow(10.0,.05*opts.dbInterf[0]) ;
} else {
if(j==opts.Nid_cell) continue;
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(short)((AMP/2)*(pow(10.0,.05*opts.dbInterf[0])));
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[1][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0;
}
}
}
}
}
}
}
#ifdef XFORMS
void do_forms(FD_lte_scope *form, LTE_DL_FRAME_PARMS *frame_parms, short **channel, short **channel_f, short **rx_sig, short **rx_sig_f, short *dlsch_comp, short* dlsch_comp_i, short* dlsch_rho,
short *dlsch_llr, int coded_bits_per_codeword)
{
int i,j,ind,k,s;
float Re,Im;
float mag_sig[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT],
sig_time[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT],
sig2[FRAME_LENGTH_COMPLEX_SAMPLES],
time2[FRAME_LENGTH_COMPLEX_SAMPLES],
I[25*12*11*4], Q[25*12*11*4],
*llr,*llr_time;
float avg, cum_avg;
llr = malloc(coded_bits_per_codeword*sizeof(float));
llr_time = malloc(coded_bits_per_codeword*sizeof(float));
// Channel frequency response
cum_avg = 0;
ind = 0;
for (j=0; j<4; j++) {
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
for (k=0; k<NUMBER_OF_OFDM_CARRIERS*7; k++) {
sig_time[ind] = (float)ind;
Re = (float)(channel_f[(j<<1)+i][2*k]);
Im = (float)(channel_f[(j<<1)+i][2*k+1]);
//mag_sig[ind] = (short) rand();
mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ;
ind++;
}
// ind+=NUMBER_OF_OFDM_CARRIERS/4; // spacing for visualization
}
}
avg = cum_avg/NUMBER_OF_USEFUL_CARRIERS;
//fl_set_xyplot_ybounds(form->channel_f,30,70);
fl_set_xyplot_data(form->channel_f,sig_time,mag_sig,ind,"","","");
/*
// channel time resonse
cum_avg = 0;
ind = 0;
for (k=0;k<1;k++){
for (j=0;j<1;j++) {
for (i=0;i<frame_parms->ofdm_symbol_size;i++){
sig_time[ind] = (float)ind;
Re = (float)(channel[k+2*j][2*i]);
Im = (float)(channel[k+2*j][2*i+1]);
//mag_sig[ind] = (short) rand();
mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ;
ind++;
}
}
}
//fl_set_xyplot_ybounds(form->channel_t_im,10,90);
fl_set_xyplot_data(form->channel_t_im,sig_time,mag_sig,ind,"","","");
*/
// channel_t_re = rx_sig_f[0]
//for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++) {
for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++) {
sig2[i] = 10*log10(1.0+(double) ((rx_sig_f[0][4*i])*(rx_sig_f[0][4*i])+(rx_sig_f[0][4*i+1])*(rx_sig_f[0][4*i+1])));
time2[i] = (float) i;
}
//fl_set_xyplot_ybounds(form->channel_t_re,10,90);
fl_set_xyplot_data(form->channel_t_re,time2,sig2,NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti,"","","");
//fl_set_xyplot_data(form->channel_t_re,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,"","","");
// channel_t_im = rx_sig[0]
//if (frame_parms->nb_antennas_rx>1) {
for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++) {
//for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++) {
sig2[i] = 10*log10(1.0+(double) ((rx_sig[0][2*i])*(rx_sig[0][2*i])+(rx_sig[0][2*i+1])*(rx_sig[0][2*i+1])));
time2[i] = (float) i;
}
//fl_set_xyplot_ybounds(form->channel_t_im,0,100);
//fl_set_xyplot_data(form->channel_t_im,&time2[640*12*6],&sig2[640*12*6],640*12,"","","");
fl_set_xyplot_data(form->channel_t_im,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES,"","","");
//}
/*
// PBCH LLR
j=0;
for(i=0;i<1920;i++) {
llr[j] = (float) pbch_llr[i];
llr_time[j] = (float) j;
//if (i==63)
// i=127;
//else if (i==191)
// i=319;
j++;
}
fl_set_xyplot_data(form->decoder_input,llr_time,llr,1920,"","","");
//fl_set_xyplot_ybounds(form->decoder_input,-100,100);
// PBCH I/Q
j=0;
for(i=0;i<12*12;i++) {
I[j] = pbch_comp[2*i];
Q[j] = pbch_comp[2*i+1];
j++;
//if (i==47)
// i=96;
//else if (i==191)
// i=239;
}
fl_set_xyplot_data(form->scatter_plot,I,Q,12*12,"","","");
//fl_set_xyplot_xbounds(form->scatter_plot,-100,100);
//fl_set_xyplot_ybounds(form->scatter_plot,-100,100);
// PDCCH I/Q
j=0;
for(i=0;i<12*25*3;i++) {
I[j] = pdcch_comp[2*i];
Q[j] = pdcch_comp[2*i+1];
j++;
//if (i==47)
// i=96;
//else if (i==191)
// i=239;
}
fl_set_xyplot_data(form->scatter_plot1,I,Q,12*25*3,"","","");
//fl_set_xyplot_xbounds(form->scatter_plot,-100,100);
//fl_set_xyplot_ybounds(form->scatter_plot,-100,100);
*/
// DLSCH LLR
for(i=0; i<coded_bits_per_codeword; i++) {
llr[i] = (float) dlsch_llr[i];
llr_time[i] = (float) i;
}
fl_set_xyplot_data(form->demod_out,llr_time,llr,coded_bits_per_codeword,"","","");
fl_set_xyplot_ybounds(form->demod_out,-256,256);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_comp[(2*25*12*s)+2*i];
Q[j] = dlsch_comp[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot,I,Q,j,"","","");
fl_set_xyplot_xbounds(form->scatter_plot,-200,200);
fl_set_xyplot_ybounds(form->scatter_plot,-200,200);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_comp_i[(2*25*12*s)+2*i];
Q[j] = dlsch_comp_i[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot1,I,Q,j,"","","");
fl_set_xyplot_xbounds(form->scatter_plot1,-1000,1000);
fl_set_xyplot_ybounds(form->scatter_plot1,-1000,1000);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_rho[(2*25*12*s)+2*i];
Q[j] = dlsch_rho[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot2,I,Q,j,"","","");
fl_set_xyplot_xbounds(form->scatter_plot2,-1000,1000);
fl_set_xyplot_ybounds(form->scatter_plot2,-1000,1000);
free(llr);
free(llr_time);
}
#endif
\documentclass[a4paper]{book}
\usepackage{a4wide}
\usepackage{makeidx}
\usepackage{fancyhdr}
\usepackage{graphicx}
\usepackage{multicol}
\usepackage{float}
\usepackage{textcomp}
\usepackage{alltt}
\usepackage{amsmath}
\usepackage{amssymb}
\ifx\pdfoutput\undefined
\usepackage[ps2pdf,
pagebackref=true,
colorlinks=true,
linkcolor=blue
]{hyperref}
\usepackage{pspicture}
\else
\usepackage[pdftex,
pagebackref=true,
colorlinks=true,
linkcolor=blue
]{hyperref}
\fi
\usepackage{doxygen}
\usepackage{times}
\makeindex
\setcounter{tocdepth}{1}
\renewcommand{\footrulewidth}{0.4pt}
\begin{document}
\begin{titlepage}
\vspace*{7cm}
\begin{center}
{\Large openair Specifications }\\
Phyiscal, Medium-Access, Radio-link Control, Packet Data Convergence Protocol and Radio Resource Control Layers\\
\vspace*{1cm}
{\large Generated by Doxygen 1.3.8}\\
\vspace*{0.5cm}
{\small Sun Oct 31 19:27:37 2004}\\
\end{center}
\end{titlepage}
\clearemptydoublepage
\pagenumbering{roman}
\tableofcontents
\clearemptydoublepage
\pagenumbering{arabic}
Bler_1
Bler_2
semilogy(s1(:,1),s1(:,2),'b',s2(:,1),s2(:,2),'r');
close all
fch0e
fch1e
figure;
plot(abs(ch0e),'b'); title 'Estimated 0'
hold on
plot(abs(ch1e),'r');
hold off
dlsch0_ch_ext00
dlsch1_ch_ext00
figure;
plot(abs(dl0_ch_ext00)); title 'Ext 0';
hold on
plot(abs(dl1_ch_ext00),'r');
hold off
dlsch0_rxF_comp0
dlsch1_rxF_comp0
figure;
plot(dl0_rxF_comp0,'x') ;title 'Comp 0';
figure;
plot(dl1_rxF_comp0,'x');title 'Comp 1 interferer';
dlsch0_rxF_llr
rho
figure;
plot(real(rho_0),'x'); title 'Rho';
figure;
plot(dl0_llr,'x'); title 'Llr';
#close all
dlsch0_rxF_comp0
dlsch1_rxF_comp0
figure;
plot(dl0_rxF_comp0,'x') ;title 'Comp 0';
figure;
plot(dl1_rxF_comp0,'x');title 'Comp 1 interferer';
#plot(s0(:,1),20*log(s0(:,2)));
#fch0e;
#fch0p;
#fch1e;
#fch1p;
#plot(abs(ch0e),'r');
#hold on;
#figure;plot(abs(ch0p),'b');
#hold off;
#figure;
#plot(abs(ch1e),'m');
#hold on;
#figure;plot(abs(ch1p),'g');
#hold off;
fch0e
fch1e
figure;
plot(abs(ch0e)); title 'Estimated 0'
hold on
plot(abs(ch1e),'r');
dlsch0_ch_ext00
dlsch1_ch_ext00
figure;
plot(abs(dl0_ch_ext00)); title 'Ext 0';
figure;
plot(abs(dl1_ch_ext00)); title 'Ext 1 interferer';
dlsch0_rxF_ext0
dlsch1_rxF_ext0
figure;
plot(abs(dl0_rxF_ext0)); title 'Ext 0';
figure;
plot(abs(dl1_rxF_ext0)); title 'Ext 1 interferer';
dlsch0_rxF_llr
rho
figure;
plot(real(rho_0));
figure;
plot(dl0_llr,'x');
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <execinfo.h>
#include <sys/stat.h>
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"
#include "OCG_vars.h"
#include "femtoUtils.h"
#define BW 7.68
#define N_RB 25 //50 for 10MHz and 25 for 5 MHz
#define UL_RB_ALLOC 0x1ff;
#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL,0,2)
#define uint64_t DLSCH_RB_ALLOC = 0x1fff; //TODO: why this value?
PHY_VARS_eNB *PHY_vars_eNB;
PHY_VARS_UE *PHY_vars_UE;
PHY_VARS_eNB **interf_PHY_vars_eNB;
channel_desc_t *eNB2UE;
DCI1E_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2_1E; //TODO: what it's the use of this variable?
LTE_DL_FRAME_PARMS *frame_parms; //WARNING if you don't put this variable, some macros dosn't work
int main(int argc,char **argv)
{
options_t opts;
data_t data;
uint16_t NB_RB;
DCI_ALLOC_t dci_alloc[8],dci_alloc_rx[8];
//Init LOG
logInit();
set_comp_log(PHY,LOG_DEBUG,LOG_LOW,1);
//Parse options
_initDefaults(&opts);
_parseOptions(&opts,argc,argv);
_printOptions(&opts);
_makeOutputDir(&opts);
//Init Lte Params
frame_parms=_lte_param_init(opts);
NB_RB=conv_nprb(0,(uint32_t)DLSCH_RB_ALLOC); //TODO: why a function , what to this function?
_allocData(&data,opts.n_tx,opts.n_rx,FRAME_LENGTH_COMPLEX_SAMPLES);
_fill_Ul_CCCH_DLSCH_Alloc(opts);
_generatesRandomChannel(opts);
_allocDLSChannel(opts); // ??
_generateDCI(opts,dci_alloc,dci_alloc_rx);//,&input_buffer);
fprintf(opts.outputFile,"s0=[");
_makeSimulation(data,opts,dci_alloc,dci_alloc_rx,NB_RB,frame_parms);
_freeMemory(data,opts);
fprintf(opts.outputFile,"];\n");
fclose(opts.outputFile);
fclose(opts.outputBler);
return 0;
}
void _initDefaults(options_t *opts)
{
opts->snr_init =0;
opts->snr_max=5;
opts->snr_step=1;
opts->nframes=1;
opts->nsymb=14;
opts->frame_type=1; //1 FDD
opts->transmission_mode=1; //
opts->n_tx=1;
opts->n_rx=1;
opts->nInterf=0;
opts->Nid_cell=0;
opts->oversampling=1; //TODO why?
opts->channel_model=Rayleigh1;
opts->dbInterf=NULL;
opts->awgn_flag=0;
opts->num_layers=1; //TODO why we need a num of layers?
opts->n_rnti=0x1234; //Ratio Network Temporary Identifiers
opts->mcs=0; //TODO why this value? esto es una variable que tania quiere cambiar ,... investigar implementaciones
opts->extended_prefix_flag=0; //false
opts->nsymb=14; // Prefix normal
opts->pilot1 = 4;
opts->pilot2 = 7;
opts->pilot3 = 11;
opts->num_rounds=4;
opts->subframe=0; //TODO why??
opts->eNB_id = 0;
opts->amp=1024;
opts->dci_flag=0;
opts->testNumber=0;
}
LTE_DL_FRAME_PARMS* _lte_param_init(options_t opts)
{
int i;
printf("Start lte_param_init\n");
PHY_vars_eNB = malloc(sizeof(PHY_VARS_eNB));
PHY_vars_UE = malloc(sizeof(PHY_VARS_UE));
mac_xface = malloc(sizeof(MAC_xface));
LTE_DL_FRAME_PARMS *lte_frame_parms = &(PHY_vars_eNB->lte_frame_parms);
lte_frame_parms->N_RB_DL = N_RB;
lte_frame_parms->N_RB_UL = N_RB;
lte_frame_parms->Ncp = opts.extended_prefix_flag;
lte_frame_parms->Nid_cell = opts.Nid_cell;
lte_frame_parms->nushift = 0;
lte_frame_parms->nb_antennas_tx = opts.n_tx;
lte_frame_parms->nb_antennas_rx = opts.n_rx;
lte_frame_parms->phich_config_common.phich_resource = oneSixth; //TODO Why??
lte_frame_parms->tdd_config = 3;
lte_frame_parms->frame_type = opts.frame_type;
lte_frame_parms->mode1_flag = (opts.transmission_mode == 1)? 1 : 0;
randominit(1);
set_taus_seed(1);
init_frame_parms(lte_frame_parms,opts.oversampling);
phy_init_top(lte_frame_parms);
//para que se usan estos ??
lte_frame_parms->twiddle_fft = twiddle_fft; //TODO Why?? Pointer to twiddle factors for FFT.
lte_frame_parms->twiddle_ifft = twiddle_ifft; //TODO Why?? pointer to twiddle factors for IFFT
lte_frame_parms->rev = rev; //TODO Why?? pointer to FFT permutation vector
PHY_vars_UE->is_secondary_ue = 0;
PHY_vars_UE->lte_frame_parms = *lte_frame_parms;
PHY_vars_eNB->lte_frame_parms = *lte_frame_parms;
phy_init_lte_top(lte_frame_parms);
dump_frame_parms(lte_frame_parms); //print
for (i=0; i<3; i++)
lte_gold(lte_frame_parms,PHY_vars_UE->lte_gold_table[i],i); //TODO why it's necessary make this 3 times? ... lo hace por sector.
phy_init_lte_ue(PHY_vars_UE,0);
phy_init_lte_eNB(PHY_vars_eNB,0,0,0);
//Init interference nodes
if (opts.nInterf>0) {
interf_PHY_vars_eNB = malloc(opts.nInterf*sizeof(PHY_VARS_eNB));
for (i=0; i<opts.nInterf; i++) {
interf_PHY_vars_eNB[i]=malloc(sizeof(PHY_VARS_eNB));
memcpy((void*)&interf_PHY_vars_eNB[i]->lte_frame_parms,(void*)&lte_frame_parms,sizeof(LTE_DL_FRAME_PARMS));
interf_PHY_vars_eNB[i]->lte_frame_parms.Nid_cell=opts.Nid_cell+i+1;
interf_PHY_vars_eNB[i]->lte_frame_parms.nushift=(opts.Nid_cell+i+1)%6;
interf_PHY_vars_eNB[i]->Mod_id=i+1;
phy_init_lte_eNB(interf_PHY_vars_eNB[i],0,0,0);
}
}
printf("Done lte_param_init\n");
return &PHY_vars_eNB->lte_frame_parms;
}
void _fill_Ul_CCCH_DLSCH_Alloc(options_t opts)
{
PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = opts.n_rnti;
UL_alloc_pdu.type = 0;
UL_alloc_pdu.hopping = 0;
UL_alloc_pdu.rballoc = UL_RB_ALLOC;
UL_alloc_pdu.mcs = 1;
UL_alloc_pdu.ndi = 1;
UL_alloc_pdu.TPC = 0;
UL_alloc_pdu.cqi_req = 1;
CCCH_alloc_pdu.type = 0;
CCCH_alloc_pdu.vrb_type = 0;
CCCH_alloc_pdu.rballoc = CCCH_RB_ALLOC;
CCCH_alloc_pdu.ndi = 1;
CCCH_alloc_pdu.mcs = 1;
CCCH_alloc_pdu.harq_pid = 0;
DLSCH_alloc_pdu2_1E.rah = 0;
DLSCH_alloc_pdu2_1E.rballoc = DLSCH_RB_ALLOC;
DLSCH_alloc_pdu2_1E.TPC = 0;
DLSCH_alloc_pdu2_1E.dai = 0;
DLSCH_alloc_pdu2_1E.harq_pid = 0;
//DLSCH_alloc_pdu2_1E.tb_swap = 0;
DLSCH_alloc_pdu2_1E.mcs = opts.mcs;
DLSCH_alloc_pdu2_1E.ndi = 1;
DLSCH_alloc_pdu2_1E.rv = 0;
// Forget second codeword
DLSCH_alloc_pdu2_1E.tpmi = (opts.transmission_mode>=5 ? 5 : 0); // precoding
DLSCH_alloc_pdu2_1E.dl_power_off = (opts.transmission_mode==5 ? 0 : 1);
}
void _generatesRandomChannel(options_t opts)
{
eNB2UE = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
PHY_vars_UE->lte_frame_parms.nb_antennas_rx,
opts.channel_model,
BW,
0.0, //forgetting_factor,
0, //rx_sample_offset,
0); //path_loss_dB
if (eNB2UE==NULL) {
msg("Problem generating channel model. Exiting.\n");
exit(-1);
}
//TODO: generate channel for interference
}
//TODO: I don't know what it's the objetive of all this code
void _allocDLSChannel(options_t opts)
{
int i;
//dlsch_eNB[user][TB]
for (i=0; i<2; i++) {
PHY_vars_eNB->dlsch_eNB[0][i] = new_eNB_dlsch(1,8,0); //Kmimo, Maximum number of HARQ rounds, abstraction_flag
if (!PHY_vars_eNB->dlsch_eNB[0][i]) {
printf("Can't get eNB dlsch structures\n");
exit(-1);
}
PHY_vars_eNB->dlsch_eNB[0][i]->rnti = opts.n_rnti;
}
for (i=0; i<2; i++) {
PHY_vars_UE->dlsch_ue[0][i] = new_ue_dlsch(1,8,0);//Kmimo,Mdlharq,abstraction_flag
if (!PHY_vars_UE->dlsch_ue[0][i]) {
printf("Can't get ue dlsch structures\n");
exit(-1);
}
PHY_vars_UE->dlsch_ue[0][i]->rnti = opts.n_rnti;
}
if (DLSCH_alloc_pdu2_1E.tpmi == 5)
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff);//DL PMI Single Stream. (precoding matrix indicator)
else
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = 0;
}
void _generateDCI(options_t opts,DCI_ALLOC_t *dci_alloc,DCI_ALLOC_t *dci_alloc_rx)//,uint8_t **input_buffer)
{
int num_dci = 0;
generate_eNB_dlsch_params_from_dci(0, //subframe
&DLSCH_alloc_pdu2_1E, //
opts.n_rnti,
format1E_2A_M10PRB,
PHY_vars_eNB->dlsch_eNB[0],
&PHY_vars_eNB->lte_frame_parms,
SI_RNTI,
0,
P_RNTI,
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single);
// UE specific DCI
memcpy(&dci_alloc[num_dci].dci_pdu[0],&DLSCH_alloc_pdu2_1E,sizeof(DCI1E_5MHz_2A_M10PRB_TDD_t));
dci_alloc[num_dci].dci_length = sizeof_DCI1E_5MHz_2A_M10PRB_TDD_t;
dci_alloc[num_dci].L = 2;
dci_alloc[num_dci].rnti = opts.n_rnti;
dci_alloc[num_dci].format = format1E_2A_M10PRB;
}
void _freeMemory(data_t data,options_t opts)
{
int i;
printf("Freeing channel I/O\n");
for (i=0; i<opts.n_tx; i++) {
free(data.s_re[i]);
free(data.s_im[i]);
free(data.r_re[i]);
free(data.r_im[i]);
}
free(data.s_re);
free(data.s_im);
free(data.r_re);
free(data.r_im);
printf("Freeing dlsch structures\n");
for (i=0; i<2; i++) {
printf("eNB %d\n",i);
free_eNB_dlsch(PHY_vars_eNB->dlsch_eNB[0][i]);
printf("UE %d\n",i);
free_ue_dlsch(PHY_vars_UE->dlsch_ue[0][i]);
}
}
void _printResults(uint32_t *errs,uint32_t *round_trials,uint32_t dci_errors,double rate)
{
printf("Errors/trials (%d/%d, %d/%d ,%d/%d ,%d/%d) Pe = (%e,%e,%e,%e) \n\tdci_errors %d/%d, Pe = %e \n\teffective rate \t%f (%f) \n\tnormalized delay\t %f (%f)\n",
errs[0],
round_trials[0],
errs[1],
round_trials[1],
errs[2],
round_trials[2],
errs[3],
round_trials[3],
(double)errs[0]/(round_trials[0]),
(double)errs[1]/(round_trials[1]),
(double)errs[2]/(round_trials[2]),
(double)errs[3]/(round_trials[3]),
dci_errors,
round_trials[0],
(double)dci_errors/(round_trials[0]),
rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])),
rate,
(1.0*(round_trials[0]-errs[0])+2.0*(round_trials[1]-errs[1])+3.0*(round_trials[2]-errs[2])+4.0*(round_trials[3]-errs[3]))/((double)round_trials[0])/
(double)PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
(1.0*(round_trials[0]-errs[0])+2.0*(round_trials[1]-errs[1])+3.0*(round_trials[2]-errs[2])+4.0*(round_trials[3]-errs[3]))/((double)round_trials[0]));
}
void _printFileResults(double SNR, double rate,uint32_t *errs,uint32_t *round_trials,uint32_t dci_errors,options_t opts)
{
fprintf(opts.outputFile,"%f %f;\n", SNR, (float)errs[0]/round_trials[0]);
fprintf(opts.outputBler,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d;%d\n",
SNR,
opts.mcs,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
rate,
errs[0],
round_trials[0],
errs[1],
round_trials[1],
errs[2],
round_trials[2],
errs[3],
round_trials[3],
dci_errors);
}
void _initErrsRoundsTrials(uint32_t **errs,uint32_t **trials,int allocFlag,options_t opts)
{
int i=0;
if (allocFlag==1) {
*errs=(uint32_t*)malloc(opts.num_rounds*sizeof(uint32_t));
*trials=(uint32_t*)malloc(opts.num_rounds*sizeof(uint32_t));
}
for (i=0; i<opts.num_rounds; i++) {
(*errs)[i]=0;
(*trials)[i]=0;
}
}
void _fillData(options_t opts,data_t data)
{
uint32_t aux=2*opts.subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti;
int i,aa,aarx;
for (i=0; i<2*opts.nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
if (opts.awgn_flag == 0) {
data.s_re[aa][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id][aa]))[aux + (i<<1)]);
data.s_im[aa][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id][aa]))[aux +(i<<1)+1]);
} else {
for (aarx=0; aarx<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aarx++) {
if (aa==0) {
data.r_re[aarx][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id][aa]))[aux +(i<<1)]);
data.r_im[aarx][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id][aa]))[aux +(i<<1)+1]);
} else {
data.r_re[aarx][i] += ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id][aa]))[aux+(i<<1)]);
data.r_im[aarx][i] += ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id][aa]))[aux +(i<<1)+1]);
}
}
}
}
}
}
void _applyNoise(options_t opts, data_t data,double sigma2,double iqim)
{
uint32_t aux=2*opts.subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti;
int i,aa;
for (i=0; i<2*opts.nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(aux)+2*i] = (short) (data.r_re[aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[(aux)+2*i+1] = (short) (data.r_im[aa][i] + (iqim*data.r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
}
}
}
uint8_t _generate_dci_top(int num_ue_spec_dci,int num_common_dci,DCI_ALLOC_t *dci_alloc,options_t opts,uint8_t num_pdcch_symbols)
{
uint8_t num_pdcch_symbols_2=0;
num_pdcch_symbols_2= generate_dci_top(num_ue_spec_dci,
num_common_dci,
dci_alloc,
0,
1024,
&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id],
opts.subframe);
if (num_pdcch_symbols_2 > num_pdcch_symbols) {
msg("Error: given num_pdcch_symbols not big enough\n");
exit(-1);
}
return num_pdcch_symbols_2;
}
void _makeSimulation(data_t data,options_t opts,DCI_ALLOC_t *dci_alloc,DCI_ALLOC_t *dci_alloc_rx,uint16_t NB_RB,LTE_DL_FRAME_PARMS *frame_parms)
{
uint32_t *errs,*round_trials;
unsigned char *input_buffer[2];
unsigned short input_buffer_length;
//Index and counters
int aa; //Antennas index
int i; //General index for arrays
uint32_t round;
double SNR;
uint32_t dci_errors=0;
uint32_t cont_frames=0;
uint8_t Ns,l,m;
//Variables
uint32_t tbs,coded_bits_per_codeword;
int num_common_dci=0,num_ue_spec_dci=0;
double rate=0, sigma2, sigma2_dB=10,uncoded_ber;
short *uncoded_ber_bit;
unsigned int dci_cnt,dlsch_active=0;
unsigned int tx_lev,tx_lev_dB=0; // Signal Power
//Other defaults values
double iqim=0.0;
uint8_t i_mod = 2;
uint8_t num_pdcch_symbols=3,num_pdcch_symbols_2=0;
uint8_t dual_stream_UE = 0;
int eNB_id_i = NUMBER_OF_eNB_MAX;
int idUser=0; //index of number of user, this program use just one user allowed in position 0 of PHY_vars_eNB->dlsch_eNB
//Just allow transmision mode 1
int numOFDMSymbSubcarrier;
//Status flags
int32_t status;
uint32_t ret;
int re_allocated;
//Init Pointers to 8 HARQ processes for the DLSCH
input_buffer_length = PHY_vars_eNB->dlsch_eNB[idUser][0]->harq_processes[0]->TBS/8;//Transport block size/8
input_buffer[idUser] = (unsigned char *)malloc(input_buffer_length+4);
memset(input_buffer[idUser],0,input_buffer_length+4);
for (i=0; i<input_buffer_length; i++) {
input_buffer[idUser][i]= (unsigned char)(taus()&0xff);//Tausworthe Uniform Random Generator. -Gaussian Noise Generator
}
/*********************************************************************************/
numOFDMSymbSubcarrier=PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(NB_RB*12);
_initErrsRoundsTrials(&errs,&round_trials,1, opts);
for (SNR=opts.snr_init; SNR<opts.snr_max; SNR+=opts.snr_step) {
_initErrsRoundsTrials(&errs,&round_trials,0,opts);
dci_errors=0;
for (cont_frames = 0; cont_frames<opts.nframes; cont_frames++) {
round=0;
eNB2UE->first_run = 1;
while (round < opts.num_rounds) {
round_trials[round]++;
tx_lev = 0;
//Clear the the transmit data in the frequency domain
printf("FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX %d",FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX);
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id][aa][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
}
// Simulate HARQ procedures!!!
if (round == 0) { // First round, set Ndi to 1 and rv to floor(round/2)
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2_1E.ndi = 1; //New Data Indicator 1.
DLSCH_alloc_pdu2_1E.rv = 0; //Redundancy version 1.
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_1E,sizeof(DCI1E_5MHz_2A_M10PRB_TDD_t));
} else { // set Ndi to 0
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2_1E.ndi = 0; //New Data Indicator 1.
DLSCH_alloc_pdu2_1E.rv = round>>1; //Redundancy version 1.
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_1E,sizeof(DCI1E_5MHz_2A_M10PRB_TDD_t));
}
num_pdcch_symbols_2 = _generate_dci_top(num_ue_spec_dci,num_common_dci,dci_alloc,opts,num_pdcch_symbols);
/*****Sending******/
i_mod=get_Qm(opts.mcs); //Compute Q (modulation order) based on I_MCS.
coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->dlsch_eNB[idUser][0]->nb_rb,
PHY_vars_eNB->dlsch_eNB[idUser][0]->rb_alloc,l
i_mod,
num_pdcch_symbols,
opts.subframe);
//printf("coded_bits_per_codeword:%d",coded_bits_per_codeword);
tbs = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[idUser][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[idUser][0]->nb_rb-1];
rate = (double)tbs/(double)coded_bits_per_codeword;
uncoded_ber_bit = (short*) malloc(2*coded_bits_per_codeword);
if (cont_frames==0 && round==0)
printf("\tRate = %f (%f bits/dim) (G %d, TBS %d, mod %d, pdcch_sym %d)\n",
rate,rate*i_mod,coded_bits_per_codeword,tbs,i_mod,num_pdcch_symbols);
// use the PMI from previous trial
if (DLSCH_alloc_pdu2_1E.tpmi == 5) {
PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0);
PHY_vars_UE->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0);
}
status= dlsch_encoding(input_buffer[idUser],
&PHY_vars_eNB->lte_frame_parms,num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[idUser][0],opts.subframe);
if (status<0) exit(-1);
PHY_vars_eNB->dlsch_eNB[idUser][0]->rnti = opts.n_rnti+idUser;
//scrambling
dlsch_scrambling(&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[idUser][0],
coded_bits_per_codeword, 0, opts.subframe<<1);
if (opts.nframes==1) {
_dumpTransportBlockSegments(PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->C,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Cminus,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Kminus,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Kplus,
null,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c);
}
re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id],
opts.amp,
opts.subframe,
&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[idUser][0]);
if (cont_frames==0 && round==0) printf("re_allocated: %d\n",re_allocated);
if (opts.num_layers>1)
re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id],
opts.amp, opts.subframe,
&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[idUser][1]);
generate_pilots(PHY_vars_eNB,PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id],opts.amp,LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
do_OFDM_mod(PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id],
PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id],
(opts.subframe*2),
&PHY_vars_eNB->lte_frame_parms);
do_OFDM_mod(PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id],
PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id],
(opts.subframe*2)+1,
&PHY_vars_eNB->lte_frame_parms);
do_OFDM_mod(PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id],
PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id],
(opts.subframe*2)+2,
&PHY_vars_eNB->lte_frame_parms);
if (opts.nframes==1) {
write_output("dl_txsigF0.m","txsF0", &PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id][0][opts.subframe*opts.nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
opts.nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size*LTE_NUMBER_OF_SUBFRAMES_PER_FRAME ,1,1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("dl_txsigF1.m","txsF1", &PHY_vars_eNB->lte_eNB_common_vars.txdataF[opts.eNB_id][1][opts.subframe*opts.nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
opts.nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size,1,1);
}
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
tx_lev += signal_energy(&PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id][aa]
[opts.subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
PHY_vars_eNB->lte_frame_parms.samples_per_tti);
}
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
if (opts.nframes==1) {
printf("tx_lev = %d (%d dB)\n",tx_lev,tx_lev_dB);
write_output("dl_txsig0.m","txs0", &PHY_vars_eNB->lte_eNB_common_vars.txdata[opts.eNB_id][0][opts.subframe* PHY_vars_eNB->lte_frame_parms.samples_per_tti],
PHY_vars_eNB->lte_frame_parms.samples_per_tti,1,1);
}
/*****End Sending***/
_fillData(opts,data);
sigma2_dB = 10*log10((double)tx_lev) +10*log10(numOFDMSymbSubcarrier) - SNR;
sigma2 = pow(10,sigma2_dB/10);
_apply_Multipath_Noise_Interference(opts,data,sigma2_dB,sigma2);
if (opts.nframes==1) {
printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
printf("RX level in null symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("RX level in data symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("rx_level Null symbol %f\n",10*log10(signal_energy_fp(data.r_re,data.r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
printf("rx_level data symbol %f\n",10*log10(signal_energy_fp(data.r_re,data.r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
}
i_mod = get_Qm(opts.mcs);
if(1)exit(1);
//TODO: Optimize and clean code
// Inner receiver scheduling for 3 slots
for (Ns=(2*opts.subframe); Ns<((2*opts.subframe)+3); Ns++) {
for (l=0; l<opts.pilot2; l++) {
if (opts.nframes==1)
printf("Ns %d, l %d\n",Ns,l);
/*
This function implements the OFDM front end processor (FEP).
Parameters:
frame_parms LTE DL Frame Parameters
ue_common_vars LTE UE Common Vars
l symbol within slot (0..6/7)
Ns Slot number (0..19)
sample_offset offset within rxdata (points to beginning of subframe)
no_prefix if 1 prefix is removed by HW
*/
slot_fep(PHY_vars_UE,l,Ns%20,0,0);
#ifdef PERFECT_CE
if (opts.awgn_flag==0) {
// fill in perfect channel estimates
freq_channel(eNB2UE,PHY_vars_UE->lte_frame_parms.N_RB_DL,12*PHY_vars_UE->lte_frame_parms.N_RB_DL + 1);
for (k=0; k<NUMBER_OF_eNB_MAX; k++) {
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
for (i=0; i<frame_parms->N_RB_DL*12; i++) {
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[idUser][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2);
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[idUser][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
eNB2UE->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2) ;
}
}
}
}
} else {
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
for (i=0; i<frame_parms->N_RB_DL*12; i++) {
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=AMP/2;
((int16_t *) PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0/2;
}
}
}
}
#endif
if ((Ns==(2+(2*opts.subframe))) && (l==0)) {
lte_ue_measurements(PHY_vars_UE,opts.subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti,1,0);
}
if ((Ns==(2*opts.subframe)) && (l==opts.pilot1)) {
// process symbols 0,1,2
if (opts.dci_flag == 1) {
rx_pdcch(&PHY_vars_UE->lte_ue_common_vars,
PHY_vars_UE->lte_ue_pdcch_vars,
&PHY_vars_UE->lte_frame_parms,
opts.subframe,
0,
(PHY_vars_UE->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
0);
// overwrite number of pdcch symbols
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
dci_cnt = dci_decoding_procedure(PHY_vars_UE,
dci_alloc_rx,
opts.eNB_id,
opts.subframe);
if (dci_cnt==0) {
dlsch_active = 0;
if (round==0) {
dci_errors++;
round=5;
errs[0]++;
round_trials[0]++;
}
}
for (i=0; i<dci_cnt; i++) {
//printf("Generating dlsch parameters for RNTI %x\n",dci_alloc_rx[i].rnti);
if ((dci_alloc_rx[i].rnti == opts.n_rnti) &&
(generate_ue_dlsch_params_from_dci(0,
dci_alloc_rx[i].dci_pdu,
dci_alloc_rx[i].rnti,
dci_alloc_rx[i].format,
PHY_vars_UE->dlsch_ue[0],
&PHY_vars_UE->lte_frame_parms,
SI_RNTI,
0,
P_RNTI)==0)) {
coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_UE->dlsch_ue[0][0]->nb_rb,
PHY_vars_UE->dlsch_ue[0][0]->rb_alloc,
get_Qm(PHY_vars_UE->dlsch_ue[0][0]->harq_processes[PHY_vars_UE->dlsch_ue[0][0]->current_harq_pid]->mcs),
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
opts.subframe);
dlsch_active = 1;
} else {
dlsch_active = 0;
if (round==0) {
dci_errors++;
errs[0]++;
round_trials[0]++;
if (opts.nframes==1) {
printf("DCI misdetection trial %d\n",cont_frames);
round=5;
}
}
}
}
} // if dci_flag==1
else { //dci_flag == 0
PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = opts.n_rnti;
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
generate_ue_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2_1E,
C_RNTI,
format1E_2A_M10PRB,
PHY_vars_UE->dlsch_ue[0],
&PHY_vars_UE->lte_frame_parms,
SI_RNTI,
0,
P_RNTI);
dlsch_active = 1;
} // if dci_flag == 1
}
if (dlsch_active == 1) {
if ((Ns==(1+(2*opts.subframe))) && (l==0)) {
// process PDSCH symbols 1,2,3,4,5,(6 Normal Prefix)
for (m=PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols; m<opts.pilot2; m++) {
#if defined ENABLE_FXP || ENABLE_FLP
// printf("fxp or flp release used\n");
if (rx_pdsch(PHY_vars_UE,
PDSCH,
opts.eNB_id,
eNB_id_i,
opts.subframe,
m,
(m==PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0,
dual_stream_UE,
i_mod)==-1) {
dlsch_active = 0;
break;
}
#endif
#ifdef ENABLE_FULL_FLP
// printf("Full flp release used\n");
if (rx_pdsch_full_flp(PHY_vars_UE,
PDSCH,
opts.eNB_id,
eNB_id_i,
opts.subframe,
m,
(m==PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0,
dual_stream_UE,
i_mod)==-1) {
dlsch_active = 0;
break;
}
#endif
}
}
if ((Ns==(1+(2*opts.subframe))) && (l==opts.pilot1)) {
// process symbols (6 Extended Prefix),7,8,9
for (m=opts.pilot2; m<opts.pilot3; m++) {
#if defined ENABLE_FXP || ENABLE_FLP
// printf("fxp or flp release used\n");
if (rx_pdsch(PHY_vars_UE,
PDSCH,
opts.eNB_id,
eNB_id_i,
opts.subframe,
m,
0,
dual_stream_UE,
i_mod)==-1) {
dlsch_active=0;
break;
}
#endif
#ifdef ENABLE_FULL_FLP
// printf("Full flp release used\n");
if (rx_pdsch_full_flp(PHY_vars_UE,
PDSCH,
opts.eNB_id,
eNB_id_i,
opts.subframe,
m,
0,
dual_stream_UE,
i_mod)==-1) {
dlsch_active=0;
break;
}
#endif
}
}
if ((Ns==(2+(2*opts.subframe))) && (l==0)) { // process symbols 10,11,(12,13 Normal Prefix) do deinterleaving for TTI
for (m=opts.pilot3; m<PHY_vars_UE->lte_frame_parms.symbols_per_tti; m++) {
#if defined ENABLE_FXP || ENABLE_FLP
// printf("fxp or flp release used\n");
if (rx_pdsch(PHY_vars_UE,
PDSCH,
opts.eNB_id,
eNB_id_i,
opts.subframe,
m,
0,
dual_stream_UE,
i_mod)==-1) {
dlsch_active=0;
break;
}
#endif
#ifdef ENABLE_FULL_FLP
// printf("Full flp release used\n");
if (rx_pdsch_full_flp(PHY_vars_UE,
PDSCH,
opts.eNB_id,
eNB_id_i,
opts.subframe,
m,
0,
dual_stream_UE,
i_mod)==-1) {
dlsch_active=0;
break;
}
#endif
}
}
if ((opts.nframes==1) && (Ns==(2+(2*opts.subframe))) && (l==0)) {
write_output("dl_ch0.m","ch0",eNB2UE->ch[0],eNB2UE->channel_length,1,8);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("dl_ch1.m","ch1",eNB2UE->ch[PHY_vars_eNB->lte_frame_parms.nb_antennas_rx],eNB2UE->channel_length,1,8);
//common vars
write_output("dl_rxsig0.m","rxs0", &PHY_vars_UE->lte_ue_common_vars.rxdata[0][0],10*PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
write_output("dl_rxsigF0.m","rxsF0", &PHY_vars_UE->lte_ue_common_vars.rxdataF[0][0],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb,2,1);
if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) {
write_output("dl_rxsig1.m","rxs1", PHY_vars_UE->lte_ue_common_vars.rxdata[1],PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
write_output("dl_rxsigF1.m","rxsF1", PHY_vars_UE->lte_ue_common_vars.rxdataF[1],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb,2,1);
}
write_output("dlsch00_ch0.m","dl00_ch0",
&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.eNB_id][0][0]),
PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1)
write_output("dlsch01_ch0.m","dl01_ch0",
&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.eNB_id][1][0]),
PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("dlsch10_ch0.m","dl10_ch0",
&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.eNB_id][2][0]),
PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
if ((PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1))
write_output("dlsch11_ch0.m","dl11_ch0",
&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.eNB_id][3][0]),
PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
//pdsch_vars
dump_dlsch2(PHY_vars_UE,opts.eNB_id,coded_bits_per_codeword);
dump_dlsch2(PHY_vars_UE,eNB_id_i,coded_bits_per_codeword);
write_output("dlsch_e.m","e",PHY_vars_eNB->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4);
//pdcch_vars
write_output("pdcchF0_ext.m","pdcchF_ext", PHY_vars_UE->lte_ue_pdcch_vars[opts.eNB_id]->rxdataF_ext[0],2*3*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,1,1);
write_output("pdcch00_ch0_ext.m","pdcch00_ch0_ext",PHY_vars_UE->lte_ue_pdcch_vars[opts.eNB_id]->dl_ch_estimates_ext[0],300*3,1,1);
write_output("pdcch_rxF_comp0.m","pdcch0_rxF_comp0",PHY_vars_UE->lte_ue_pdcch_vars[opts.eNB_id]->rxdataF_comp[0],4*300,1,1);
write_output("pdcch_rxF_llr.m","pdcch_llr",PHY_vars_UE->lte_ue_pdcch_vars[opts.eNB_id]->llr,2400,1,4);
}
}
}
}
//saving PMI incase of Transmission Mode > 5
PHY_vars_UE->dlsch_ue[0][0]->rnti = opts.n_rnti;
dlsch_unscrambling(&PHY_vars_UE->lte_frame_parms,
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
PHY_vars_UE->dlsch_ue[0][0],
coded_bits_per_codeword,
PHY_vars_UE->lte_ue_pdsch_vars[opts.eNB_id]->llr[0],
0,
opts.subframe<<1);
ret = dlsch_decoding(PHY_vars_UE->lte_ue_pdsch_vars[opts.eNB_id]->llr[0],
&PHY_vars_UE->lte_frame_parms,
PHY_vars_UE->dlsch_ue[0][0],
opts.subframe,
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols);
if (ret <= MAX_TURBO_ITERATIONS) { //No hay errores
round=5;
if (opts.nframes==1)
printf("No DLSCH errors found\n");
} else {
errs[round]++;
round++;
if (opts.nframes==1) {
printf("DLSCH in error in round %d\n",round);
printf("DLSCH errors found, uncoded ber %f\n",uncoded_ber);
_dumpTransportBlockSegments(PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->C,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Cminus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kminus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kplus,
PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c);
_writeOuputOneFrame(opts,coded_bits_per_codeword,uncoded_ber_bit,tbs);
exit(1);
}
round++;
if (opts.nframes==1) printf("DLSCH in error in round %d\n",round);
}
free(uncoded_ber_bit);
uncoded_ber_bit = NULL;
} //round
if ((errs[0]>=opts.nframes/10) && (cont_frames>(opts.nframes/2)))
break;
} //cont_frames
printf("---------------------------------------------------------------------\n");
printf("SNR = %f dB (tx_lev %f, sigma2_dB %f)\n",SNR,(double)tx_lev_dB+10*log10(numOFDMSymbSubcarrier),sigma2_dB);
_printResults(errs,round_trials,dci_errors,rate);
_printFileResults( SNR, rate,errs,round_trials, dci_errors, opts);
if (((double)errs[0]/(round_trials[0]))<1e-2) break;
}// SNR
}
void do_OFDM_mod(mod_sym_t **txdataF, int32_t **txdata, uint16_t next_slot, LTE_DL_FRAME_PARMS *frame_parms)
{
int aa, slot_offset, slot_offset_F;
slot_offset_F = (next_slot)*(frame_parms->ofdm_symbol_size)*((frame_parms->Ncp==1) ? 6 : 7);
slot_offset = (next_slot)*(frame_parms->samples_per_tti>>1);
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(&txdataF[aa][slot_offset_F], // input
&txdata[aa][slot_offset], // output
frame_parms->log2_symbol_size, // log2_fft_size
6, // number of symbols
frame_parms->nb_prefix_samples, // number of prefix samples
frame_parms->twiddle_ifft, // IFFT twiddle factors
frame_parms->rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(&txdataF[aa][slot_offset_F],
&txdata[aa][slot_offset],
7,
frame_parms);
}
}
}
void _apply_Multipath_Noise_Interference(options_t opts,data_t data,double sigma2_dB,double sigma2)
{
double iqim=0.0;
//Multipath channel
//Generates and applys a random frequency selective random channel model.
printf("\n\nCambios:\n2*opts.nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES: %d\n2*frame_parms->samples_per_tti:%d\n\n",(2*opts.nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES),(2*2*frame_parms->samples_per_tti));
if (opts.awgn_flag == 0) {
multipath_channel(eNB2UE,data.s_re,data.s_im,data.r_re,data.r_im,2*opts.nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);
}
//Noise
_applyNoise(opts,data,sigma2,iqim);
if (opts.nframes==1) {
printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
printf("RX level in null symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("RX level in data symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("rx_level Null symbol %f\n",10*log10(signal_energy_fp(data.r_re,data.r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
printf("rx_level data symbol %f\n",10*log10(signal_energy_fp(data.r_re,data.r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
}
//Interference
//TODO: implements.....
}
void _writeOuputOneFrame(options_t opts,uint32_t coded_bits_per_codeword,short *uncoded_ber_bit,uint32_t tbs)
{
write_output("dl_rxsig0.m","rxs0", &PHY_vars_UE->lte_ue_common_vars.rxdata[0][0],10*PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
write_output("dl_rxsigF0.m","rxsF0", &PHY_vars_UE->lte_ue_common_vars.rxdataF[0][0],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb,2,1);
if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) {
write_output("dl_rxsig1.m","rxs1", PHY_vars_UE->lte_ue_common_vars.rxdata[1],PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
write_output("dl_rxsigF1.m","rxsF1", PHY_vars_UE->lte_ue_common_vars.rxdataF[1],2*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb,2,1);
write_output("dlsch01_ch0.m","dl01_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.eNB_id][1][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
write_output("dlsch10_ch0.m","dl10_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.eNB_id][2][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("dlsch11_ch0.m","dl11_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.eNB_id][3][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
}
write_output("dlsch00_ch0.m","dl00_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[opts.eNB_id][0][0]),PHY_vars_UE->lte_frame_parms.ofdm_symbol_size*opts.nsymb/2,1,1);
//pdsch_vars
dump_dlsch2(PHY_vars_UE,opts.eNB_id,coded_bits_per_codeword);
write_output("dlsch_e.m","e",PHY_vars_eNB->dlsch_eNB[0][0]->e,coded_bits_per_codeword,1,4);
write_output("dlsch_ber_bit.m","ber_bit",uncoded_ber_bit,coded_bits_per_codeword,1,0);
write_output("dlsch_eNB_w.m","w",PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->w[0],3*(tbs+64),1,4);
write_output("dlsch_UE_w.m","w",PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->w[0],3*(tbs+64),1,0);
}
void _dumpTransportBlockSegments(uint32_t C,uint32_t Cminus,uint32_t Kminus,uint32_t Kplus, uint8_t ** c_UE, uint8_t ** c_eNB)
{
int i,s;
int Kr,Kr_bytes;
for (s=0; s<C; s++) {
if (s<Cminus)
Kr = Kminus;
else
Kr = Kplus;
Kr_bytes = Kr>>3;
printf("Decoded_output (Segment %d):\n",s);
for (i=0; i<Kr_bytes; i++) {
if ( c_UE !=NULL)
printf("%d : %x (%x)\n",i,c_UE[s][i],c_UE[s][i]^c_eNB[s][i]);
else
printf("%d : (%x)\n",i,c_eNB[s][i]);
}
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment