Commit 637ab8cb authored by Michele Paffetti's avatar Michele Paffetti

conflicts correction and reordering of files

parents a9f91a9c 849e9312
/*******************************************************************************
*******************************************************************************/
/*! \file PHY/LTE_TRANSPORT/dci_NB_IoT.c
* \brief Top-level routines for implementing Tail-biting convolutional coding for transport channels (NPDCCH) for NB_IoT, TS 36-212, V13.4.0 2017-02
* \author M. KANJ
* \date 2017
* \version 0.0
* \company bcom
* \email: matthieu.kanj@b-com.com
* \note
* \warning
*/
#ifdef USER_MODE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif
#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/sse_intrin.h"
#include "assertions.h"
#include "T.h"
static uint8_t d[2][3*(MAX_DCI_SIZE_BITS_NB_IOT + 16) + 96];
static uint8_t w[2][3*3*(MAX_DCI_SIZE_BITS_NB_IOT+16)];
void dci_encoding_NB_IoT(uint8_t *a[2], // Table of two DCI, even if one DCI is to transmit , the number of DCI is indicated in dci_number
uint8_t A, // Length of table a
uint16_t E, // E should equals to G (number of available bits in one RB)
uint8_t *e[2], // *e should be e[2][G]
uint16_t rnti[2], // RNTI for UE specific or common search space
uint8_t dci_number, // This variable should takes the 1 or 2 (1 for in case of one DCI, 2 in case of two DCI)
uint8_t agr_level) // Aggregation level
{
uint8_t D = (A + 16);
uint32_t RCC;
uint8_t occupation_size=1;
// encode dci
if(dci_number == 1)
{
if(agr_level == 2)
{
occupation_size=1;
}else{
occupation_size=2;
}
memset((void *)d[0],LTE_NULL,96);
ccode_encode_NB_IoT(A,2,a[0],d[0]+96,rnti[0]); // CRC attachement & Tail-biting convolutional coding
RCC = sub_block_interleaving_cc_NB_IoT(D,d[0]+96,w[0]); // Interleaving
lte_rate_matching_cc_NB_IoT(RCC,(E/occupation_size),w[0],e[0]); // Rate Matching
}else if (dci_number == 2) {
memset((void *)d[0],LTE_NULL,96);
memset((void *)d[1],LTE_NULL,96);
// first DCI encoding
ccode_encode_NB_IoT(A,2,a[0],d[0]+96,rnti[0]); // CRC attachement & Tail-biting convolutional coding
RCC = sub_block_interleaving_cc_NB_IoT(D,d[0]+96,w[0]); // interleaving
lte_rate_matching_cc_NB_IoT(RCC,E/2,w[0],e[0]); // Rate Matching , E/2 , NCCE0
// second DCI encoding
ccode_encode_NB_IoT(A,2,a[1],d[1]+96,rnti[1]); // CRC attachement & Tail-biting convolutional coding
RCC = sub_block_interleaving_cc_NB_IoT(D,d[1]+96,w[1]); // Interleaving
lte_rate_matching_cc_NB_IoT(RCC,E/2,w[1],e[1]); // Rate Matching, E/2 , NCCE1
}
}
///The scrambling sequence shall be initialised at the start of the search space and after every 4th NPDCCH subframes.
///
///
void npdcch_scrambling_NB_IoT(NB_IOT_DL_FRAME_PARMS *frame_parms,
uint8_t *e[2], // Input data
int length, // Total number of bits to transmit in one subframe(case of DCI = G)
uint8_t Ns, // Slot number (0..19)
uint8_t dci_number, // This variable should takes the 1 or 2 (1 for in case of one DCI, 2 in case of two DCI)
uint8_t agr_level) // Aggregation level
{
int i,j,k=0;
uint32_t x1, x2, s=0;
uint8_t reset;
reset = 1;
uint8_t occupation_size=1;
if(agr_level == 2)
{
occupation_size=1;
}else{
occupation_size=2;
}
if(dci_number == 1) // Case of one DCI
{
x2 = ((Ns>>1)<<9) + frame_parms->Nid_cell; // This is c_init in 36.211 Sec 10.2.3.1
for (i=0; i<length/occupation_size; i++) {
if ((i&0x1f)==0) {
s = lte_gold_generic_NB_IoT(&x1, &x2, reset);
reset = 0;
}
e[0][k] = (e[0][k]&1) ^ ((s>>(i&0x1f))&1);
}
}else if(dci_number == 2 && occupation_size == 2) { // Case of two DCI
// Scrambling the first DCI
//
x2 = ((Ns>>1)<<9) + frame_parms->Nid_cell; // This is c_init in 36.211 Sec 10.2.3.1
for (i=0; i<length/occupation_size; i++) {
if ((i&0x1f)==0) {
s = lte_gold_generic_NB_IoT(&x1, &x2, reset);
reset = 0;
}
e[0][k] = (e[0][k]&1) ^ ((s>>(i&0x1f))&1);
}
// reset of the scrambling function
reset = 1;
// Scrambling the second DCI
//
x2 = ((Ns>>1)<<9) + frame_parms->Nid_cell; //this is c_init in 36.211 Sec 10.2.3.1
for (i=0; i<length/occupation_size; i++) {
if ((i&0x1f)==0) {
s = lte_gold_generic_NB_IoT(&x1, &x2, reset);
reset = 0;
}
e[1][k] = (e[1][k]&1) ^ ((s>>(i&0x1f))&1);
}
}
}
int dci_allocate_REs_in_RB_NB_IoT(NB_IOT_DL_FRAME_PARMS *frame_parms,
int32_t **txdataF,
uint32_t *jj,
uint32_t symbol_offset,
uint8_t *x0[2],
uint8_t pilots,
int16_t amp,
unsigned short id_offset,
uint32_t *re_allocated, // not used variable ??!!
uint8_t dci_number, // This variable should takes the 1 or 2 (1 for in case of one DCI, 2 in case of two DCI)
uint8_t agr_level)
{
MIMO_mode_t mimo_mode = (frame_parms->mode1_flag==1)?SISO:ALAMOUTI;
uint32_t tti_offset,aa;
uint8_t re, diff_re;
int16_t gain_lin_QPSK;
uint8_t first_re,last_re;
int32_t tmp_sample1,tmp_sample2,tmp_sample3,tmp_sample4;
gain_lin_QPSK = (int16_t)((amp*ONE_OVER_SQRT2_Q15)>>15);
first_re=0;
last_re=12;
if(agr_level == 2 && dci_number == 1)
{
for (re=first_re; re<last_re; re++) { // re varies between 0 and 12 sub-carriers
tti_offset = symbol_offset + re; // symbol_offset = 512 * L , re_offset = 512 - 3*12 , re
if (pilots != 1 || re%3 != id_offset) // if re is not a pilot
{
// diff_re = re%3 - id_offset;
if (mimo_mode == SISO) { //SISO mapping
*re_allocated = *re_allocated + 1; // variable incremented but never used
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[0] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //I //b_i
}
*jj = *jj + 1;
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[1] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //Q //b_{i+1}
}
*jj = *jj + 1;
} else if (mimo_mode == ALAMOUTI) {
*re_allocated = *re_allocated + 1;
((int16_t*)&tmp_sample1)[0] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample1)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// second antenna position n -> -x1*
((int16_t*)&tmp_sample2)[0] = (x0[0][*jj]==1) ? (gain_lin_QPSK) : -gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample2)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// normalization for 2 tx antennas
((int16_t*)&txdataF[0][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample1)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample1)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample2)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample2)[1]*ONE_OVER_SQRT2_Q15)>>15);
// fill in the rest of the ALAMOUTI precoding
if ( pilots != 1 || (re+1)%3 != id_offset) {
((int16_t *)&txdataF[0][tti_offset+1])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+1])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+1])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+1])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
} else {
((int16_t *)&txdataF[0][tti_offset+2])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+2])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+2])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+2])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
re++; // skip pilots
*re_allocated = *re_allocated + 1;
}
re++; // adjacent carriers are taken care of by precoding
*re_allocated = *re_allocated + 1; // incremented variable but never used
}
}
}
}else if(agr_level == 1 && dci_number == 1){
for (re=first_re; re<6; re++) { // re varies between 0 and 6 sub-carriers
tti_offset = symbol_offset + re; // symbol_offset = 512 * L , re_offset = 512 - 3*12 , re
if (pilots != 1 || re%3 != id_offset) // if re is not a pilot
{
// diff_re = re%3 - id_offset;
if (mimo_mode == SISO) { //SISO mapping
*re_allocated = *re_allocated + 1; // variable incremented but never used
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[0] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //I //b_i
}
*jj = *jj + 1;
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[1] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //Q //b_{i+1}
}
*jj = *jj + 1;
} else if (mimo_mode == ALAMOUTI) {
*re_allocated = *re_allocated + 1;
((int16_t*)&tmp_sample1)[0] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample1)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// second antenna position n -> -x1*
((int16_t*)&tmp_sample2)[0] = (x0[0][*jj]==1) ? (gain_lin_QPSK) : -gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample2)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// normalization for 2 tx antennas
((int16_t*)&txdataF[0][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample1)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample1)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample2)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample2)[1]*ONE_OVER_SQRT2_Q15)>>15);
// fill in the rest of the ALAMOUTI precoding
if ( pilots != 1 || (re+1)%3 != id_offset) {
((int16_t *)&txdataF[0][tti_offset+1])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+1])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+1])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+1])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
} else {
((int16_t *)&txdataF[0][tti_offset+2])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+2])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+2])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+2])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
re++; // skip pilots
*re_allocated = *re_allocated + 1;
}
re++; // adjacent carriers are taken care of by precoding
*re_allocated = *re_allocated + 1; // incremented variable but never used
}
}
}
} else {
// allocate first DCI
for (re=first_re; re<6; re++) { // re varies between 0 and 12 sub-carriers
tti_offset = symbol_offset + re; // symbol_offset = 512 * L , re_offset = 512 - 3*12 , re
if (pilots != 1 || re%3 != id_offset) // if re is not a pilot
{
// diff_re = re%3 - id_offset;
if (mimo_mode == SISO) { //SISO mapping
*re_allocated = *re_allocated + 1; // variable incremented but never used
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[0] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //I //b_i
((int16_t*)&txdataF[aa][tti_offset+6])[0] += (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //I //b_i
}
*jj = *jj + 1;
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[1] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //Q //b_{i+1}
((int16_t*)&txdataF[aa][tti_offset+6])[1] += (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //Q //b_{i+1}
}
*jj = *jj + 1;
} else if (mimo_mode == ALAMOUTI) {
*re_allocated = *re_allocated + 1;
((int16_t*)&tmp_sample1)[0] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
((int16_t*)&tmp_sample3)[0] = (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample1)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
((int16_t*)&tmp_sample3)[1] = (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// second antenna position n -> -x1*
((int16_t*)&tmp_sample2)[0] = (x0[0][*jj]==1) ? (gain_lin_QPSK) : -gain_lin_QPSK;
((int16_t*)&tmp_sample4)[0] = (x0[1][*jj]==1) ? (gain_lin_QPSK) : -gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample2)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
((int16_t*)&tmp_sample4)[1] = (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// normalization for 2 tx antennas
((int16_t*)&txdataF[0][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample1)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample1)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample2)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample2)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset+6])[0] += (int16_t)((((int16_t*)&tmp_sample3)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset+6])[1] += (int16_t)((((int16_t*)&tmp_sample3)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset+6])[0] += (int16_t)((((int16_t*)&tmp_sample4)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset+6])[1] += (int16_t)((((int16_t*)&tmp_sample4)[1]*ONE_OVER_SQRT2_Q15)>>15);
// fill in the rest of the ALAMOUTI precoding
if ( pilots != 1 || (re+1)%3 != id_offset) {
((int16_t *)&txdataF[0][tti_offset+1])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+1])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+1])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+1])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
((int16_t *)&txdataF[0][tti_offset+6+1])[0] += -((int16_t *)&txdataF[1][tti_offset+6])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+6+1])[1] += ((int16_t *)&txdataF[1][tti_offset+6])[1];
((int16_t *)&txdataF[1][tti_offset+6+1])[0] += ((int16_t *)&txdataF[0][tti_offset+6])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+6+1])[1] += -((int16_t *)&txdataF[0][tti_offset+6])[1];
} else {
((int16_t *)&txdataF[0][tti_offset+2])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+2])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+2])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+2])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
((int16_t *)&txdataF[0][tti_offset+6+2])[0] += -((int16_t *)&txdataF[1][tti_offset+6])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+6+2])[1] += ((int16_t *)&txdataF[1][tti_offset+6])[1];
((int16_t *)&txdataF[1][tti_offset+6+2])[0] += ((int16_t *)&txdataF[0][tti_offset+6])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+6+2])[1] += -((int16_t *)&txdataF[0][tti_offset+6])[1];
re++; // skip pilots
*re_allocated = *re_allocated + 1;
}
re++; // adjacent carriers are taken care of by precoding
*re_allocated = *re_allocated + 1; // incremented variable but never used
}
}
}
}
return(0);
}
int dci_modulation_NB_IoT(int32_t **txdataF,
int16_t amp,
NB_IOT_DL_FRAME_PARMS *frame_parms,
uint8_t control_region_size, // control region size for LTE , values between 0..3, (0 for stand-alone / 1, 2 or 3 for in-band)
uint8_t *e[2], // Input data
int G, // number of bits per subframe
unsigned short NB_IoT_RB_ID
uint8_t dci_number, // This variable should takes the 1 or 2 (1 for in case of one DCI, 2 in case of two DCI)
uint8_t agr_level) // Aggregation level
{
uint32_t jj=0;
uint32_t re_allocated,symbol_offset;
uint16_t l;
uint8_t id_offset,pilots=0;
unsigned short bandwidth_even_odd;
unsigned short NB_IoT_start, RB_IoT_ID;
re_allocated=0;
id_offset=0;
// testing if the total number of RBs is even or odd
bandwidth_even_odd = frame_parms->N_RB_DL % 2; // 0 even, 1 odd
RB_IoT_ID = NB_IoT_RB_ID;
// step 5, 6, 7 // modulation and mapping (slot 1, symbols 0..3)
for (l=control_region_size; l<14; l++) { // loop on OFDM symbols
if((l>=4 && l<=8) || (l>=11 && l<=13))
{
pilots =1;
} else {
pilots=0;
}
id_offset = frame_parms->Nid_cell % 3; // Cell_ID_NB_IoT % 3
if(RB_IoT_ID < (frame_parms->N_RB_DL/2))
{
NB_IoT_start = frame_parms->ofdm_symbol_size - 12*(frame_parms->N_RB_DL/2) - (bandwidth_even_odd*6) + 12*(RB_IoT_ID%(ceil(frame_parms->N_RB_DL/(float)2)));
} else {
NB_IoT_start = (bandwidth_even_odd*6) + 12*(RB_IoT_ID%(ceil(frame_parms->N_RB_DL/(float)2)));
}
symbol_offset = frame_parms->ofdm_symbol_size*l + NB_IoT_start; // symbol_offset = 512 * L + NB_IOT_RB start
dci_allocate_REs_in_RB_NB_IoT(frame_parms,
txdataF,
&jj,
symbol_offset,
&e,
pilots,
amp,
id_offset,
&re_allocated,
dci_number,
agr_level);
}
// VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_ENB_DLSCH_MODULATION, VCD_FUNCTION_OUT);
return (re_allocated);
}
//*******************************************************************************************************
//*******************************************************************************************************
//********************************** Michele code *******************************************************
//*******************************************************************************************************
//*******************************************************************************************************
//*******************************************************************************************************
uint8_t generate_dci_top_NB(uint8_t Num_dci,
DCI_ALLOC_NB_t *dci_alloc,
int16_t amp,
NB_DL_FRAME_PARMS *fp,
//NB_IoT_eNB_NPDCCH_t npdcch,
int32_t **txdataF,
uint32_t subframe)
{
int i,L, G;
int npdcch_start_index;
/* PARAMETERS may not needed
**e_ptr : store the encoding result, and as a input to modulation
*num_pdcch_symbols : to calculate the resource allocation for pdcch
*L = aggregation level (there is 2 (at most) in NB-IoT) (Note this is not the real value but the index)
*lprime,kprime,kprime_mod12,mprime,nsymb,symbol_offset,tti_offset,re_offset : used in the REG allocation
*gain_lin_QPSK,yseq0[Msymb],yseq1[Msymb],*y[2] : used in the modulation
*mi = used in interleaving
*e = used to store the taus sequence (taus sequence is used to generate the first sequence for DCI) Turbo coding
*wbar used in the interleaving and also REG allocation
*/
//num_pdcch_symbols = get_num_pdcch_symbols(num_ue_spec_dci+num_common_dci,dci_alloc,frame_parms,subframe);
// generate DCIs in order of decreasing aggregation level, then common/ue spec
// MAC is assumed to have ordered the UE spec DCI according to the RNTI-based randomization???
// Value of aggregation level (FAPI/NFAPI specs v.9.0 pag 221 value 1,2)
for (L=2; L>=1; L--) {
for (i=0; i<Num_dci; i++) {
//XXX should be checked how the scheduler store the aggregation level for NB-IoT (value 1-2 or 0-1)
if (dci_alloc[i].L == (uint8_t)L) {
if (dci_alloc[i].firstCCE>=0) {
//NB-IoT encoding
/*npdcch_encoding_NB_IoT(dci_alloc[i].dci_pdu,
frame_parms,
npdcch, //see when function dci_top is called
//no frame
subframe
//rm_stats, te_stats, i_stats
);*/
}
}
}
}
//NB-IoT scrambling
/*
*
* TS 36.213 ch 16.6.1
* npdcch_start_index indicate the starting OFDM symbol for NPDCCH in the first slot of a subframe k ad is determined as follow:
* - if eutracontrolregionsize is present (defined for in-band operating mode (mode 0,1 for FAPI specs))
* npdcch_start_index = eutracontrolregionsize (value 1,2,3) [units in number of OFDM symbol]
* -otherwise
* npdcch_start_index = 0
*
*Depending on npddch_start_index then we define different values for G
*/
//XXX the setting of this npdcch_start_index parameter should be done in the MAC
// if(fp->operating_mode == 0 || fp->operating_mode == 1) //in-band operating mode
// {
// npdcch_start_index = fp->control_region_size;
// }
// else
// {
// npdcch_start_index = 0;
// }
for(int i = 0; i <Num_dci; i++)
{
switch(dci_alloc[i].npdcch_start_symbol) //mail Bcom matthieu
{
case 0:
G = 304;
break;
case 1:
G = 240;
break;
case 2:
G = 224;
break;
case 3:
G =200;
break;
default:
LOG_E (PHY,"npdcch_start_index has unwanted value\n");
break;
}
// // NB-IoT scrambling
// npdcch_scrambling_NB_IoT(
// frame_parms,
// npdcch,
// //G,
// //q = nf mod 2 (TS 36.211 ch 10.2.3.1) with nf = number of frame
// //slot_id
// );
}
// //NB-IoT modulation
// npdcch_modulation_NB_IoT(
// txdataF,
// AMP,
// frame_parms,
// //no symbol
// //npdcch0???
// //RB_ID --> statically get from the higher layer (may included in the dl_frame params)
// );
//in NB-IoT the interleaving is done directly with the encoding procedure
//there is no interleaving because we don't apply turbo coding
// This is the REG allocation algorithm from 36-211
//already done in the modulation in our NB-IoT implementaiton??
//*******************************************************************************************************
//*******************************************************************************************************
//*******************************************************************************************************
//*******************************************************************************************************
//*******************************************************************************************************
return 0;
}
...@@ -43,6 +43,419 @@ ...@@ -43,6 +43,419 @@
#include "assertions.h" #include "assertions.h"
#include "T.h" #include "T.h"
//------------------------------------------------
// BCOM code functions npdcch start
//------------------------------------------------
static uint8_t d[2][3*(MAX_DCI_SIZE_BITS_NB_IOT + 16) + 96];
static uint8_t w[2][3*3*(MAX_DCI_SIZE_BITS_NB_IOT+16)];
void dci_encoding_NB_IoT(uint8_t *a[2], // Table of two DCI, even if one DCI is to transmit , the number of DCI is indicated in dci_number
uint8_t A, // Length of table a
uint16_t E, // E should equals to G (number of available bits in one RB)
uint8_t *e[2], // *e should be e[2][G]
uint16_t rnti[2], // RNTI for UE specific or common search space
uint8_t dci_number, // This variable should takes the 1 or 2 (1 for in case of one DCI, 2 in case of two DCI)
uint8_t agr_level) // Aggregation level
{
uint8_t D = (A + 16);
uint32_t RCC;
uint8_t occupation_size=1;
// encode dci
if(dci_number == 1)
{
if(agr_level == 2)
{
occupation_size=1;
}else{
occupation_size=2;
}
memset((void *)d[0],LTE_NULL,96);
ccode_encode_NB_IoT(A,2,a[0],d[0]+96,rnti[0]); // CRC attachement & Tail-biting convolutional coding
RCC = sub_block_interleaving_cc_NB_IoT(D,d[0]+96,w[0]); // Interleaving
lte_rate_matching_cc_NB_IoT(RCC,(E/occupation_size),w[0],e[0]); // Rate Matching
}else if (dci_number == 2) {
memset((void *)d[0],LTE_NULL,96);
memset((void *)d[1],LTE_NULL,96);
// first DCI encoding
ccode_encode_NB_IoT(A,2,a[0],d[0]+96,rnti[0]); // CRC attachement & Tail-biting convolutional coding
RCC = sub_block_interleaving_cc_NB_IoT(D,d[0]+96,w[0]); // interleaving
lte_rate_matching_cc_NB_IoT(RCC,E/2,w[0],e[0]); // Rate Matching , E/2 , NCCE0
// second DCI encoding
ccode_encode_NB_IoT(A,2,a[1],d[1]+96,rnti[1]); // CRC attachement & Tail-biting convolutional coding
RCC = sub_block_interleaving_cc_NB_IoT(D,d[1]+96,w[1]); // Interleaving
lte_rate_matching_cc_NB_IoT(RCC,E/2,w[1],e[1]); // Rate Matching, E/2 , NCCE1
}
}
///The scrambling sequence shall be initialised at the start of the search space and after every 4th NPDCCH subframes.
///
///
void npdcch_scrambling_NB_IoT(NB_IOT_DL_FRAME_PARMS *frame_parms,
uint8_t *e[2], // Input data
int length, // Total number of bits to transmit in one subframe(case of DCI = G)
uint8_t Ns, // Slot number (0..19)
uint8_t dci_number, // This variable should takes the 1 or 2 (1 for in case of one DCI, 2 in case of two DCI)
uint8_t agr_level) // Aggregation level
{
int i,j,k=0;
uint32_t x1, x2, s=0;
uint8_t reset;
reset = 1;
uint8_t occupation_size=1;
if(agr_level == 2)
{
occupation_size=1;
}else{
occupation_size=2;
}
if(dci_number == 1) // Case of one DCI
{
x2 = ((Ns>>1)<<9) + frame_parms->Nid_cell; // This is c_init in 36.211 Sec 10.2.3.1
for (i=0; i<length/occupation_size; i++) {
if ((i&0x1f)==0) {
s = lte_gold_generic_NB_IoT(&x1, &x2, reset);
reset = 0;
}
e[0][k] = (e[0][k]&1) ^ ((s>>(i&0x1f))&1);
}
}else if(dci_number == 2 && occupation_size == 2) { // Case of two DCI
// Scrambling the first DCI
//
x2 = ((Ns>>1)<<9) + frame_parms->Nid_cell; // This is c_init in 36.211 Sec 10.2.3.1
for (i=0; i<length/occupation_size; i++) {
if ((i&0x1f)==0) {
s = lte_gold_generic_NB_IoT(&x1, &x2, reset);
reset = 0;
}
e[0][k] = (e[0][k]&1) ^ ((s>>(i&0x1f))&1);
}
// reset of the scrambling function
reset = 1;
// Scrambling the second DCI
//
x2 = ((Ns>>1)<<9) + frame_parms->Nid_cell; //this is c_init in 36.211 Sec 10.2.3.1
for (i=0; i<length/occupation_size; i++) {
if ((i&0x1f)==0) {
s = lte_gold_generic_NB_IoT(&x1, &x2, reset);
reset = 0;
}
e[1][k] = (e[1][k]&1) ^ ((s>>(i&0x1f))&1);
}
}
}
int dci_allocate_REs_in_RB_NB_IoT(NB_IOT_DL_FRAME_PARMS *frame_parms,
int32_t **txdataF,
uint32_t *jj,
uint32_t symbol_offset,
uint8_t *x0[2],
uint8_t pilots,
int16_t amp,
unsigned short id_offset,
uint32_t *re_allocated, // not used variable ??!!
uint8_t dci_number, // This variable should takes the 1 or 2 (1 for in case of one DCI, 2 in case of two DCI)
uint8_t agr_level)
{
MIMO_mode_t mimo_mode = (frame_parms->mode1_flag==1)?SISO:ALAMOUTI;
uint32_t tti_offset,aa;
uint8_t re, diff_re;
int16_t gain_lin_QPSK;
uint8_t first_re,last_re;
int32_t tmp_sample1,tmp_sample2,tmp_sample3,tmp_sample4;
gain_lin_QPSK = (int16_t)((amp*ONE_OVER_SQRT2_Q15)>>15);
first_re=0;
last_re=12;
if(agr_level == 2 && dci_number == 1)
{
for (re=first_re; re<last_re; re++) { // re varies between 0 and 12 sub-carriers
tti_offset = symbol_offset + re; // symbol_offset = 512 * L , re_offset = 512 - 3*12 , re
if (pilots != 1 || re%3 != id_offset) // if re is not a pilot
{
// diff_re = re%3 - id_offset;
if (mimo_mode == SISO) { //SISO mapping
*re_allocated = *re_allocated + 1; // variable incremented but never used
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[0] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //I //b_i
}
*jj = *jj + 1;
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[1] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //Q //b_{i+1}
}
*jj = *jj + 1;
} else if (mimo_mode == ALAMOUTI) {
*re_allocated = *re_allocated + 1;
((int16_t*)&tmp_sample1)[0] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample1)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// second antenna position n -> -x1*
((int16_t*)&tmp_sample2)[0] = (x0[0][*jj]==1) ? (gain_lin_QPSK) : -gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample2)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// normalization for 2 tx antennas
((int16_t*)&txdataF[0][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample1)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample1)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample2)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample2)[1]*ONE_OVER_SQRT2_Q15)>>15);
// fill in the rest of the ALAMOUTI precoding
if ( pilots != 1 || (re+1)%3 != id_offset) {
((int16_t *)&txdataF[0][tti_offset+1])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+1])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+1])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+1])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
} else {
((int16_t *)&txdataF[0][tti_offset+2])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+2])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+2])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+2])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
re++; // skip pilots
*re_allocated = *re_allocated + 1;
}
re++; // adjacent carriers are taken care of by precoding
*re_allocated = *re_allocated + 1; // incremented variable but never used
}
}
}
}else if(agr_level == 1 && dci_number == 1){
for (re=first_re; re<6; re++) { // re varies between 0 and 6 sub-carriers
tti_offset = symbol_offset + re; // symbol_offset = 512 * L , re_offset = 512 - 3*12 , re
if (pilots != 1 || re%3 != id_offset) // if re is not a pilot
{
// diff_re = re%3 - id_offset;
if (mimo_mode == SISO) { //SISO mapping
*re_allocated = *re_allocated + 1; // variable incremented but never used
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[0] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //I //b_i
}
*jj = *jj + 1;
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[1] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //Q //b_{i+1}
}
*jj = *jj + 1;
} else if (mimo_mode == ALAMOUTI) {
*re_allocated = *re_allocated + 1;
((int16_t*)&tmp_sample1)[0] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample1)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// second antenna position n -> -x1*
((int16_t*)&tmp_sample2)[0] = (x0[0][*jj]==1) ? (gain_lin_QPSK) : -gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample2)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// normalization for 2 tx antennas
((int16_t*)&txdataF[0][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample1)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample1)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample2)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample2)[1]*ONE_OVER_SQRT2_Q15)>>15);
// fill in the rest of the ALAMOUTI precoding
if ( pilots != 1 || (re+1)%3 != id_offset) {
((int16_t *)&txdataF[0][tti_offset+1])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+1])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+1])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+1])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
} else {
((int16_t *)&txdataF[0][tti_offset+2])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+2])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+2])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+2])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
re++; // skip pilots
*re_allocated = *re_allocated + 1;
}
re++; // adjacent carriers are taken care of by precoding
*re_allocated = *re_allocated + 1; // incremented variable but never used
}
}
}
} else {
// allocate first DCI
for (re=first_re; re<6; re++) { // re varies between 0 and 12 sub-carriers
tti_offset = symbol_offset + re; // symbol_offset = 512 * L , re_offset = 512 - 3*12 , re
if (pilots != 1 || re%3 != id_offset) // if re is not a pilot
{
// diff_re = re%3 - id_offset;
if (mimo_mode == SISO) { //SISO mapping
*re_allocated = *re_allocated + 1; // variable incremented but never used
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[0] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //I //b_i
((int16_t*)&txdataF[aa][tti_offset+6])[0] += (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //I //b_i
}
*jj = *jj + 1;
for (aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
((int16_t*)&txdataF[aa][tti_offset])[1] += (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //Q //b_{i+1}
((int16_t*)&txdataF[aa][tti_offset+6])[1] += (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK; //Q //b_{i+1}
}
*jj = *jj + 1;
} else if (mimo_mode == ALAMOUTI) {
*re_allocated = *re_allocated + 1;
((int16_t*)&tmp_sample1)[0] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
((int16_t*)&tmp_sample3)[0] = (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample1)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
((int16_t*)&tmp_sample3)[1] = (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// second antenna position n -> -x1*
((int16_t*)&tmp_sample2)[0] = (x0[0][*jj]==1) ? (gain_lin_QPSK) : -gain_lin_QPSK;
((int16_t*)&tmp_sample4)[0] = (x0[1][*jj]==1) ? (gain_lin_QPSK) : -gain_lin_QPSK;
*jj=*jj+1;
((int16_t*)&tmp_sample2)[1] = (x0[0][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
((int16_t*)&tmp_sample4)[1] = (x0[1][*jj]==1) ? (-gain_lin_QPSK) : gain_lin_QPSK;
*jj=*jj+1;
// normalization for 2 tx antennas
((int16_t*)&txdataF[0][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample1)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample1)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[0] += (int16_t)((((int16_t*)&tmp_sample2)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset])[1] += (int16_t)((((int16_t*)&tmp_sample2)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset+6])[0] += (int16_t)((((int16_t*)&tmp_sample3)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[0][tti_offset+6])[1] += (int16_t)((((int16_t*)&tmp_sample3)[1]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset+6])[0] += (int16_t)((((int16_t*)&tmp_sample4)[0]*ONE_OVER_SQRT2_Q15)>>15);
((int16_t*)&txdataF[1][tti_offset+6])[1] += (int16_t)((((int16_t*)&tmp_sample4)[1]*ONE_OVER_SQRT2_Q15)>>15);
// fill in the rest of the ALAMOUTI precoding
if ( pilots != 1 || (re+1)%3 != id_offset) {
((int16_t *)&txdataF[0][tti_offset+1])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+1])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+1])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+1])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
((int16_t *)&txdataF[0][tti_offset+6+1])[0] += -((int16_t *)&txdataF[1][tti_offset+6])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+6+1])[1] += ((int16_t *)&txdataF[1][tti_offset+6])[1];
((int16_t *)&txdataF[1][tti_offset+6+1])[0] += ((int16_t *)&txdataF[0][tti_offset+6])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+6+1])[1] += -((int16_t *)&txdataF[0][tti_offset+6])[1];
} else {
((int16_t *)&txdataF[0][tti_offset+2])[0] += -((int16_t *)&txdataF[1][tti_offset])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+2])[1] += ((int16_t *)&txdataF[1][tti_offset])[1];
((int16_t *)&txdataF[1][tti_offset+2])[0] += ((int16_t *)&txdataF[0][tti_offset])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+2])[1] += -((int16_t *)&txdataF[0][tti_offset])[1];
((int16_t *)&txdataF[0][tti_offset+6+2])[0] += -((int16_t *)&txdataF[1][tti_offset+6])[0]; //x1
((int16_t *)&txdataF[0][tti_offset+6+2])[1] += ((int16_t *)&txdataF[1][tti_offset+6])[1];
((int16_t *)&txdataF[1][tti_offset+6+2])[0] += ((int16_t *)&txdataF[0][tti_offset+6])[0]; //x0*
((int16_t *)&txdataF[1][tti_offset+6+2])[1] += -((int16_t *)&txdataF[0][tti_offset+6])[1];
re++; // skip pilots
*re_allocated = *re_allocated + 1;
}
re++; // adjacent carriers are taken care of by precoding
*re_allocated = *re_allocated + 1; // incremented variable but never used
}
}
}
}
return(0);
}
int dci_modulation_NB_IoT(int32_t **txdataF,
int16_t amp,
NB_IOT_DL_FRAME_PARMS *frame_parms,
uint8_t control_region_size, // control region size for LTE , values between 0..3, (0 for stand-alone / 1, 2 or 3 for in-band)
uint8_t *e[2], // Input data
int G, // number of bits per subframe
unsigned short NB_IoT_RB_ID,
uint8_t dci_number, // This variable should takes the 1 or 2 (1 for in case of one DCI, 2 in case of two DCI)
uint8_t agr_level) // Aggregation level
{
uint32_t jj=0;
uint32_t re_allocated,symbol_offset;
uint16_t l;
uint8_t id_offset,pilots=0;
unsigned short bandwidth_even_odd;
unsigned short NB_IoT_start, RB_IoT_ID;
re_allocated=0;
id_offset=0;
// testing if the total number of RBs is even or odd
bandwidth_even_odd = frame_parms->N_RB_DL % 2; // 0 even, 1 odd
RB_IoT_ID = NB_IoT_RB_ID;
// step 5, 6, 7 // modulation and mapping (slot 1, symbols 0..3)
for (l=control_region_size; l<14; l++) { // loop on OFDM symbols
if((l>=4 && l<=8) || (l>=11 && l<=13))
{
pilots =1;
} else {
pilots=0;
}
id_offset = frame_parms->Nid_cell % 3; // Cell_ID_NB_IoT % 3
if(RB_IoT_ID < (frame_parms->N_RB_DL/2))
{
NB_IoT_start = frame_parms->ofdm_symbol_size - 12*(frame_parms->N_RB_DL/2) - (bandwidth_even_odd*6) + 12*(RB_IoT_ID%(ceil(frame_parms->N_RB_DL/(float)2)));
} else {
NB_IoT_start = (bandwidth_even_odd*6) + 12*(RB_IoT_ID%(ceil(frame_parms->N_RB_DL/(float)2)));
}
symbol_offset = frame_parms->ofdm_symbol_size*l + NB_IoT_start; // symbol_offset = 512 * L + NB_IOT_RB start
dci_allocate_REs_in_RB_NB_IoT(frame_parms,
txdataF,
&jj,
symbol_offset,
&e,
pilots,
amp,
id_offset,
&re_allocated,
dci_number,
agr_level);
}
// VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_ENB_DLSCH_MODULATION, VCD_FUNCTION_OUT);
return (re_allocated);
}
//------------------------------------------------
// BCOM code functions npdcch end
//------------------------------------------------
uint8_t generate_dci_top_NB(uint8_t Num_dci, uint8_t generate_dci_top_NB(uint8_t Num_dci,
DCI_ALLOC_NB_t *dci_alloc, DCI_ALLOC_NB_t *dci_alloc,
int16_t amp, int16_t amp,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment