Commit 8da62be9 authored by Florian Kaltenberger's avatar Florian Kaltenberger

moving old simulators

git-svn-id: http://svn.eurecom.fr/openair4G/trunk@7234 818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent 350ee35d
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
include $(OPENAIR_HOME)/common/utils/Makefile.inc
TOP_DIR = $(OPENAIR1_DIR)
OPENAIR1_TOP = $(OPENAIR1_DIR)
OPENAIR2_TOP = $(OPENAIR2_DIR)
OPENAIR3 = $(OPENAIR3_DIR)
CFLAGS += -m32 -DPHYSIM -DNODE_RG -DUSER_MODE -DPC_TARGET -DPC_DSP -DNB_ANTENNAS_RX=2 -DNB_ANTENNAS_TXRX=2 -DNB_ANTENNAS_TX=2 -DPHY_CONTEXT=1
LFLAGS = -lm -lblas
CFLAGS += -DOPENAIR_LTE #-DOFDMA_ULSCH -DIFFT_FPGA -DIFFT_FPGA_UE
#CFLAGS += -DTBS_FIX
CFLAGS += -DCELLULAR
ASN1_MSG_INC = $(OPENAIR2_DIR)/RRC/LITE/MESSAGES
ifdef EMOS
CFLAGS += -DEMOS
endif
ifdef DEBUG_PHY
CFLAGS += -DDEBUG_PHY
endif
ifdef MeNBMUE
CFLAGS += -DMeNBMUE
endif
ifdef MU_RECEIVER
CFLAGS += -DMU_RECEIVER
endif
ifdef ZBF_ENABLED
CFLAGS += -DNULL_SHAPE_BF_ENABLED
endif
ifdef RANDOM_BF
CFLAGS += -DRANDOM_BF
endif
ifdef PBS_SIM
CFLAGS += -DPBS_SIM
endif
ifdef XFORMS
CFLAGS += -DXFORMS
LFLAGS += -lforms
endif
ifdef PERFECT_CE
CFLAGS += -DPERFECT_CE
endif
CFLAGS += -DNO_RRM -DOPENAIR2 -DPHY_ABSTRACTION
CFLAGS += -I/usr/include/X11 -I/usr/X11R6/include
include $(TOP_DIR)/PHY/Makefile.inc
SCHED_OBJS = $(TOP_DIR)/SCHED/phy_procedures_lte_common.o $(TOP_DIR)/SCHED/phy_procedures_lte_eNb.o $(TOP_DIR)/SCHED/phy_procedures_lte_ue.o
#include $(TOP_DIR)/SCHED/Makefile.inc
include $(TOP_DIR)/SIMULATION/Makefile.inc
include $(OPENAIR2_DIR)/LAYER2/Makefile.inc
include $(OPENAIR2_DIR)/RRC/LITE/MESSAGES/Makefile.inc
CFLAGS += $(L2_incl) -I$(ASN1_MSG_INC) -I$(TOP_DIR) -I$(OPENAIR3)
EXTRA_CFLAGS =
#STATS_OBJS += $(TOP_DIR)/ARCH/CBMIMO1/DEVICE_DRIVER/cbmimo1_proc.o
#LAYER2_OBJ += $(OPENAIR2_DIR)/LAYER2/MAC/rar_tools.o
LAYER2_OBJ = $(OPENAIR2_DIR)/LAYER2/MAC/lte_transport_init.o
OBJ = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS) $(SCHED_OBJS) $(LAYER2_OBJ) #$(ASN1_MSG_OBJS)
#OBJ2 = $(PHY_OBJS) $(SIMULATION_OBJS) $(TOOLS_OBJS)
ifdef XFORMS
OBJ += ../../USERSPACE_TOOLS/SCOPE/lte_scope.o
endif
all: dlsim relay_DF_sim relay_QF_sim pbchsim pdcchsim ulsim pucchsim
test: $(SIMULATION_OBJS) $(TOOLS_OBJS) $(TOP_DIR)/PHY/INIT/lte_init.o test.c
$(CC) test.c -I$(TOP_DIR) -o test $(CFLAGS) $(SIMULATION_OBJS) $(TOOLS_OBJS) -lm
$(OBJ) : %.o : %.c
@echo
@echo Compiling $< ...
@$(CC) -c $(CFLAGS) -o $@ $<
dlsim : $(OBJ) dlsim.c
@echo "Compiling dlsim.c ..."
@$(CC) dlsim.c -o dlsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas
relay_DF_sim : $(OBJ) relay_DF_sim.c
@echo "Compiling relay_DF_sim.c ..."
@$(CC) relay_DF_sim.c -o relay_DF_sim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas
relay_QF_sim : $(OBJ) relay_QF_sim.c
@echo "Compiling relay_QF_sim.c ..."
@$(CC) relay_QF_sim.c -o relay_QF_sim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas
framegen: $(OBJ) framegen.c
@echo "Compiling framegen.c"
@$(CC) framegen.c -o framegen $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas #-lm -lblas
pbchsim : $(OBJ) pbchsim.c
@echo "Compiling pbchsim.c"
@$(CC) pbchsim.c -o pbchsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas #-lm -lblas
pdcchsim : $(OBJ) pdcchsim.c
@echo "Compiling pdcchsim.c"
@$(CC) pdcchsim.c -o pdcchsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas #-lm -lblas
pucchsim : $(OBJ) pucchsim.c
@echo "Compiling pucchsim.c"
@$(CC) pucchsim.c -o pucchsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas #-lm -lblas
ulsim : $(OBJ) ulsim.c #ulsim_form.c
@echo "Compiling [ulsim.c]"
@$(CC) ulsim.c -o ulsim $(CFLAGS) $(OBJ) $(LFLAGS) #-static -L/usr/lib/libblas #-lm -lblas
clean :
rm -f $(OBJ)
rm -f *.o
cleanall : clean
rm -f relay_DF_sim relay_QF_sim dlsim pbchsim pdcchsim ulsim pucchsim
rm -f *.exe*
showcflags :
@echo $(CFLAGS)
Author : Erhan YILMAZ
Contact: erhan.yilmaz@eurecom.fr
Function: relay_DF_sim.c
In this function we intend to simulate Paralel Relay Network scenario where a single source node (eNB in the simulator) communicates with a destination node via multiple relay nodes (RNs) which are connected to the destination node via finite (but sufficent to convey decode bits) capacity backhaul links.
Each RN perform FULL decoding (i.e., decode-and-forward relaying).
- Maxumim HARQ retransmision rounds is set to 4;
- An error declared, if one of the following occurs:
1- For all RNs DCI pkts are not received correctly
2- Assuming correct DCI pkts but maxumum number of iterations for the turbo decoders at at least one of the RNs (among those who have correctly got the DCI pkts) is exceeded;
// 3- Maximum number of HARQ iterations is axceeded. //
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <execinfo.h>
#include <signal.h>
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif
#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"
#include "OCG_vars.h"
#ifdef XFORMS
#include "forms.h"
#include "../../USERSPACE_TOOLS/SCOPE/lte_scope.h"
#endif
//#define AWGN
//#define NO_DCI
#define BW 7.68
/*
#define RBmask0 0x00fc00fc
#define RBmask1 0x0
#define RBmask2 0x0
#define RBmask3 0x0
*/
PHY_VARS_eNB *PHY_vars_eNB;
PHY_VARS_UE **PHY_vars_UE; // this variable is modified to enable multiple relay nodes (# Relay Node = "num_relay");
void handler(int sig)
{
void *array[10];
size_t size;
/* get void*'s for all entries on the stack */
size = backtrace(array, 10);
/* print out all the frames to stderr*/
fprintf(stderr, "Error: signal %d:\n", sig);
backtrace_symbols_fd(array, size, 2);
exit(1);
}
#ifdef XFORMS
void do_forms(FD_lte_scope *form, LTE_DL_FRAME_PARMS *frame_parms, short **channel, short **channel_f, short **rx_sig, short **rx_sig_f, short *dlsch_comp, short* dlsch_comp_i, short* dlsch_rho,
short *dlsch_llr, int coded_bits_per_codeword)
{
int i, j, ind, k, s;
float Re, Im;
float mag_sig[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT];
float sig_time[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT];
float sig2[FRAME_LENGTH_COMPLEX_SAMPLES], time2[FRAME_LENGTH_COMPLEX_SAMPLES], I[25*12*11*4], Q[25*12*11*4], *llr, *llr_time;
float avg, cum_avg;
llr = malloc(coded_bits_per_codeword*sizeof(float));
llr_time = malloc(coded_bits_per_codeword*sizeof(float));
// Channel frequency response
cum_avg = 0;
ind = 0;
for (j=0; j<4; j++) {
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
for (k=0; k<NUMBER_OF_OFDM_CARRIERS*7; k++) {
sig_time[ind] = (float)ind;
Re = (float)(channel_f[(j<<1)+i][2*k]);
Im = (float)(channel_f[(j<<1)+i][2*k+1]);
//mag_sig[ind] = (short) rand();
mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ;
ind++;
}
// ind += NUMBER_OF_OFDM_CARRIERS/4; // spacing for visualization
}
}
avg = cum_avg/NUMBER_OF_USEFUL_CARRIERS;
//fl_set_xyplot_ybounds(form->channel_f,30,70);
fl_set_xyplot_data(form->channel_f,sig_time,mag_sig,ind,"","","");
/*
// channel time resonse
cum_avg = 0;
ind = 0;
for (k=0; k<1; k++){
for (j=0; j<1; j++) {
for (i=0; i<frame_parms->ofdm_symbol_size; i++){
sig_time[ind] = (float)ind;
Re = (float)(channel[k+2*j][2*i]);
Im = (float)(channel[k+2*j][2*i+1]);
//mag_sig[ind] = (short) rand();
mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ;
ind++;
}
}
}
//fl_set_xyplot_ybounds(form->channel_t_im,10,90);
fl_set_xyplot_data(form->channel_t_im,sig_time,mag_sig,ind,"","","");
*/
// channel_t_re = rx_sig_f[0]
//for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++) {
for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++) {
sig2[i] = 10*log10(1.0+(double) ((rx_sig_f[0][4*i])*(rx_sig_f[0][4*i])+(rx_sig_f[0][4*i+1])*(rx_sig_f[0][4*i+1])));
time2[i] = (float) i;
}
//fl_set_xyplot_ybounds(form->channel_t_re,10,90);
fl_set_xyplot_data(form->channel_t_re,time2,sig2,NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti,"","","");
//fl_set_xyplot_data(form->channel_t_re,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,"","","");
// channel_t_im = rx_sig[0]
//if (frame_parms->nb_antennas_rx>1) {
for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++) {
//for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++) {
sig2[i] = 10*log10(1.0+(double) ((rx_sig[0][2*i])*(rx_sig[0][2*i])+(rx_sig[0][2*i+1])*(rx_sig[0][2*i+1])));
time2[i] = (float) i;
}
//fl_set_xyplot_ybounds(form->channel_t_im,0,100);
//fl_set_xyplot_data(form->channel_t_im,&time2[640*12*6],&sig2[640*12*6],640*12,"","","");
fl_set_xyplot_data(form->channel_t_im,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES,"","","");
//}
/*
// PBCH LLR
j=0;
for(i=0;i<1920;i++) {
llr[j] = (float) pbch_llr[i];
llr_time[j] = (float) j;
//if (i==63)
// i=127;
//else if (i==191)
// i=319;
j++;
}
fl_set_xyplot_data(form->decoder_input,llr_time,llr,1920,"","","");
//fl_set_xyplot_ybounds(form->decoder_input,-100,100);
// PBCH I/Q
j=0;
for(i=0;i<12*12;i++) {
I[j] = pbch_comp[2*i];
Q[j] = pbch_comp[2*i+1];
j++;
//if (i==47)
// i=96;
//else if (i==191)
// i=239;
}
fl_set_xyplot_data(form->scatter_plot,I,Q,12*12,"","","");
//fl_set_xyplot_xbounds(form->scatter_plot,-100,100);
//fl_set_xyplot_ybounds(form->scatter_plot,-100,100);
// PDCCH I/Q
j=0;
for(i=0;i<12*25*3;i++) {
I[j] = pdcch_comp[2*i];
Q[j] = pdcch_comp[2*i+1];
j++;
//if (i==47)
// i=96;
//else if (i==191)
// i=239;
}
fl_set_xyplot_data(form->scatter_plot1,I,Q,12*25*3,"","","");
//fl_set_xyplot_xbounds(form->scatter_plot,-100,100);
//fl_set_xyplot_ybounds(form->scatter_plot,-100,100);
*/
// DLSCH LLR
for(i=0; i<coded_bits_per_codeword; i++) {
llr[i] = (float) dlsch_llr[i];
llr_time[i] = (float) i;
}
fl_set_xyplot_data(form->demod_out, llr_time, llr, coded_bits_per_codeword, "", "", "");
fl_set_xyplot_ybounds(form->demod_out, -1000, 1000);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_comp[(2*25*12*s)+2*i];
Q[j] = dlsch_comp[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot, I, Q, j, "", "", "");
fl_set_xyplot_xbounds(form->scatter_plot, -2000, 2000);
fl_set_xyplot_ybounds(form->scatter_plot, -2000, 2000);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_comp_i[(2*25*12*s)+2*i];
Q[j] = dlsch_comp_i[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot1, I, Q, j, "", "", "");
fl_set_xyplot_xbounds(form->scatter_plot1, -2000, 2000);
fl_set_xyplot_ybounds(form->scatter_plot1, -2000, 2000);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_rho[(2*25*12*s)+2*i];
Q[j] = dlsch_rho[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot2, I, Q, j, "", "", "");
//fl_set_xyplot_xbounds(form->scatter_plot2,-1000,1000);
//fl_set_xyplot_ybounds(form->scatter_plot2,-1000,1000);
free(llr);
free(llr_time);
}
#endif
// In the following function the first parameter ("unsigned char num_relay") is added for # RN in the Parallel Relay Network (PRN);
void lte_param_init(unsigned char num_relay, unsigned char N_tx, unsigned char N_rx, unsigned char transmission_mode, uint8_t extended_prefix_flag, uint16_t Nid_cell, uint8_t tdd_config,
uint8_t N_RB_DL, uint8_t osf)
{
LTE_DL_FRAME_PARMS *lte_frame_parms;
int i;
unsigned int j;
printf("Start lte_param_init\n");
PHY_vars_eNB = (PHY_VARS_eNB *)malloc(sizeof(PHY_VARS_eNB));
//PHY_vars_UE = malloc(sizeof(PHY_VARS_UE));
PHY_vars_UE = (PHY_VARS_UE **)malloc(num_relay * sizeof(PHY_VARS_UE *));
if (!(PHY_vars_eNB && PHY_vars_UE)) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
for(j=0; j<num_relay; j++) {
PHY_vars_UE[j] = (PHY_VARS_UE *)malloc(sizeof(PHY_VARS_UE));
if (!(PHY_vars_UE[j])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
}
//PHY_config = (PHY_CONFIG *)malloc(sizeof(PHY_CONFIG));
mac_xface = (MAC_xface *)malloc(sizeof(MAC_xface));
if (mac_xface == NULL) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
randominit(0);
set_taus_seed(0);
lte_frame_parms = &(PHY_vars_eNB->lte_frame_parms);
lte_frame_parms->N_RB_DL = N_RB_DL; //50 for 10MHz and 25 for 5 MHz
lte_frame_parms->N_RB_UL = N_RB_DL;
lte_frame_parms->Ncp = extended_prefix_flag;
lte_frame_parms->Nid_cell = Nid_cell;
lte_frame_parms->nushift = 0;
lte_frame_parms->nb_antennas_tx = N_tx;
lte_frame_parms->nb_antennas_rx = N_rx;
lte_frame_parms->phich_config_common.phich_resource = oneSixth;
lte_frame_parms->tdd_config = tdd_config;
lte_frame_parms->frame_type = 1;
// lte_frame_parms->Csrs = 2;
// lte_frame_parms->Bsrs = 0;
// lte_frame_parms->kTC = 0;44
// lte_frame_parms->n_RRC = 0;
lte_frame_parms->mode1_flag = (transmission_mode == 1) ? 1 : 0;
init_frame_parms(lte_frame_parms,osf);
//copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing));
phy_init_top(lte_frame_parms); //allocation
lte_frame_parms->twiddle_fft = twiddle_fft;
lte_frame_parms->twiddle_ifft = twiddle_ifft;
lte_frame_parms->rev = rev;
for(j=0; j<num_relay; j++) {
PHY_vars_UE[j]->is_secondary_ue = 0;
PHY_vars_UE[j]->lte_frame_parms = *lte_frame_parms;
}
//PHY_vars_UE->is_secondary_ue = 0;
//PHY_vars_UE->lte_frame_parms = *lte_frame_parms;
PHY_vars_eNB->lte_frame_parms = *lte_frame_parms;
phy_init_lte_top(lte_frame_parms);
dump_frame_parms(lte_frame_parms);
for (i=0; i<3; i++)
for(j=0; j<num_relay; j++) {
lte_gold(lte_frame_parms, PHY_vars_UE[j]->lte_gold_table[i], i);
}
for(j=0; j<num_relay; j++) {
phy_init_lte_ue(&PHY_vars_UE[j]->lte_frame_parms,
&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars_SI,
PHY_vars_UE[j]->lte_ue_dlsch_vars_ra,
PHY_vars_UE[j]->lte_ue_pbch_vars,
PHY_vars_UE[j]->lte_ue_pdcch_vars,
PHY_vars_UE[j],
0);
}
phy_init_lte_eNB(&PHY_vars_eNB->lte_frame_parms,
&PHY_vars_eNB->lte_eNB_common_vars,
PHY_vars_eNB->lte_eNB_ulsch_vars,
0,
PHY_vars_eNB,
1,
0);
printf("Done lte_param_init\n");
}
//DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2_2A[2];
DCI2_5MHz_2D_M10PRB_TDD_t DLSCH_alloc_pdu2_2D[2];
#define UL_RB_ALLOC 0x1ff;
#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL, 0, 2)
//#define DLSCH_RB_ALLOC 0x1fbf // igore DC component, RB13
#define DLSCH_RB_ALLOC 0x1fff // all 25 RBs
//#define DLSCH_RB_ALLOC 0x0001
int main(int argc, char **argv)
{
char c;
int k, i, j, aa, aarx;
int s, Kr, Kr_bytes;
double sigma2, sigma2_dB = 10, SNR, snr0 = -2.0, snr1, rate;
double snr_step = 1, snr_int = 20;
//int **txdataF, **txdata;
int **txdata;
#ifdef IFFT_FPGA
int **txdataF2;
int ind;
#endif
LTE_DL_FRAME_PARMS *frame_parms;
double **s_re, **s_im;
double ***r_re, ***r_im; // 3-D received signal matrices in the form of r_re[# of RN][][], r_im[# of RN][][];
double forgetting_factor = 0.0; // in [0,1] 0 means a new channel every time, 1 means keep the same channel
double hold_channel = 0; // use hold_channel=1 instead of forgetting_factor=1 (more efficient)
double iqim = 0.0;
uint8_t extended_prefix_flag=0, transmission_mode=1, n_tx=1, n_rx=1;
uint16_t Nid_cell=0;
int eNB_id = 0, eNB_id_i = NUMBER_OF_eNB_MAX;
unsigned char mcs, dual_stream_UE = 0;
unsigned char awgn_flag = 0, round, dci_flag = 0;
unsigned char i_mod = 2;
unsigned short NB_RB = conv_nprb(0, DLSCH_RB_ALLOC);
unsigned char Ns, l, m;
uint16_t tdd_config = 3;
uint16_t n_rnti = 0x1234;
int n_users = 1; // if we select 'n_users = # of RN', would it be possible to simulate PRN setup?
unsigned int num_relay;
SCM_t channel_model = Rayleigh1_corr;
// unsigned char *input_data, *decoded_output;
unsigned char *input_buffer[2];
unsigned short input_buffer_length;
unsigned int ret;
unsigned int coded_bits_per_codeword, nsymb, dci_cnt, tbs;
unsigned int tx_lev, tx_lev_dB, trials, error_tot[4]= {0}, round_trials[4]= {0}, dci_errors=0, dlsch_active=0, num_layers;
int re_allocated;
FILE *bler_fd;
char bler_fname[256];
FILE *tikz_fd;
char tikz_fname[256];
FILE *input_trch_fd;
unsigned char input_trch_file=0;
FILE *input_fd=NULL;
unsigned char input_file=0;
char input_val_str[50], input_val_str2[50];
char input_trch_val[16];
double pilot_sinr, abs_channel;
// unsigned char pbch_pdu[6];
DCI_ALLOC_t dci_alloc[8];
//DCI_ALLOC_t dci_alloc_rx[8];
DCI_ALLOC_t **dci_alloc_rx; // where 1st dimension of "dci_alloc_rx" will hold "# of RNs (UEs)" in the system;
int num_common_dci=0, num_ue_spec_dci=0, num_dci=0;
// FILE *rx_frame_file;
int n_frames;
int n_ch_rlz = 1;
channel_desc_t **eNB2UE; // which is a pointer array whose size will be the "# of RNs (UEs)" in the system;
double snr;
uint8_t num_pdcch_symbols=3, num_pdcch_symbols_2=0;
uint8_t pilot1, pilot2, pilot3;
uint8_t rx_sample_offset = 0;
//char stats_buffer[4096];
//int len;
uint8_t num_rounds=4,fix_rounds=0;
uint8_t subframe=6;
int u;
int abstx=0;
int iii;
FILE *csv_fd;
char csv_fname[20];
int ch_realization;
int pmi_feedback=0;
// void *data;
// int ii;
// int bler;
double blerr, uncoded_ber, avg_ber;
short *uncoded_ber_bit;
uint8_t N_RB_DL = 25, osf = 1;
int16_t amp;
#ifdef XFORMS
FD_lte_scope *form;
char title[255];
#endif
signal(SIGSEGV, handler);
// default parameters
mcs = 0;
n_frames = 1000;
snr0 = 0;
num_layers = 1;
num_relay = 1;
while ((c = getopt(argc, argv, "hadpm:n:o:s:f:t:c:g:r:F:x:y:z:M:N:I:i:R:S:C:T:b:u:J:")) != -1) {
switch (c) {
case 'a':
awgn_flag = 1;
break;
case 'b':
tdd_config=atoi(optarg);
break;
case 'd':
dci_flag = 1;
break;
case 'm':
mcs = atoi(optarg);
break;
case 'n':
n_frames = atoi(optarg);
break;
case 'C':
Nid_cell = atoi(optarg);
break;
case 'o':
rx_sample_offset = atoi(optarg);
break;
case 'r':
/*
ricean_factor = pow(10,-.1*atof(optarg));
if (ricean_factor>1) {
printf("Ricean factor must be between 0 and 1\n");
exit(-1);
}
*/
printf("Please use the -G option to select the channel model\n");
exit(-1);
break;
case 'F':
forgetting_factor = atof(optarg);
break;
case 's':
snr0 = atoi(optarg);
break;
case 't':
//Td= atof(optarg);
printf("Please use the -G option to select the channel model\n");
exit(-1);
break;
case 'f':
snr_step= atof(optarg);
break;
case 'M':
abstx= atof(optarg);
break;
case 'N':
n_ch_rlz= atof(optarg);
break;
case 'p':
extended_prefix_flag=1;
break;
case 'c':
num_pdcch_symbols=atoi(optarg);
break;
case 'g':
switch((char)*optarg) {
case 'A':
channel_model=SCM_A;
break;
case 'B':
channel_model=SCM_B;
break;
case 'C':
channel_model=SCM_C;
break;
case 'D':
channel_model=SCM_D;
break;
case 'E':
channel_model=EPA;
break;
case 'F':
channel_model=EVA;
break;
case 'G':
channel_model=ETU;
break;
case 'H':
channel_model=Rayleigh8;
break;
case 'I':
channel_model=Rayleigh1;
break;
case 'J':
channel_model=Rayleigh1_corr;
break;
case 'K':
channel_model=Rayleigh1_anticorr;
break;
case 'L':
channel_model=Rice8;
break;
case 'M':
channel_model=Rice1;
break;
default:
msg("Unsupported channel model!\n");
exit(-1);
}
break;
case 'x':
transmission_mode = atoi(optarg);
if ((transmission_mode!=1) && (transmission_mode!=2) && (transmission_mode!=5) && (transmission_mode!=6)) {
msg("Unsupported transmission mode %d\n",transmission_mode);
exit(-1);
}
break;
case 'y':
n_tx=atoi(optarg);
if ((n_tx==0) || (n_tx>2)) {
msg("Unsupported number of tx antennas %d\n",n_tx);
exit(-1);
}
break;
case 'z':
n_rx=atoi(optarg);
if ((n_rx==0) || (n_rx>2)) {
msg("Unsupported number of rx antennas %d\n",n_rx);
exit(-1);
}
break;
case 'I':
input_trch_fd = fopen(optarg,"r");
input_trch_file=1;
break;
case 'i':
input_fd = fopen(optarg,"r");
input_file = 1;
dci_flag = 1;
break;
case 'R':
num_rounds = atoi(optarg);
fix_rounds = 1;
break;
case 'S':
subframe = atoi(optarg);
break;
case 'T':
n_rnti = atoi(optarg);
break;
case 'u':
dual_stream_UE = atoi(optarg);
if ((n_tx!=2) || (transmission_mode!=5)) {
msg("Unsupported nb of decoded users: %d user(s), %d user(s) to decode\n", n_tx, dual_stream_UE);
exit(-1);
}
break;
case 'J':
num_relay = atoi(optarg);
if ((num_relay < 1) || (num_relay > 8)) {
msg("Unsupported number of Relay Nodes (RNs) in the PRN system %d\n", num_relay);
exit(-1);
}
break;
case 'h':
default:
printf("%s -h(elp) -a(wgn on) -d(ci decoding on) -p(extended prefix on) -m mcs -n n_frames -s snr0 -t Delayspread -x transmission mode (1,2,5,6) -y TXant -z RXant -I trch_file -J num_of_relays \n",
argv[0]);
printf("-h This message\n");
printf("-a Use AWGN channel and not multipath\n");
printf("-c Number of PDCCH symbols\n");
printf("-m MCS\n");
printf("-d Transmit the DCI and compute its error statistics and the overall throughput\n");
printf("-p Use extended prefix mode\n");
printf("-n Number of frames to simulate\n");
printf("-o Sample offset for receiver\n");
printf("-s Starting SNR, runs from SNR to SNR+%.1fdB in steps of %.1fdB. If n_frames is 1 then just SNR is simulated and MATLAB/OCTAVE output is generated\n", snr_int, snr_step);
printf("-f step size of SNR, default value is 1.\n");
printf("-t Delay spread for multipath channel\n");
printf("-r Ricean factor (dB, 0 dB = Rayleigh, 100 dB = almost AWGN)\n");
printf("-g [A:M] Use 3GPP 25.814 SCM-A/B/C/D('A','B','C','D') or 36-101 EPA('E'), EVA ('F'),ETU('G') models (ignores delay spread and Ricean factor), Rayghleigh8 ('H'), Rayleigh1('I'), Rayleigh1_corr('J'), Rayleigh1_anticorr ('K'), Rice8('L'), Rice1('M')\n");
printf("-F forgetting factor (0 new channel every trial, 1 channel constant\n");
printf("-x Transmission mode (1,2,6 for the moment)\n");
printf("-y Number of TX antennas used in eNB\n");
printf("-z Number of RX antennas used in UE\n");
printf("-R Number of HARQ rounds (fixed)\n");
printf("-M Determines whether the Absraction flag is on or Off. 1-->On and 0-->Off. Default status is Off. \n");
printf("-N Determines the number of Channel Realizations in Absraction mode. Default value is 1. \n");
printf("-I Input filename for TrCH data (binary)\n");
printf("-u Determines if the 2 streams at the UE are decoded or not. 0-->U2 is interference only and 1-->U2 is detected\n");
printf("-J Number of Relay Nodes (RNs) in the Parallel Relay Network (PRN)\n"); //= # UEs that are connected to the eNb via limited capacity backhaul;
exit(1);
break;
}
}
#ifdef XFORMS
fl_initialize(&argc, argv, NULL, 0, 0);
form = create_form_lte_scope();
sprintf(title, "LTE DLSIM SCOPE");
fl_show_form(form->lte_scope, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
#endif
if (transmission_mode==5) {
n_users = 2;
printf("dual_stream_UE=%d\n", dual_stream_UE);
}
lte_param_init(num_relay, n_tx, n_rx, transmission_mode, extended_prefix_flag, Nid_cell, tdd_config, N_RB_DL, osf);
printf("Setting mcs = %d\n", mcs);
printf("NPRB = %d\n", NB_RB);
printf("n_frames = %d\n", n_frames);
printf("Transmission mode %d with %dx%d antenna configuration, Extended Prefix %d\n", transmission_mode, n_tx, n_rx, extended_prefix_flag);
snr1 = snr0+snr_int;
printf("SNR0 %f, SNR1 %f\n",snr0,snr1);
/*
txdataF = (int **)malloc16(2*sizeof(int*));
txdataF[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdataF[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata = (int **)malloc16(2*sizeof(int*));
txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
*/
frame_parms = &PHY_vars_eNB->lte_frame_parms;
#ifdef IFFT_FPGA
txdata = (int **)malloc16(2*sizeof(int*));
txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
bzero(txdata[0],FRAME_LENGTH_BYTES);
bzero(txdata[1],FRAME_LENGTH_BYTES);
txdataF2 = (int **)malloc16(2*sizeof(int*));
txdataF2[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
txdataF2[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
bzero(txdataF2[0],FRAME_LENGTH_BYTES_NO_PREFIX);
bzero(txdataF2[1],FRAME_LENGTH_BYTES_NO_PREFIX);
#else
txdata = PHY_vars_eNB->lte_eNB_common_vars.txdata[eNB_id];
#endif
printf("Channel Model=%d\n", channel_model);
printf("SCM-A=%d, SCM-B=%d, SCM-C=%d, SCM-D=%d, EPA=%d, EVA=%d, ETU=%d, Rayleigh8=%d, Rayleigh1=%d, Rayleigh1_corr=%d, Rayleigh1_anticorr=%d, Rice1=%d, Rice8=%d\n", SCM_A, SCM_B, SCM_C, SCM_D, EPA,
EVA, ETU, Rayleigh8, Rayleigh1, Rayleigh1_corr, Rayleigh1_anticorr, Rice1, Rice8);
//sprintf(bler_fname,"second_bler_tx%d_mcs%d_chan%d.csv", transmission_mode, mcs, channel_model);
//bler_fd = fopen(bler_fname,"w");
sprintf(bler_fname,"bler_relay_DF_mcs%d_%d-QAM_RN%d.m", mcs, (short)pow(2, get_Qm(mcs)), num_relay);
bler_fd = fopen(bler_fname, "w");
fprintf(bler_fd,"SNR; MCS; NB_OF_RELAYS; TBS; Effective_rate; Coding_Rate; err0; trials0; err1; trials1; err2; trials2; err3; trials3; dci_err; BER;\n");
if(abstx) {
// CSV file
sprintf(csv_fname,"data_out%d.m", mcs);
csv_fd = fopen(csv_fname,"w");
fprintf(csv_fd,"data_all%d=[", mcs);
}
//sprintf(tikz_fname, "second_bler_tx%d_u2=%d_mcs%d_chan%d_nsimus%d.tex",transmission_mode,dual_stream_UE,mcs,channel_model,n_frames);
sprintf(tikz_fname, "second_bler_tx%d_u2=%d_mcs%d_chan%d_nsimus%d",transmission_mode,dual_stream_UE,mcs,channel_model,n_frames);
tikz_fd = fopen(tikz_fname,"w");
//fprintf(tikz_fd,"\\addplot[color=red, mark=o] plot coordinates {");
switch (mcs) {
case 0:
fprintf(tikz_fd,"\\addplot[color=blue, mark=star] plot coordinates {");
break;
case 1:
fprintf(tikz_fd,"\\addplot[color=red, mark=star] plot coordinates {");
break;
case 2:
fprintf(tikz_fd,"\\addplot[color=green, mark=star] plot coordinates {");
break;
case 3:
fprintf(tikz_fd,"\\addplot[color=yellow, mark=star] plot coordinates {");
break;
case 4:
fprintf(tikz_fd,"\\addplot[color=black, mark=star] plot coordinates {");
break;
case 5:
fprintf(tikz_fd,"\\addplot[color=blue, mark=o] plot coordinates {");
break;
case 6:
fprintf(tikz_fd,"\\addplot[color=red, mark=o] plot coordinates {");
break;
case 7:
fprintf(tikz_fd,"\\addplot[color=green, mark=o] plot coordinates {");
break;
case 8:
fprintf(tikz_fd,"\\addplot[color=yellow, mark=o] plot coordinates {");
break;
case 9:
fprintf(tikz_fd,"\\addplot[color=black, mark=o] plot coordinates {");
break;
}
// Allocating memory and test the dynamic allocations;
s_re = (double **)malloc(2*sizeof(double *));
s_im = (double **)malloc(2*sizeof(double *));
r_re = (double ***)malloc(num_relay*sizeof(double **));
r_im = (double ***)malloc(num_relay*sizeof(double **));
dci_alloc_rx = (DCI_ALLOC_t **)malloc(num_relay*sizeof(DCI_ALLOC_t *));
if (!(s_re && s_im && r_re && r_im && dci_alloc_rx)) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
for (i=0; i<2; i++) {
s_re[i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
s_im[i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
if (!(s_re[i] && s_im[i])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
}
for(j=0; j<num_relay; j++) {
r_re[j] = (double **)malloc(2*sizeof(double*));
r_im[j] = (double **)malloc(2*sizeof(double*));
dci_alloc_rx[j] = (DCI_ALLOC_t *)malloc(8*sizeof(DCI_ALLOC_t));
if (!(r_re[j] && r_im[j] && dci_alloc_rx[j])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
for(i=0; i<2; i++) {
r_re[j][i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_im[j][i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
if (!(r_re[j][i] && r_im[j][i])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
}
}
for(j=0; j<num_relay; j++) {
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->crnti = n_rnti;
}
nsymb = (PHY_vars_eNB->lte_frame_parms.Ncp == 0) ? 14 : 12;
// Fill in UL_alloc
UL_alloc_pdu.type = 0;
UL_alloc_pdu.hopping = 0;
UL_alloc_pdu.rballoc = UL_RB_ALLOC;
UL_alloc_pdu.mcs = 1;
UL_alloc_pdu.ndi = 1;
UL_alloc_pdu.TPC = 0;
UL_alloc_pdu.cqi_req = 1;
CCCH_alloc_pdu.type = 0;
CCCH_alloc_pdu.vrb_type = 0;
CCCH_alloc_pdu.rballoc = CCCH_RB_ALLOC;
CCCH_alloc_pdu.ndi = 1;
CCCH_alloc_pdu.mcs = 1;
CCCH_alloc_pdu.harq_pid = 0;
DLSCH_alloc_pdu2_2D[0].rah = 0;
DLSCH_alloc_pdu2_2D[0].rballoc = DLSCH_RB_ALLOC;
DLSCH_alloc_pdu2_2D[0].TPC = 0;
DLSCH_alloc_pdu2_2D[0].dai = 0;
DLSCH_alloc_pdu2_2D[0].harq_pid = 0;
DLSCH_alloc_pdu2_2D[0].tb_swap = 0;
DLSCH_alloc_pdu2_2D[0].mcs1 = mcs;
DLSCH_alloc_pdu2_2D[0].ndi1 = 1;
DLSCH_alloc_pdu2_2D[0].rv1 = 0;
// Forget second codeword
DLSCH_alloc_pdu2_2D[0].tpmi = (transmission_mode>=5 ? 5 : 0); // precoding
DLSCH_alloc_pdu2_2D[0].dl_power_off = (transmission_mode==5 ? 0 : 1);
DLSCH_alloc_pdu2_2D[1].rah = 0;
DLSCH_alloc_pdu2_2D[1].rballoc = DLSCH_RB_ALLOC;
DLSCH_alloc_pdu2_2D[1].TPC = 0;
DLSCH_alloc_pdu2_2D[1].dai = 0;
DLSCH_alloc_pdu2_2D[1].harq_pid = 0;
DLSCH_alloc_pdu2_2D[1].tb_swap = 0;
DLSCH_alloc_pdu2_2D[1].mcs1 = mcs;
DLSCH_alloc_pdu2_2D[1].ndi1 = 1;
DLSCH_alloc_pdu2_2D[1].rv1 = 0;
// Forget second codeword
DLSCH_alloc_pdu2_2D[1].tpmi = (transmission_mode>=5 ? 5 : 0) ; // precoding
DLSCH_alloc_pdu2_2D[1].dl_power_off = (transmission_mode==5 ? 0 : 1);
// Create transport channel structures for SI pdus
PHY_vars_eNB->dlsch_eNB_SI = new_eNB_dlsch(1,1,0);
PHY_vars_eNB->dlsch_eNB_SI->rnti = SI_RNTI;
//PHY_vars_UE->dlsch_ue_SI[0] = new_ue_dlsch(1,1,0);
//PHY_vars_UE->dlsch_ue_SI[0]->rnti = SI_RNTI;
for(j=0; j<num_relay; j++) {
PHY_vars_UE[j]->dlsch_ue_SI[0] = new_ue_dlsch(1,1,0);
PHY_vars_UE[j]->dlsch_ue_SI[0]->rnti = SI_RNTI;
}
// Create random Channels coefficients;
eNB2UE = (channel_desc_t **)malloc(num_relay*sizeof(channel_desc_t *));
if (!(eNB2UE)) {
printf("Cannot allocate memory for Channel Descriptors!\n");
exit(EXIT_FAILURE);
}
for(j=0; j<num_relay; j++) {
eNB2UE[j] = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx,
channel_model,
BW,
forgetting_factor,
rx_sample_offset,
0);
if (eNB2UE[j] == NULL) {
msg("Problem generating channel model. Exiting.\n");
exit(-1);
}
// if (hold_channel==1)
random_channel(eNB2UE[j]);
}
for (k=0; k<n_users; k++) {
// Create transport channel structures for 2 transport blocks (MIMO)
for (i=0; i<2; i++) {
PHY_vars_eNB->dlsch_eNB[k][i] = new_eNB_dlsch(1,8,0);
if (!PHY_vars_eNB->dlsch_eNB[k][i]) {
printf("Can't get eNB dlsch structures\n");
exit(-1);
}
PHY_vars_eNB->dlsch_eNB[k][i]->rnti = n_rnti+k;
}
}
for(j=0; j<num_relay; j++) {
for (i=0; i<2; i++) {
PHY_vars_UE[j]->dlsch_ue[0][i] = new_ue_dlsch(1,8,0);
if (!PHY_vars_UE[j]->dlsch_ue[0][i]) {
printf("Can't get ue dlsch structures\n");
exit(-1);
}
PHY_vars_UE[j]->dlsch_ue[0][i]->rnti = n_rnti;
}
}
if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) {
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff);
if (n_users > 1)
PHY_vars_eNB->eNB_UE_stats[1].DL_pmi_single = (PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single ^ 0x1555); //opposite PMI
} else {
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = 0;
if (n_users > 1)
PHY_vars_eNB->eNB_UE_stats[1].DL_pmi_single = 0;
}
if (input_fd==NULL) {
for(k=0; k<n_users; k++) {
printf("Generating dlsch params for user %d\n",k);
generate_eNB_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2_2D[k],
n_rnti+k,
format2_2D_M10PRB,
PHY_vars_eNB->dlsch_eNB[k],
&PHY_vars_eNB->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI,
PHY_vars_eNB->eNB_UE_stats[k].DL_pmi_single);
}
num_dci = 0;
num_ue_spec_dci = 0;
num_common_dci = 0;
/*
// common DCI
memcpy(&dci_alloc[num_dci].dci_pdu[0],&CCCH_alloc_pdu,sizeof(DCI1A_5MHz_TDD_1_6_t));
dci_alloc[num_dci].dci_length = sizeof_DCI1A_5MHz_TDD_1_6_t;
dci_alloc[num_dci].L = 2;
dci_alloc[num_dci].rnti = SI_RNTI;
num_dci++;
num_common_dci++;
*/
// UE specific DCI
for(k=0; k<n_users; k++) {
memcpy(&dci_alloc[num_dci].dci_pdu[0], &DLSCH_alloc_pdu2_2D[k], sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
dci_alloc[num_dci].dci_length = sizeof_DCI2_5MHz_2D_M10PRB_TDD_t;
dci_alloc[num_dci].L = 2;
dci_alloc[num_dci].rnti = n_rnti+k;
dci_alloc[num_dci].format = format2_2D_M10PRB;
dump_dci(&PHY_vars_eNB->lte_frame_parms, &dci_alloc[num_dci]);
num_dci++;
num_ue_spec_dci++;
/*
memcpy(&dci_alloc[1].dci_pdu[0], &UL_alloc_pdu, sizeof(DCI0_5MHz_TDD0_t));
dci_alloc[1].dci_length = sizeof_DCI0_5MHz_TDD_0_t;
dci_alloc[1].L = 2;
dci_alloc[1].rnti = n_rnti;
*/
}
for (k=0; k<n_users; k++) {
input_buffer_length = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->TBS/8;
input_buffer[k] = (unsigned char *)malloc(input_buffer_length+4);
memset(input_buffer[k], 0, input_buffer_length+4);
if (input_trch_file==0) {
for (i=0; i<input_buffer_length; i++) {
input_buffer[k][i]= (unsigned char)(taus()&0xff);
}
} else {
i=0;
while ((!feof(input_trch_fd)) && (i<input_buffer_length<<3)) {
fscanf(input_trch_fd,"%s",input_trch_val);
if (input_trch_val[0] == '1')
input_buffer[k][i>>3] += (1<<(7-(i&7)));
if (i<16)
printf("input_trch_val %d : %c\n", i, input_trch_val[0]);
i++;
if (((i%8) == 0) && (i<17))
printf("%x\n", input_buffer[k][(i-1)>>3]);
}
printf("Read in %d bits\n", i);
}
}
}
for (ch_realization=0; ch_realization<n_ch_rlz; ch_realization++) {
if(abstx) {
printf("**********************Channel Realization Index = %d **************************\n", ch_realization);
}
for (SNR=snr0; SNR<snr1; SNR+=snr_step) {
error_tot[0]=0;
error_tot[1]=0;
error_tot[2]=0;
error_tot[3]=0;
round_trials[0] = 0;
round_trials[1] = 0;
round_trials[2] = 0;
round_trials[3] = 0;
dci_errors=0;
avg_ber = 0;
round=0;
for (trials=0; trials < n_frames; trials++) {
// printf("Trial %d\n",trials);
fflush(stdout);
round=0;
//if (trials%100==0)
for(j=0; j<num_relay; j++) {
eNB2UE[j]->first_run = 1;
}
while (round < num_rounds) {
round_trials[round]++;
if(transmission_mode>=5)
pmi_feedback=1;
else
pmi_feedback=0;
PMI_FEEDBACK:
// printf("Trial %d : Round %d, pmi_feedback %d \n",trials,round,pmi_feedback);
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
#ifdef IFFT_FPGA
memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,NUMBER_OF_USEFUL_CARRIERS*NUMBER_OF_SYMBOLS_PER_FRAME*sizeof(mod_sym_t));
#else
memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][0],0,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
#endif
}
if (input_fd==NULL) {
if (round == 0) {
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2_2D[0].ndi1 = 1;
DLSCH_alloc_pdu2_2D[0].rv1 = 0;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
} else {
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2_2D[0].ndi1 = 0;
DLSCH_alloc_pdu2_2D[0].rv1 = round>>1;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
}
num_pdcch_symbols_2 = generate_dci_top(num_ue_spec_dci,
num_common_dci,
dci_alloc,
0,
1024,
&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
subframe);
if (num_pdcch_symbols_2 > num_pdcch_symbols) {
msg("Error: given num_pdcch_symbols not big enough\n");
exit(-1);
}
for (k=0; k<n_users; k++) {
coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb,
PHY_vars_eNB->dlsch_eNB[k][0]->rb_alloc,
get_Qm(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs),
num_pdcch_symbols,
subframe);
#ifdef TBS_FIX
tbs = (double)3*dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb-1]/4;
#else
tbs = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb-1];
#endif
rate = (double)tbs/(double)coded_bits_per_codeword;
uncoded_ber_bit = (short*) malloc(2*coded_bits_per_codeword);
if (trials==0 && round==0)
printf("Rate = %f (G %d, TBS %d, mod %d, pdcch_sym %d)\n", rate, coded_bits_per_codeword, tbs, get_Qm(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs), num_pdcch_symbols);
/*
// generate channel here
random_channel(eNB2UE);
// generate frequency response
freq_channel(eNB2UE,NB_RB);
// generate PMI from channel
*/
/*---------------------------------------------------------------------------------------------------*/
/* For our case our code will not enter here; since we do not assume mode 5 (MU-MIMO) transmisssion */
// use the PMI from previous trial
if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) {
PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE[0]->PHY_measurements,
0); // how about this function!!! by default I put '0' as an index (no matter from which relay (or UE in this case) the feedback will come- CHECK THIS);
//PHY_vars_UE->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0);
for(j=0; j<num_relay; j++)
PHY_vars_UE[j]->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE[j]->PHY_measurements,0);
if (n_users>1)
PHY_vars_eNB->dlsch_eNB[1][0]->pmi_alloc = (PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc ^ 0x1555);
/*
if ((trials<10) && (round==0)) {
printf("tx PMI UE0 %x (pmi_feedback %d)\n",pmi2hex_2Ar1(PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc),pmi_feedback);
if (transmission_mode ==5)
printf("tx PMI UE1 %x\n",pmi2hex_2Ar1(PHY_vars_eNB->dlsch_eNB[1][0]->pmi_alloc));
}
*/
}
if (dlsch_encoding(input_buffer[k], &PHY_vars_eNB->lte_frame_parms, num_pdcch_symbols, PHY_vars_eNB->dlsch_eNB[k][0], subframe) < 0)
exit(-1);
// printf("Did not Crash here 1\n");
PHY_vars_eNB->dlsch_eNB[k][0]->rnti = n_rnti+k;
dlsch_scrambling(&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[k][0],
coded_bits_per_codeword,
0,
subframe<<1);
if (n_frames==1) {
for (s=0; s<PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->C; s++) {
if (s<PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Cminus)
Kr = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Kminus;
else
Kr = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Kplus;
Kr_bytes = Kr>>3;
for (i=0; i<Kr_bytes; i++)
printf("%d : (%x)\n",i,PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->c[s][i]);
}
}
// printf("Did not Crash here 2\n");
if (transmission_mode == 5) {
amp = (int16_t)(((int32_t)1024*ONE_OVER_SQRT2_Q15)>>15);
} else
amp = 1024;
//if (k==1)
// amp=0;
re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
amp,
subframe,
&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[k][0]);
// printf("Did not Crash here 3\n");
if (trials==0 && round==0)
printf("RE count %d\n",re_allocated);
if (num_layers>1)
re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
1024,
subframe,
&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[k][1]);
} //n_users
// printf("Did not Crash here 4\n");
generate_pilots(PHY_vars_eNB,
PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
1024,
LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
#ifdef IFFT_FPGA
if (n_frames==1) {
write_output("txsigF0.m","txsF0", PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][0],300*nsymb*10,1,4);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("txsigF1.m","txsF1", PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][1],300*nsymb*10,1,4);
}
// do table lookup and write results to txdataF2
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
ind = 0;
for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++)
if (((i%512)>=1) && ((i%512)<=150))
txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]];
else if ((i%512)>=362)
txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]];
else
txdataF2[aa][i] = 0;
// printf("ind=%d\n",ind);
}
if (n_frames==1) {
write_output("txsigF20.m","txsF20", txdataF2[0], FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("txsigF21.m","txsF21", txdataF2[1], FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
}
tx_lev = 0;
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(&txdataF2[aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size], // input
&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], // output
PHY_vars_eNB->lte_frame_parms.log2_symbol_size, // log2_fft_size
2*nsymb, //NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols
PHY_vars_eNB->lte_frame_parms.nb_prefix_samples, // number of prefix samples
PHY_vars_eNB->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors
PHY_vars_eNB->lte_frame_parms.rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(&txdataF2[aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
2*nsymb,
frame_parms);
}
tx_lev += signal_energy(&txdata[aa][(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+PHY_vars_eNB->lte_frame_parms.nb_prefix_samples0)], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
}
#else //IFFT_FPGA
if (n_frames==1) {
write_output("txsigF0.m","txsF0", PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][0],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("txsigF1.m","txsF1", PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][1],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
}
tx_lev = 0;
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size], // input
&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], // output
PHY_vars_eNB->lte_frame_parms.log2_symbol_size, // log2_fft_size
2*nsymb, //NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols
PHY_vars_eNB->lte_frame_parms.nb_prefix_samples, // number of prefix samples
PHY_vars_eNB->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors
PHY_vars_eNB->lte_frame_parms.rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
2*nsymb,
frame_parms);
}
tx_lev += signal_energy(&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
PHY_vars_eNB->lte_frame_parms.samples_per_tti);
}
#endif //IFFT_FPGA
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
//printf("tx_lev = %d (%d dB)\n",tx_lev,tx_lev_dB);
if (n_frames==1)
write_output("txsig0.m","txs0", txdata[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
} else { // Read signal from file
i=0;
while (!feof(input_fd)) {
fscanf(input_fd,"%s %s",input_val_str,input_val_str2);
if ((i%4)==0) {
((short*)txdata[0])[i/2] = (short)((1<<15)*strtod(input_val_str,NULL));
((short*)txdata[0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2,NULL));
if ((i/4)<100)
printf("sample %d => %e + j%e (%d +j%d)\n",i/4,strtod(input_val_str,NULL),strtod(input_val_str2,NULL),((short*)txdata[0])[i/4],((short*)txdata[0])[(i/4)+1]);//1,input_val2,);
}
i++;
if (i>(FRAME_LENGTH_SAMPLES))
break;
}
printf("Read in %d samples\n",i/4);
write_output("txsig0.m","txs0", txdata[0],2*frame_parms->samples_per_tti,1,1);
// write_output("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
tx_lev = signal_energy(&txdata[0][0], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
}
// printf("Copying tx ..., nsymb %d (n_tx %d), awgn %d\n", nsymb, PHY_vars_eNB->lte_frame_parms.nb_antennas_tx, awgn_flag);
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
if (awgn_flag == 0) {
s_re[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[0]->lte_frame_parms.samples_per_tti) + (i<<1)]); /* I put '0' by default, but this should be checked!!! */
s_im[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[0]->lte_frame_parms.samples_per_tti) +(i<<1)+1]); /* I put '0' by default, but this should be checked!!! */
} else {
for (j=0; j<num_relay; j++) {
for (aarx=0; aarx<PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx; aarx++) {
if (aa==0) {
r_re[j][aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti) +(i<<1)]);
r_im[j][aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
} else {
r_re[j][aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti) +(i<<1)]); // even samples;
r_im[j][aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti) +(i<<1)+1]); // odd samples;
}
}
}
}
}
}
// n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR;
// generate new channel if pmi_feedback==0, otherwise hold channel
for (j=0; j<num_relay; j++) {
if(abstx) {
if (trials==0 && round==0) {
if (awgn_flag == 0) {
if(SNR==snr0) {
if(pmi_feedback==0)
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
else
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);
} else {
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
}
freq_channel(eNB2UE[j], 25,51);
snr=pow(10.0,.1*SNR);
fprintf(csv_fd,"%f,",SNR);
for (u=0; u<50; u++) {
abs_channel = (eNB2UE[j]->chF[0][u].x*eNB2UE[j]->chF[0][u].x + eNB2UE[j]->chF[0][u].y*eNB2UE[j]->chF[0][u].y);
if(transmission_mode==5) {
fprintf(csv_fd,"%e,",abs_channel);
} else {
pilot_sinr = 10*log10(snr*abs_channel);
fprintf(csv_fd,"%e,",pilot_sinr);
}
}
}
} else {
if (awgn_flag == 0) {
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j], r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
}
}
} else { //ABStraction
if (awgn_flag == 0) {
if (pmi_feedback==0)
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
else
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);
}
}//ABStraction
}
//(double)tx_lev_dB - (SNR+sigma2_dB));
//printf("tx_lev_dB %d\n",tx_lev_dB);
sigma2_dB = 10*log10((double)tx_lev) +10*log10(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR;
//AWGN
sigma2 = pow(10,sigma2_dB/10);
// n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR;
// printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
if (pmi_feedback==0) {
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
for (j=0; j<num_relay; j++) {
//printf("s_re[0][%d]=> %f , r_re[%d][0][%d]=> %f\n",i,s_re[aa][i],j,i,r_re[j][aa][i]);
((short*) PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti)+2*i] =
(short) (r_re[j][aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
((short*) PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti)+2*i+1] =
(short) (r_im[j][aa][i] + (iqim*r_re[j][aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
}
}
}
} else {
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
for (j=0; j<num_relay; j++) {
// printf("s_re[0][%d]=> %f , r_re[%d][0][%d]=> %f\n",i,s_re[aa][i],j,i,r_re[j][aa][i]);
((short*) PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti)+2*i] = (short) (r_re[j][aa][i]);
((short*) PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti)+2*i+1] = (short) (r_im[j][aa][i]);
}
}
}
}
// lte_sync_time_init(PHY_vars_eNB->lte_frame_parms,lte_ue_common_vars);
// lte_sync_time(lte_ue_common_vars->rxdata, PHY_vars_eNB->lte_frame_parms);
// lte_sync_time_free();
/*
// optional: read rx_frame from file
if ((rx_frame_file = fopen("rx_frame.dat","r")) == NULL){
printf("Cannot open rx_frame.m data file\n");
exit(0);
}
result = fread((void *)PHY_vars->rx_vars[0].RX_DMA_BUFFER,4,FRAME_LENGTH_COMPLEX_SAMPLES,rx_frame_file);
printf("Read %d bytes\n",result);
result = fread((void *)PHY_vars->rx_vars[1].RX_DMA_BUFFER,4,FRAME_LENGTH_COMPLEX_SAMPLES,rx_frame_file);
printf("Read %d bytes\n",result);
fclose(rx_frame_file);
*/
if (n_frames==1) {
for (j=0; j<num_relay; j++) {
printf("RX level at %d-th RN in null symbol %d\n", j,
dB_fixed(signal_energy(&PHY_vars_UE[j]->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("RX level at %d-th RN in data symbol %d\n", j,
dB_fixed(signal_energy(&PHY_vars_UE[j]->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("rx_level at %d-th RN in null symbol %f\n", j,
10*log10(signal_energy_fp(r_re[j],r_im[j],1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
printf("rx_level at %d-th RN in data symbol %f\n", j,
10*log10(signal_energy_fp(r_re[j],r_im[j],1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
}
}
if (PHY_vars_eNB->lte_frame_parms.Ncp == 0) { // normal prefix
pilot1 = 4;
pilot2 = 7;
pilot3 = 11;
} else { // extended prefix
pilot1 = 3;
pilot2 = 6;
pilot3 = 9;
}
i_mod = get_Qm(mcs);
/* Once, at one of the RN, the DLSCH pkt has been decoded, then we continue with the following trial! */
/* Declare an error iff all RNs fail to decode! */
for (j=0; j<num_relay; j++) { // loop over all RNs;
// Inner receiver scheduling for 3 slots
for (Ns=(2*subframe); Ns<((2*subframe)+3); Ns++) {
for (l=0; l<pilot2; l++) {
if (n_frames==1)
printf("Ns %d, l %d\n",Ns,l);
/*
This function implements the OFDM front end processor (FEP).
parameters:
frame_parms LTE DL Frame Parameters
ue_common_vars LTE UE Common Vars
l symbol within slot (0..6/7)
Ns Slot number (0..19)
sample_offset offset within rxdata (points to beginning of subframe)
no_prefix if 1 prefix is removed by HW
*/
slot_fep(PHY_vars_UE[j], l, Ns%20, 0, 0);
#ifdef PERFECT_CE
if (awgn_flag==0) {
// fill in perfect channel estimates
freq_channel(eNB2UE[j],PHY_vars_UE[j]->lte_frame_parms.N_RB_DL,301);
//write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
//write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
for(k=0; k<NUMBER_OF_eNB_MAX; k++) {
for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
for (i=0; i<frame_parms->N_RB_DL*12; i++) {
((int16_t *) PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
eNB2UE[j]->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2);
((int16_t *) PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(
eNB2UE[j]->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2) ;
}
}
}
}
} else {
for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
for (i=0; i<frame_parms->N_RB_DL*12; i++) {
((int16_t *) PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=AMP/2;
((int16_t *) PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=0/2;
}
}
}
}
#endif
if ((Ns==(2+(2*subframe))) && (l==0)) {
lte_ue_measurements(PHY_vars_UE[j], subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti, 1, 0);
/*
debug_msg("RX RSSI %d dBm, digital (%d, %d) dB, linear (%d, %d), avg rx power %d dB (%d lin), RX gain %d dB\n",
PHY_vars_UE[j]->PHY_measurements.rx_rssi_dBm[0] - ((PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx==2) ? 3 : 0),
PHY_vars_UE[j]->PHY_measurements.wideband_cqi_dB[0][0],
PHY_vars_UE[j]->PHY_measurements.wideband_cqi_dB[0][1],
PHY_vars_UE[j]->PHY_measurements.wideband_cqi[0][0],
PHY_vars_UE[j]->PHY_measurements.wideband_cqi[0][1],
PHY_vars_UE[j]->PHY_measurements.rx_power_avg_dB[0],
PHY_vars_UE[j]->PHY_measurements.rx_power_avg[0],
PHY_vars_UE[j]->rx_total_gain_dB);
debug_msg("N0 %d dBm digital (%d, %d) dB, linear (%d, %d), avg noise power %d dB (%d lin)\n",
PHY_vars_UE[j]->PHY_measurements.n0_power_tot_dBm,
PHY_vars_UE[j]->PHY_measurements.n0_power_dB[0],
PHY_vars_UE[j]->PHY_measurements.n0_power_dB[1],
PHY_vars_UE[j]->PHY_measurements.n0_power[0],
PHY_vars_UE[j]->PHY_measurements.n0_power[1],
PHY_vars_UE[j]->PHY_measurements.n0_power_avg_dB,
PHY_vars_UE[j]->PHY_measurements.n0_power_avg);
debug_msg("Wideband CQI tot %d dB, wideband cqi avg %d dB\n",
PHY_vars_UE[j]->PHY_measurements.wideband_cqi_tot[0],
PHY_vars_UE[j]->PHY_measurements.wideband_cqi_avg[0]);
*/
if (transmission_mode==5 || transmission_mode==6) {
if (pmi_feedback==1) {
pmi_feedback= 0;
// printf("measured PMI %x\n",pmi2hex_2Ar1(quantize_subband_pmi(&PHY_vars_UE[j]->PHY_measurements,0)));
goto PMI_FEEDBACK;
}
}
}
if ((Ns==(2*subframe)) && (l==pilot1)) { // process symbols 0,1,2
if (dci_flag == 1) {
rx_pdcch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_pdcch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
subframe,
0,
(PHY_vars_UE[j]->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
0);
// overwrite number of pdcch symbols
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
dci_cnt = dci_decoding_procedure(PHY_vars_UE[j],
dci_alloc_rx[j],
eNB_id,
subframe,
SI_RNTI,
RA_RNTI);
//printf("dci_cnt %d\n",dci_cnt);
if (dci_cnt==0) {
dlsch_active = 0;
if (round==0) { // if an error in the first DCI, then contunue with the next transmission block !?;
if (j == (num_relay-1)) {
dci_errors++;
error_tot[0]++; // errs[0] is replaced by error_tot[0];
round_trials[0]++;
round = 5;
//printf("DCI error trial %d error_tot[0] %d\n",trials,error_tot[0]);
}
//dci_errors++;
//round=5;
//error_tot[0]++;
//round_trials[0]++;
// printf("DCI error trial %d error_tot[0] %d\n",trials, error_tot[0]);
}
// for (i=1;i<=round;i++)
// round_trials[i]--;
// round=5;
}
for (i=0; i<dci_cnt; i++) {
//printf("Generating dlsch parameters for RNTI %x\n",dci_alloc_rx[j][i].rnti);
if ((dci_alloc_rx[j][i].rnti == n_rnti) &&
(generate_ue_dlsch_params_from_dci(0,
dci_alloc_rx[j][i].dci_pdu,
dci_alloc_rx[j][i].rnti,
dci_alloc_rx[j][i].format,
PHY_vars_UE[j]->dlsch_ue[0],
&PHY_vars_UE[j]->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI) == 0)) {
//dump_dci(&PHY_vars_UE[j]->lte_frame_parms,&dci_alloc_rx[j][i]);
coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_UE[j]->dlsch_ue[0][0]->nb_rb,
PHY_vars_UE[j]->dlsch_ue[0][0]->rb_alloc,
get_Qm(PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[j]->dlsch_ue[0][0]->current_harq_pid]->mcs),
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
subframe);
/*
rate = (double)dlsch_tbs25[get_I_TBS(PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[j]->dlsch_ue[0][0]->current_harq_pid]->mcs)][PHY_vars_UE[j]->dlsch_ue[0][0]->nb_rb-1]/(coded_bits_per_codeword);
rate*=get_Qm(PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[j]->dlsch_ue[0][0]->current_harq_pid]->mcs);
printf("num_pdcch_symbols %d, G %d, TBS %d\n", PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols, coded_bits_per_codeword, PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[j]->dlsch_ue[0][0]->current_harq_pid]->TBS);
*/
dlsch_active = 1;
} else {
dlsch_active = 0;
if (round==0) { // if an error in the first DCI, then contunue with the next transmission block !?;
if (j == (num_relay-1)) {
dci_errors++;
error_tot[0]++;
round_trials[0]++;
}
if (n_frames==1) {
printf("DCI misdetection trial %d\n",trials);
round=5;
}
}
//for (i=1;i<=round;i++)
// round_trials[i]--;
// round=5;
}
}
} // if dci_flag==1
else { //dci_flag == 0
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->crnti = n_rnti;
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
generate_ue_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2_2D[0],
C_RNTI,
format2_2D_M10PRB,
PHY_vars_UE[j]->dlsch_ue[0],
&PHY_vars_UE[j]->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI);
dlsch_active = 1;
} // if dci_flag == 1
}
if (dlsch_active == 1) {
if ((Ns==(1+(2*subframe))) && (l==0)) { // process symbols 3,4,5
for (m=PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols; m<pilot2; m++) {
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNB_id,
eNB_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
subframe,
m,
(m==PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
i_mod) == -1) {
dlsch_active = 0;
break;
}
}
}
if ((Ns==(1+(2*subframe))) && (l==pilot1)) { // process symbols 6,7,8
/*
if (rx_pbch(lte_ue_common_vars, lte_ue_pbch_vars[0], lte_frame_parms, 0, SISO)) {
msg("pbch decoded sucessfully!\n");
}
else {
msg("pbch not decoded!\n");
}
*/
for (m=pilot2; m<pilot3; m++)
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNB_id,
eNB_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
subframe,
m,
0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
i_mod) == -1) {
dlsch_active = 0;
break;
}
}
if ((Ns==(2+(2*subframe))) && (l==0)) // process symbols 10,11, do deinterleaving for TTI
for (m=pilot3; m<PHY_vars_UE[j]->lte_frame_parms.symbols_per_tti; m++)
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNB_id,
eNB_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
subframe,
m,
0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
i_mod) == -1) {
dlsch_active = 0;
break;
}
if ((n_frames==1) && (Ns==(2+(2*subframe))) && (l==0)) {
write_output("ch0.m", "ch0",
eNB2UE[j]->ch[0],
eNB2UE[j]->channel_length, 1, 8);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1)
write_output("ch1.m", "ch1",
eNB2UE[j]->ch[PHY_vars_eNB->lte_frame_parms.nb_antennas_rx],
eNB2UE[j]->channel_length, 1, 8);
//common vars
write_output("rxsig0.m", "rxs0",
&PHY_vars_UE[j]->lte_ue_common_vars.rxdata[0][0],
10*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti, 1, 1);
write_output("rxsigF0.m", "rxsF0",
&PHY_vars_UE[j]->lte_ue_common_vars.rxdataF[0][0],
2*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb, 2, 1);
if (PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1) {
write_output("rxsig1.m","rxs1",
PHY_vars_UE[j]->lte_ue_common_vars.rxdata[1],
PHY_vars_UE[j]->lte_frame_parms.samples_per_tti, 1, 1);
write_output("rxsigF1.m","rxsF1",
PHY_vars_UE[j]->lte_ue_common_vars.rxdataF[1],
2*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb, 2, 1);
}
write_output("dlsch00_ch0.m", "dl00_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if (PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1)
write_output("dlsch01_ch0.m", "dl01_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1)
write_output("dlsch10_ch0.m", "dl10_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if ((PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1))
write_output("dlsch11_ch0.m","dl11_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
//dlsch_vars
dump_dlsch2(PHY_vars_UE[j], eNB_id, coded_bits_per_codeword);
dump_dlsch2(PHY_vars_UE[j], eNB_id_i, coded_bits_per_codeword);
write_output("dlsch_e.m", "e",
PHY_vars_eNB->dlsch_eNB[0][0]->e,
coded_bits_per_codeword, 1, 4);
//pdcch_vars
write_output("pdcchF0_ext.m", "pdcchF_ext",
PHY_vars_UE[j]->lte_ue_pdcch_vars[eNB_id]->rxdataF_ext[0],
2*3*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size, 1, 1);
write_output("pdcch00_ch0_ext.m", "pdcch00_ch0_ext",
PHY_vars_UE[j]->lte_ue_pdcch_vars[eNB_id]->dl_ch_estimates_ext[0],
300*3, 1, 1);
write_output("pdcch_rxF_comp0.m", "pdcch0_rxF_comp0",
PHY_vars_UE[j]->lte_ue_pdcch_vars[eNB_id]->rxdataF_comp[0],
4*300, 1, 1);
write_output("pdcch_rxF_llr.m", "pdcch_llr",
PHY_vars_UE[j]->lte_ue_pdcch_vars[eNB_id]->llr,
2400, 1, 4);
}
} // if "dlsch_active = 1";
} // loop over l;
} // loop over Ns;
// calculate uncoded BLER
uncoded_ber=0;
for (i=0; i<coded_bits_per_codeword; i++)
if (PHY_vars_eNB->dlsch_eNB[0][0]->e[i] != (PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->llr[0][i] < 0)) {
uncoded_ber_bit[i] = 1;
uncoded_ber++;
} else
uncoded_ber_bit[i] = 0;
uncoded_ber /= coded_bits_per_codeword;
avg_ber += uncoded_ber;
//imran
if(abstx) {
if (trials<10 && round==0 && transmission_mode==5) {
for (iii=0; iii<NB_RB; iii++) {
//fprintf(csv_fd, "%d, %d", (PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]),
// (PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii]));
msg(" %x", (PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]));
// msg("Opposite Extracted pmi %x\n",(PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii]));
}
}
}
/*
printf("precoded CQI %d dB, opposite precoded CQI %d dB\n",
PHY_vars_UE[j]->PHY_measurements.precoded_cqi_dB[eNB_id][0],
PHY_vars_UE[j]->PHY_measurements.precoded_cqi_dB[eNB_id_i][0]);
*/
PHY_vars_UE[j]->dlsch_ue[0][0]->rnti = n_rnti;
dlsch_unscrambling(&PHY_vars_UE[j]->lte_frame_parms,
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
PHY_vars_UE[j]->dlsch_ue[0][0],
coded_bits_per_codeword,
PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->llr[0],
0,
subframe<<1);
/*
for (i=0; i<coded_bits_per_codeword; i++)
PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->llr[0][i] = (short)quantize(100, PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->llr[0][i], 4);
*/
ret = dlsch_decoding(PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->llr[0],
&PHY_vars_UE[j]->lte_frame_parms,
PHY_vars_UE[j]->dlsch_ue[0][0],
subframe,
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols);
#ifdef XFORMS
do_forms(form,
&PHY_vars_UE[j]->lte_frame_parms,
PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates_time,
PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id],
PHY_vars_UE[j]->lte_ue_common_vars.rxdata,
PHY_vars_UE[j]->lte_ue_common_vars.rxdataF,
PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->rxdataF_comp[0],
PHY_vars_UE[j]->lte_ue_dlsch_vars[3]->rxdataF_comp[0],
PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->dl_ch_rho_ext[0],
PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->llr[0],coded_bits_per_codeword);
//PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->w[0], 3*(tbs+64));
//uncoded_ber_bit, coded_bits_per_codeword);
/*
printf("Hit a key to continue\n");
c = getchar();
*/
#endif
if (ret <= MAX_TURBO_ITERATIONS) {
if (n_frames == 1)
printf("No DLSCH errors found\n");
// exit(-1);
if (fix_rounds == 0) { // # of HARQ rounds; by default it is '4' and 'fix_rounds=0';
round=5; // one of the RNs has successfully decoded the messages;
break; // no need to wait for the other RNs to decode! (For time saving!!)
} else
round++; // why not as 'round = num_rounds' -> what does it bring if we retransmit a decoded data?!!!;
} else {
//err_total[round]++;
if (n_frames == 1) {
//if ((n_frames==1) || (SNR>=30)) {
printf("DLSCH errors found, uncoded ber %f\n", uncoded_ber);
for (s=0; s<PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->C; s++) {
if (s < PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->Cminus)
Kr = PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->Kminus;
else
Kr = PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->Kplus;
Kr_bytes = Kr>>3;
printf("Decoded_output (Segment %d):\n", s);
for (i=0; i<Kr_bytes; i++)
printf("%d : %x (%x)\n",
i,
PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->c[s][i],
PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->c[s][i]^PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c[s][i]);
}
write_output("rxsig0.m","rxs0",
&PHY_vars_UE[j]->lte_ue_common_vars.rxdata[0][0],
10*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti, 1, 1);
write_output("rxsigF0.m","rxsF0",
&PHY_vars_UE[j]->lte_ue_common_vars.rxdataF[0][0],
2*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb, 2, 1);
if (PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1) {
write_output("rxsig1.m","rxs1",
PHY_vars_UE[j]->lte_ue_common_vars.rxdata[1],
PHY_vars_UE[j]->lte_frame_parms.samples_per_tti, 1, 1);
write_output("rxsigF1.m","rxsF1",
PHY_vars_UE[j]->lte_ue_common_vars.rxdataF[1],
2*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb, 2, 1);
}
write_output("dlsch00_ch0.m","dl00_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if (PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1)
write_output("dlsch01_ch0.m","dl01_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1)
write_output("dlsch10_ch0.m","dl10_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if ((PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1))
write_output("dlsch11_ch0.m","dl11_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
//dlsch_vars
dump_dlsch2(PHY_vars_UE[j], eNB_id, coded_bits_per_codeword);
write_output("dlsch_e.m","e", PHY_vars_eNB->dlsch_eNB[0][0]->e, coded_bits_per_codeword, 1, 4);
write_output("dlsch_ber_bit.m","ber_bit", uncoded_ber_bit, coded_bits_per_codeword, 1, 0);
write_output("dlsch_eNB_w.m","w", PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->w[0], 3*(tbs+64), 1, 4);
write_output("dlsch_UE_w.m","w", PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->w[0], 3*(tbs+64), 1, 0);
exit(-1);
}
if (j == (num_relay-1)) {
error_tot[round]++;
// printf("round %d errors %d/%d\n", round, error_tot[round], trials);
round++;
if (n_frames == 1)
printf("DLSCH in error in round %d\n", round);
}
}
} //number of relays
} //round
// printf("\n");
if ((error_tot[0]>=100) && (trials>(n_frames/2)))
break;
//len = chbch_stats_read(stats_buffer,NULL,0,4096);
//printf("%s\n\n",stats_buffer);
} //trials
for (j=0; j<num_relay; j++) {
printf("\n**********************Relay Node %j: SNR = %f dB (tx_lev %f, sigma2_dB %f)**************************\n",
j,
SNR,
(double)tx_lev_dB+10*log10(PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)),
sigma2_dB);
}
printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e), dci_errors %d/%d, Pe = %e => effective rate %f (%f), normalized delay %f (%f), uncoded_ber %f\n",
error_tot[0],
round_trials[0],
error_tot[1],
round_trials[1],
error_tot[2],
round_trials[2],
error_tot[3],
round_trials[3],
(double)error_tot[0]/(round_trials[0]),
(double)error_tot[1]/(round_trials[1]),
(double)error_tot[2]/(round_trials[2]),
(double)error_tot[3]/(round_trials[3]),
dci_errors,
round_trials[0],
(double)dci_errors/(round_trials[0]),
rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])),
rate,
(1.0*(round_trials[0]-error_tot[0])+2.0*(round_trials[1]-error_tot[1])+3.0*(round_trials[2]-error_tot[2])+4.0*(round_trials[3]-error_tot[3]))/((double)round_trials[0])/
(double)PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
(1.0*(round_trials[0]-error_tot[0])+2.0*(round_trials[1]-error_tot[1])+3.0*(round_trials[2]-error_tot[2])+4.0*(round_trials[3]-error_tot[3]))/((double)round_trials[0]),
avg_ber/round_trials[0]);
fprintf(bler_fd,"%f \t %d \t %d \t %d \t %f \t %f \t %d \t %d \t %d \t %d \t %d \t %d \t %d \t %d \t %d \t %f;\n",
SNR,
mcs,
num_relay,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])), //effective rate
rate,
error_tot[0],
round_trials[0],
error_tot[1],
round_trials[1],
error_tot[2],
round_trials[2],
error_tot[3],
round_trials[3],
dci_errors,
avg_ber/round_trials[0]);
fprintf(tikz_fd,"(%f,%f)", SNR, (float)error_tot[0]/round_trials[0]);
if(abstx) { //ABSTRACTION
blerr= (double)error_tot[0]/(round_trials[0]);
fprintf(csv_fd,"%e;\n", blerr);
} //ABStraction
if (((double)error_tot[0]/(round_trials[0]))<1e-5)
break;
}// SNR
} //ch_realization
fclose(bler_fd);
fprintf(tikz_fd,"};\n");
fclose(tikz_fd);
if (input_trch_file==1)
fclose(input_trch_fd);
if (input_file==1)
fclose(input_fd);
if(abstx) { // ABSTRACTION
fprintf(csv_fd,"];");
fclose(csv_fd);
}
printf("Freeing dlsch structures\n");
for (i=0; i<2; i++) {
printf("eNB %d\n", i);
free_eNB_dlsch(PHY_vars_eNB->dlsch_eNB[0][i]);
printf("UE %d\n", i);
for (j=0; j<num_relay; j++) {
free_ue_dlsch(PHY_vars_UE[j]->dlsch_ue[0][i]);
}
}
#ifdef IFFT_FPGA
printf("Freeing transmit signals\n");
free(txdataF2[0]);
free(txdataF2[1]);
free(txdataF2);
free(txdata[0]);
free(txdata[1]);
free(txdata);
#endif
printf("Freeing channel I/O\n");
for (i=0; i<2; i++) {
free(s_re[i]);
free(s_im[i]);
}
for (j=0; j<num_relay; j++) {
for (i=0; i<2; i++) {
free(r_re[j][i]);
free(r_im[j][i]);
}
free(r_re[j]);
free(r_im[j]);
free(eNB2UE[j]);
free(dci_alloc_rx[j]);
}
free(s_re);
free(s_im);
free(r_re);
free(r_im);
free(eNB2UE);
free(dci_alloc_rx);
// lte_sync_time_free();
return(0);
}
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <execinfo.h>
#include <signal.h>
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif
#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
#include "SCHED/defs.h"
#include "SCHED/vars.h"
#include "LAYER2/MAC/vars.h"
#include "OCG_vars.h"
#ifdef XFORMS
#include "forms.h"
#include "../../USERSPACE_TOOLS/SCOPE/lte_scope.h"
#endif
//#define AWGN
//#define NO_DCI
#define BW 7.68
/*
#define RBmask0 0x00fc00fc
#define RBmask1 0x0
#define RBmask2 0x0
#define RBmask3 0x0
*/
PHY_VARS_eNB *PHY_vars_eNB;
PHY_VARS_UE **PHY_vars_UE; // this variable is modified to enable multiple relay nodes (# Relay Node = "num_relay");
void handler(int sig)
{
void *array[10];
size_t size;
/* get void*'s for all entries on the stack */
size = backtrace(array, 10);
/* print out all the frames to stderr*/
fprintf(stderr, "Error: signal %d:\n", sig);
backtrace_symbols_fd(array, size, 2);
exit(1);
}
#ifdef XFORMS
void do_forms(FD_lte_scope *form, LTE_DL_FRAME_PARMS *frame_parms, short **channel, short **channel_f, short **rx_sig, short **rx_sig_f, short *dlsch_comp, short* dlsch_comp_i, short* dlsch_rho,
short *dlsch_llr, int coded_bits_per_codeword)
{
int i, j, ind, k, s;
float Re, Im;
float mag_sig[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT];
float sig_time[NB_ANTENNAS_RX*4*NUMBER_OF_OFDM_CARRIERS*NUMBER_OF_OFDM_SYMBOLS_PER_SLOT];
float sig2[FRAME_LENGTH_COMPLEX_SAMPLES], time2[FRAME_LENGTH_COMPLEX_SAMPLES], I[25*12*11*4], Q[25*12*11*4], *llr, *llr_time;
float avg, cum_avg;
llr = malloc(coded_bits_per_codeword*sizeof(float));
llr_time = malloc(coded_bits_per_codeword*sizeof(float));
// Channel frequency response
cum_avg = 0;
ind = 0;
for (j=0; j<4; j++) {
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
for (k=0; k<NUMBER_OF_OFDM_CARRIERS*7; k++) {
sig_time[ind] = (float)ind;
Re = (float)(channel_f[(j<<1)+i][2*k]);
Im = (float)(channel_f[(j<<1)+i][2*k+1]);
//mag_sig[ind] = (short) rand();
mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ;
ind++;
}
// ind += NUMBER_OF_OFDM_CARRIERS/4; // spacing for visualization
}
}
avg = cum_avg/NUMBER_OF_USEFUL_CARRIERS;
//fl_set_xyplot_ybounds(form->channel_f,30,70);
fl_set_xyplot_data(form->channel_f,sig_time,mag_sig,ind,"","","");
/*
// channel time resonse
cum_avg = 0;
ind = 0;
for (k=0; k<1; k++){
for (j=0; j<1; j++) {
for (i=0; i<frame_parms->ofdm_symbol_size; i++){
sig_time[ind] = (float)ind;
Re = (float)(channel[k+2*j][2*i]);
Im = (float)(channel[k+2*j][2*i+1]);
//mag_sig[ind] = (short) rand();
mag_sig[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
cum_avg += (short)sqrt((double)Re*Re + (double)Im*Im) ;
ind++;
}
}
}
//fl_set_xyplot_ybounds(form->channel_t_im,10,90);
fl_set_xyplot_data(form->channel_t_im,sig_time,mag_sig,ind,"","","");
*/
// channel_t_re = rx_sig_f[0]
//for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++) {
for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++) {
sig2[i] = 10*log10(1.0+(double) ((rx_sig_f[0][4*i])*(rx_sig_f[0][4*i])+(rx_sig_f[0][4*i+1])*(rx_sig_f[0][4*i+1])));
time2[i] = (float) i;
}
//fl_set_xyplot_ybounds(form->channel_t_re,10,90);
fl_set_xyplot_data(form->channel_t_re,time2,sig2,NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti,"","","");
//fl_set_xyplot_data(form->channel_t_re,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,"","","");
// channel_t_im = rx_sig[0]
//if (frame_parms->nb_antennas_rx>1) {
for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++) {
//for (i=0; i<NUMBER_OF_OFDM_CARRIERS*frame_parms->symbols_per_tti/2; i++) {
sig2[i] = 10*log10(1.0+(double) ((rx_sig[0][2*i])*(rx_sig[0][2*i])+(rx_sig[0][2*i+1])*(rx_sig[0][2*i+1])));
time2[i] = (float) i;
}
//fl_set_xyplot_ybounds(form->channel_t_im,0,100);
//fl_set_xyplot_data(form->channel_t_im,&time2[640*12*6],&sig2[640*12*6],640*12,"","","");
fl_set_xyplot_data(form->channel_t_im,time2,sig2,FRAME_LENGTH_COMPLEX_SAMPLES,"","","");
//}
/*
// PBCH LLR
j=0;
for(i=0;i<1920;i++) {
llr[j] = (float) pbch_llr[i];
llr_time[j] = (float) j;
//if (i==63)
// i=127;
//else if (i==191)
// i=319;
j++;
}
fl_set_xyplot_data(form->decoder_input,llr_time,llr,1920,"","","");
//fl_set_xyplot_ybounds(form->decoder_input,-100,100);
// PBCH I/Q
j=0;
for(i=0;i<12*12;i++) {
I[j] = pbch_comp[2*i];
Q[j] = pbch_comp[2*i+1];
j++;
//if (i==47)
// i=96;
//else if (i==191)
// i=239;
}
fl_set_xyplot_data(form->scatter_plot,I,Q,12*12,"","","");
//fl_set_xyplot_xbounds(form->scatter_plot,-100,100);
//fl_set_xyplot_ybounds(form->scatter_plot,-100,100);
// PDCCH I/Q
j=0;
for(i=0;i<12*25*3;i++) {
I[j] = pdcch_comp[2*i];
Q[j] = pdcch_comp[2*i+1];
j++;
//if (i==47)
// i=96;
//else if (i==191)
// i=239;
}
fl_set_xyplot_data(form->scatter_plot1,I,Q,12*25*3,"","","");
//fl_set_xyplot_xbounds(form->scatter_plot,-100,100);
//fl_set_xyplot_ybounds(form->scatter_plot,-100,100);
*/
// DLSCH LLR
for(i=0; i<coded_bits_per_codeword; i++) {
llr[i] = (float) dlsch_llr[i];
llr_time[i] = (float) i;
}
fl_set_xyplot_data(form->demod_out, llr_time, llr, coded_bits_per_codeword, "", "", "");
fl_set_xyplot_ybounds(form->demod_out, -1000, 1000);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_comp[(2*25*12*s)+2*i];
Q[j] = dlsch_comp[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot, I, Q, j, "", "", "");
fl_set_xyplot_xbounds(form->scatter_plot, -2000, 2000);
fl_set_xyplot_ybounds(form->scatter_plot, -2000, 2000);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_comp_i[(2*25*12*s)+2*i];
Q[j] = dlsch_comp_i[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot1, I, Q, j, "", "", "");
fl_set_xyplot_xbounds(form->scatter_plot1, -2000, 2000);
fl_set_xyplot_ybounds(form->scatter_plot1, -2000, 2000);
// DLSCH I/Q
j=0;
for (s=0; s<frame_parms->symbols_per_tti; s++) {
for(i=0; i<12*25; i++) {
I[j] = dlsch_rho[(2*25*12*s)+2*i];
Q[j] = dlsch_rho[(2*25*12*s)+2*i+1];
j++;
}
//if (s==2)
// s=3;
//else if (s==5)
// s=6;
//else if (s==8)
// s=9;
}
fl_set_xyplot_data(form->scatter_plot2, I, Q, j, "", "", "");
//fl_set_xyplot_xbounds(form->scatter_plot2,-1000,1000);
//fl_set_xyplot_ybounds(form->scatter_plot2,-1000,1000);
free(llr);
free(llr_time);
}
#endif
// In the following function the first parameter ("unsigned char num_relay") is added for # RN in the Parallel Relay Network (PRN);
void lte_param_init(unsigned char num_relay, unsigned char N_tx, unsigned char N_rx, unsigned char transmission_mode, uint8_t extended_prefix_flag, uint16_t Nid_cell, uint8_t tdd_config,
uint8_t N_RB_DL, uint8_t osf)
{
LTE_DL_FRAME_PARMS *lte_frame_parms;
int i;
unsigned int j;
printf("Start lte_param_init\n");
PHY_vars_eNB = (PHY_VARS_eNB *)malloc(sizeof(PHY_VARS_eNB));
//PHY_vars_UE = malloc(sizeof(PHY_VARS_UE));
PHY_vars_UE = (PHY_VARS_UE **)malloc(num_relay * sizeof(PHY_VARS_UE *));
if (!(PHY_vars_eNB && PHY_vars_UE)) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
for(j=0; j<num_relay; j++) {
PHY_vars_UE[j] = (PHY_VARS_UE *)malloc(sizeof(PHY_VARS_UE));
if (!(PHY_vars_UE[j])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
}
//PHY_config = (PHY_CONFIG *)malloc(sizeof(PHY_CONFIG));
mac_xface = (MAC_xface *)malloc(sizeof(MAC_xface));
if (mac_xface == NULL) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
randominit(0);
set_taus_seed(0);
lte_frame_parms = &(PHY_vars_eNB->lte_frame_parms);
lte_frame_parms->N_RB_DL = N_RB_DL; //50 for 10MHz and 25 for 5 MHz
lte_frame_parms->N_RB_UL = N_RB_DL;
lte_frame_parms->Ncp = extended_prefix_flag;
lte_frame_parms->Nid_cell = Nid_cell;
lte_frame_parms->nushift = 0;
lte_frame_parms->nb_antennas_tx = N_tx;
lte_frame_parms->nb_antennas_rx = N_rx;
lte_frame_parms->phich_config_common.phich_resource = oneSixth;
lte_frame_parms->tdd_config = tdd_config;
lte_frame_parms->frame_type = 1;
// lte_frame_parms->Csrs = 2;
// lte_frame_parms->Bsrs = 0;
// lte_frame_parms->kTC = 0;44
// lte_frame_parms->n_RRC = 0;
lte_frame_parms->mode1_flag = (transmission_mode == 1) ? 1 : 0;
init_frame_parms(lte_frame_parms,osf);
//copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing));
phy_init_top(lte_frame_parms); //allocation
lte_frame_parms->twiddle_fft = twiddle_fft;
lte_frame_parms->twiddle_ifft = twiddle_ifft;
lte_frame_parms->rev = rev;
for(j=0; j<num_relay; j++) {
PHY_vars_UE[j]->is_secondary_ue = 0;
PHY_vars_UE[j]->lte_frame_parms = *lte_frame_parms;
}
//PHY_vars_UE->is_secondary_ue = 0;
//PHY_vars_UE->lte_frame_parms = *lte_frame_parms;
PHY_vars_eNB->lte_frame_parms = *lte_frame_parms;
phy_init_lte_top(lte_frame_parms);
dump_frame_parms(lte_frame_parms);
for (i=0; i<3; i++)
for(j=0; j<num_relay; j++) {
lte_gold(lte_frame_parms, PHY_vars_UE[j]->lte_gold_table[i], i);
}
for(j=0; j<num_relay; j++) {
phy_init_lte_ue(&PHY_vars_UE[j]->lte_frame_parms,
&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars_SI,
PHY_vars_UE[j]->lte_ue_dlsch_vars_ra,
PHY_vars_UE[j]->lte_ue_pbch_vars,
PHY_vars_UE[j]->lte_ue_pdcch_vars,
PHY_vars_UE[j],
0);
}
phy_init_lte_eNB(&PHY_vars_eNB->lte_frame_parms,
&PHY_vars_eNB->lte_eNB_common_vars,
PHY_vars_eNB->lte_eNB_ulsch_vars,
0,
PHY_vars_eNB,
1,
0);
printf("Done lte_param_init\n");
}
//DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2_2A[2];
DCI2_5MHz_2D_M10PRB_TDD_t DLSCH_alloc_pdu2_2D[2];
#define UL_RB_ALLOC 0x1ff;
#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNB->lte_frame_parms.N_RB_UL, 0, 2)
//#define DLSCH_RB_ALLOC 0x1fbf // igore DC component, RB13
#define DLSCH_RB_ALLOC 0x1fff // all 25 RBs
//#define DLSCH_RB_ALLOC 0x0001
int main(int argc, char **argv)
{
char c;
int k, i, j, aa, aarx;
int s, Kr, Kr_bytes;
double sigma2, sigma2_dB = 10, SNR, snr0 = -2.0, snr1, rate;
double snr_step = 1, snr_int = 20;
//int **txdataF, **txdata;
int **txdata;
#ifdef IFFT_FPGA
int **txdataF2;
int ind;
#endif
LTE_DL_FRAME_PARMS *frame_parms;
double **s_re, **s_im;
double ***r_re, ***r_im; // 3-D received signal matrices in the form of r_re[# of RN][][], r_im[# of RN][][];
double forgetting_factor = 0.0; // in [0,1] 0 means a new channel every time, 1 means keep the same channel
double hold_channel = 0; // use hold_channel=1 instead of forgetting_factor=1 (more efficient)
double iqim = 0.0;
uint8_t extended_prefix_flag=0, transmission_mode=1, n_tx=1, n_rx=1;
uint16_t Nid_cell=0;
int eNB_id = 0, eNB_id_i = NUMBER_OF_eNB_MAX;
unsigned char mcs, dual_stream_UE = 0;
unsigned char awgn_flag = 0, round, dci_flag = 0;
unsigned char i_mod = 2;
unsigned short NB_RB = conv_nprb(0, DLSCH_RB_ALLOC);
unsigned char Ns, l, m;
uint16_t tdd_config = 3;
uint16_t n_rnti = 0x1234;
int n_users = 1; // if we select 'n_users = # of RN', would it be possible to simulate PRN setup?
SCM_t channel_model = Rayleigh1_corr;
// unsigned char *input_data, *decoded_output;
unsigned char *input_buffer[2];
unsigned short input_buffer_length;
unsigned int ret;
unsigned int coded_bits_per_codeword, nsymb, dci_cnt, tbs;
unsigned int tx_lev, tx_lev_dB, trials, error_tot[4]= {0}, round_trials[4]= {0}, dci_errors=0, dlsch_active=0, num_layers;
int re_allocated;
FILE *bler_fd;
char bler_fname[256];
FILE *tikz_fd;
char tikz_fname[256];
FILE *input_trch_fd;
unsigned char input_trch_file=0;
FILE *input_fd=NULL;
unsigned char input_file=0;
char input_val_str[50], input_val_str2[50];
char input_trch_val[16];
double pilot_sinr, abs_channel;
// unsigned char pbch_pdu[6];
DCI_ALLOC_t dci_alloc[8];
//DCI_ALLOC_t dci_alloc_rx[8];
DCI_ALLOC_t **dci_alloc_rx; // where 1st dimension of "dci_alloc_rx" will hold "# of RNs (UEs)" in the system;
int num_common_dci=0, num_ue_spec_dci=0, num_dci=0;
// FILE *rx_frame_file;
int n_frames;
int n_ch_rlz = 1;
channel_desc_t **eNB2UE; // which is a pointer array whose size will be the "# of RNs (UEs)" in the system;
double snr;
uint8_t num_pdcch_symbols=3, num_pdcch_symbols_2=0;
uint8_t pilot1, pilot2, pilot3;
uint8_t rx_sample_offset = 0;
//char stats_buffer[4096];
//int len;
uint8_t num_rounds=4,fix_rounds=0;
uint8_t subframe=6;
int u;
int abstx=0;
int iii;
FILE *csv_fd;
char csv_fname[20];
int ch_realization;
int pmi_feedback=0;
// void *data;
// int ii;
// int bler;
double blerr, uncoded_ber, avg_ber;
short *uncoded_ber_bit;
uint8_t N_RB_DL = 25, osf = 1;
int16_t amp;
/* Variables related to Quantization */
unsigned int num_relay;
unsigned short backhaulCapacity; // backhaulCapacity --> this will be used when asymmetric capacities are used; // to hold backhaul capacities;
unsigned short backhaulBitsPerLLR; // backhaul bits per LLR --> In order to have fair comparison between different modulation alphabet sizes;
unsigned int Mlevel; // = 2^{backhaulCapacity} -> number of quantization levels at each RNs;
short **llr_quant;
short *llr_quant_sum;
#ifdef XFORMS
FD_lte_scope *form;
char title[255];
#endif
signal(SIGSEGV, handler);
// default parameters
mcs = 0;
n_frames = 1000;
snr0 = 0;
num_layers = 1;
num_relay = 1;
backhaulBitsPerLLR = 2; // since 'llr' values are short variables, it is 16 bits;
while ((c = getopt(argc, argv, "hadpm:n:o:s:f:t:c:g:r:F:x:y:z:M:N:I:i:R:S:C:T:b:u:J:L:")) != -1) {
switch (c) {
case 'a':
awgn_flag = 1;
break;
case 'b':
tdd_config=atoi(optarg);
break;
case 'd':
dci_flag = 1;
break;
case 'm':
mcs = atoi(optarg);
break;
case 'n':
n_frames = atoi(optarg);
break;
case 'C':
Nid_cell = atoi(optarg);
break;
case 'o':
rx_sample_offset = atoi(optarg);
break;
case 'r':
/*
ricean_factor = pow(10,-.1*atof(optarg));
if (ricean_factor>1) {
printf("Ricean factor must be between 0 and 1\n");
exit(-1);
}
*/
printf("Please use the -G option to select the channel model\n");
exit(-1);
break;
case 'F':
forgetting_factor = atof(optarg);
break;
case 's':
snr0 = atoi(optarg);
break;
case 't':
//Td= atof(optarg);
printf("Please use the -G option to select the channel model\n");
exit(-1);
break;
case 'f':
snr_step= atof(optarg);
break;
case 'M':
abstx= atof(optarg);
break;
case 'N':
n_ch_rlz= atof(optarg);
break;
case 'p':
extended_prefix_flag=1;
break;
case 'c':
num_pdcch_symbols=atoi(optarg);
break;
case 'g':
switch((char)*optarg) {
case 'A':
channel_model=SCM_A;
break;
case 'B':
channel_model=SCM_B;
break;
case 'C':
channel_model=SCM_C;
break;
case 'D':
channel_model=SCM_D;
break;
case 'E':
channel_model=EPA;
break;
case 'F':
channel_model=EVA;
break;
case 'G':
channel_model=ETU;
break;
case 'H':
channel_model=Rayleigh8;
break;
case 'I':
channel_model=Rayleigh1;
break;
case 'J':
channel_model=Rayleigh1_corr;
break;
case 'K':
channel_model=Rayleigh1_anticorr;
break;
case 'L':
channel_model=Rice8;
break;
case 'M':
channel_model=Rice1;
break;
default:
msg("Unsupported channel model!\n");
exit(-1);
}
break;
case 'x':
transmission_mode = atoi(optarg);
if ((transmission_mode!=1) && (transmission_mode!=2) && (transmission_mode!=5) && (transmission_mode!=6)) {
msg("Unsupported transmission mode %d\n",transmission_mode);
exit(-1);
}
break;
case 'y':
n_tx=atoi(optarg);
if ((n_tx==0) || (n_tx>2)) {
msg("Unsupported number of tx antennas %d\n",n_tx);
exit(-1);
}
break;
case 'z':
n_rx=atoi(optarg);
if ((n_rx==0) || (n_rx>2)) {
msg("Unsupported number of rx antennas %d\n",n_rx);
exit(-1);
}
break;
case 'I':
input_trch_fd = fopen(optarg,"r");
input_trch_file=1;
break;
case 'i':
input_fd = fopen(optarg,"r");
input_file = 1;
dci_flag = 1;
break;
case 'R':
num_rounds = atoi(optarg);
fix_rounds = 1;
break;
case 'S':
subframe = atoi(optarg);
break;
case 'T':
n_rnti = atoi(optarg);
break;
case 'u':
dual_stream_UE = atoi(optarg);
if ((n_tx!=2) || (transmission_mode!=5)) {
msg("Unsupported nb of decoded users: %d user(s), %d user(s) to decode\n", n_tx, dual_stream_UE);
exit(-1);
}
break;
case 'J':
num_relay = atoi(optarg);
if ((num_relay < 1) || (num_relay > 8)) {
msg("Unsupported number of Relay Nodes (RNs) in the PRN system %d\n", num_relay);
exit(-1);
}
break;
case 'L':
backhaulBitsPerLLR = atoi(optarg);
if (backhaulBitsPerLLR < 0) {
msg("Unsupported Backhaul Bits per LLR [bits/LLR] (from each RN to eNb) for quantization of 16-bit LLRs %d\n", backhaulBitsPerLLR);
exit(-1);
}
break;
case 'h':
default:
printf("%s -h(elp) -a(wgn on) -d(ci decoding on) -p(extended prefix on) -m mcs -n n_frames -s snr0 -t Delayspread -x transmission mode (1,2,5,6) -y TXant -z RXant -I trch_file -J num_relay -L backhaulBitsPerLLR \n",
argv[0]);
printf("-h This message\n");
printf("-a Use AWGN channel and not multipath\n");
printf("-c Number of PDCCH symbols\n");
printf("-m MCS\n");
printf("-d Transmit the DCI and compute its error statistics and the overall throughput\n");
printf("-p Use extended prefix mode\n");
printf("-n Number of frames to simulate\n");
printf("-o Sample offset for receiver\n");
printf("-s Starting SNR, runs from SNR to SNR+%.1fdB in steps of %.1fdB. If n_frames is 1 then just SNR is simulated and MATLAB/OCTAVE output is generated\n", snr_int, snr_step);
printf("-f step size of SNR, default value is 1.\n");
printf("-t Delay spread for multipath channel\n");
printf("-r Ricean factor (dB, 0 dB = Rayleigh, 100 dB = almost AWGN)\n");
printf("-g [A:M] Use 3GPP 25.814 SCM-A/B/C/D('A','B','C','D') or 36-101 EPA('E'), EVA ('F'),ETU('G') models (ignores delay spread and Ricean factor), Rayghleigh8 ('H'), Rayleigh1('I'), Rayleigh1_corr('J'), Rayleigh1_anticorr ('K'), Rice8('L'), Rice1('M')\n");
printf("-F forgetting factor (0 new channel every trial, 1 channel constant\n");
printf("-x Transmission mode (1,2,6 for the moment)\n");
printf("-y Number of TX antennas used in eNB\n");
printf("-z Number of RX antennas used in UE\n");
printf("-R Number of HARQ rounds (fixed)\n");
printf("-M Determines whether the Absraction flag is on or Off. 1-->On and 0-->Off. Default status is Off. \n");
printf("-N Determines the number of Channel Realizations in Absraction mode. Default value is 1. \n");
printf("-I Input filename for TrCH data (binary)\n");
printf("-u Determines if the 2 streams at the UE are decoded or not. 0-->U2 is interference only and 1-->U2 is detected\n");
printf("-J Number of Relay Nodes (RNs) in the Parallel Relay Network (PRN)\n"); //= # UEs that are connected to the eNb via limited capacity backhaul;
printf("-L Backhaul Bits per LLR [bits/LLR] (from each RN to DeNB) for quantization of 16-bit LLRs\n");
exit(1);
break;
}
}
#ifdef XFORMS
fl_initialize(&argc, argv, NULL, 0, 0);
form = create_form_lte_scope();
sprintf(title, "LTE DLSIM SCOPE");
fl_show_form(form->lte_scope, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
#endif
if (transmission_mode==5) {
n_users = 2;
printf("dual_stream_UE=%d\n", dual_stream_UE);
}
lte_param_init(num_relay, n_tx, n_rx, transmission_mode, extended_prefix_flag, Nid_cell, tdd_config, N_RB_DL, osf);
printf("Setting mcs = %d\n", mcs);
printf("NPRB = %d\n", NB_RB);
printf("n_frames = %d\n", n_frames);
printf("Transmission mode %d with %dx%d antenna configuration, Extended Prefix %d\n", transmission_mode, n_tx, n_rx, extended_prefix_flag);
snr1 = snr0+snr_int;
printf("SNR0 %f, SNR1 %f\n",snr0,snr1);
/*
txdataF = (int **)malloc16(2*sizeof(int*));
txdataF[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdataF[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata = (int **)malloc16(2*sizeof(int*));
txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
*/
frame_parms = &PHY_vars_eNB->lte_frame_parms;
#ifdef IFFT_FPGA
txdata = (int **)malloc16(2*sizeof(int*));
txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
bzero(txdata[0],FRAME_LENGTH_BYTES);
bzero(txdata[1],FRAME_LENGTH_BYTES);
txdataF2 = (int **)malloc16(2*sizeof(int*));
txdataF2[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
txdataF2[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
bzero(txdataF2[0],FRAME_LENGTH_BYTES_NO_PREFIX);
bzero(txdataF2[1],FRAME_LENGTH_BYTES_NO_PREFIX);
#else
txdata = PHY_vars_eNB->lte_eNB_common_vars.txdata[eNB_id];
#endif
printf("Channel Model=%d\n", channel_model);
printf("SCM-A=%d, SCM-B=%d, SCM-C=%d, SCM-D=%d, EPA=%d, EVA=%d, ETU=%d, Rayleigh8=%d, Rayleigh1=%d, Rayleigh1_corr=%d, Rayleigh1_anticorr=%d, Rice1=%d, Rice8=%d\n", SCM_A, SCM_B, SCM_C, SCM_D, EPA,
EVA, ETU, Rayleigh8, Rayleigh1, Rayleigh1_corr, Rayleigh1_anticorr, Rice1, Rice8);
//sprintf(bler_fname,"second_bler_tx%d_mcs%d_chan%d.csv", transmission_mode, mcs, channel_model);
//bler_fd = fopen(bler_fname,"w");
//fprintf(bler_fd,"SNR; MCS; TBS; rate; err0; trials0; err1; trials1; err2; trials2; err3; trials3; dci_err\n");
if(abstx) {
// CSV file
sprintf(csv_fname,"data_out%d.m", mcs);
csv_fd = fopen(csv_fname,"w");
fprintf(csv_fd,"data_all%d=[", mcs);
}
//sprintf(tikz_fname, "second_bler_tx%d_u2=%d_mcs%d_chan%d_nsimus%d.tex",transmission_mode,dual_stream_UE,mcs,channel_model,n_frames);
sprintf(tikz_fname, "second_bler_tx%d_u2=%d_mcs%d_chan%d_nsimus%d",transmission_mode,dual_stream_UE,mcs,channel_model,n_frames);
tikz_fd = fopen(tikz_fname,"w");
//fprintf(tikz_fd,"\\addplot[color=red, mark=o] plot coordinates {");
switch (mcs) {
case 0:
fprintf(tikz_fd,"\\addplot[color=blue, mark=star] plot coordinates {");
break;
case 1:
fprintf(tikz_fd,"\\addplot[color=red, mark=star] plot coordinates {");
break;
case 2:
fprintf(tikz_fd,"\\addplot[color=green, mark=star] plot coordinates {");
break;
case 3:
fprintf(tikz_fd,"\\addplot[color=yellow, mark=star] plot coordinates {");
break;
case 4:
fprintf(tikz_fd,"\\addplot[color=black, mark=star] plot coordinates {");
break;
case 5:
fprintf(tikz_fd,"\\addplot[color=blue, mark=o] plot coordinates {");
break;
case 6:
fprintf(tikz_fd,"\\addplot[color=red, mark=o] plot coordinates {");
break;
case 7:
fprintf(tikz_fd,"\\addplot[color=green, mark=o] plot coordinates {");
break;
case 8:
fprintf(tikz_fd,"\\addplot[color=yellow, mark=o] plot coordinates {");
break;
case 9:
fprintf(tikz_fd,"\\addplot[color=black, mark=o] plot coordinates {");
break;
}
// Allocating memory and test the dynamic allocations;
s_re = (double **)malloc(2*sizeof(double *));
s_im = (double **)malloc(2*sizeof(double *));
r_re = (double ***)malloc(num_relay*sizeof(double **));
r_im = (double ***)malloc(num_relay*sizeof(double **));
dci_alloc_rx = (DCI_ALLOC_t **)malloc(num_relay*sizeof(DCI_ALLOC_t *));
if (!(s_re && s_im && r_re && r_im && dci_alloc_rx)) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
for (i=0; i<2; i++) {
s_re[i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
s_im[i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
if (!(s_re[i] && s_im[i])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
}
for(j=0; j<num_relay; j++) {
r_re[j] = (double **)malloc(2*sizeof(double*));
r_im[j] = (double **)malloc(2*sizeof(double*));
dci_alloc_rx[j] = (DCI_ALLOC_t *)malloc(8*sizeof(DCI_ALLOC_t));
if (!(r_re[j] && r_im[j] && dci_alloc_rx[j])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
for(i=0; i<2; i++) {
r_re[j][i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_im[j][i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
if (!(r_re[j][i] && r_im[j][i])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
}
}
/* "Quantize-Forward Relaying" related variables */
sprintf(bler_fname,"bler_relay_QF_mcs%d_%d-QAM_RN%d_bitPerLLR%d.m", mcs, (short)pow(2, get_Qm(mcs)), num_relay, backhaulBitsPerLLR);
bler_fd = fopen(bler_fname, "w");
fprintf(bler_fd,"SNR; MCS; Bits/LLR; NB_OF_RELAYS; TBS; Effective_rate; Coding_Rate; err0; trials0; err1; trials1; err2; trials2; err3; trials3; dci_err; BER;\n");
// Calculate total bits for backhaul and number of quantization levels (MLevel = 2^(backhaulCapacity));
backhaulCapacity = (unsigned short)(get_Qm(mcs) * backhaulBitsPerLLR);
Mlevel = (unsigned short)pow(2, backhaulCapacity); // number quantization levels at uniform Scalar Quantizer (uSQ);
// Memory allocation for LLR related variables;
llr_quant = (short **)malloc16(num_relay * sizeof(short*));
llr_quant_sum = (short *)malloc16((8*((3*8*6144)+12))*sizeof(short));
if (!(llr_quant && llr_quant_sum)) {
printf("Cannot allocate memory for llr_quant and llr_quant_sum...!\n");
exit(-1);
}
bzero(llr_quant_sum, (8*((3*8*6144)+12))*sizeof(short));
for(j=0; j<num_relay; j++) {
llr_quant[j] = (short *)malloc16((8*((3*8*6144)+12))*sizeof(short));
if (!llr_quant[j]) {
printf("Cannot allocate memory for llr_quant[%d]...!\n", j);
exit(-1);
}
bzero(llr_quant[j], (8*((3*8*6144)+12))*sizeof(short));
}
for(j=0; j<num_relay; j++) {
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->crnti = n_rnti;
}
nsymb = (PHY_vars_eNB->lte_frame_parms.Ncp == 0) ? 14 : 12;
// Fill in UL_alloc
UL_alloc_pdu.type = 0;
UL_alloc_pdu.hopping = 0;
UL_alloc_pdu.rballoc = UL_RB_ALLOC;
UL_alloc_pdu.mcs = 1;
UL_alloc_pdu.ndi = 1;
UL_alloc_pdu.TPC = 0;
UL_alloc_pdu.cqi_req = 1;
CCCH_alloc_pdu.type = 0;
CCCH_alloc_pdu.vrb_type = 0;
CCCH_alloc_pdu.rballoc = CCCH_RB_ALLOC;
CCCH_alloc_pdu.ndi = 1;
CCCH_alloc_pdu.mcs = 1;
CCCH_alloc_pdu.harq_pid = 0;
DLSCH_alloc_pdu2_2D[0].rah = 0;
DLSCH_alloc_pdu2_2D[0].rballoc = DLSCH_RB_ALLOC;
DLSCH_alloc_pdu2_2D[0].TPC = 0;
DLSCH_alloc_pdu2_2D[0].dai = 0;
DLSCH_alloc_pdu2_2D[0].harq_pid = 0;
DLSCH_alloc_pdu2_2D[0].tb_swap = 0;
DLSCH_alloc_pdu2_2D[0].mcs1 = mcs;
DLSCH_alloc_pdu2_2D[0].ndi1 = 1;
DLSCH_alloc_pdu2_2D[0].rv1 = 0;
// Forget second codeword
DLSCH_alloc_pdu2_2D[0].tpmi = (transmission_mode>=5 ? 5 : 0); // precoding
DLSCH_alloc_pdu2_2D[0].dl_power_off = (transmission_mode==5 ? 0 : 1);
DLSCH_alloc_pdu2_2D[1].rah = 0;
DLSCH_alloc_pdu2_2D[1].rballoc = DLSCH_RB_ALLOC;
DLSCH_alloc_pdu2_2D[1].TPC = 0;
DLSCH_alloc_pdu2_2D[1].dai = 0;
DLSCH_alloc_pdu2_2D[1].harq_pid = 0;
DLSCH_alloc_pdu2_2D[1].tb_swap = 0;
DLSCH_alloc_pdu2_2D[1].mcs1 = mcs;
DLSCH_alloc_pdu2_2D[1].ndi1 = 1;
DLSCH_alloc_pdu2_2D[1].rv1 = 0;
// Forget second codeword
DLSCH_alloc_pdu2_2D[1].tpmi = (transmission_mode>=5 ? 5 : 0) ; // precoding
DLSCH_alloc_pdu2_2D[1].dl_power_off = (transmission_mode==5 ? 0 : 1);
// Create transport channel structures for SI pdus
PHY_vars_eNB->dlsch_eNB_SI = new_eNB_dlsch(1,1,0);
PHY_vars_eNB->dlsch_eNB_SI->rnti = SI_RNTI;
//PHY_vars_UE->dlsch_ue_SI[0] = new_ue_dlsch(1,1,0);
//PHY_vars_UE->dlsch_ue_SI[0]->rnti = SI_RNTI;
for(j=0; j<num_relay; j++) {
PHY_vars_UE[j]->dlsch_ue_SI[0] = new_ue_dlsch(1,1,0);
PHY_vars_UE[j]->dlsch_ue_SI[0]->rnti = SI_RNTI;
}
// Create random Channels coefficients;
eNB2UE = (channel_desc_t **)malloc(num_relay*sizeof(channel_desc_t *));
if (!(eNB2UE)) {
printf("Cannot allocate memory for Channel Descriptors!\n");
exit(EXIT_FAILURE);
}
for(j=0; j<num_relay; j++) {
eNB2UE[j] = new_channel_desc_scm(PHY_vars_eNB->lte_frame_parms.nb_antennas_tx,
PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx,
channel_model,
BW,
forgetting_factor,
rx_sample_offset,
0);
if (eNB2UE[j] == NULL) {
msg("Problem generating channel model. Exiting.\n");
exit(-1);
}
// if (hold_channel==1)
random_channel(eNB2UE[j]);
}
for (k=0; k<n_users; k++) {
// Create transport channel structures for 2 transport blocks (MIMO)
for (i=0; i<2; i++) {
PHY_vars_eNB->dlsch_eNB[k][i] = new_eNB_dlsch(1,8,0);
if (!PHY_vars_eNB->dlsch_eNB[k][i]) {
printf("Can't get eNB dlsch structures\n");
exit(-1);
}
PHY_vars_eNB->dlsch_eNB[k][i]->rnti = n_rnti+k;
}
}
for(j=0; j<num_relay; j++) {
for (i=0; i<2; i++) {
PHY_vars_UE[j]->dlsch_ue[0][i] = new_ue_dlsch(1,8,0);
if (!PHY_vars_UE[j]->dlsch_ue[0][i]) {
printf("Can't get ue dlsch structures\n");
exit(-1);
}
PHY_vars_UE[j]->dlsch_ue[0][i]->rnti = n_rnti;
}
}
if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) {
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff);
if (n_users > 1)
PHY_vars_eNB->eNB_UE_stats[1].DL_pmi_single = (PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single ^ 0x1555); //opposite PMI
} else {
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = 0;
if (n_users > 1)
PHY_vars_eNB->eNB_UE_stats[1].DL_pmi_single = 0;
}
if (input_fd == NULL) {
for(k=0; k<n_users; k++) {
printf("Generating dlsch params for user %d\n",k);
generate_eNB_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2_2D[k],
n_rnti+k,
format2_2D_M10PRB,
PHY_vars_eNB->dlsch_eNB[k],
&PHY_vars_eNB->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI,
PHY_vars_eNB->eNB_UE_stats[k].DL_pmi_single);
}
num_dci = 0;
num_ue_spec_dci = 0;
num_common_dci = 0;
/*
// common DCI
memcpy(&dci_alloc[num_dci].dci_pdu[0],&CCCH_alloc_pdu,sizeof(DCI1A_5MHz_TDD_1_6_t));
dci_alloc[num_dci].dci_length = sizeof_DCI1A_5MHz_TDD_1_6_t;
dci_alloc[num_dci].L = 2;
dci_alloc[num_dci].rnti = SI_RNTI;
num_dci++;
num_common_dci++;
*/
// UE specific DCI
for(k=0; k<n_users; k++) {
memcpy(&dci_alloc[num_dci].dci_pdu[0], &DLSCH_alloc_pdu2_2D[k], sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
dci_alloc[num_dci].dci_length = sizeof_DCI2_5MHz_2D_M10PRB_TDD_t;
dci_alloc[num_dci].L = 2;
dci_alloc[num_dci].rnti = n_rnti+k;
dci_alloc[num_dci].format = format2_2D_M10PRB;
dump_dci(&PHY_vars_eNB->lte_frame_parms, &dci_alloc[num_dci]);
num_dci++;
num_ue_spec_dci++;
/*
memcpy(&dci_alloc[1].dci_pdu[0], &UL_alloc_pdu, sizeof(DCI0_5MHz_TDD0_t));
dci_alloc[1].dci_length = sizeof_DCI0_5MHz_TDD_0_t;
dci_alloc[1].L = 2;
dci_alloc[1].rnti = n_rnti;
*/
}
for (k=0; k<n_users; k++) {
input_buffer_length = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->TBS/8;
input_buffer[k] = (unsigned char *)malloc(input_buffer_length+4);
memset(input_buffer[k], 0, input_buffer_length+4);
if (input_trch_file==0) {
for (i=0; i<input_buffer_length; i++) {
input_buffer[k][i]= (unsigned char)(taus()&0xff);
}
} else {
i=0;
while ((!feof(input_trch_fd)) && (i<input_buffer_length<<3)) {
fscanf(input_trch_fd,"%s",input_trch_val);
if (input_trch_val[0] == '1')
input_buffer[k][i>>3] += (1<<(7-(i&7)));
if (i<16)
printf("input_trch_val %d : %c\n", i, input_trch_val[0]);
i++;
if (((i%8) == 0) && (i<17))
printf("%x\n", input_buffer[k][(i-1)>>3]);
}
printf("Read in %d bits\n", i);
}
}
}
for (ch_realization=0; ch_realization<n_ch_rlz; ch_realization++) {
if(abstx) {
printf("**********************Channel Realization Index = %d **************************\n", ch_realization);
}
for (SNR=snr0; SNR<snr1; SNR+=snr_step) {
error_tot[0]=0;
error_tot[1]=0;
error_tot[2]=0;
error_tot[3]=0;
round_trials[0] = 0;
round_trials[1] = 0;
round_trials[2] = 0;
round_trials[3] = 0;
dci_errors=0;
avg_ber = 0;
round=0;
for (trials=0; trials < n_frames; trials++) {
// printf("Trial %d\n",trials);
fflush(stdout);
round=0;
//if (trials%100==0)
for(j=0; j<num_relay; j++) {
eNB2UE[j]->first_run = 1;
}
while (round < num_rounds) {
round_trials[round]++;
if(transmission_mode>=5)
pmi_feedback=1;
else
pmi_feedback=0;
PMI_FEEDBACK:
// printf("Trial %d : Round %d, pmi_feedback %d \n",trials,round,pmi_feedback);
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
#ifdef IFFT_FPGA
memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][0], 0, NUMBER_OF_USEFUL_CARRIERS*NUMBER_OF_SYMBOLS_PER_FRAME*sizeof(mod_sym_t));
#else
memset(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][0], 0, FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX*sizeof(mod_sym_t));
#endif
}
if (input_fd == NULL) {
if (round == 0) {
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 1;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2_2D[0].ndi1 = 1;
DLSCH_alloc_pdu2_2D[0].rv1 = 0;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
} else {
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->Ndi = 0;
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2_2D[0].ndi1 = 0;
DLSCH_alloc_pdu2_2D[0].rv1 = round>>1;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2_2D[0],sizeof(DCI2_5MHz_2D_M10PRB_TDD_t));
}
num_pdcch_symbols_2 = generate_dci_top(num_ue_spec_dci,
num_common_dci,
dci_alloc,
0,
1024,
&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
subframe);
if (num_pdcch_symbols_2 > num_pdcch_symbols) {
msg("Error: given num_pdcch_symbols not big enough\n");
exit(-1);
}
for (k=0; k<n_users; k++) {
coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb,
PHY_vars_eNB->dlsch_eNB[k][0]->rb_alloc,
get_Qm(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs),
num_pdcch_symbols,
subframe);
#ifdef TBS_FIX
tbs = (double)3*dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb-1]/4;
#else
tbs = (double)dlsch_tbs25[get_I_TBS(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs)][PHY_vars_eNB->dlsch_eNB[k][0]->nb_rb-1];
#endif
rate = (double)tbs/(double)coded_bits_per_codeword;
uncoded_ber_bit = (short*) malloc(2*coded_bits_per_codeword);
if (trials==0 && round==0)
printf("Rate = %f (G %d, TBS %d, mod %d, pdcch_sym %d)\n",
rate, coded_bits_per_codeword, tbs, get_Qm(PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->mcs), num_pdcch_symbols);
/*
// generate channel here
random_channel(eNB2UE);
// generate frequency response
freq_channel(eNB2UE,NB_RB);
// generate PMI from channel
*/
/*---------------------------------------------------------------------------------------------------*/
/* For our case our code will not enter here; since we do not assume mode 5 (MU-MIMO) transmisssion */
// use the PMI from previous trial
if (DLSCH_alloc_pdu2_2D[0].tpmi == 5) {
PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE[0]->PHY_measurements,
0); // how about this function!!! by default I put '0' as an index (no matter from which relay (or UE in this case) the feedback will come- CHECK THIS);
//PHY_vars_UE->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0);
for(j=0; j<num_relay; j++)
PHY_vars_UE[j]->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE[j]->PHY_measurements,0);
if (n_users>1)
PHY_vars_eNB->dlsch_eNB[1][0]->pmi_alloc = (PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc ^ 0x1555);
/*
if ((trials<10) && (round==0)) {
printf("tx PMI UE0 %x (pmi_feedback %d)\n",pmi2hex_2Ar1(PHY_vars_eNB->dlsch_eNB[0][0]->pmi_alloc),pmi_feedback);
if (transmission_mode ==5)
printf("tx PMI UE1 %x\n",pmi2hex_2Ar1(PHY_vars_eNB->dlsch_eNB[1][0]->pmi_alloc));
}
*/
}
if (dlsch_encoding(input_buffer[k], &PHY_vars_eNB->lte_frame_parms, num_pdcch_symbols, PHY_vars_eNB->dlsch_eNB[k][0], subframe) < 0)
exit(-1);
// printf("Did not Crash here 1\n");
PHY_vars_eNB->dlsch_eNB[k][0]->rnti = n_rnti + k;
dlsch_scrambling(&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[k][0],
coded_bits_per_codeword,
0,
subframe<<1);
if (n_frames==1) {
for (s=0; s<PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->C; s++) {
if (s<PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Cminus)
Kr = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Kminus;
else
Kr = PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->Kplus;
Kr_bytes = Kr>>3;
for (i=0; i<Kr_bytes; i++)
printf("%d : (%x)\n",i,PHY_vars_eNB->dlsch_eNB[k][0]->harq_processes[0]->c[s][i]);
}
}
// printf("Did not Crash here 2\n");
if (transmission_mode == 5) {
amp = (int16_t)(((int32_t)1024*ONE_OVER_SQRT2_Q15)>>15);
} else
amp = 1024;
//if (k==1)
// amp=0;
re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
amp,
subframe,
&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[k][0]);
// printf("Did not Crash here 3\n");
if (trials==0 && round==0)
printf("RE count %d\n",re_allocated);
if (num_layers>1)
re_allocated = dlsch_modulation(PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
1024,
subframe,
&PHY_vars_eNB->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNB->dlsch_eNB[k][1]);
} //n_users
// printf("Did not Crash here 4\n");
generate_pilots(PHY_vars_eNB,
PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id],
1024,
LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
#ifdef IFFT_FPGA
if (n_frames==1) {
write_output("txsigF0.m","txsF0", PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][0],300*nsymb*10,1,4);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("txsigF1.m","txsF1", PHY_vars_eNB->lte_eNB_common_vars.txdataF[0][1],300*nsymb*10,1,4);
}
// do table lookup and write results to txdataF2
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
ind = 0;
for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX; i++)
if (((i%512)>=1) && ((i%512)<=150))
txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]];
else if ((i%512)>=362)
txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][ind++]];
else
txdataF2[aa][i] = 0;
// printf("ind=%d\n",ind);
}
if (n_frames==1) {
write_output("txsigF20.m","txsF20", txdataF2[0], FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("txsigF21.m","txsF21", txdataF2[1], FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
}
tx_lev = 0;
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(&txdataF2[aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size], // input
&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], // output
PHY_vars_eNB->lte_frame_parms.log2_symbol_size, // log2_fft_size
2*nsymb, //NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols
PHY_vars_eNB->lte_frame_parms.nb_prefix_samples, // number of prefix samples
PHY_vars_eNB->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors
PHY_vars_eNB->lte_frame_parms.rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(&txdataF2[aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
2*nsymb,
frame_parms);
}
tx_lev += signal_energy(&txdata[aa][(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size+PHY_vars_eNB->lte_frame_parms.nb_prefix_samples0)], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
}
#else //IFFT_FPGA
if (n_frames==1) {
write_output("txsigF0.m","txsF0", PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][0],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx>1)
write_output("txsigF1.m","txsF1", PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][1],FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX,1,1);
}
tx_lev = 0;
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size], // input
&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti], // output
PHY_vars_eNB->lte_frame_parms.log2_symbol_size, // log2_fft_size
2*nsymb, //NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols
PHY_vars_eNB->lte_frame_parms.nb_prefix_samples, // number of prefix samples
PHY_vars_eNB->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors
PHY_vars_eNB->lte_frame_parms.rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(&PHY_vars_eNB->lte_eNB_common_vars.txdataF[eNB_id][aa][subframe*nsymb*PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size],
&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
2*nsymb,
frame_parms);
}
tx_lev += signal_energy(&txdata[aa][subframe*PHY_vars_eNB->lte_frame_parms.samples_per_tti],
PHY_vars_eNB->lte_frame_parms.samples_per_tti);
}
#endif //IFFT_FPGA
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
//printf("tx_lev = %d (%d dB)\n",tx_lev,tx_lev_dB);
if (n_frames==1)
write_output("txsig0.m","txs0", txdata[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
} else { // Read signal from file
i=0;
while (!feof(input_fd)) {
fscanf(input_fd,"%s %s",input_val_str,input_val_str2);
if ((i%4) == 0) {
((short*)txdata[0])[i/2] = (short)((1<<15)*strtod(input_val_str, NULL));
((short*)txdata[0])[(i/2)+1] = (short)((1<<15)*strtod(input_val_str2, NULL));
if ((i/4) < 100)
printf("sample %d => %e + j%e (%d +j%d)\n", i/4, strtod(input_val_str, NULL), strtod(input_val_str2, NULL),
((short*)txdata[0])[i/4], ((short*)txdata[0])[(i/4)+1]);//1,input_val2,);
}
i++;
if (i>(FRAME_LENGTH_SAMPLES))
break;
}
printf("Read in %d samples\n",i/4);
write_output("txsig0.m","txs0", txdata[0],2*frame_parms->samples_per_tti,1,1);
// write_output("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
tx_lev = signal_energy(&txdata[0][0], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
}
// printf("Copying tx ..., nsymb %d (n_tx %d), awgn %d\n", nsymb, PHY_vars_eNB->lte_frame_parms.nb_antennas_tx, awgn_flag);
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_tx; aa++) {
if (awgn_flag == 0) {
s_re[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[0]->lte_frame_parms.samples_per_tti) + (i<<1)]); /* I put '0' by default, but this should be checked!!! */
s_im[aa][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[0]->lte_frame_parms.samples_per_tti) +(i<<1)+1]); /* I put '0' by default, but this should be checked!!! */
} else {
for (j=0; j<num_relay; j++) {
for (aarx=0; aarx<PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx; aarx++) {
if (aa==0) {
r_re[j][aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti) +(i<<1)]);
r_im[j][aarx][i] = ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
} else {
r_re[j][aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti) +(i<<1)]); // even samples;
r_im[j][aarx][i] += ((double)(((short *)txdata[aa]))[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti) +(i<<1)+1]); // odd samples;
}
}
}
}
}
}
// n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR;
// generate new channel if pmi_feedback==0, otherwise hold channel
for (j=0; j<num_relay; j++) {
if(abstx) {
if (trials==0 && round==0) {
if (awgn_flag == 0) {
if(SNR==snr0) {
if(pmi_feedback==0)
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
else
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);
} else {
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
}
freq_channel(eNB2UE[j], 25,51);
snr=pow(10.0,.1*SNR);
fprintf(csv_fd,"%f,",SNR);
for (u=0; u<50; u++) {
abs_channel = (eNB2UE[j]->chF[0][u].x*eNB2UE[j]->chF[0][u].x + eNB2UE[j]->chF[0][u].y*eNB2UE[j]->chF[0][u].y);
if(transmission_mode==5) {
fprintf(csv_fd,"%e,",abs_channel);
} else {
pilot_sinr = 10*log10(snr*abs_channel);
fprintf(csv_fd,"%e,",pilot_sinr);
}
}
}
} else {
if (awgn_flag == 0) {
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j], r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
}
}
} else { //ABStraction
if (awgn_flag == 0) {
if (pmi_feedback==0)
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,1);
else
multipath_channel(eNB2UE[j],s_re,s_im,r_re[j],r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);
}
}//ABStraction
}
//(double)tx_lev_dB - (SNR+sigma2_dB));
//printf("tx_lev_dB %d\n",tx_lev_dB);
sigma2_dB = 10*log10((double)tx_lev) +10*log10(PHY_vars_eNB->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR;
//AWGN
sigma2 = pow(10,sigma2_dB/10);
// n0_pow_dB = tx_lev_dB + 10*log10(512/(NB_RB*12)) + SNR;
// printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
if (pmi_feedback==0) {
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
for (j=0; j<num_relay; j++) {
//printf("s_re[0][%d]=> %f , r_re[%d][0][%d]=> %f\n",i,s_re[aa][i],j,i,r_re[j][aa][i]);
((short*) PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti)+2*i] =
(short) (r_re[j][aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
((short*) PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti)+2*i+1] =
(short) (r_im[j][aa][i] + (iqim*r_re[j][aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
}
}
}
} else {
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNB->lte_frame_parms.nb_antennas_rx; aa++) {
for (j=0; j<num_relay; j++) {
// printf("s_re[0][%d]=> %f , r_re[%d][0][%d]=> %f\n",i,s_re[aa][i],j,i,r_re[j][aa][i]);
((short*) PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti)+2*i] = (short) (r_re[j][aa][i]);
((short*) PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[(2*subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti)+2*i+1] = (short) (r_im[j][aa][i]);
}
}
}
}
// lte_sync_time_init(PHY_vars_eNB->lte_frame_parms,lte_ue_common_vars);
// lte_sync_time(lte_ue_common_vars->rxdata, PHY_vars_eNB->lte_frame_parms);
// lte_sync_time_free();
/*
// optional: read rx_frame from file
if ((rx_frame_file = fopen("rx_frame.dat","r")) == NULL){
printf("Cannot open rx_frame.m data file\n");
exit(0);
}
result = fread((void *)PHY_vars->rx_vars[0].RX_DMA_BUFFER,4,FRAME_LENGTH_COMPLEX_SAMPLES,rx_frame_file);
printf("Read %d bytes\n",result);
result = fread((void *)PHY_vars->rx_vars[1].RX_DMA_BUFFER,4,FRAME_LENGTH_COMPLEX_SAMPLES,rx_frame_file);
printf("Read %d bytes\n",result);
fclose(rx_frame_file);
*/
if (n_frames == 1) {
for (j=0; j<num_relay; j++) {
printf("RX level at %d-th RN in null symbol %d\n", j,
dB_fixed(signal_energy(&PHY_vars_UE[j]->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("RX level at %d-th RN in data symbol %d\n", j,
dB_fixed(signal_energy(&PHY_vars_UE[j]->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("rx_level at %d-th RN in null symbol %f\n", j,
10*log10(signal_energy_fp(r_re[j],r_im[j],1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
printf("rx_level at %d-th RN in data symbol %f\n", j,
10*log10(signal_energy_fp(r_re[j],r_im[j],1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
}
}
if (PHY_vars_eNB->lte_frame_parms.Ncp == 0) { // normal prefix
pilot1 = 4;
pilot2 = 7;
pilot3 = 11;
} else { // extended prefix
pilot1 = 3;
pilot2 = 6;
pilot3 = 9;
}
i_mod = get_Qm(mcs);
/* Memory Allocation for summation of Quantized LLRs */
bzero(llr_quant_sum, (8*((3*8*6144)+12))*sizeof(short));
for (j=0; j<num_relay; j++) { // loop over all RNs;
bzero(llr_quant[j], (8*((3*8*6144)+12))*sizeof(short));
// Inner receiver scheduling for 3 slots
for (Ns=(2*subframe); Ns<((2*subframe)+3); Ns++) {
for (l=0; l<pilot2; l++) {
if (n_frames == 1)
printf("Ns %d, l %d\n",Ns,l);
/*
This function implements the OFDM front end processor (FEP).
parameters:
frame_parms LTE DL Frame Parameters
ue_common_vars LTE UE Common Vars
l symbol within slot (0..6/7)
Ns Slot number (0..19)
sample_offset offset within rxdata (points to beginning of subframe)
no_prefix if 1 prefix is removed by HW
*/
slot_fep(PHY_vars_UE[j], l, Ns%20, 0, 0);
#ifdef PERFECT_CE
if (awgn_flag==0) {
// fill in perfect channel estimates
freq_channel(eNB2UE[j],PHY_vars_UE[j]->lte_frame_parms.N_RB_DL,301);
//write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
//write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
for(k=0; k<NUMBER_OF_eNB_MAX; k++) {
for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
for (i=0; i<frame_parms->N_RB_DL*12; i++) {
((int16_t *) PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2] = (int16_t)(
eNB2UE[j]->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].x*AMP/2);
((int16_t *) PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[k][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2] = (int16_t)(
eNB2UE[j]->chF[aarx+(aa*frame_parms->nb_antennas_rx)][i].y*AMP/2) ;
}
}
}
}
} else {
for(aa=0; aa<frame_parms->nb_antennas_tx; aa++) {
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
for (i=0; i<frame_parms->N_RB_DL*12; i++) {
((int16_t *) PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2] = AMP/2;
((int16_t *) PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[0][(aa<<1)+aarx])[2*i+1+(l*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2] = 0/2;
}
}
}
}
#endif
if ((Ns==(2+(2*subframe))) && (l==0)) {
lte_ue_measurements(PHY_vars_UE[j], subframe*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti, 1, 0);
/*
debug_msg("RX RSSI %d dBm, digital (%d, %d) dB, linear (%d, %d), avg rx power %d dB (%d lin), RX gain %d dB\n",
PHY_vars_UE[j]->PHY_measurements.rx_rssi_dBm[0] - ((PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx==2) ? 3 : 0),
PHY_vars_UE[j]->PHY_measurements.wideband_cqi_dB[0][0],
PHY_vars_UE[j]->PHY_measurements.wideband_cqi_dB[0][1],
PHY_vars_UE[j]->PHY_measurements.wideband_cqi[0][0],
PHY_vars_UE[j]->PHY_measurements.wideband_cqi[0][1],
PHY_vars_UE[j]->PHY_measurements.rx_power_avg_dB[0],
PHY_vars_UE[j]->PHY_measurements.rx_power_avg[0],
PHY_vars_UE[j]->rx_total_gain_dB);
debug_msg("N0 %d dBm digital (%d, %d) dB, linear (%d, %d), avg noise power %d dB (%d lin)\n",
PHY_vars_UE[j]->PHY_measurements.n0_power_tot_dBm,
PHY_vars_UE[j]->PHY_measurements.n0_power_dB[0],
PHY_vars_UE[j]->PHY_measurements.n0_power_dB[1],
PHY_vars_UE[j]->PHY_measurements.n0_power[0],
PHY_vars_UE[j]->PHY_measurements.n0_power[1],
PHY_vars_UE[j]->PHY_measurements.n0_power_avg_dB,
PHY_vars_UE[j]->PHY_measurements.n0_power_avg);
debug_msg("Wideband CQI tot %d dB, wideband cqi avg %d dB\n",
PHY_vars_UE[j]->PHY_measurements.wideband_cqi_tot[0],
PHY_vars_UE[j]->PHY_measurements.wideband_cqi_avg[0]);
*/
if (transmission_mode==5 || transmission_mode==6) {
if (pmi_feedback==1) {
pmi_feedback= 0;
// printf("measured PMI %x\n",pmi2hex_2Ar1(quantize_subband_pmi(&PHY_vars_UE[j]->PHY_measurements,0)));
goto PMI_FEEDBACK;
}
}
}
if ((Ns==(2*subframe)) && (l==pilot1)) { // process symbols 0,1,2
if (dci_flag == 1) {
rx_pdcch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_pdcch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
subframe,
0,
(PHY_vars_UE[j]->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
0);
// overwrite number of pdcch symbols
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
dci_cnt = dci_decoding_procedure(PHY_vars_UE[j],
dci_alloc_rx[j],
eNB_id,
subframe,
SI_RNTI,
RA_RNTI);
//printf("dci_cnt %d\n",dci_cnt);
if (dci_cnt==0) {
dlsch_active = 0;
if (round==0) { // if an error in the first DCI, then contunue with the next transmission block !?;
if (j == (num_relay-1)) {
dci_errors++;
error_tot[0]++; // errs[0] is replaced by error_tot[0];
round_trials[0]++;
round = 5;
//printf("DCI error trial %d error_tot[0] %d\n",trials,error_tot[0]);
}
//dci_errors++;
//round=5;
//error_tot[0]++;
//round_trials[0]++;
// printf("DCI error trial %d error_tot[0] %d\n",trials, error_tot[0]);
}
// for (i=1;i<=round;i++)
// round_trials[i]--;
// round=5;
}
for (i=0; i<dci_cnt; i++) {
//printf("Generating dlsch parameters for RNTI %x\n",dci_alloc_rx[j][i].rnti);
if ((dci_alloc_rx[j][i].rnti == n_rnti) &&
(generate_ue_dlsch_params_from_dci(0,
dci_alloc_rx[j][i].dci_pdu,
dci_alloc_rx[j][i].rnti,
dci_alloc_rx[j][i].format,
PHY_vars_UE[j]->dlsch_ue[0],
&PHY_vars_UE[j]->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI) == 0)) {
//dump_dci(&PHY_vars_UE[j]->lte_frame_parms,&dci_alloc_rx[j][i]);
coded_bits_per_codeword = get_G(&PHY_vars_eNB->lte_frame_parms,
PHY_vars_UE[j]->dlsch_ue[0][0]->nb_rb,
PHY_vars_UE[j]->dlsch_ue[0][0]->rb_alloc,
get_Qm(PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[j]->dlsch_ue[0][0]->current_harq_pid]->mcs),
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
subframe);
/*
rate = (double)dlsch_tbs25[get_I_TBS(PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[j]->dlsch_ue[0][0]->current_harq_pid]->mcs)][PHY_vars_UE[j]->dlsch_ue[0][0]->nb_rb-1]/(coded_bits_per_codeword);
rate*=get_Qm(PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[j]->dlsch_ue[0][0]->current_harq_pid]->mcs);
printf("num_pdcch_symbols %d, G %d, TBS %d\n", PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols, coded_bits_per_codeword, PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[PHY_vars_UE[j]->dlsch_ue[0][0]->current_harq_pid]->TBS);
*/
dlsch_active = 1;
} else {
dlsch_active = 0;
if (round==0) { // if an error in the first DCI, then contunue with the next transmission block !?;
if (j == (num_relay-1)) {
dci_errors++;
error_tot[0]++;
round_trials[0]++;
}
if (n_frames==1) {
printf("DCI misdetection trial %d\n",trials);
round=5;
}
}
//for (i=1;i<=round;i++)
// round_trials[i]--;
// round=5;
}
}
} // if dci_flag==1
else { //dci_flag == 0
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->crnti = n_rnti;
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
generate_ue_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2_2D[0],
C_RNTI,
format2_2D_M10PRB,
PHY_vars_UE[j]->dlsch_ue[0],
&PHY_vars_UE[j]->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI);
dlsch_active = 1;
} // if dci_flag == 1
}
if (dlsch_active == 1) {
if ((Ns==(1+(2*subframe))) && (l==0)) { // process symbols 3,4,5
for (m=PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols; m<pilot2; m++) {
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNB_id,
eNB_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
subframe,
m,
(m==PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols)?1:0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
i_mod) == -1) {
dlsch_active = 0;
break;
}
}
}
if ((Ns==(1+(2*subframe))) && (l==pilot1)) { // process symbols 6,7,8
/*
if (rx_pbch(lte_ue_common_vars, lte_ue_pbch_vars[0], lte_frame_parms, 0, SISO)) {
msg("pbch decoded sucessfully!\n");
}
else {
msg("pbch not decoded!\n");
}
*/
for (m=pilot2; m<pilot3; m++)
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNB_id,
eNB_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
subframe,
m,
0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
i_mod) == -1) {
dlsch_active = 0;
break;
}
}
if ((Ns==(2+(2*subframe))) && (l==0)) // process symbols 10,11, do deinterleaving for TTI
for (m=pilot3; m<PHY_vars_UE[j]->lte_frame_parms.symbols_per_tti; m++)
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNB_id,
eNB_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
subframe,
m,
0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
i_mod) == -1) {
dlsch_active = 0;
break;
}
if ((n_frames==1) && (Ns==(2+(2*subframe))) && (l==0)) {
write_output("ch0.m", "ch0",
eNB2UE[j]->ch[0],
eNB2UE[j]->channel_length, 1, 8);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1)
write_output("ch1.m", "ch1",
eNB2UE[j]->ch[PHY_vars_eNB->lte_frame_parms.nb_antennas_rx],
eNB2UE[j]->channel_length, 1, 8);
//common vars
write_output("rxsig0.m", "rxs0",
&PHY_vars_UE[j]->lte_ue_common_vars.rxdata[0][0],
10*PHY_vars_UE[j]->lte_frame_parms.samples_per_tti, 1, 1);
write_output("rxsigF0.m", "rxsF0",
&PHY_vars_UE[j]->lte_ue_common_vars.rxdataF[0][0],
2*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb, 2, 1);
if (PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1) {
write_output("rxsig1.m","rxs1",
PHY_vars_UE[j]->lte_ue_common_vars.rxdata[1],
PHY_vars_UE[j]->lte_frame_parms.samples_per_tti, 1, 1);
write_output("rxsigF1.m","rxsF1",
PHY_vars_UE[j]->lte_ue_common_vars.rxdataF[1],
2*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb, 2, 1);
}
write_output("dlsch00_ch0.m", "dl00_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if (PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1)
write_output("dlsch01_ch0.m", "dl01_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1)
write_output("dlsch10_ch0.m", "dl10_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if ((PHY_vars_UE[j]->lte_frame_parms.nb_antennas_rx > 1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1))
write_output("dlsch11_ch0.m","dl11_ch0",
&(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]),
PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
//dlsch_vars
dump_dlsch2(PHY_vars_UE[j], eNB_id, coded_bits_per_codeword);
dump_dlsch2(PHY_vars_UE[j], eNB_id_i, coded_bits_per_codeword);
write_output("dlsch_e.m", "e", PHY_vars_eNB->dlsch_eNB[0][0]->e, coded_bits_per_codeword, 1, 4);
//pdcch_vars
write_output("pdcchF0_ext.m", "pdcchF_ext",
PHY_vars_UE[j]->lte_ue_pdcch_vars[eNB_id]->rxdataF_ext[0],
2*3*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size, 1, 1);
write_output("pdcch00_ch0_ext.m", "pdcch00_ch0_ext",
PHY_vars_UE[j]->lte_ue_pdcch_vars[eNB_id]->dl_ch_estimates_ext[0], 300*3, 1, 1);
write_output("pdcch_rxF_comp0.m", "pdcch0_rxF_comp0",
PHY_vars_UE[j]->lte_ue_pdcch_vars[eNB_id]->rxdataF_comp[0], 4*300, 1, 1);
write_output("pdcch_rxF_llr.m", "pdcch_llr",
PHY_vars_UE[j]->lte_ue_pdcch_vars[eNB_id]->llr, 2400, 1, 4);
}
} // if "dlsch_active = 1";
} // loop over l;
} // loop over Ns;
// calculate uncoded BLER
uncoded_ber=0;
for (i=0; i<coded_bits_per_codeword; i++)
if (PHY_vars_eNB->dlsch_eNB[0][0]->e[i] != (PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->llr[0][i] < 0)) {
uncoded_ber_bit[i] = 1;
uncoded_ber++;
} else
uncoded_ber_bit[i] = 0;
uncoded_ber /= coded_bits_per_codeword;
avg_ber += uncoded_ber;
//imran
if(abstx) {
if (trials<10 && round==0 && transmission_mode==5) {
for (iii=0; iii<NB_RB; iii++) {
//fprintf(csv_fd, "%d, %d", (PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]),
// (PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii]));
msg(" %x", (PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->pmi_ext[iii]));
// msg("Opposite Extracted pmi %x\n",(PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id_i]->pmi_ext[iii]));
}
}
}
/*
printf("precoded CQI %d dB, opposite precoded CQI %d dB\n",
PHY_vars_UE[j]->PHY_measurements.precoded_cqi_dB[eNB_id][0],
PHY_vars_UE[j]->PHY_measurements.precoded_cqi_dB[eNB_id_i][0]);
*/
PHY_vars_UE[j]->dlsch_ue[0][0]->rnti = n_rnti;
// Should the unscrambling procedure be done before the Quantization or not ?
dlsch_unscrambling(&PHY_vars_UE[j]->lte_frame_parms,
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols,
PHY_vars_UE[j]->dlsch_ue[0][0],
coded_bits_per_codeword,
PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->llr[0],
0,
subframe<<1);
/*----------------------------------------------------------------------------------------------------------*/
/* Here, I have added:
1- dlsch_LLR_quant() procedure which outputs Quantized LLR's at each Relay Node (RN) where symbol-by-symbol uniform SQ (uSQ) is used!
2- dlsch_MRC_relay_LLR() which adds up all LLR values from each RN!
3- Finally the output LLRs are passed to the dlsch_decoding() function!
*/
// LLR quantization at each RN according to the backhaul capacity constraints C_i [bits/sec/Hz];
// Quantization codebook design and parameter passing to the DeNb;
//dlsch_LLR_quant(PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->llr[0], 8*((3*8*6144)+12), pow(2, backhaulBitsPerLLR), llr_quant[j]);
dlsch_LLR_quant(PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->llr[0], 6072, Mlevel, llr_quant[j]);
//dlsch_LLR_quant2(PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->llr[0], 8*((3*8*6144)+12), backhaulBitsPerLLR, llr_quant[j]);
//dlsch_LLR_quant3(PHY_vars_UE[j]->lte_ue_dlsch_vars[eNB_id]->llr[0], 8*((3*8*6144)+12), backhaulBitsPerLLR, llr_quant[j]);
dlsch_MRC_relay_LLR(llr_quant[j], 6072, llr_quant_sum);
/*------------------------------------------------------------------------------------------------------------*/
#ifdef XFORMS
do_forms(form,
&PHY_vars_UE[j]->lte_frame_parms,
PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates_time,
PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNB_id],
PHY_vars_UE[j]->lte_ue_common_vars.rxdata,
PHY_vars_UE[j]->lte_ue_common_vars.rxdataF,
PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->rxdataF_comp[0],
PHY_vars_UE[j]->lte_ue_dlsch_vars[3]->rxdataF_comp[0],
PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->dl_ch_rho_ext[0],
PHY_vars_UE[j]->lte_ue_dlsch_vars[0]->llr[0],coded_bits_per_codeword);
//PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->w[0], 3*(tbs+64));
//uncoded_ber_bit, coded_bits_per_codeword);
/*
printf("Hit a key to continue\n");
c = getchar();
*/
#endif
} //number of relays
/* FINAL DECODER: Decoder uses the sum of the Quantized LLRs as an input to the Turbo Decoder */
// printf("Calling decoding (Ndi %d, harq_pid %d)\n", dlsch_ue[0]->harq_processes[0]->Ndi, dlsch_ue[0]->current_harq_pid);
ret = dlsch_decoding(llr_quant_sum, // PHY_vars_UE[0]->lte_ue_dlsch_vars[eNb_id]->llr[0],
&PHY_vars_UE[0]->lte_frame_parms,
PHY_vars_UE[0]->dlsch_ue[0][0],
subframe,
PHY_vars_UE[0]->lte_ue_pdcch_vars[0]->num_pdcch_symbols);
if (ret <= MAX_TURBO_ITERATIONS) {
if (n_frames == 1)
printf("No DLSCH errors found\n");
// exit(-1);
if (fix_rounds == 0) { // # of HARQ rounds; by default it is '4' and 'fix_rounds=0';
round=5; // The messages are successfully decoded the messages;
} else
round++; // why not as 'round = num_rounds' -> what does it bring if we retransmit a decoded data?!!!;
} else {
//err_total[round]++;
if (n_frames == 1) {
//if ((n_frames==1) || (SNR>=30)) {
printf("DLSCH errors found in round %d, uncoded ber %f\n", round, uncoded_ber);
for (s=0; s<PHY_vars_UE[0]->dlsch_ue[0][0]->harq_processes[0]->C; s++) {
if (s < PHY_vars_UE[0]->dlsch_ue[0][0]->harq_processes[0]->Cminus)
Kr = PHY_vars_UE[0]->dlsch_ue[0][0]->harq_processes[0]->Kminus;
else
Kr = PHY_vars_UE[0]->dlsch_ue[0][0]->harq_processes[0]->Kplus;
Kr_bytes = Kr>>3;
printf("Decoded_output (Segment %d):\n", s);
for (i=0; i<Kr_bytes; i++)
printf("%d : %x (%x)\n", i,
PHY_vars_UE[0]->dlsch_ue[0][0]->harq_processes[0]->c[s][i],
PHY_vars_UE[0]->dlsch_ue[0][0]->harq_processes[0]->c[s][i]^PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->c[s][i]);
}
write_output("rxsig0.m","rxs0",
&PHY_vars_UE[0]->lte_ue_common_vars.rxdata[0][0],
10*PHY_vars_UE[0]->lte_frame_parms.samples_per_tti, 1, 1);
write_output("rxsigF0.m","rxsF0",
&PHY_vars_UE[0]->lte_ue_common_vars.rxdataF[0][0],
2*PHY_vars_UE[0]->lte_frame_parms.ofdm_symbol_size*nsymb, 2, 1);
if (PHY_vars_UE[0]->lte_frame_parms.nb_antennas_rx > 1) {
write_output("rxsig1.m","rxs1",
PHY_vars_UE[0]->lte_ue_common_vars.rxdata[1],
PHY_vars_UE[0]->lte_frame_parms.samples_per_tti, 1, 1);
write_output("rxsigF1.m","rxsF1",
PHY_vars_UE[0]->lte_ue_common_vars.rxdataF[1],
2*PHY_vars_UE[0]->lte_frame_parms.ofdm_symbol_size*nsymb, 2, 1);
}
write_output("dlsch00_ch0.m","dl00_ch0",
&(PHY_vars_UE[0]->lte_ue_common_vars.dl_ch_estimates[eNB_id][0][0]),
PHY_vars_UE[0]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if (PHY_vars_UE[0]->lte_frame_parms.nb_antennas_rx > 1)
write_output("dlsch01_ch0.m","dl01_ch0",
&(PHY_vars_UE[0]->lte_ue_common_vars.dl_ch_estimates[eNB_id][1][0]),
PHY_vars_UE[0]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1)
write_output("dlsch10_ch0.m","dl10_ch0",
&(PHY_vars_UE[0]->lte_ue_common_vars.dl_ch_estimates[eNB_id][2][0]),
PHY_vars_UE[0]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
if ((PHY_vars_UE[0]->lte_frame_parms.nb_antennas_rx > 1) && (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx > 1))
write_output("dlsch11_ch0.m","dl11_ch0",
&(PHY_vars_UE[0]->lte_ue_common_vars.dl_ch_estimates[eNB_id][3][0]),
PHY_vars_UE[0]->lte_frame_parms.ofdm_symbol_size*nsymb/2, 1, 1);
//dlsch_vars
dump_dlsch2(PHY_vars_UE[0], eNB_id, coded_bits_per_codeword);
write_output("dlsch_e.m","e", PHY_vars_eNB->dlsch_eNB[0][0]->e, coded_bits_per_codeword, 1, 4);
write_output("dlsch_ber_bit.m","ber_bit", uncoded_ber_bit, coded_bits_per_codeword, 1, 0);
write_output("dlsch_eNB_w.m","w", PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->w[0], 3*(tbs+64), 1, 4);
write_output("dlsch_UE_w.m","w", PHY_vars_UE[0]->dlsch_ue[0][0]->harq_processes[0]->w[0], 3*(tbs+64), 1, 0);
exit(-1);
}
error_tot[round]++;
round++;
}
} //round
// printf("\n");
if ((error_tot[0]>=100) && (trials>(n_frames/2)))
break;
//len = chbch_stats_read(stats_buffer,NULL,0,4096);
//printf("%s\n\n",stats_buffer);
} //trials
for (j=0; j<num_relay; j++) {
printf("\n**********************Relay Node %j: SNR = %f dB (tx_lev %f, sigma2_dB %f)**************************\n",
j,
SNR,
(double)tx_lev_dB+10*log10(PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)),
sigma2_dB);
}
printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e), dci_errors %d/%d, Pe = %e => effective rate %f (%f), normalized delay %f (%f), uncoded_ber %f\n",
error_tot[0],
round_trials[0],
error_tot[1],
round_trials[1],
error_tot[2],
round_trials[2],
error_tot[3],
round_trials[3],
(double)error_tot[0]/(round_trials[0]),
(double)error_tot[1]/(round_trials[1]),
(double)error_tot[2]/(round_trials[2]),
(double)error_tot[3]/(round_trials[3]),
dci_errors,
round_trials[0],
(double)dci_errors/(round_trials[0]),
rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])),
rate,
(1.0*(round_trials[0]-error_tot[0])+2.0*(round_trials[1]-error_tot[1])+3.0*(round_trials[2]-error_tot[2])+4.0*(round_trials[3]-error_tot[3]))/((double)round_trials[0])/
(double)PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
(1.0*(round_trials[0]-error_tot[0])+2.0*(round_trials[1]-error_tot[1])+3.0*(round_trials[2]-error_tot[2])+4.0*(round_trials[3]-error_tot[3]))/((double)round_trials[0]),
avg_ber/round_trials[0]);
fprintf(bler_fd,"%f \t %d \t %d \t %d \t %d \t %f \t %f \t %d \t %d \t %d \t %d \t %d \t %d \t %d \t %d \t %d \t %f;\n",
SNR,
mcs,
backhaulBitsPerLLR, // Backhaul Capacity in [bits/LLR];
num_relay,
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->TBS,
rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])), //effective rate
rate,
error_tot[0],
round_trials[0],
error_tot[1],
round_trials[1],
error_tot[2],
round_trials[2],
error_tot[3],
round_trials[3],
dci_errors,
avg_ber/round_trials[0]);
fprintf(tikz_fd,"(%f,%f)", SNR, (float)error_tot[0]/round_trials[0]);
if(abstx) { //ABSTRACTION
blerr= (double)error_tot[0]/(round_trials[0]);
fprintf(csv_fd,"%e;\n", blerr);
} //ABStraction
if (((double)error_tot[0]/(round_trials[0]))<1e-5)
break;
}// SNR
} //ch_realization
fclose(bler_fd);
fprintf(tikz_fd,"};\n");
fclose(tikz_fd);
if (input_trch_file==1)
fclose(input_trch_fd);
if (input_file==1)
fclose(input_fd);
if(abstx) { // ABSTRACTION
fprintf(csv_fd,"];");
fclose(csv_fd);
}
printf("Freeing dlsch structures\n");
for (i=0; i<2; i++) {
printf("eNB %d\n", i);
free_eNB_dlsch(PHY_vars_eNB->dlsch_eNB[0][i]);
printf("UE %d\n", i);
for (j=0; j<num_relay; j++) {
free_ue_dlsch(PHY_vars_UE[j]->dlsch_ue[0][i]);
}
}
#ifdef IFFT_FPGA
printf("Freeing transmit signals\n");
free(txdataF2[0]);
free(txdataF2[1]);
free(txdataF2);
free(txdata[0]);
free(txdata[1]);
free(txdata);
#endif
printf("Freeing channel I/O\n");
for (i=0; i<2; i++) {
free(s_re[i]);
free(s_im[i]);
}
for (j=0; j<num_relay; j++) {
for (i=0; i<2; i++) {
free(r_re[j][i]);
free(r_im[j][i]);
}
free(r_re[j]);
free(r_im[j]);
free(eNB2UE[j]);
free(dci_alloc_rx[j]);
}
free(s_re);
free(s_im);
free(r_re);
free(r_im);
free(eNB2UE);
free(dci_alloc_rx);
// lte_sync_time_free();
return(0);
}
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <string.h>
#include <math.h>
#include <unistd.h>
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif
#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
#include "SCHED/defs.h"
#include "SCHED/vars.h"
//#define AWGN
//#define NO_DCI
#define BW 7.68
#define RBmask0 0x00fc00fc
#define RBmask1 0x0
#define RBmask2 0x0
#define RBmask3 0x0
unsigned char dlsch_cqi;
PHY_VARS_eNB *PHY_vars_eNb;
PHY_VARS_UE *PHY_vars_UE;
void lte_param_init(unsigned char N_tx, unsigned char N_rx,unsigned char transmission_mode,uint8_t extended_prefix_flag)
{
LTE_DL_FRAME_PARMS *lte_frame_parms;
printf("Start lte_param_init\n");
PHY_vars_eNb = malloc(sizeof(PHY_VARS_eNB));
PHY_vars_UE = malloc(sizeof(PHY_VARS_UE));
PHY_config = malloc(sizeof(PHY_CONFIG));
mac_xface = malloc(sizeof(MAC_xface));
randominit(0);
set_taus_seed(0);
lte_frame_parms = &(PHY_vars_eNb->lte_frame_parms);
lte_frame_parms->N_RB_DL = 25; //50 for 10MHz and 25 for 5 MHz
lte_frame_parms->N_RB_UL = 25;
lte_frame_parms->Ncp = extended_prefix_flag;
lte_frame_parms->Nid_cell = 0;
lte_frame_parms->nushift = 0;
lte_frame_parms->nb_antennas_tx = N_tx;
lte_frame_parms->nb_antennas_rx = N_rx;
lte_frame_parms->first_dlsch_symbol = 4;
lte_frame_parms->num_dlsch_symbols = (lte_frame_parms->Ncp==0) ? 8: 6;
lte_frame_parms->Ng_times6 = 1;
// lte_frame_parms->Csrs = 2;
// lte_frame_parms->Bsrs = 0;
// lte_frame_parms->kTC = 0;
// lte_frame_parms->n_RRC = 0;
lte_frame_parms->mode1_flag = (transmission_mode == 1)? 1 : 0;
init_frame_parms(lte_frame_parms);
copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing));
phy_init_top(N_tx,lte_frame_parms); //allocation
lte_frame_parms->twiddle_fft = twiddle_fft;
lte_frame_parms->twiddle_ifft = twiddle_ifft;
lte_frame_parms->rev = rev;
PHY_vars_UE->lte_frame_parms = *lte_frame_parms;
PHY_vars_eNb->lte_frame_parms = *lte_frame_parms;
/*
lte_gold(lte_frame_parms);
generate_ul_ref_sigs();
generate_ul_ref_sigs_rx();
generate_64qam_table();
generate_16qam_table();
generate_RIV_tables();
generate_pcfich_reg_mapping(lte_frame_parms);
generate_phich_reg_mapping(lte_frame_parms);
*/
phy_init_lte_top(lte_frame_parms);
phy_init_lte_ue(&PHY_vars_UE->lte_frame_parms,
&PHY_vars_UE->lte_ue_common_vars,
PHY_vars_UE->lte_ue_dlsch_vars,
PHY_vars_UE->lte_ue_dlsch_vars_SI,
PHY_vars_UE->lte_ue_dlsch_vars_ra,
PHY_vars_UE->lte_ue_pbch_vars,
PHY_vars_UE->lte_ue_pdcch_vars,
PHY_vars_UE);
phy_init_lte_eNB(&PHY_vars_eNb->lte_frame_parms,
&PHY_vars_eNb->lte_eNB_common_vars,
PHY_vars_eNb->lte_eNB_ulsch_vars,
0,
PHY_vars_eNb,
0,
0);
printf("Done lte_param_init\n");
}
DCI0_5MHz_TDD0_t UL_alloc_pdu;
DCI1A_5MHz_TDD_1_6_t CCCH_alloc_pdu;
DCI2_5MHz_2A_L10PRB_TDD_t DLSCH_alloc_pdu1;
DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2;
#define UL_RB_ALLOC 0x1ff;
#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNb->lte_frame_parms.N_RB_UL,0,2)
#define DLSCH_RB_ALLOC 0x1fbf // igore DC component,RB13
//#define DLSCH_RB_ALLOC 0x1f0f // igore DC component,RB13
int main(int argc, char **argv)
{
char c;
int i,aa,aarx;
int s,Kr,Kr_bytes;
double sigma2, sigma2_dB=10,SNR,snr0=-2.0,snr1,rate;
//int **txdataF, **txdata;
int **txdata;
#ifdef IFFT_FPGA
int **txdataF2;
#endif
LTE_DL_FRAME_PARMS *frame_parms;
//LTE_UE_COMMON *lte_ue_common_vars = (LTE_UE_COMMON *)malloc(sizeof(LTE_UE_COMMON));
double **s_re,**s_im,**r_re,**r_im;
double amps[8] = {0.3868472 , 0.3094778 , 0.1547389 , 0.0773694 , 0.0386847 , 0.0193424 , 0.0096712 , 0.0038685};
double aoa=.03;
double ricean_factor=0.0000005;
double Td=0.8;
double iqim=0.0;
uint8_t channel_length,nb_taps=8;
uint8_t extended_prefix_flag=0,transmission_mode=1,n_tx=1,n_rx=1;
int eNb_id = 0, eNb_id_i = 1;
unsigned char mcs,dual_stream_UE = 0,awgn_flag=0,round,dci_flag=0;
unsigned short NB_RB=conv_nprb(0,DLSCH_RB_ALLOC);
unsigned char Ns,l,m;
// unsigned char *input_data,*decoded_output;
unsigned char *input_buffer;
unsigned short input_buffer_length;
unsigned int ret;
unsigned int coded_bits_per_codeword,nsymb,dci_cnt;
unsigned int tx_lev,tx_lev_dB,trials,errs[4]= {0,0,0,0},round_trials[4]= {0,0,0,0},dci_errors=0,dlsch_active=0,num_layers;
int re_allocated;
FILE *bler_fd;
char bler_fname[20];
// unsigned char pbch_pdu[6];
DCI_ALLOC_t dci_alloc[8],dci_alloc_rx[8];
// FILE *rx_frame_file;
int n_frames;
channel_desc_t *eNB2UE;
uint8_t num_pdcch_symbols=3,num_pdcch_symbols_dummy;
uint8_t pilot1,pilot2,pilot3;
dci_alloc[0].dci_length = sizeof_DCI0_5MHz_TDD_0_t;
channel_length = (int) 11+2*BW*Td;
num_layers = 1;
//int cont=0;
// default parameters
//for (cont =0;cont<29;cont++){
mcs = 0;
n_frames = 1000;
snr0 = 0;
//if(snr0>0)
// snr0 = 0;
while ((c = getopt (argc, argv, "hadpm:n:s:t:c:r:x:y:z:")) != -1) {
switch (c) {
case 'a':
awgn_flag = 1;
break;
case 'd':
dci_flag = 1;
break;
case 'm':
mcs = atoi(optarg);
break;
case 'n':
n_frames = atoi(optarg);
break;
case 'r':
ricean_factor = pow(10,-.1*atof(optarg));
if (ricean_factor>1) {
printf("Ricean factor must be between 0 and 1\n");
exit(-1);
}
break;
case 's':
snr0 = atoi(optarg);
break;
case 't':
Td= atof(optarg);
break;
case 'p':
extended_prefix_flag=1;
break;
case 'c':
num_pdcch_symbols=atoi(optarg);
break;
case 'x':
transmission_mode=atoi(optarg);
if ((transmission_mode!=1) &&
(transmission_mode!=2) &&
(transmission_mode!=6)) {
msg("Unsupported transmission mode %d\n",transmission_mode);
exit(-1);
}
break;
case 'y':
n_tx=atoi(optarg);
if ((n_tx==0) || (n_tx>2)) {
msg("Unsupported number of tx antennas %d\n",n_tx);
exit(-1);
}
break;
case 'z':
n_rx=atoi(optarg);
if ((n_rx==0) || (n_rx>2)) {
msg("Unsupported number of rx antennas %d\n",n_rx);
exit(-1);
}
break;
case 'h':
default:
printf("%s -h(elp) -a(wgn on) -d(ci decoding on) -p(extended prefix on) -m mcs -n n_frames -s snr0 -t Delayspread -x transmission mode (1,2,6) -y TXant -z RXant\n",argv[0]);
printf("-h This message\n");
printf("-a Use AWGN channel and not multipath\n");
printf("-m MCS\n");
printf("-d Transmit the DCI and compute its error statistics and the overall throughput\n");
printf("-p Use extended prefix mode\n");
printf("-n Number of frames to simulate\n");
printf("-s Starting SNR, runs from SNR to SNR + 5 dB. If n_frames is 1 then just SNR is simulated and MATLAB/OCTAVE output is generated\n");
printf("-t Delay spread for multipath channel\n");
printf("-r Ricean factor (dB, 0 dB = Rayleigh, 100 dB = almost AWGN)\n");
printf("-x Transmission mode (1,2,6 for the moment)\n");
printf("-y Number of TX antennas used in eNB\n");
printf("-z Number of RX antennas used in UE\n");
exit(1);
break;
}
}
lte_param_init(n_tx,n_rx,transmission_mode,extended_prefix_flag);
printf("Setting mcs = %d\n",mcs);
printf("NPRB = %d\n",NB_RB);
printf("n_frames = %d\n",n_frames);
printf("Transmission mode %d with %dx%d antenna configuration\n",transmission_mode,n_tx,n_rx);
/*
snr0 = -8 + mcs;
if(snr0>0)
snr0 = 7;
*/
snr1 = snr0+5.0;
printf("SNR0 %f, SNR1 %f\n",snr0,snr1);
/*
txdataF = (int **)malloc16(2*sizeof(int*));
txdataF[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdataF[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata = (int **)malloc16(2*sizeof(int*));
txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
*/
frame_parms = &PHY_vars_eNb->lte_frame_parms;
#ifdef IFFT_FPGA
txdata = (int **)malloc16(2*sizeof(int*));
txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
bzero(txdata[0],FRAME_LENGTH_BYTES);
bzero(txdata[1],FRAME_LENGTH_BYTES);
txdataF2 = (int **)malloc16(2*sizeof(int*));
txdataF2[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
txdataF2[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
bzero(txdataF2[0],FRAME_LENGTH_BYTES_NO_PREFIX);
bzero(txdataF2[1],FRAME_LENGTH_BYTES_NO_PREFIX);
#else
txdata = PHY_vars_eNb->lte_eNB_common_vars.txdata[eNb_id];
#endif
s_re = malloc(2*sizeof(double*));
s_im = malloc(2*sizeof(double*));
r_re = malloc(2*sizeof(double*));
r_im = malloc(2*sizeof(double*));
// r_re0 = malloc(2*sizeof(double*));
// r_im0 = malloc(2*sizeof(double*));
nsymb = (PHY_vars_eNb->lte_frame_parms.Ncp == 0) ? 14 : 12;
coded_bits_per_codeword = get_G(&PHY_vars_eNb->lte_frame_parms,NB_RB,get_Qm(mcs),num_pdcch_symbols);
#ifdef TBS_FIX
rate = (double)3*dlsch_tbs25[get_I_TBS(mcs)][NB_RB-1]/(4*coded_bits_per_codeword);
#else
rate = (double)dlsch_tbs25[get_I_TBS(mcs)][NB_RB-1]/(coded_bits_per_codeword);
#endif
rate*=get_Qm(mcs);
printf("Rate = %f (TBS %d,mod %d)\n",rate,(int)(rate*coded_bits_per_codeword),
get_Qm(mcs));
sprintf(bler_fname,"bler_%d.m",mcs);
bler_fd = fopen(bler_fname,"w");
//fprintf(bler_fd,"bler = [");
for (i=0; i<2; i++) {
s_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
s_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
// r_re0[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
// bzero(r_re0[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
// r_im0[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
// bzero(r_im0[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
}
PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = 0x1234;
// Fill in UL_alloc
UL_alloc_pdu.type = 0;
UL_alloc_pdu.hopping = 0;
UL_alloc_pdu.rballoc = UL_RB_ALLOC;
UL_alloc_pdu.mcs = 1;
UL_alloc_pdu.ndi = 1;
UL_alloc_pdu.TPC = 0;
UL_alloc_pdu.cqi_req = 1;
CCCH_alloc_pdu.type = 0;
CCCH_alloc_pdu.vrb_type = 0;
CCCH_alloc_pdu.rballoc = CCCH_RB_ALLOC;
CCCH_alloc_pdu.ndi = 1;
CCCH_alloc_pdu.mcs = 1;
CCCH_alloc_pdu.harq_pid = 0;
DLSCH_alloc_pdu2.rah = 0;
DLSCH_alloc_pdu2.rballoc = DLSCH_RB_ALLOC;
DLSCH_alloc_pdu2.TPC = 0;
DLSCH_alloc_pdu2.dai = 0;
DLSCH_alloc_pdu2.harq_pid = 0;
DLSCH_alloc_pdu2.tb_swap = 0;
DLSCH_alloc_pdu2.mcs1 = mcs;
DLSCH_alloc_pdu2.ndi1 = 1;
DLSCH_alloc_pdu2.rv1 = 0;
// Forget second codeword
DLSCH_alloc_pdu2.tpmi = 0 ; // precoding
// Create transport channel structures for SI pdus
PHY_vars_eNb->dlsch_eNb_SI = new_eNb_dlsch(1,1,0);
PHY_vars_UE->dlsch_ue_SI[0] = new_ue_dlsch(1,1,0);
PHY_vars_eNb->dlsch_eNb_SI->rnti = SI_RNTI;
PHY_vars_UE->dlsch_ue_SI[0]->rnti = SI_RNTI;
eNB2UE = new_channel_desc(PHY_vars_eNb->lte_frame_parms.nb_antennas_tx,
PHY_vars_UE->lte_frame_parms.nb_antennas_rx,
nb_taps,
channel_length,
amps,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
.999,
0,
0,
0);
// Create transport channel structures for 2 transport blocks (MIMO)
for (i=0; i<2; i++) {
PHY_vars_eNb->dlsch_eNb[0][i] = new_eNb_dlsch(1,8,0);
PHY_vars_UE->dlsch_ue[0][i] = new_ue_dlsch(1,8,0);
if (!PHY_vars_eNb->dlsch_eNb[0][i]) {
printf("Can't get eNb dlsch structures\n");
exit(-1);
}
if (!PHY_vars_UE->dlsch_ue[0][i]) {
printf("Can't get ue dlsch structures\n");
exit(-1);
}
PHY_vars_eNb->dlsch_eNb[0][i]->rnti = 0x1234;
PHY_vars_UE->dlsch_ue[0][i]->rnti = 0x1234;
}
if (DLSCH_alloc_pdu2.tpmi == 5) {
PHY_vars_eNb->dlsch_eNb[0][0]->pmi_alloc = (unsigned short)(taus()&0xffff);
PHY_vars_UE->dlsch_ue[0][0]->pmi_alloc = PHY_vars_eNb->dlsch_eNb[0][0]->pmi_alloc;
PHY_vars_eNb->eNB_UE_stats[0].DL_pmi_single = PHY_vars_eNb->dlsch_eNb[0][0]->pmi_alloc;
}
generate_eNb_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2,
0x1234,
format2_2A_M10PRB,
PHY_vars_eNb->dlsch_eNb[0],
&PHY_vars_eNb->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI,
0); //change this later
/*
generate_eNb_dlsch_params_from_dci(0,
&CCCH_alloc_pdu,
SI_RNTI,
format1A,
&dlsch_eNb_cntl,
PHY_vars_eNb->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI);
*/
// input_data = (unsigned char*) malloc(block_length/8);
// decoded_output = (unsigned char*) malloc(block_length/8);
// DCI
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2,sizeof(DCI2_5MHz_2A_M10PRB_TDD_t));
dci_alloc[0].dci_length = sizeof_DCI2_5MHz_2A_M10PRB_TDD_t;
dci_alloc[0].L = 3;
dci_alloc[0].rnti = 0x1234;
/*
memcpy(&dci_alloc[0].dci_pdu[0],&CCCH_alloc_pdu,sizeof(DCI1A_5MHz_TDD_1_6_t));
dci_alloc[0].dci_length = sizeof_DCI1A_5MHz_TDD_1_6_t;
dci_alloc[0].L = 3;
dci_alloc[0].rnti = SI_RNTI;
*/
memcpy(&dci_alloc[1].dci_pdu[0],&UL_alloc_pdu,sizeof(DCI0_5MHz_TDD0_t));
dci_alloc[1].dci_length = sizeof_DCI0_5MHz_TDD_0_t;
dci_alloc[1].L = 3;
dci_alloc[1].rnti = 0x1234;
input_buffer_length = PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->TBS/8;
printf("dlsch0: TBS %d\n",PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->TBS);
printf("Input buffer size %d bytes\n",input_buffer_length);
input_buffer = (unsigned char *)malloc(input_buffer_length+4);
for (i=0; i<input_buffer_length; i++)
input_buffer[i]= (unsigned char)(taus()&0xff);
for (SNR=snr0; SNR<snr1; SNR+=.2) {
errs[0]=0;
errs[1]=0;
errs[2]=0;
errs[3]=0;
round_trials[0] = 0;
round_trials[1] = 0;
round_trials[2] = 0;
round_trials[3] = 0;
dci_errors=0;
round=0;
for (trials = 0; trials<n_frames; trials++) {
// printf("Trial %d\n",trials);
fflush(stdout);
round=0;
while (round < 4) {
// printf("Trial %d : Round %d ",trials,round);
round_trials[round]++;
if (round == 0) {
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Ndi = 1;
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2.ndi1 = 1;
DLSCH_alloc_pdu2.rv1 = 0;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2,sizeof(DCI2_5MHz_2A_M10PRB_TDD_t));
} else {
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Ndi = 0;
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2.ndi1 = 0;
DLSCH_alloc_pdu2.rv1 = round>>1;
memcpy(&dci_alloc[0].dci_pdu[0],&DLSCH_alloc_pdu2,sizeof(DCI2_5MHz_2A_M10PRB_TDD_t));
}
dlsch_encoding(input_buffer,
&PHY_vars_eNb->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNb->dlsch_eNb[0][0]);
dlsch_scrambling(&PHY_vars_eNb->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNb->dlsch_eNb[0][0],
coded_bits_per_codeword,
0,
0);
if (n_frames==1) {
for (s=0; s<PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->C; s++) {
if (s<PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Cminus)
Kr = PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Kminus;
else
Kr = PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Kplus;
Kr_bytes = Kr>>3;
for (i=0; i<Kr_bytes; i++)
printf("%d : (%x)\n",i,PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->c[s][i]);
}
}
re_allocated = dlsch_modulation(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id],
1024,
0,
&PHY_vars_eNb->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNb->dlsch_eNb[0][0]);
if (n_frames==1)
printf("RB count %d (%d,%d)\n",re_allocated,re_allocated/PHY_vars_eNb->lte_frame_parms.num_dlsch_symbols/12,PHY_vars_eNb->lte_frame_parms.num_dlsch_symbols);
if (num_layers>1)
re_allocated = dlsch_modulation(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id],
1024,
i,
&PHY_vars_eNb->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNb->dlsch_eNb[0][1]);
num_pdcch_symbols_dummy = generate_dci_top(1,
0,
dci_alloc,
0,
1024,
&PHY_vars_eNb->lte_frame_parms,
PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id],
0);
generate_pilots(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id],
1024,
&PHY_vars_eNb->lte_frame_parms,
eNb_id,
LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
#ifdef IFFT_FPGA
if (n_frames==1) {
write_output("txsigF0.m","txsF0", PHY_vars_eNb->lte_eNB_common_vars->txdataF[0][0],300*120,1,4);
write_output("txsigF1.m","txsF1", PHY_vars_eNb->lte_eNB_common_vars->txdataF[0][1],300*120,1,4);
}
// do talbe lookup and write results to txdataF2
for (aa=0; aa<PHY_vars_eNb->lte_frame_parms.nb_antennas_tx; aa++) {
ind = 0;
// for (i=0;i<FRAME_LENGTH_COMPLEX_SAMPLES_NO_PREFIX;i++)
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX; i++)
if (((i%512)>=1) && ((i%512)<=150))
txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][aa][ind++]];
else if ((i%512)>=362)
txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][aa][ind++]];
else
txdataF2[aa][i] = 0;
// printf("ind=%d\n",ind);
}
tx_lev = 0;
for (aa=0; aa<PHY_vars_eNb->lte_frame_parms.nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(txdataF2[aa], // input
txdata[aa], // output
PHY_vars_eNb->lte_frame_parms.log2_symbol_size, // log2_fft_size
2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols
PHY_vars_eNb->lte_frame_parms.nb_prefix_samples, // number of prefix samples
PHY_vars_eNb->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors
PHY_vars_eNb->lte_frame_parms.rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(txdataF2[aa],txdata[aa],2*nsymb,frame_parms);
}
tx_lev += signal_energy(&txdata[aa][(PHY_vars_eNb->lte_frame_parms.ofdm_symbol_size+PHY_vars_eNb->lte_frame_parms.nb_prefix_samples0)],
OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
}
#else //IFFT_FPGA
if (n_frames==1) {
write_output("txsigF0.m","txsF0", PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][0],PHY_vars_eNb->lte_frame_parms.samples_per_tti,1,1);
if (PHY_vars_eNb->lte_frame_parms.nb_antennas_tx>1)
write_output("txsigF1.m","txsF1", PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][1],PHY_vars_eNb->lte_frame_parms.samples_per_tti,1,1);
}
tx_lev = 0;
for (aa=0; aa<PHY_vars_eNb->lte_frame_parms.nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][aa], // input
txdata[aa], // output
PHY_vars_eNb->lte_frame_parms.log2_symbol_size, // log2_fft_size
2*nsymb,//NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols
PHY_vars_eNb->lte_frame_parms.nb_prefix_samples, // number of prefix samples
PHY_vars_eNb->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors
PHY_vars_eNb->lte_frame_parms.rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][aa],
txdata[aa],
2*nsymb,
frame_parms);
}
tx_lev += signal_energy(&txdata[aa][0],
frame_parms->ofdm_symbol_size);
}
#endif //IFFT_FPGA
// printf("tx_lev = %d (%d)\n",tx_lev,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
if (n_frames==1)
write_output("txsig0.m","txs0", txdata[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNb->lte_frame_parms.nb_antennas_tx; aa++) {
if (awgn_flag == 0) {
s_re[aa][i] = ((double)(((short *)txdata[aa]))[(i<<1)]);
s_im[aa][i] = ((double)(((short *)txdata[aa]))[(i<<1)+1]);
} else {
for (aarx=0; aarx<PHY_vars_UE->lte_frame_parms.nb_antennas_rx; aarx++) {
if (aa==0) {
r_re[aarx][i] = ((double)(((short *)txdata[aa]))[(i<<1)]);
r_im[aarx][i] = ((double)(((short *)txdata[aa]))[(i<<1)+1]);
} else {
r_re[aarx][i] += ((double)(((short *)txdata[aa]))[(i<<1)]);
r_im[aarx][i] += ((double)(((short *)txdata[aa]))[(i<<1)+1]);
}
}
}
}
}
if (awgn_flag == 0) {
multipath_channel(eNB2UE,s_re,s_im,r_re,r_im,
2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0);
}
//(double)tx_lev_dB - (SNR+sigma2_dB));
// printf("tx_lev_dB %d\n",tx_lev_dB);
sigma2_dB = tx_lev_dB +10*log10(PHY_vars_eNb->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR;
//AWGN
sigma2 = pow(10,sigma2_dB/10);
// printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
for (i=0; i<2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa<PHY_vars_eNb->lte_frame_parms.nb_antennas_rx; aa++) {
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[2*i] = (short) (r_re[aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
((short*) PHY_vars_UE->lte_ue_common_vars.rxdata[aa])[2*i+1] = (short) (r_im[aa][i] + (iqim*r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
}
}
// lte_sync_time_init(PHY_vars_eNb->lte_frame_parms,lte_ue_common_vars);
// lte_sync_time(lte_ue_common_vars->rxdata, PHY_vars_eNb->lte_frame_parms);
// lte_sync_time_free();
/*
// optional: read rx_frame from file
if ((rx_frame_file = fopen("rx_frame.dat","r")) == NULL)
{
printf("Cannot open rx_frame.m data file\n");
exit(0);
}
result = fread((void *)PHY_vars->rx_vars[0].RX_DMA_BUFFER,4,FRAME_LENGTH_COMPLEX_SAMPLES,rx_frame_file);
printf("Read %d bytes\n",result);
result = fread((void *)PHY_vars->rx_vars[1].RX_DMA_BUFFER,4,FRAME_LENGTH_COMPLEX_SAMPLES,rx_frame_file);
printf("Read %d bytes\n",result);
fclose(rx_frame_file);
*/
if (n_frames==1) {
printf("RX level in null symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("RX level in data symbol %d\n",dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)],OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("rx_level Null symbol %f\n",10*log10(signal_energy_fp(r_re,r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
printf("rx_level data symbol %f\n",10*log10(signal_energy_fp(r_re,r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2,256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
}
if (PHY_vars_eNb->lte_frame_parms.Ncp == 0) { // normal prefix
pilot1 = 4;
pilot2 = 7;
pilot3 = 11;
} else { // extended prefix
pilot1 = 3;
pilot2 = 6;
pilot3 = 9;
}
// Inner receiver scheduling for 3 slots
for (Ns=0; Ns<3; Ns++) {
for (l=0; l<pilot2; l++) {
// printf("Ns %d, l %d\n",Ns,l);
slot_fep(&PHY_vars_UE->lte_frame_parms,
&PHY_vars_UE->lte_ue_common_vars,
l,
Ns%20,
0,
0);
if (l==0)
lte_ue_measurements(PHY_vars_UE,
&PHY_vars_UE->lte_frame_parms,
0,
1,
0);
// printf("rx_avg_power_dB %d\n",PHY_vars->PHY_measurements.rx_avg_power_dB[0]);
// printf("n0_power_dB %d\n",PHY_vars->PHY_measurements.n0_power_dB[0]);
if ((Ns==0) && (l==pilot1)) {// process symbols 0,1,2
PHY_vars_UE->lte_ue_pdcch_vars[0]->crnti = 0x1234;
PHY_vars_UE->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
if (dci_flag == 1) {
rx_pdcch(&PHY_vars_UE->lte_ue_common_vars,
PHY_vars_UE->lte_ue_pdcch_vars,
&PHY_vars_UE->lte_frame_parms,
0,
eNb_id,
(PHY_vars_UE->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
0);
dci_cnt = dci_decoding_procedure(PHY_vars_UE->lte_ue_pdcch_vars,
dci_alloc_rx,
eNb_id,
&PHY_vars_UE->lte_frame_parms,
get_mi(&PHY_vars_UE->lte_frame_parms,0),
SI_RNTI,
RA_RNTI);
// printf("dci_cnt %d\n",dci_cnt);
// write_output("dlsch00_ch0.m","dl00_ch0",&(lte_ue_common_vars->dl_ch_estimates[eNb_id][0][0]),(6*(lte_frame_parms.ofdm_symbol_size)),1,1);
// write_output("rxsigF0.m","rxsF0", PHY_vars_UE->lte_ue_common_vars.rxdataF[0],2*12*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,2,1);
// write_output("pdcch_rxF_llr.m","pdcch_llr",PHY_vars_UE->lte_ue_pdcch_vars[eNb_id]->llr,2400,1,4);
// exit(-1);
if (dci_cnt==0) {
dlsch_active = 0;
if (round==0) {
dci_errors++;
round=5;
errs[0]++;
round_trials[0]++;
// printf("DCI error trial %d errs[0] %d\n",trials,errs[0]);
}
// for (i=1;i<=round;i++)
// round_trials[i]--;
// round=5;
}
for (i=0; i<dci_cnt; i++) {
if ((dci_alloc_rx[i].rnti == C_RNTI) && (dci_alloc_rx[i].format == format2_2A_M10PRB) &&
(generate_ue_dlsch_params_from_dci(0,
(DCI2_5MHz_2A_M10PRB_TDD_t *)&dci_alloc_rx[i].dci_pdu,
C_RNTI,
format2_2A_M10PRB,
PHY_vars_UE->dlsch_ue[0],
&PHY_vars_UE->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI)==0)) {
dlsch_active = 1;
} else {
dlsch_active = 0;
if (round==0) {
dci_errors++;
errs[0]++;
round_trials[0]++;
if (n_frames==1) {
printf("DCI misdetection trial %d\n",trials);
round=5;
}
}
// for (i=1;i<=round;i++)
// round_trials[i]--;
// round=5;
}
}
/*
else if ((dci_alloc_rx[i].rnti == SI_RNTI) && (dci_alloc_rx[i].format == format1A))
generate_ue_dlsch_params_from_dci(0,
(DCI1A_5MHz_TDD_1_6_t *)&dci_alloc_rx[i].dci_pdu,
SI_RNTI,
format1A,
&dlsch_ue_cntl,
lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI);
*/
// msg("dci_cnt = %d\n",dci_cnt);
} // if dci_flag==1
else { //dci_flag == 0
generate_ue_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2,
C_RNTI,
format2_2A_M10PRB,
PHY_vars_UE->dlsch_ue[0],
&PHY_vars_UE->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI);
dlsch_active = 1;
} // if dci_flag == 1
}
if (dlsch_active == 1) {
if ((Ns==1) && (l==0)) {// process symbols 3,4,5
for (m=num_pdcch_symbols;
m<pilot2;
m++) {
// printf("Demodulating DLSCH for symbol %d (pilot 2 %d)\n",m,pilot2);
if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars,
PHY_vars_UE->lte_ue_dlsch_vars,
&PHY_vars_UE->lte_frame_parms,
eNb_id,
eNb_id_i,
PHY_vars_UE->dlsch_ue[0],
m,
(m==num_pdcch_symbols)?1:0,
dual_stream_UE,
&PHY_vars_UE->PHY_measurements,
0)==-1) {
dlsch_active = 0;
break;
}
}
}
if ((Ns==1) && (l==pilot1)) {// process symbols 6,7,8
/*
if (rx_pbch(lte_ue_common_vars,
lte_ue_pbch_vars[0],
lte_frame_parms,
0,
SISO)) {
msg("pbch decoded sucessfully!\n");
}
else {
msg("pbch not decoded!\n");
}
*/
for (m=pilot2;
m<pilot3;
m++)
if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars,
PHY_vars_UE->lte_ue_dlsch_vars,
&PHY_vars_UE->lte_frame_parms,
eNb_id,
eNb_id_i,
PHY_vars_UE->dlsch_ue[0],
m,
0,
dual_stream_UE,
&PHY_vars_UE->PHY_measurements,
0)==-1) {
dlsch_active=0;
break;
}
}
if ((Ns==2) && (l==0)) // process symbols 10,11, do deinterleaving for TTI
for (m=pilot3;
m<PHY_vars_UE->lte_frame_parms.symbols_per_tti;
m++)
if (rx_dlsch(&PHY_vars_UE->lte_ue_common_vars,
PHY_vars_UE->lte_ue_dlsch_vars,
&PHY_vars_UE->lte_frame_parms,
eNb_id,
eNb_id_i,
PHY_vars_UE->dlsch_ue[0],
m,
0,
dual_stream_UE,
&PHY_vars_UE->PHY_measurements,
0)==-1) {
dlsch_active=0;
break;
}
}
}
}
if (dlsch_active == 1) {
if (n_frames==1) {
write_output("rxsig0.m","rxs0", PHY_vars_UE->lte_ue_common_vars.rxdata[0],PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
write_output("dlsch00_ch0.m","dl00_ch0",&(PHY_vars_UE->lte_ue_common_vars.dl_ch_estimates[eNb_id][0][0]),(6*(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size)),1,1);
/*
write_output("dlsch01_ch0.m","dl01_ch0",&(lte_ue_common_vars->dl_ch_estimates[eNb_id][1][0]),(6*(lte_frame_parms.ofdm_symbol_size)),1,1);
write_output("dlsch10_ch0.m","dl10_ch0",&(lte_ue_common_vars->dl_ch_estimates[eNb_id][2][0]),(6*(lte_frame_parms.ofdm_symbol_size)),1,1);
write_output("dlsch11_ch0.m","dl11_ch0",&(lte_ue_common_vars->dl_ch_estimates[eNb_id][3][0]),(6*(lte_frame_parms.ofdm_symbol_size)),1,1);
*/
write_output("rxsigF0.m","rxsF0", PHY_vars_UE->lte_ue_common_vars.rxdataF[0],2*12*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,2,1);
write_output("rxsigF0_ext.m","rxsF0_ext", PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->rxdataF_ext[0],2*12*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,1,1);
if (PHY_vars_UE->lte_frame_parms.nb_antennas_rx>1) {
write_output("rxsig1.m","rxs1", PHY_vars_UE->lte_ue_common_vars.rxdata[1],PHY_vars_UE->lte_frame_parms.samples_per_tti,1,1);
write_output("rxsigF1.m","rxsF1", PHY_vars_UE->lte_ue_common_vars.rxdataF[1],2*12*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,2,1);
write_output("rxsigF1_ext.m","rxsF1_ext", PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->rxdataF_ext[1],2*12*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,1,1);
}
write_output("dlsch00_ch0_ext.m","dl00_ch0_ext",PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->dl_ch_estimates_ext[0],300*12,1,1);
if (PHY_vars_eNb->lte_frame_parms.nb_antennas_tx>1) {
write_output("dlsch01_ch0_ext.m","dl01_ch0_ext",PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->dl_ch_estimates_ext[2],300*12,1,1);
}
write_output("pdcchF0_ext.m","pdcchF_ext", PHY_vars_UE->lte_ue_pdcch_vars[eNb_id]->rxdataF_ext[0],2*3*PHY_vars_UE->lte_frame_parms.ofdm_symbol_size,1,1);
write_output("pdcch00_ch0_ext.m","pdcch00_ch0_ext",PHY_vars_UE->lte_ue_pdcch_vars[eNb_id]->dl_ch_estimates_ext[0],300*3,1,1);
/*
write_output("dlsch01_ch0_ext.m","dl01_ch0_ext",lte_ue_dlsch_vars[eNb_id]->dl_ch_estimates_ext[1],300*12,1,1);
write_output("dlsch10_ch0_ext.m","dl10_ch0_ext",lte_ue_dlsch_vars[eNb_id]->dl_ch_estimates_ext[2],300*12,1,1);
write_output("dlsch11_ch0_ext.m","dl11_ch0_ext",lte_ue_dlsch_vars[eNb_id]->dl_ch_estimates_ext[3],300*12,1,1);
write_output("dlsch_rho.m","dl_rho",lte_ue_dlsch_vars[eNb_id]->rho[0],300*12,1,1);
*/
write_output("dlsch_rxF_comp0.m","dlsch0_rxF_comp0",PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->rxdataF_comp[0],300*(-(PHY_vars_UE->lte_frame_parms.Ncp*2)+14),1,1);
write_output("pdcch_rxF_comp0.m","pdcch0_rxF_comp0",PHY_vars_UE->lte_ue_pdcch_vars[eNb_id]->rxdataF_comp[0],4*300,1,1);
write_output("dlsch_rxF_llr.m","dlsch_llr",PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->llr[0],coded_bits_per_codeword,1,0);
write_output("pdcch_rxF_llr.m","pdcch_llr",PHY_vars_UE->lte_ue_pdcch_vars[eNb_id]->llr,2400,1,4);
write_output("dlsch_mag1.m","dlschmag1",PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->dl_ch_mag,300*12,1,1);
write_output("dlsch_mag2.m","dlschmag2",PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->dl_ch_magb,300*12,1,1);
}
// printf("Calling decoding (Ndi %d, harq_pid %d)\n",
// dlsch_ue[0]->harq_processes[0]->Ndi,
// dlsch_ue[0]->current_harq_pid);
dlsch_unscrambling(&PHY_vars_UE->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_UE->dlsch_ue[0][0],
coded_bits_per_codeword,
PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->llr[0],
0,
0);
ret = dlsch_decoding(PHY_vars_UE->lte_ue_dlsch_vars[eNb_id]->llr[0],
&PHY_vars_UE->lte_frame_parms,
PHY_vars_UE->dlsch_ue[0][0],
0,
num_pdcch_symbols);
if (ret <= MAX_TURBO_ITERATIONS) {
if (n_frames==1)
printf("No DLSCH errors found\n");
// exit(-1);
round=5;
} else {
errs[round]++;
if (n_frames==1) {
printf("DLSCH errors found\n");
for (s=0; s<PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->C; s++) {
if (s<PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Cminus)
Kr = PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kminus;
else
Kr = PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->Kplus;
Kr_bytes = Kr>>3;
printf("Decoded_output (Segment %d):\n",s);
for (i=0; i<Kr_bytes; i++)
printf("%d : %x (%x)\n",i,PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c[s][i],PHY_vars_UE->dlsch_ue[0][0]->harq_processes[0]->c[s][i]^PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->c[s][i]);
}
exit(-1);
}
// printf("round %d errors %d/%d\n",round,errs[round],trials);
round++;
if (n_frames==1)
printf("DLSCH in error in round %d\n",round);
}
}
} //round
// printf("\n");
if ((errs[0]>=100) && (trials>(n_frames/2)))
break;
} //trials
printf("\n**********************SNR = %f dB (tx_lev %f, sigma2_dB %f)**************************\n",
SNR,
(double)tx_lev_dB+10*log10(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)),
sigma2_dB);
printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e), dci_errors %d/%d, Pe = %e => effective rate %f (%f), normalized delay %f (%f)\n",
errs[0],
round_trials[0],
errs[1],
round_trials[1],
errs[2],
round_trials[2],
errs[3],
round_trials[3],
(double)errs[0]/(round_trials[0]),
(double)errs[1]/(round_trials[1]),
(double)errs[2]/(round_trials[2]),
(double)errs[3]/(round_trials[3]),
dci_errors,
round_trials[0],
(double)dci_errors/(round_trials[0]),
rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])),
rate,
(1.0*(round_trials[0]-errs[0])+2.0*(round_trials[1]-errs[1])+3.0*(round_trials[2]-errs[2])+4.0*(round_trials[3]-errs[3]))/((double)round_trials[0])/
(double)PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->TBS,
(1.0*(round_trials[0]-errs[0])+2.0*(round_trials[1]-errs[1])+3.0*(round_trials[2]-errs[2])+4.0*(round_trials[3]-errs[3]))/((double)round_trials[0]));
fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d;%d\n",
SNR,
mcs,
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->TBS,
rate,
errs[0],
round_trials[0],
errs[1],
round_trials[1],
errs[2],
round_trials[2],
errs[3],
round_trials[3],
dci_errors);
if (((double)errs[0]/(round_trials[0]))<1e-2)
break;
} // SNR
fclose(bler_fd);
printf("Freeing dlsch structures\n");
for (i=0; i<2; i++) {
printf("eNb %d\n",i);
free_eNb_dlsch(PHY_vars_eNb->dlsch_eNb[0][i]);
printf("UE %d\n",i);
free_ue_dlsch(PHY_vars_UE->dlsch_ue[0][i]);
}
#ifdef IFFT_FPGA
printf("Freeing transmit signals\n");
free(txdataF2[0]);
free(txdataF2[1]);
free(txdataF2);
free(txdata[0]);
free(txdata[1]);
free(txdata);
#endif
printf("Freeing channel I/O\n");
for (i=0; i<2; i++) {
free(s_re[i]);
free(s_im[i]);
free(r_re[i]);
free(r_im[i]);
}
free(s_re);
free(s_im);
free(r_re);
free(r_im);
// lte_sync_time_free();
return(0);
}
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <unistd.h>
#include "SIMULATION/TOOLS/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"
#ifdef IFFT_FPGA
#include "PHY/LTE_REFSIG/mod_table.h"
#endif
#include "ARCH/CBMIMO1/DEVICE_DRIVER/vars.h"
#include "SCHED/defs.h"
#include "SCHED/vars.h"
//#define AWGN
//#define NO_DCI
#define BW 7.68
//#define OUTPUT_DEBUG 1
#define RBmask0 0x00fc00fc
#define RBmask1 0x0
#define RBmask2 0x0
#define RBmask3 0x0
unsigned char dlsch_cqi;
#define NUM_OF_RN 2
PHY_VARS_eNB *PHY_vars_eNb;
PHY_VARS_UE *PHY_vars_UE[NUM_OF_RN]; // this variable is modified to enable multiple relay nodes (# Relay Node = "NUM_OF_RN");
// In the following function the first parameter ("unsigned char numRN") is added for # RN in the Parallel Relay Network (PRN);
void lte_param_init(unsigned char N_tx, unsigned char N_rx, unsigned char transmission_mode, uint8_t extended_prefix_flag)
{
unsigned int j;
LTE_DL_FRAME_PARMS *lte_frame_parms;
printf("Start lte_param_init\n");
PHY_vars_eNb = (PHY_VARS_eNB *)malloc(sizeof(PHY_VARS_eNB));
for(j=0; j < NUM_OF_RN; j++) {
PHY_vars_UE[j] = (PHY_VARS_UE *)malloc(sizeof(PHY_VARS_UE));
}
PHY_config = (PHY_CONFIG *)malloc(sizeof(PHY_CONFIG));
mac_xface = (MAC_xface *)malloc(sizeof(MAC_xface));
randominit(0);
set_taus_seed(0);
lte_frame_parms = &(PHY_vars_eNb->lte_frame_parms);
lte_frame_parms->N_RB_DL = 25; //50 for 10MHz and 25 for 5 MHz
lte_frame_parms->N_RB_UL = 25;
lte_frame_parms->Ncp = extended_prefix_flag;
lte_frame_parms->Nid_cell = 0;
lte_frame_parms->nushift = 0;
lte_frame_parms->nb_antennas_tx = N_tx;
lte_frame_parms->nb_antennas_rx = N_rx;
lte_frame_parms->first_dlsch_symbol = 4;
lte_frame_parms->num_dlsch_symbols = (lte_frame_parms->Ncp==0) ? 8: 6; // why "8" but not "7" ?
lte_frame_parms->Ng_times6 = 1;
// lte_frame_parms->Csrs = 2;
// lte_frame_parms->Bsrs = 0;
// lte_frame_parms->kTC = 0;
// lte_frame_parms->n_RRC = 0;
lte_frame_parms->mode1_flag = (transmission_mode == 1)? 1 : 0;
init_frame_parms(lte_frame_parms);
copy_lte_parms_to_phy_framing(lte_frame_parms, &(PHY_config->PHY_framing));
phy_init_top(N_tx, lte_frame_parms); //allocation
lte_frame_parms->twiddle_fft = twiddle_fft;
lte_frame_parms->twiddle_ifft = twiddle_ifft;
lte_frame_parms->rev = rev;
for(j=0; j < NUM_OF_RN; j++) {
PHY_vars_UE[j]->lte_frame_parms = *lte_frame_parms;
}
/*
lte_gold(lte_frame_parms);
generate_ul_ref_sigs();
generate_ul_ref_sigs_rx();
generate_64qam_table();
generate_16qam_table();
generate_RIV_tables();
generate_pcfich_reg_mapping(lte_frame_parms);
generate_phich_reg_mapping(lte_frame_parms);
*/
phy_init_lte_top(lte_frame_parms);
for(j=0; j < NUM_OF_RN; j++) {
phy_init_lte_ue(&PHY_vars_UE[j]->lte_frame_parms,
&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars_SI,
PHY_vars_UE[j]->lte_ue_dlsch_vars_ra,
PHY_vars_UE[j]->lte_ue_pbch_vars,
PHY_vars_UE[j]->lte_ue_pdcch_vars,
PHY_vars_UE[j]);
}
phy_init_lte_eNB(&PHY_vars_eNb->lte_frame_parms,
&PHY_vars_eNb->lte_eNB_common_vars,
PHY_vars_eNb->lte_eNB_ulsch_vars,
0,
PHY_vars_eNb,
0,
0);
printf("Done lte_param_init\n");
}
DCI0_5MHz_TDD0_t UL_alloc_pdu;
DCI1A_5MHz_TDD_1_6_t CCCH_alloc_pdu;
DCI2_5MHz_2A_L10PRB_TDD_t DLSCH_alloc_pdu1;
DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2;
#define UL_RB_ALLOC 0x1ff;
#define CCCH_RB_ALLOC computeRIV(PHY_vars_eNb->lte_frame_parms.N_RB_UL, 0, 2)
#define DLSCH_RB_ALLOC 0x1fbf // igore DC component,RB13
//#define DLSCH_RB_ALLOC 0x1f0f // igore DC component,RB13
int main(int argc, char **argv)
{
char c;
int i, j, aa;
#ifdef OUTPUT_DEBUG
int s, Kr, Kr_bytes;
#endif
double sigma2, sigma2_dB = 10, SNR, snr0 = -2.0, snr1, rate;
int **txdata;
#ifdef IFFT_FPGA
int **txdataF2;
#endif
LTE_DL_FRAME_PARMS *frame_parms;
double **s_re, **s_im;
double **r_re[NUM_OF_RN], **r_im[NUM_OF_RN]; //3D received signal matrices in the form of r_re[# of RN][][], r_im[# of RN][][];
double amps[8] = {0.3868472 , 0.3094778 , 0.1547389 , 0.0773694 , 0.0386847 , 0.0193424 , 0.0096712 , 0.0038685};
double aoa = .03;
double ricean_factor = 0.0000005;
double Td = 0.8;
double iqim = 0.0;
uint8_t channel_length, nb_taps=8;
uint8_t extended_prefix_flag=0, transmission_mode=1, n_tx=1, n_rx=1;
int eNb_id = 0, eNb_id_i = 1;
unsigned char mcs, dual_stream_UE=0, awgn_flag=0, round, dci_flag=1;
unsigned short NB_RB = conv_nprb(0, DLSCH_RB_ALLOC);
unsigned char Ns, l, m;
unsigned char *input_buffer;
unsigned short input_buffer_length;
unsigned int ret;
unsigned int coded_bits_per_codeword, nsymb, dci_cnt;
unsigned int tx_lev, tx_lev_dB, dlsch_active=0, num_layers;
unsigned int trials, dci_errors=0, round_trials[4]= {0}, error_tot[4]= {0}, decode_error=1;
int re_allocated;
FILE *bler_fd;
char bler_fname[20];
DCI_ALLOC_t dci_alloc[8], dci_alloc_rx[NUM_OF_RN][8]; // where 1st dimension of "dci_alloc_rx" will hold "# of RNs (UEs)" in the system;
int n_frames;
channel_desc_t *eNB2UE[NUM_OF_RN]; //which is a pointer array whose size will be the "# of RNs (UEs)" in the system;
uint8_t num_pdcch_symbols;
uint8_t pilot1, pilot2, pilot3;
//unsigned int NUM_OF_RN = 1;
dci_alloc[0].dci_length = sizeof_DCI0_5MHz_TDD_0_t;
channel_length = (int) 11+2*BW*Td;
//NUM_OF_RN = 1; // by default this program acts exactly as 'dlsim.c';
num_layers = 1;
mcs = 0;
n_frames = 1000;
snr0 = 10;
while ((c = getopt (argc, argv, "hadpm:n:s:t:c:x:y:z:")) != -1) {
switch (c) {
case 'a':
awgn_flag = 1;
break;
case 'd':
dci_flag = 1;
break;
case 'm':
mcs = atoi(optarg);
break;
case 'n':
n_frames = atoi(optarg);
break;
case 's':
snr0 = atoi(optarg);
break;
case 't':
Td = atof(optarg);
break;
case 'p':
extended_prefix_flag = 1;
break;
case 'c':
num_pdcch_symbols = atoi(optarg);
break;
case 'x':
transmission_mode = atoi(optarg);
if ((transmission_mode!=1) || (transmission_mode!=2) || (transmission_mode!=6)) {
msg("Unsupported transmission mode %d\n", transmission_mode);
exit(-1);
}
break;
case 'y':
n_tx = atoi(optarg);
if ((n_tx == 0) || (n_tx > 2)) {
msg("Unsupported number of tx antennas %d\n", n_tx);
exit(-1);
}
break;
case 'z':
n_rx = atoi(optarg);
if ((n_rx == 0) || (n_rx > 2)) {
msg("Unsupported number of rx antennas %d\n", n_rx);
exit(-1);
}
break;
case 'h':
default:
printf("%s -h(elp) -a(wgn on) -d(ci decoding on) -p(extended prefix on) -m mcs -n n_frames -r NUM_OF_RN -s snr0 -t Delayspread -x transmission mode (1,2,6) -y TXant -z RXant\n", argv[0]);
printf("-h This message\n");
printf("-a Use AWGN channel and not multipath\n");
printf("-d Transmit the DCI and compute its error statistics and the overall throughput\n");
printf("-p Use extended prefix mode\n");
printf("-n Number of frames to simulate\n");
printf("-s Starting SNR, runs from SNR to SNR + 5 dB. If n_frames is 1 then just SNR is simulated and MATLAB/OCTAVE output is generated\n");
printf("-t Delay spread for multipath channel\n");
printf("-x Transmission mode (1,2,6 for the moment)\n");
printf("-y Number of TX antennas used in eNB\n");
printf("-z Number of RX antennas used in UE\n");
exit(1);
break;
}
}
lte_param_init(n_tx, n_rx, transmission_mode, extended_prefix_flag);
printf("Setting mcs = %d\n", mcs);
printf("NPRB = %d\n", NB_RB);
printf("n_frames = %d\n", n_frames);
printf("Transmission mode %d with %dx%d antenna configuration\n", transmission_mode, n_tx, n_rx);
snr1 = snr0 + 2.0; // simulated SNR range: [snr0:2.0:snr1];
printf("SNR0 %f, SNR1 %f\n", snr0, snr1);
frame_parms = &PHY_vars_eNb->lte_frame_parms;
#ifdef IFFT_FPGA
txdata = (int **)malloc16(2*sizeof(int*));
txdata[0] = (int *)malloc16(FRAME_LENGTH_BYTES);
txdata[1] = (int *)malloc16(FRAME_LENGTH_BYTES);
bzero(txdata[0], FRAME_LENGTH_BYTES);
bzero(txdata[1], FRAME_LENGTH_BYTES);
txdataF2 = (int **)malloc16(2*sizeof(int*));
txdataF2[0] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
txdataF2[1] = (int *)malloc16(FRAME_LENGTH_BYTES_NO_PREFIX);
bzero(txdataF2[0], FRAME_LENGTH_BYTES_NO_PREFIX);
bzero(txdataF2[1], FRAME_LENGTH_BYTES_NO_PREFIX);
#else
txdata = PHY_vars_eNb->lte_eNB_common_vars.txdata[eNb_id];
#endif
// Allocating memory and test the dynamic allocations;
s_re = malloc(2*sizeof(double*));
s_im = malloc(2*sizeof(double*));
// r_re = (double ***)malloc(NUM_OF_RN*sizeof(double**));
// r_im = (double ***)malloc(NUM_OF_RN*sizeof(double**));
// dci_alloc_rx = (DCI_ALLOC_t **)malloc(NUM_OF_RN*sizeof(DCI_ALLOC_t*));
// eNB2UE = (channel_desc_t **)malloc(NUM_OF_RN*sizeof(channel_desc_t*));
if (!(s_re && s_im)) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
for(j=0; j < NUM_OF_RN; j++) {
r_re[j] = (double **)malloc(2*sizeof(double*));
r_im[j] = (double **)malloc(2*sizeof(double*));
//dci_alloc_rx[j] = (DCI_ALLOC_t *)malloc(8*sizeof(DCI_ALLOC_t));
if (!(r_re[j] && r_im[j])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
}
for (i=0; i<2; i++) {
s_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
s_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
if (!(s_re[i] && s_im[i])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
for(j=0; j<NUM_OF_RN; j++) {
r_re[j][i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_im[j][i] = (double *)malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
if (!(r_re[j][i] && r_im[j][i])) {
printf("Cannot allocate memory!\n");
exit(EXIT_FAILURE);
}
}
}
nsymb = (PHY_vars_eNb->lte_frame_parms.Ncp == 0) ? 14 : 12;
coded_bits_per_codeword = get_G(&PHY_vars_eNb->lte_frame_parms, NB_RB, get_Qm(mcs), num_pdcch_symbols);
#ifdef TBS_FIX
rate = (double)3*dlsch_tbs25[get_I_TBS(mcs)][NB_RB-1]/(4*coded_bits_per_codeword);
#else
rate = (double)dlsch_tbs25[get_I_TBS(mcs)][NB_RB-1]/(coded_bits_per_codeword);
#endif
printf("Rate = %f (mod %d)\n",(((double)dlsch_tbs25[get_I_TBS(mcs)][NB_RB-1])*3/4)/coded_bits_per_codeword, get_Qm(mcs));
sprintf(bler_fname,"bler_relay_DF_%d_%d.m", mcs, NUM_OF_RN);
bler_fd = fopen(bler_fname,"w");
for(j=0; j < NUM_OF_RN; j++) {
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->crnti = 0x1234;
}
// Fill in UL_alloc
UL_alloc_pdu.type = 0;
UL_alloc_pdu.hopping = 0;
UL_alloc_pdu.rballoc = UL_RB_ALLOC;
UL_alloc_pdu.mcs = 1;
UL_alloc_pdu.ndi = 1;
UL_alloc_pdu.TPC = 0;
UL_alloc_pdu.cqi_req = 1;
CCCH_alloc_pdu.type = 0;
CCCH_alloc_pdu.vrb_type = 0;
CCCH_alloc_pdu.rballoc = CCCH_RB_ALLOC;
CCCH_alloc_pdu.ndi = 1;
CCCH_alloc_pdu.mcs = 1;
CCCH_alloc_pdu.harq_pid = 0;
DLSCH_alloc_pdu2.rah = 0;
DLSCH_alloc_pdu2.rballoc = DLSCH_RB_ALLOC;
DLSCH_alloc_pdu2.TPC = 0;
DLSCH_alloc_pdu2.dai = 0;
DLSCH_alloc_pdu2.harq_pid = 0;
DLSCH_alloc_pdu2.tb_swap = 0;
DLSCH_alloc_pdu2.mcs1 = mcs;
DLSCH_alloc_pdu2.ndi1 = 1;
DLSCH_alloc_pdu2.rv1 = 0;
// Forget second codeword
DLSCH_alloc_pdu2.tpmi = 5 ; // precoding
// Create transport channel structures for SI pdus
PHY_vars_eNb->dlsch_eNb_SI = new_eNb_dlsch(1,1);
PHY_vars_eNb->dlsch_eNb_SI->rnti = SI_RNTI;
for(j=0; j<NUM_OF_RN; j++) {
PHY_vars_UE[j]->dlsch_ue_SI[0] = new_ue_dlsch(1,1);
PHY_vars_UE[j]->dlsch_ue_SI[0]->rnti = SI_RNTI;
}
// Create random Channels coefficients;
for(j=0; j<NUM_OF_RN; j++) {
eNB2UE[j] = new_channel_desc(1, 1,
nb_taps,
channel_length,
amps,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
.999,
0, 0, 0);
}
// Create transport channel structures for 2 transport blocks (MIMO)
for (i=0; i<2; i++) {
PHY_vars_eNb->dlsch_eNb[0][i] = new_eNb_dlsch(1,8);
if (!PHY_vars_eNb->dlsch_eNb[0][i]) {
printf("Can't get eNb dlsch structures\n");
exit(EXIT_FAILURE);
}
PHY_vars_eNb->dlsch_eNb[0][i]->rnti = 0x1234;
for(j=0; j<NUM_OF_RN; j++) {
PHY_vars_UE[j]->dlsch_ue[0][i] = new_ue_dlsch(1,8);
if (!PHY_vars_UE[j]->dlsch_ue[0][i]) {
printf("Can't get ue dlsch structures\n");
exit(EXIT_FAILURE);
}
PHY_vars_UE[j]->dlsch_ue[0][i]->rnti = 0x1234;
}
}
if (DLSCH_alloc_pdu2.tpmi == 5) {
PHY_vars_eNb->dlsch_eNb[0][0]->pmi_alloc = (unsigned short)(taus()&0xffff);
PHY_vars_eNb->eNB_UE_stats[0].DL_pmi_single = PHY_vars_eNb->dlsch_eNb[0][0]->pmi_alloc;
for(j=0; j < NUM_OF_RN; j++) {
PHY_vars_UE[j]->dlsch_ue[0][0]->pmi_alloc = PHY_vars_eNb->dlsch_eNb[0][0]->pmi_alloc;
}
}
generate_eNb_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2,
0x1234,
format2_2A_M10PRB,
PHY_vars_eNb->dlsch_eNb[0],
&PHY_vars_eNb->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI,
0); //change this later
// DCI
memcpy(&dci_alloc[0].dci_pdu[0], &DLSCH_alloc_pdu2, sizeof(DCI2_5MHz_2A_M10PRB_TDD_t));
dci_alloc[0].dci_length = sizeof_DCI2_5MHz_2A_M10PRB_TDD_t;
dci_alloc[0].L = 3;
dci_alloc[0].rnti = 0x1234;
memcpy(&dci_alloc[1].dci_pdu[0], &UL_alloc_pdu, sizeof(DCI0_5MHz_TDD0_t));
dci_alloc[1].dci_length = sizeof_DCI0_5MHz_TDD_0_t;
dci_alloc[1].L = 3;
dci_alloc[1].rnti = 0x1234;
input_buffer_length = PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->TBS/8;
printf("dlsch0: TBS %d\n", PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->TBS);
printf("Input buffer size %d bytes\n", input_buffer_length);
input_buffer = (unsigned char *)malloc(input_buffer_length+4);
for (i=0; i < input_buffer_length; i++) {
input_buffer[i] = (unsigned char)(taus()&0xff);
}
// Start of the simulation over different SNR values;
for (SNR=snr0; SNR < snr1; SNR +=.5) {
dci_errors = 0;
for(i=0; i < 4; i++) {
round_trials[i] = 0;
error_tot[i] = 0;
}
for (trials=0; trials < n_frames; trials++) {
//printf("Trial %d\n", trials);
fflush(stdout);
round = 0;
while (round < 4) {
//printf("Trial %d : Round %d \n",trials, round);
round_trials[round]++;
if (round == 0) {
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Ndi = 1;
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2.ndi1 = 1;
DLSCH_alloc_pdu2.rv1 = 0;
memcpy(&dci_alloc[0].dci_pdu[0], &DLSCH_alloc_pdu2, sizeof(DCI2_5MHz_2A_M10PRB_TDD_t));
} else {
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Ndi = 0;
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->rvidx = round>>1;
DLSCH_alloc_pdu2.ndi1 = 0;
DLSCH_alloc_pdu2.rv1 = round>>1;
memcpy(&dci_alloc[0].dci_pdu[0], &DLSCH_alloc_pdu2, sizeof(DCI2_5MHz_2A_M10PRB_TDD_t));
}
dlsch_encoding(input_buffer,
&PHY_vars_eNb->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNb->dlsch_eNb[0][0]);
#ifdef OUTPUT_DEBUG
for (s=0; s<PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->C; s++) {
if (s < PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Cminus)
Kr = PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Kminus;
else
Kr = PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->Kplus;
Kr_bytes = Kr>>3;
for (i=0; i<Kr_bytes; i++)
printf("%d : (%x)\n", i, PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->c[s][i]);
}
#endif
re_allocated = dlsch_modulation(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id],
1024,
0,
&PHY_vars_eNb->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNb->dlsch_eNb[0][0]);
#ifdef OUTPUT_DEBUG
printf("RB count %d (%d,%d)\n",re_allocated, re_allocated/PHY_vars_eNb->lte_frame_parms.num_dlsch_symbols/12, PHY_vars_eNb->lte_frame_parms.num_dlsch_symbols);
#endif
if (num_layers > 1)
re_allocated = dlsch_modulation(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id],
1024,
i, // i = Kr_bytes ==> This might be '1' !?
&PHY_vars_eNb->lte_frame_parms,
num_pdcch_symbols,
PHY_vars_eNb->dlsch_eNb[0][1]);
num_pdcch_symbols = generate_dci_top(1,
0,
dci_alloc,
0,
1024,
&PHY_vars_eNb->lte_frame_parms,
PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id],
0);
generate_pilots(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id],
1024,
&PHY_vars_eNb->lte_frame_parms,
eNb_id,
LTE_NUMBER_OF_SUBFRAMES_PER_FRAME);
#ifdef IFFT_FPGA
#ifdef OUTPUT_DEBUG
write_output("txsigF0.m","txsF0", PHY_vars_eNb->lte_eNB_common_vars->txdataF[0][0],300*120,1,4);
write_output("txsigF1.m","txsF1", PHY_vars_eNb->lte_eNB_common_vars->txdataF[0][1],300*120,1,4);
#endif
// do table lookup and write results to txdataF2
for (aa=0; aa < PHY_vars_eNb->lte_frame_parms.nb_antennas_tx; aa++) {
ind = 0;
for (i=0; i < 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX; i++)
if (((i%512) >= 1) && ((i%512) <= 150))
txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][aa][ind++]];
else if ((i%512) >= 362)
txdataF2[aa][i] = ((int*)mod_table)[PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][aa][ind++]];
else
txdataF2[aa][i] = 0;
}
tx_lev = 0;
for (aa=0; aa < PHY_vars_eNb->lte_frame_parms.nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(txdataF2[aa], // input
txdata[aa], // output
PHY_vars_eNb->lte_frame_parms.log2_symbol_size, // log2_fft_size
2*nsymb, //NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols
PHY_vars_eNb->lte_frame_parms.nb_prefix_samples, // number of prefix samples
PHY_vars_eNb->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors
PHY_vars_eNb->lte_frame_parms.rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(txdataF2[aa], txdata[aa], 2*nsymb, frame_parms);
}
tx_lev += signal_energy(&txdata[aa][0], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES);
}
#else //IFFT_FPGA
#ifdef OUTPUT_DEBUG
write_output("txsigF0.m","txsF0", PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][0],PHY_vars_eNb->lte_frame_parms.samples_per_tti,1,1);
if (PHY_vars_eNb->lte_frame_parms.nb_antennas_tx > 1)
write_output("txsigF1.m","txsF1", PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][1],PHY_vars_eNb->lte_frame_parms.samples_per_tti,1,1);
#endif
tx_lev = 0;
for (aa=0; aa < PHY_vars_eNb->lte_frame_parms.nb_antennas_tx; aa++) {
if (frame_parms->Ncp == 1)
PHY_ofdm_mod(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][aa], // input
txdata[aa], // output
PHY_vars_eNb->lte_frame_parms.log2_symbol_size, // log2_fft_size
2*nsymb, //NUMBER_OF_SYMBOLS_PER_FRAME, // number of symbols
PHY_vars_eNb->lte_frame_parms.nb_prefix_samples, // number of prefix samples
PHY_vars_eNb->lte_frame_parms.twiddle_ifft, // IFFT twiddle factors
PHY_vars_eNb->lte_frame_parms.rev, // bit-reversal permutation
CYCLIC_PREFIX);
else {
normal_prefix_mod(PHY_vars_eNb->lte_eNB_common_vars.txdataF[eNb_id][aa], txdata[aa], 2*nsymb, frame_parms);
}
tx_lev += signal_energy(&txdata[aa][0], frame_parms->ofdm_symbol_size);
}
#endif //IFFT_FPGA
tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
#ifdef OUTPUT_DEBUG
write_output("txsig0.m", "txs0", txdata[0], FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
#endif
for (i=0; i < 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa < PHY_vars_eNb->lte_frame_parms.nb_antennas_tx; aa++) {
if (awgn_flag == 0) {
s_re[aa][i] = ((double)(((short *)txdata[aa]))[(i<<1)]);
s_im[aa][i] = ((double)(((short *)txdata[aa]))[(i<<1)+1]);
} else {
for(j=0; j<NUM_OF_RN; j++) {
r_re[j][aa][i] = ((double)(((short *)txdata[aa]))[(i<<1)]);
r_im[j][aa][i] = ((double)(((short *)txdata[aa]))[(i<<1)+1]);
}
}
}
}
if (awgn_flag == 0) {
for(j=0; j<NUM_OF_RN; j++) {
multipath_channel(eNB2UE[j], s_re, s_im, r_re[j], r_im[j], 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES, 0);
}
}
sigma2_dB = tx_lev_dB + 10*log10(PHY_vars_eNb->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)) - SNR;
//AWGN
sigma2 = pow(10, sigma2_dB/10);
for (i=0; i < 2*nsymb*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES; i++) {
for (aa=0; aa < PHY_vars_eNb->lte_frame_parms.nb_antennas_rx; aa++) {
for (j=0; j < NUM_OF_RN; j++) { // loop over all Relay nodes;
((short*)PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[2*i] =(short)(r_re[j][aa][i] + sqrt(sigma2/2)*gaussdouble(0.0,1.0));
((short*)PHY_vars_UE[j]->lte_ue_common_vars.rxdata[aa])[2*i+1]=(short)(r_im[j][aa][i]+(iqim*r_re[j][aa][i])+sqrt(sigma2/2)*gaussdouble(0.0,1.0));
}
}
}
// lte_sync_time_init(PHY_vars_eNb->lte_frame_parms,lte_ue_common_vars);
// lte_sync_time(lte_ue_common_vars->rxdata, PHY_vars_eNb->lte_frame_parms);
// lte_sync_time_free();
#ifdef OUTPUT_DEBUG
for (j=0; j < NUM_OF_RN; j++) { // loop over all Relay nodes;
printf("RX level in null symbol %d\n", dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+OFDM_SYM BOL_SIZE_COMPLEX_SAMPLES], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
printf("RX level in data symbol %d\n", dB_fixed(signal_energy(&PHY_vars_UE->lte_ue_common_vars.rxdata[0][160+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES)], OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2)));
}
printf("rx_level Null symbol %f\n", 10*log10(signal_energy_fp(r_re, r_im, 1, OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2, 256+(OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
printf("rx_level data symbol %f\n", 10*log10(signal_energy_fp(r_re, r_im, 1, OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES/2, 256+(2*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES))));
#endif
if (PHY_vars_eNb->lte_frame_parms.Ncp == 0) { // normal prefix
pilot1 = 4;
pilot2 = 7;
pilot3 = 11;
} else { // extended prefix
pilot1 = 3;
pilot2 = 6;
pilot3 = 9;
}
/* Once, at one of the RS, the DLSCH pkt has been decoded, then we continue with the following trial!
Declare an error iff all RNs fail to decode!*/
for (j=0; j < NUM_OF_RN; j++) { // loop over all Relay nodes;
// Inner receiver scheduling for 3 slots
for (Ns=0; Ns < 3; Ns++) {
for (l=0; l < pilot2; l++) {
slot_fep(&PHY_vars_UE[j]->lte_frame_parms,
&PHY_vars_UE[j]->lte_ue_common_vars,
l,
Ns%20,
0, 0);
if (l == 0)
lte_ue_measurements(PHY_vars_UE[j],
&PHY_vars_UE[j]->lte_frame_parms,
0,
1,
0);
// printf("rx_avg_power_dB %d\n",PHY_vars->PHY_measurements.rx_avg_power_dB[0]);
// printf("n0_power_dB %d\n",PHY_vars->PHY_measurements.n0_power_dB[0]);
if ((Ns==0) && (l==pilot1)) {// process symbols 0,1,2
if (dci_flag == 1) { // this flag shows whether DCI packets will be decoded or not; if 1 then decode DCI; otherwise continue with DLSCH;
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->crnti = 0x1234;
PHY_vars_UE[j]->lte_ue_pdcch_vars[0]->num_pdcch_symbols = num_pdcch_symbols;
rx_pdcch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_pdcch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNb_id,
(PHY_vars_UE[j]->lte_frame_parms.mode1_flag == 1) ? SISO : ALAMOUTI,
0);
dci_cnt = dci_decoding_procedure(PHY_vars_UE[j]->lte_ue_pdcch_vars,
dci_alloc_rx[j],
eNb_id,
&PHY_vars_UE[j]->lte_frame_parms,
SI_RNTI,
RA_RNTI); // what does the return value 'dci_cnt' hold ?
if (dci_cnt == 0) {
dlsch_active = 0;
if(round == 0) { // if an error in the first DCI, then contunue with the next transmission block !?;
if (j == (NUM_OF_RN-1)) {
dci_errors++;
error_tot[0]++;
round_trials[0]++;
round = 5;
//printf("DCI error trial %d errs[0] %d\n",trials,errs[0]);
}
}
}
for (i=0; i < dci_cnt; i++) {
if ((dci_alloc_rx[j][i].rnti == C_RNTI) && (dci_alloc_rx[j][i].format == format2_2A_M10PRB) &&
(generate_ue_dlsch_params_from_dci(0,
(DCI2_5MHz_2A_M10PRB_TDD_t *)&dci_alloc_rx[j][i].dci_pdu,
C_RNTI,
format2_2A_M10PRB,
PHY_vars_UE[j]->dlsch_ue[0],
&PHY_vars_UE[j]->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI) == 0)) {
dlsch_active = 1;
} else {
dlsch_active = 0;
if(round == 0) { // if an error in the first DCI, then contunue with the next transmission block !?;
if (j == (NUM_OF_RN-1)) {
dci_errors++;
error_tot[0]++;
round_trials[0]++;
#ifdef OUTPUT_DEBUG
printf("DCI misdetection trial %d\n", trials);
round = 5;
#endif
}
}
}
}
} // if (dci_flag == 1)
else { // if (dci_flag == 0)
generate_ue_dlsch_params_from_dci(0,
&DLSCH_alloc_pdu2,
C_RNTI,
format2_2A_M10PRB,
PHY_vars_UE[j]->dlsch_ue[0],
&PHY_vars_UE[j]->lte_frame_parms,
SI_RNTI,
RA_RNTI,
P_RNTI);
dlsch_active = 1;
} // if (dci_flag == 1)
}
if (dlsch_active == 1) {
if ((Ns==1) && (l==0)) {// process symbols 3,4,5
for (m=num_pdcch_symbols; m < pilot2; m++) {
// printf("Demodulating DLSCH for symbol %d (pilot 2 %d)\n", m, pilot2);
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNb_id,
eNb_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
m,
(m==num_pdcch_symbols)?1:0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
0) == -1) {
dlsch_active = 0;
break;
}
}
}
if ((Ns==1) && (l==pilot1)) {// process symbols 6,7,8
for (m=pilot2; m < pilot3; m++)
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNb_id,
eNb_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
m,
0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
0) == -1) {
dlsch_active = 0;
break;
}
}
if ((Ns==2) && (l==0)) // process symbols 10,11, do deinterleaving for TTI
for (m=pilot3; m < PHY_vars_UE[j]->lte_frame_parms.symbols_per_tti; m++)
if (rx_dlsch(&PHY_vars_UE[j]->lte_ue_common_vars,
PHY_vars_UE[j]->lte_ue_dlsch_vars,
&PHY_vars_UE[j]->lte_frame_parms,
eNb_id,
eNb_id_i,
PHY_vars_UE[j]->dlsch_ue[0],
m,
0,
dual_stream_UE,
&PHY_vars_UE[j]->PHY_measurements,
0) == -1) {
dlsch_active = 0;
break;
}
}
} // loop over l;
} // loop over Ns;
if (dlsch_active == 1) {
#ifdef OUTPUT_DEBUG
write_output("rxsig0.m","rxs0", PHY_vars_UE[j]->lte_ue_common_vars.rxdata[0],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
write_output("dlsch00_ch0.m","dl00_ch0", &(PHY_vars_UE[j]->lte_ue_common_vars.dl_ch_estimates[eNb_id][0][0]), (6*(PHY_vars_UE->lte_frame_parms.ofdm_symbol_size)), 1,1);
write_output("rxsigF0.m","rxsF0", PHY_vars_UE[j]->lte_ue_common_vars.rxdataF[0], 2*12*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size,2,1);
write_output("rxsigF0_ext.m","rxsF0_ext", PHY_vars_UE[j]->lte_ue_dlsch_vars[eNb_id]->rxdataF_ext[0], 2*12*PHY_vars_UE[j->lte_frame_parms.ofdm_symbol_size,1,1);
write_output("dlsch00_ch0_ext.m","dl00_ch0_ext", PHY_vars_UE[j]->lte_ue_dlsch_vars[eNb_id]->dl_ch_estimates_ext[0],300*12,1,1);
write_output("pdcchF0_ext.m","pdcchF_ext", PHY_vars_UE[j]->lte_ue_pdcch_vars[eNb_id]->rxdataF_ext[0], 2*3*PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size,1,1);
write_output("pdcch00_ch0_ext.m","pdcch00_ch0_ext", PHY_vars_UE[j]->lte_ue_pdcch_vars[eNb_id]->dl_ch_estimates_ext[0],300*3,1,1);
write_output("dlsch_rxF_comp0.m","dlsch0_rxF_comp0", PHY_vars_UE[j]->lte_ue_dlsch_vars[eNb_id]->rxdataF_comp[0],300*(-(PHY_vars_UE[j]->lte_frame_parms.Ncp*2)+14),1,1);
write_output("pdcch_rxF_comp0.m","pdcch0_rxF_comp0", PHY_vars_UE[j]->lte_ue_pdcch_vars[eNb_id]->rxdataF_comp[0],4*300,1,1);
write_output("dlsch_rxF_llr.m","dlsch_llr", PHY_vars_UE[j]->lte_ue_dlsch_vars[eNb_id]->llr[0], coded_bits_per_codeword,1,0);
write_output("pdcch_rxF_llr.m","pdcch_llr",PHY_vars_UE[j]->lte_ue_pdcch_vars[eNb_id]->llr,2400,1,4);
write_output("dlsch_mag1.m","dlschmag1",PHY_vars_UE[j]->lte_ue_dlsch_vars[eNb_id]->dl_ch_mag,300*12,1,1);
write_output("dlsch_mag2.m","dlschmag2",PHY_vars_UE[j]->lte_ue_dlsch_vars[eNb_id]->dl_ch_magb,300*12,1,1);
#endif //OUTPUT_DEBUG
// printf("Calling decoding (Ndi %d, harq_pid %d)\n", dlsch_ue[0]->harq_processes[0]->Ndi, dlsch_ue[0]->current_harq_pid);
ret = dlsch_decoding(PHY_vars_UE[j]->lte_ue_dlsch_vars[eNb_id]->llr[0],
&PHY_vars_UE[j]->lte_frame_parms,
PHY_vars_UE[j]->dlsch_ue[0][0],
0,
num_pdcch_symbols);
if (ret <= MAX_TURBO_ITERATIONS) {
//decode_error = 0; // decode error indicator;
round = 5; // one of the RN has successfully decoded the messages;
#ifdef OUTPUT_DEBUG
printf("No DLSCH errors found\n");
#endif
break; // no need to wait for other relay nodes to decode!; (time saving in processing!)
} else {
//decode_error = 1; // decode error indicator;
#ifdef OUTPUT_DEBUG
printf("DLSCH in error in round %d at Relay %d\n", round, j);
for (s=0; s < PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->C; s++) {
if (s < PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->Cminus)
Kr = PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->Kminus;
else
Kr = PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->Kplus;
Kr_bytes = Kr>>3;
printf("Decoded_output (Segment %d):\n", s);
for (i=0; i < Kr_bytes; i++)
printf("%d : %x (%x)\n", i, PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->c[s][i],
PHY_vars_UE[j]->dlsch_ue[0][0]->harq_processes[0]->c[s][i]^PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->c[s][i]);
}
exit(-1);
#endif
if (j == (NUM_OF_RN-1)) {
//printf("DLSCH Active, but Decode Error...\n");
error_tot[round]++;
round++;
}
}
} // end of if (dlsch_active == 1);
/* //+++++++++++++++++++++++++++++ ERROR EVENTS ++++++++++++++++++++++++++++++++++++++++++++++++++
if((dlsch_active == 1) && (decode_error == 0)){
round = 5; // one of the RN has successfully decoded the messages;
break; // no need to wait for other relay nodes to decode!; (time saving in processing!)
}
else if(dlsch_active == 0){
//printf("DLSCH NON Active...\n");
if(round == 0){ // if an error in the first DCI, then contunue with the next transmission block !?;
if (j == (NUM_OF_RN-1)){
dci_errors++;
error_tot[0]++;
round_trials[0]++;
round = 5;
break;
}
}
else{
if (j == (NUM_OF_RN-1)){
error_tot[round]++;
round++;
}
}
}
else if(((dlsch_active == 1) && (decode_error == 1))){
if (j == (NUM_OF_RN-1)){
//printf("DLSCH Active, but Decode Error...\n");
error_tot[round]++;
round++;
}
}
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
} // loop over number of Relay nodes (or UEs in Downlink);
} // loop for numner of rounds;
// printf("\n");
if ((error_tot[0] >= 100) && (trials > (n_frames/2)))
break;
} // trials
for (j=0; j < NUM_OF_RN; j++) {
printf("\n**********************SNR = %f dB (tx_lev %f, sigma2_dB %f)**************************\n", SNR,
(double)tx_lev_dB+10*log10(PHY_vars_UE[j]->lte_frame_parms.ofdm_symbol_size/(NB_RB*12)), sigma2_dB);
}
printf("Errors (%d/%d %d/%d %d/%d %d/%d), Pe = (%e,%e,%e,%e), dci_errors %d/%d, Pe = %e => effective rate %f (%f), normalized delay %f (%f)\n",
error_tot[0],
round_trials[0],
error_tot[1],
round_trials[1],
error_tot[2],
round_trials[2],
error_tot[3],
round_trials[3],
(double)error_tot[0]/(round_trials[0]),
(double)error_tot[1]/(round_trials[1]),
(double)error_tot[2]/(round_trials[2]),
(double)error_tot[3]/(round_trials[3]),
dci_errors,
round_trials[0],
(double)dci_errors/(round_trials[0]),
rate*((double)(round_trials[0]-dci_errors)/((double)round_trials[0] + round_trials[1] + round_trials[2] + round_trials[3])),
rate,
(1.0*(round_trials[0]-error_tot[0])+2.0*(round_trials[1]-error_tot[1])+3.0*(round_trials[2]-error_tot[2])+4.0*(round_trials[3]-error_tot[3]))/((double)round_trials[0])/
(double)PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->TBS,
(1.0*(round_trials[0]-error_tot[0])+2.0*(round_trials[1]-error_tot[1])+3.0*(round_trials[2]-error_tot[2])+4.0*(round_trials[3]-error_tot[3]))/((double)round_trials[0]));
fprintf(bler_fd,"%f;%d;%d;%f;%d;%d;%d;%d;%d;%d;%d;%d;%d\n",
SNR,
mcs,
PHY_vars_eNb->dlsch_eNb[0][0]->harq_processes[0]->TBS,
rate,
error_tot[0],
round_trials[0],
error_tot[1],
round_trials[1],
error_tot[2],
round_trials[2],
error_tot[3],
round_trials[3],
dci_errors);
if (((double)error_tot[0]/(round_trials[0]))<1e-2)
break;
} // loop for SNR;
fclose(bler_fd);
printf("Freeing dlsch structures\n");
for (i=0; i<2; i++) {
printf("eNb %d\n", i);
free_eNb_dlsch(PHY_vars_eNb->dlsch_eNb[0][i]);
printf("UE %d\n", i);
for (j=0; j < NUM_OF_RN; j++) {
free_ue_dlsch(PHY_vars_UE[j]->dlsch_ue[0][i]);
}
}
#ifdef IFFT_FPGA
printf("Freeing transmit signals\n");
free(txdataF2[0]);
free(txdataF2[1]);
free(txdataF2);
free(txdata[0]);
free(txdata[1]);
free(txdata);
#endif
printf("Freeing channel I/O\n");
for (j=0; j < NUM_OF_RN; j++) {
for (i=0; i<2; i++) {
free(r_re[j][i]);
free(r_im[j][i]);
}
free(r_re[j]);
free(r_im[j]);
}
for (i=0; i<2; i++) {
free(s_re[i]);
free(s_im[i]);
}
free(s_re);
free(s_im);
// lte_sync_time_free();
return(0);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment