Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
O
OpenXG-RAN
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
canghaiwuhen
OpenXG-RAN
Commits
4016a10d
Commit
4016a10d
authored
Jun 25, 2020
by
rickyskv
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added 8 bit polar decoder
parent
e68e72cd
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
430 additions
and
0 deletions
+430
-0
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoder.c
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoder.c
+104
-0
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoding_tools.c
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoding_tools.c
+326
-0
No files found.
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoder.c
View file @
4016a10d
...
@@ -704,3 +704,107 @@ uint32_t polar_decoder_int16(int16_t *input,
...
@@ -704,3 +704,107 @@ uint32_t polar_decoder_int16(int16_t *input,
out
[
0
]
=
Ar
;
out
[
0
]
=
Ar
;
return
(
crc
^
rxcrc
);
return
(
crc
^
rxcrc
);
}
}
// ############### INT 8 #########################
uint32_t
polar_decoder_int8
(
int16_t
*
input
,
uint64_t
*
out
,
uint8_t
ones_flag
,
const
t_nrPolar_params
*
polarParams
)
{
int16_t
d_tilde
[
polarParams
->
N
];
// = malloc(sizeof(double) * polarParams->N);
nr_polar_rate_matching_int16
(
input
,
d_tilde
,
polarParams
->
rate_matching_pattern
,
polarParams
->
K
,
polarParams
->
N
,
polarParams
->
encoderLength
);
for
(
int
i
=
0
;
i
<
polarParams
->
N
;
i
++
)
{
if
(
d_tilde
[
i
]
<-
128
)
d_tilde
[
i
]
=-
128
;
else
if
(
d_tilde
[
i
]
>
127
)
d_tilde
[
i
]
=
128
;
}
memcpy
((
void
*
)
&
polarParams
->
tree
.
root
->
alpha
[
0
],(
void
*
)
&
d_tilde
[
0
],
sizeof
(
int16_t
)
*
polarParams
->
N
);
generic_polar_decoder_int8
(
polarParams
,
polarParams
->
tree
.
root
);
//Extract the information bits (û to ĉ)
uint64_t
Cprime
[
4
]
=
{
0
,
0
,
0
,
0
};
uint64_t
B
[
4
]
=
{
0
,
0
,
0
,
0
};
for
(
int
i
=
0
;
i
<
polarParams
->
K
;
i
++
)
Cprime
[
i
>>
6
]
=
Cprime
[
i
>>
6
]
|
((
uint64_t
)
polarParams
->
nr_polar_U
[
polarParams
->
Q_I_N
[
i
]])
<<
(
i
&
63
);
//Deinterleaving (ĉ to b)
uint8_t
*
Cprimebyte
=
(
uint8_t
*
)
Cprime
;
if
(
polarParams
->
K
<
65
)
{
B
[
0
]
=
polarParams
->
B_tab0
[
0
][
Cprimebyte
[
0
]]
|
polarParams
->
B_tab0
[
1
][
Cprimebyte
[
1
]]
|
polarParams
->
B_tab0
[
2
][
Cprimebyte
[
2
]]
|
polarParams
->
B_tab0
[
3
][
Cprimebyte
[
3
]]
|
polarParams
->
B_tab0
[
4
][
Cprimebyte
[
4
]]
|
polarParams
->
B_tab0
[
5
][
Cprimebyte
[
5
]]
|
polarParams
->
B_tab0
[
6
][
Cprimebyte
[
6
]]
|
polarParams
->
B_tab0
[
7
][
Cprimebyte
[
7
]];
}
else
if
(
polarParams
->
K
<
129
)
{
int
len
=
polarParams
->
K
/
8
;
if
((
polarParams
->
K
&
7
)
>
0
)
len
++
;
for
(
int
k
=
0
;
k
<
len
;
k
++
)
{
B
[
0
]
|=
polarParams
->
B_tab0
[
k
][
Cprimebyte
[
k
]];
B
[
1
]
|=
polarParams
->
B_tab1
[
k
][
Cprimebyte
[
k
]];
}
}
int
len
=
polarParams
->
payloadBits
;
//int len_mod64=len&63;
int
crclen
=
polarParams
->
crcParityBits
;
uint64_t
rxcrc
=
B
[
0
]
&
((
1
<<
crclen
)
-
1
);
uint32_t
crc
=
0
;
uint64_t
Ar
=
0
;
AssertFatal
(
len
<
65
,
"A must be less than 65 bits
\n
"
);
// appending 24 ones before a0 for DCI as stated in 38.212 7.3.2
uint8_t
offset
=
0
;
if
(
ones_flag
)
offset
=
3
;
if
(
len
<=
32
)
{
Ar
=
(
uint32_t
)(
B
[
0
]
>>
crclen
);
uint8_t
A32_flip
[
4
+
offset
];
if
(
ones_flag
)
{
A32_flip
[
0
]
=
0xff
;
A32_flip
[
1
]
=
0xff
;
A32_flip
[
2
]
=
0xff
;
}
uint32_t
Aprime
=
(
uint32_t
)(
Ar
<<
(
32
-
len
));
A32_flip
[
0
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
3
];
A32_flip
[
1
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
2
];
A32_flip
[
2
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
1
];
A32_flip
[
3
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
0
];
crc
=
(
uint64_t
)(
crc24c
(
A32_flip
,
8
*
offset
+
len
)
>>
8
);
}
else
if
(
len
<=
64
)
{
Ar
=
(
B
[
0
]
>>
crclen
)
|
(
B
[
1
]
<<
(
64
-
crclen
));;
uint8_t
A64_flip
[
8
+
offset
];
if
(
ones_flag
)
{
A64_flip
[
0
]
=
0xff
;
A64_flip
[
1
]
=
0xff
;
A64_flip
[
2
]
=
0xff
;
}
uint64_t
Aprime
=
(
uint64_t
)(
Ar
<<
(
64
-
len
));
A64_flip
[
0
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
7
];
A64_flip
[
1
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
6
];
A64_flip
[
2
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
5
];
A64_flip
[
3
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
4
];
A64_flip
[
4
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
3
];
A64_flip
[
5
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
2
];
A64_flip
[
6
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
1
];
A64_flip
[
7
+
offset
]
=
((
uint8_t
*
)
&
Aprime
)[
0
];
crc
=
(
uint64_t
)(
crc24c
(
A64_flip
,
8
*
offset
+
len
)
>>
8
);
}
#if 0
printf("A %llx B %llx|%llx Cprime %llx|%llx (crc %x,rxcrc %llx %d)\n",
Ar,
B[1],B[0],Cprime[1],Cprime[0],crc,
rxcrc,polarParams->payloadBits);
#endif
out
[
0
]
=
Ar
;
return
(
crc
^
rxcrc
);
}
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoding_tools.c
View file @
4016a10d
...
@@ -504,3 +504,329 @@ void generic_polar_decoder(const t_nrPolar_params *pp,decoder_node_t *node) {
...
@@ -504,3 +504,329 @@ void generic_polar_decoder(const t_nrPolar_params *pp,decoder_node_t *node) {
}
}
// ################ INT 8 ##################
decoder_node_t
*
new_decoder_node_int8
(
int
first_leaf_index
,
int
level
)
{
decoder_node_t
*
node
=
(
decoder_node_t
*
)
malloc
(
sizeof
(
decoder_node_t
));
node
->
first_leaf_index
=
first_leaf_index
;
node
->
level
=
level
;
node
->
Nv
=
1
<<
level
;
node
->
leaf
=
0
;
node
->
left
=
(
decoder_node_t
*
)
NULL
;
node
->
right
=
(
decoder_node_t
*
)
NULL
;
node
->
all_frozen
=
0
;
node
->
alpha
=
(
int8_t
*
)
malloc16
(
node
->
Nv
*
sizeof
(
int8_t
));
node
->
beta
=
(
int8_t
*
)
malloc16
(
node
->
Nv
*
sizeof
(
int8_t
));
memset
((
void
*
)
node
->
beta
,
-
1
,
node
->
Nv
*
sizeof
(
int8_t
));
return
(
node
);
}
decoder_node_t
*
add_nodes_int8
(
int
level
,
int
first_leaf_index
,
t_nrPolar_params
*
polarParams
)
{
int
all_frozen_below
=
1
;
int
Nv
=
1
<<
level
;
decoder_node_t
*
new_node
=
new_decoder_node_int8
(
first_leaf_index
,
level
);
#ifdef DEBUG_NEW_IMPL
printf
(
"New node %d order %d, level %d
\n
"
,
polarParams
->
tree
.
num_nodes
,
Nv
,
level
);
#endif
polarParams
->
tree
.
num_nodes
++
;
if
(
level
==
0
)
{
#ifdef DEBUG_NEW_IMPL
printf
(
"leaf %d (%s)
\n
"
,
first_leaf_index
,
polarParams
->
information_bit_pattern
[
first_leaf_index
]
==
1
?
"information or crc"
:
"frozen"
);
#endif
new_node
->
leaf
=
1
;
new_node
->
all_frozen
=
polarParams
->
information_bit_pattern
[
first_leaf_index
]
==
0
?
1
:
0
;
return
new_node
;
// this is a leaf node
}
for
(
int
i
=
0
;
i
<
Nv
;
i
++
)
{
if
(
polarParams
->
information_bit_pattern
[
i
+
first_leaf_index
]
>
0
)
all_frozen_below
=
0
;
}
if
(
all_frozen_below
==
0
)
new_node
->
left
=
add_nodes_int8
(
level
-
1
,
first_leaf_index
,
polarParams
);
else
{
#ifdef DEBUG_NEW_IMPL
printf
(
"aggregating frozen bits %d ... %d at level %d (%s)
\n
"
,
first_leaf_index
,
first_leaf_index
+
Nv
-
1
,
level
,((
first_leaf_index
/
Nv
)
&
1
)
==
0
?
"left"
:
"right"
);
#endif
new_node
->
leaf
=
1
;
new_node
->
all_frozen
=
1
;
}
if
(
all_frozen_below
==
0
)
new_node
->
right
=
add_nodes_int8
(
level
-
1
,
first_leaf_index
+
(
Nv
/
2
),
polarParams
);
#ifdef DEBUG_NEW_IMPL
printf
(
"new_node (%d): first_leaf_index %d, left %p, right %p
\n
"
,
Nv
,
first_leaf_index
,
new_node
->
left
,
new_node
->
right
);
#endif
return
(
new_node
);
}
void
build_decoder_tree_int8
(
t_nrPolar_params
*
polarParams
)
{
polarParams
->
tree
.
num_nodes
=
0
;
polarParams
->
tree
.
root
=
add_nodes_int8
(
polarParams
->
n
,
0
,
polarParams
);
#ifdef DEBUG_NEW_IMPL
printf
(
"root : left %p, right %p
\n
"
,
polarParams
->
tree
.
root
->
left
,
polarParams
->
tree
.
root
->
right
);
#endif
}
#if defined(__arm__) || defined(__aarch64__)
// translate 1-1 SIMD functions from SSE to NEON
#define __m128i int16x8_t
#define __m64 int8x8_t
#define _mm_abs_epi16(a) vabsq_s16(a)
#define _mm_min_epi16(a,b) vminq_s16(a,b)
#define _mm_subs_epi16(a,b) vsubq_s16(a,b)
#define _mm_abs_pi16(a) vabs_s16(a)
#define _mm_min_pi16(a,b) vmin_s16(a,b)
#define _mm_subs_pi16(a,b) vsub_s16(a,b)
#endif
void
applyFtoleft_int8
(
const
t_nrPolar_params
*
pp
,
decoder_node_t
*
node
)
{
int8_t
*
alpha_v
=
node
->
alpha
;
int8_t
*
alpha_l
=
node
->
left
->
alpha
;
int8_t
*
betal
=
node
->
left
->
beta
;
int8_t
a
,
b
,
absa
,
absb
,
maska
,
maskb
,
minabs
;
#ifdef DEBUG_NEW_IMPL
printf
(
"applyFtoleft %d, Nv %d (level %d,node->left (leaf %d, AF %d))
\n
"
,
node
->
first_leaf_index
,
node
->
Nv
,
node
->
level
,
node
->
left
->
leaf
,
node
->
left
->
all_frozen
);
for
(
int
i
=
0
;
i
<
node
->
Nv
;
i
++
)
printf
(
"i%d (frozen %d): alpha_v[i] = %d
\n
"
,
i
,
1
-
pp
->
information_bit_pattern
[
node
->
first_leaf_index
+
i
],
alpha_v
[
i
]);
#endif
if
(
node
->
left
->
all_frozen
==
0
)
{
#if defined(__AVX2__)
int
avx2mod
=
(
node
->
Nv
/
2
)
&
31
;
if
(
avx2mod
==
0
)
{
__m256i
a256
,
b256
,
absa256
,
absb256
,
minabs256
;
int
avx2len
=
node
->
Nv
/
2
/
32
;
// printf("avx2len %d\n",avx2len);
for
(
int
i
=
0
;
i
<
avx2len
;
i
++
)
{
a256
=
((
__m256i
*
)
alpha_v
)[
i
];
b256
=
((
__m256i
*
)
alpha_v
)[
i
+
avx2len
];
absa256
=
_mm256_abs_epi8
(
a256
);
absb256
=
_mm256_abs_epi8
(
b256
);
minabs256
=
_mm256_min_epi8
(
absa256
,
absb256
);
((
__m256i
*
)
alpha_l
)[
i
]
=
_mm256_sign_epi8
(
minabs256
,
_mm256_sign_epi8
(
a256
,
b256
));
}
}
else
if
(
avx2mod
==
16
)
{
__m128i
a128
,
b128
,
absa128
,
absb128
,
minabs128
;
a128
=*
((
__m128i
*
)
alpha_v
);
b128
=
((
__m128i
*
)
alpha_v
)[
1
];
absa128
=
_mm_abs_epi8
(
a128
);
absb128
=
_mm_abs_epi8
(
b128
);
minabs128
=
_mm_min_epi8
(
absa128
,
absb128
);
*
((
__m128i
*
)
alpha_l
)
=
_mm_sign_epi8
(
minabs128
,
_mm_sign_epi8
(
a128
,
b128
));
}
else
if
(
avx2mod
==
8
)
{
__m64
a64
,
b64
,
absa64
,
absb64
,
minabs64
;
a64
=*
((
__m64
*
)
alpha_v
);
b64
=
((
__m64
*
)
alpha_v
)[
1
];
absa64
=
_mm_abs_pi8
(
a64
);
absb64
=
_mm_abs_pi8
(
b64
);
minabs64
=
_mm_min_pi8
(
absa64
,
absb64
);
*
((
__m64
*
)
alpha_l
)
=
_mm_sign_pi8
(
minabs64
,
_mm_sign_pi8
(
a64
,
b64
));
}
else
#else
int
sse4mod
=
(
node
->
Nv
/
2
)
&
15
;
int
sse4len
=
node
->
Nv
/
2
/
16
;
if
(
sse4mod
==
0
)
{
for
(
int
i
=
0
;
i
<
sse4len
;
i
++
)
{
__m128i
a128
,
b128
,
absa128
,
absb128
,
minabs128
;
int
sse4len
=
node
->
Nv
/
2
/
16
;
a128
=*
((
__m128i
*
)
alpha_v
);
b128
=
((
__m128i
*
)
alpha_v
)[
1
];
absa128
=
_mm_abs_epi8
(
a128
);
absb128
=
_mm_abs_epi8
(
b128
);
minabs128
=
_mm_min_epi8
(
absa128
,
absb128
);
*
((
__m128i
*
)
alpha_l
)
=
_mm_sign_epi8
(
minabs128
,
_mm_sign_epi8
(
a128
,
b128
));
}
}
else
if
(
sse4mod
==
8
)
{
__m64
a64
,
b64
,
absa64
,
absb64
,
minabs64
;
a64
=*
((
__m64
*
)
alpha_v
);
b64
=
((
__m64
*
)
alpha_v
)[
1
];
absa64
=
_mm_abs_pi8
(
a64
);
absb64
=
_mm_abs_pi8
(
b64
);
minabs64
=
_mm_min_pi8
(
absa64
,
absb64
);
*
((
__m64
*
)
alpha_l
)
=
_mm_sign_pi8
(
minabs64
,
_mm_sign_epi8
(
a64
,
b64
));
}
else
#endif
{
// equivalent scalar code to above, activated only on non x86/ARM architectures
for
(
int
i
=
0
;
i
<
node
->
Nv
/
2
;
i
++
)
{
a
=
alpha_v
[
i
];
b
=
alpha_v
[
i
+
(
node
->
Nv
/
2
)];
maska
=
a
>>
7
;
maskb
=
b
>>
7
;
absa
=
(
a
+
maska
)
^
maska
;
absb
=
(
b
+
maskb
)
^
maskb
;
minabs
=
absa
<
absb
?
absa
:
absb
;
alpha_l
[
i
]
=
(
maska
^
maskb
)
==
0
?
minabs
:
-
minabs
;
// printf("alphal[%d] %d (%d,%d)\n",i,alpha_l[i],a,b);
}
}
if
(
node
->
Nv
==
2
)
{
// apply hard decision on left node
betal
[
0
]
=
(
alpha_l
[
0
]
>
0
)
?
-
1
:
1
;
#ifdef DEBUG_NEW_IMPL
printf
(
"betal[0] %d (%p)
\n
"
,
betal
[
0
],
&
betal
[
0
]);
#endif
pp
->
nr_polar_U
[
node
->
first_leaf_index
]
=
(
1
+
betal
[
0
])
>>
1
;
#ifdef DEBUG_NEW_IMPL
printf
(
"Setting bit %d to %d (LLR %d)
\n
"
,
node
->
first_leaf_index
,(
betal
[
0
]
+
1
)
>>
1
,
alpha_l
[
0
]);
#endif
}
}
}
void
applyGtoright_int8
(
const
t_nrPolar_params
*
pp
,
decoder_node_t
*
node
)
{
int8_t
*
alpha_v
=
node
->
alpha
;
int8_t
*
alpha_r
=
node
->
right
->
alpha
;
int8_t
*
betal
=
node
->
left
->
beta
;
int8_t
*
betar
=
node
->
right
->
beta
;
#ifdef DEBUG_NEW_IMPL
printf
(
"applyGtoright %d, Nv %d (level %d), (leaf %d, AF %d)
\n
"
,
node
->
first_leaf_index
,
node
->
Nv
,
node
->
level
,
node
->
right
->
leaf
,
node
->
right
->
all_frozen
);
#endif
if
(
node
->
right
->
all_frozen
==
0
)
{
#if defined(__AVX2__)
int
avx2mod
=
(
node
->
Nv
/
2
)
&
31
;
if
(
avx2mod
==
0
)
{
int
avx2len
=
node
->
Nv
/
2
/
32
;
for
(
int
i
=
0
;
i
<
avx2len
;
i
++
)
{
((
__m256i
*
)
alpha_r
)[
i
]
=
_mm256_subs_epi8
(((
__m256i
*
)
alpha_v
)[
i
+
avx2len
],
_mm256_sign_epi8
(((
__m256i
*
)
alpha_v
)[
i
],
((
__m256i
*
)
betal
)[
i
]));
}
}
else
if
(
avx2mod
==
16
)
{
((
__m128i
*
)
alpha_r
)[
0
]
=
_mm_subs_epi8
(((
__m128i
*
)
alpha_v
)[
1
],
_mm_sign_epi8
(((
__m128i
*
)
alpha_v
)[
0
],((
__m128i
*
)
betal
)[
0
]));
}
else
if
(
avx2mod
==
8
)
{
((
__m64
*
)
alpha_r
)[
0
]
=
_mm_subs_pi8
(((
__m64
*
)
alpha_v
)[
1
],
_mm_sign_pi8
(((
__m64
*
)
alpha_v
)[
0
],((
__m64
*
)
betal
)[
0
]));
}
else
#else
int
sse4mod
=
(
node
->
Nv
/
2
)
&
15
;
if
(
sse4mod
==
0
)
{
int
sse4len
=
node
->
Nv
/
2
/
16
;
for
(
int
i
=
0
;
i
<
sse4len
;
i
++
)
{
((
__m128i
*
)
alpha_r
)[
0
]
=
_mm_subs_epi8
(((
__m128i
*
)
alpha_v
)[
1
],
_mm_sign_epi8
(((
__m128i
*
)
alpha_v
)[
0
],((
__m128i
*
)
betal
)[
0
]));
}
}
else
if
(
sse4mod
==
8
)
{
((
__m64
*
)
alpha_r
)[
0
]
=
_mm_subs_pi8
(((
__m64
*
)
alpha_v
)[
1
],
_mm_sign_pi8
(((
__64
*
)
alpha_v
)[
0
],((
__m64
*
)
betal
)[
0
]));
}
else
#endif
{
// equivalent scalar code to above, activated only on non x86/ARM architectures or Nv=1,2
for
(
int
i
=
0
;
i
<
node
->
Nv
/
2
;
i
++
)
{
alpha_r
[
i
]
=
alpha_v
[
i
+
(
node
->
Nv
/
2
)]
-
(
betal
[
i
]
*
alpha_v
[
i
]);
}
}
if
(
node
->
Nv
==
2
)
{
// apply hard decision on right node
betar
[
0
]
=
(
alpha_r
[
0
]
>
0
)
?
-
1
:
1
;
pp
->
nr_polar_U
[
node
->
first_leaf_index
+
1
]
=
(
1
+
betar
[
0
])
>>
1
;
#ifdef DEBUG_NEW_IMPL
printf
(
"Setting bit %d to %d (LLR %d)
\n
"
,
node
->
first_leaf_index
+
1
,(
betar
[
0
]
+
1
)
>>
1
,
alpha_r
[
0
]);
#endif
}
}
}
int8_t
all1
[
8
]
=
{
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
};
void
computeBeta_int8
(
const
t_nrPolar_params
*
pp
,
decoder_node_t
*
node
)
{
int8_t
*
betav
=
node
->
beta
;
int8_t
*
betal
=
node
->
left
->
beta
;
int8_t
*
betar
=
node
->
right
->
beta
;
#ifdef DEBUG_NEW_IMPL
printf
(
"Computing beta @ level %d first_leaf_index %d (all_frozen %d)
\n
"
,
node
->
level
,
node
->
first_leaf_index
,
node
->
left
->
all_frozen
);
#endif
if
(
node
->
left
->
all_frozen
==
0
)
{
// if left node is not aggregation of frozen bits
#if defined(__AVX2__)
int
avx2mod
=
(
node
->
Nv
/
2
)
&
31
;
register
__m256i
allones
=*
((
__m256i
*
)
all1
);
if
(
avx2mod
==
0
)
{
int
avx2len
=
node
->
Nv
/
2
/
32
;
for
(
int
i
=
0
;
i
<
avx2len
;
i
++
)
{
((
__m256i
*
)
betav
)[
i
]
=
_mm256_or_si256
(
_mm256_cmpeq_epi8
(((
__m256i
*
)
betar
)[
i
],
((
__m256i
*
)
betal
)[
i
]),
allones
);
}
}
else
if
(
avx2mod
==
16
)
{
((
__m128i
*
)
betav
)[
0
]
=
_mm_or_si128
(
_mm_cmpeq_epi8
(((
__m128i
*
)
betar
)[
0
],
((
__m128i
*
)
betal
)[
0
]),
*
((
__m128i
*
)
all1
));
}
else
if
(
avx2mod
==
8
)
{
((
__m64
*
)
betav
)[
0
]
=
_mm_or_si64
(
_mm_cmpeq_pi8
(((
__m64
*
)
betar
)[
0
],
((
__m64
*
)
betal
)[
0
]),
*
((
__m64
*
)
all1
));
}
else
#else
int
avx2mod
=
(
node
->
Nv
/
2
)
&
31
;
int
ssr4mod
=
(
node
->
Nv
/
2
)
&
15
;
if
(
ssr4mod
==
0
)
{
int
ssr4len
=
node
->
Nv
/
2
/
16
;
register
__m128i
allones
=*
((
__m128i
*
)
all1
);
for
(
int
i
=
0
;
i
<
sse4len
;
i
++
)
{
((
__m128i
*
)
betav
)[
i
]
=
_mm_or_si128
(
_mm_cmpeq_epi8
(((
__m128i
*
)
betar
)[
i
],
((
__m128i
*
)
betal
)[
i
]),
allones
);
}
}
else
if
(
sse4mod
==
8
)
{
((
__m64
*
)
betav
)[
0
]
=
_mm_or_si64
(
_mm_cmpeq_pi8
(((
__m64
*
)
betar
)[
0
],
((
__m64
*
)
betal
)[
0
]),
*
((
__m64
*
)
all1
));
}
else
#endif
{
for
(
int
i
=
0
;
i
<
node
->
Nv
/
2
;
i
++
)
{
betav
[
i
]
=
(
betal
[
i
]
!=
betar
[
i
])
?
1
:
-
1
;
}
}
}
else
memcpy
((
void
*
)
&
betav
[
0
],
betar
,(
node
->
Nv
/
2
)
*
sizeof
(
int8_t
));
memcpy
((
void
*
)
&
betav
[
node
->
Nv
/
2
],
betar
,(
node
->
Nv
/
2
)
*
sizeof
(
int8_t
));
}
void
generic_polar_decoder_int8
(
const
t_nrPolar_params
*
pp
,
decoder_node_t
*
node
)
{
// Apply F to left
applyFtoleft_int8
(
pp
,
node
);
// if left is not a leaf recurse down to the left
if
(
node
->
left
->
leaf
==
0
)
generic_polar_decoder_int8
(
pp
,
node
->
left
);
applyGtoright
(
pp
,
node
);
if
(
node
->
right
->
leaf
==
0
)
generic_polar_decoder_int8
(
pp
,
node
->
right
);
computeBeta_int8
(
pp
,
node
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment