Commit ab4fb083 authored by Matthieu Kanj's avatar Matthieu Kanj

creating a complete seperation between PHY/defs.h file and PHY/defs_nb_iot.h file, replacing

all include of defs.h by defs_nb_iot.h in 33 files.
parent b0238409
......@@ -29,7 +29,8 @@
#define OPENAIR1_PHY_CODING_DEFS_NB_IOT_H_
#include <stdint.h>
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
/** \fn uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w)
\brief This is the subblock interleaving algorithm for convolutionally coded blocks from 36-212 (Release 13.4, 2017).
......
......@@ -16,7 +16,8 @@
#include <stdio.h>
#include <stdlib.h>
#endif
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "assertions.h"
#include "PHY/LTE_REFSIG/defs_NB_IoT.h" // does this file is needed ?
......
......@@ -23,7 +23,8 @@
#ifndef __INIT_DEFS_NB_IoT__H__
#define __INIT_DEFS_NB_IoT__H__
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "openair2/PHY_INTERFACE/IF_Module_nb_iot.h"
#include "SystemInformationBlockType2.h"
......
......@@ -355,7 +355,7 @@ void NB_phy_config_dedicated_eNB(uint8_t Mod_id,
extra_phyConfig_t *extra_parms
)
{
PHY_VARS_eNB *eNB = PHY_vars_eNB_g[Mod_id][CC_id];
PHY_VARS_eNB_NB_IoT *eNB = PHY_vars_eNB_g[Mod_id][CC_id];
NB_IoT_eNB_NPDCCH_t *npdcch;
uint8_t UE_id = find_ue(rnti,eNB);
......
......@@ -16,7 +16,7 @@
#ifndef __LTE_REFSIG_DEFS_NB_IOT__H__
#define __LTE_REFSIG_DEFS_NB_IOT__H__
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
/** @ingroup _PHY_REF_SIG
......@@ -38,7 +38,7 @@ void lte_gold_NB_IoT(NB_IoT_DL_FRAME_PARMS *frame_parms,uint32_t lte_gold_table[
@param p antenna index
@param RB_IoT_ID the ID of the RB dedicated for NB_IoT
*/
int lte_dl_cell_spec_NB_IoT(PHY_VARS_eNB *phy_vars_eNB,
int lte_dl_cell_spec_NB_IoT(PHY_VARS_eNB_NB_IoT *phy_vars_eNB,
int32_t *output,
short amp,
unsigned char Ns,
......
......@@ -18,12 +18,12 @@
#endif
#include "defs.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "defs_NB_IoT.h"
#include "PHY/defs_nb_iot.h"
int lte_dl_cell_spec_NB_IoT(PHY_VARS_eNB *phy_vars_eNB,
int lte_dl_cell_spec_NB_IoT(PHY_VARS_eNB_NB_IoT *phy_vars_eNB,
int32_t *output,
short amp,
unsigned char Ns,
......
......@@ -34,7 +34,8 @@
#include <stdlib.h>
#include <string.h>
#endif
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#include "SIMULATION/TOOLS/defs.h" // for taus
......
......@@ -29,7 +29,7 @@
* \note
* \warning
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
#ifdef DEBUG_DCI_TOOLS
......@@ -64,7 +64,7 @@ void add_dci_NB_IoT(DCI_PDU_NB *DCI_pdu,void *pdu,rnti_t rnti,unsigned char dci_
}
int generate_eNB_ulsch_params_from_dci_NB_IoT(PHY_VARS_eNB *eNB,
int generate_eNB_ulsch_params_from_dci_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
DCI_CONTENT *DCI_Content,
uint16_t rnti,
......@@ -140,7 +140,7 @@ int generate_eNB_ulsch_params_from_dci_NB_IoT(PHY_VARS_eNB *eNB,
//map the Isf (DCI param) to the number of subframes (Nsf)
int resource_to_subframe[8] = {1,2,3,4,5,6,8,10};
int generate_eNB_dlsch_params_from_dci_NB_IoT(PHY_VARS_eNB *eNB,
int generate_eNB_dlsch_params_from_dci_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
int frame,
uint8_t subframe,
DCI_CONTENT *DCI_Content,
......
......@@ -13,7 +13,8 @@
*/
//#ifndef __LTE_TRANSPORT_DEFS_NB_IOT__H__
//#define __LTE_TRANSPORT_DEFS_NB_IOT__H__
//#include "PHY/defs.h"
////#include "PHY/defs.h"
//#include "PHY/defs_nb_iot.h"
//#include "dci_nb_iot.h"
//#include "dci.h"
//#include "uci.h"
......
......@@ -12,7 +12,8 @@
* \warning
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/extern.h"
#include "PHY/CODING/defs.h"
#include "PHY/CODING/extern.h"
......
......@@ -12,7 +12,8 @@
* \warning
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/extern.h"
#include "PHY/CODING/defs.h"
#include "PHY/CODING/extern.h"
......
......@@ -14,7 +14,8 @@
//#define DEBUG_SCRAMBLING 1
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/CODING/extern.h"
#include "PHY/CODING/lte_interleaver_inline.h"
#include "defs.h"
......
......@@ -12,7 +12,7 @@
* \warning
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/CODING/extern.h"
#include "PHY/CODING/lte_interleaver_inline.h"
......
......@@ -12,7 +12,7 @@
* \warning
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/extern.h"
#include "PHY/LTE_REFSIG/primary_synch_NB_IoT.h"
......@@ -67,7 +67,7 @@ int generate_npss_NB_IoT(int32_t **txdataF,
}
/* (for LTE)
int generate_pss_emul(PHY_VARS_eNB *phy_vars_eNb,uint8_t sect_id)
int generate_pss_emul(PHY_VARS_eNB_NB_IoT *phy_vars_eNb,uint8_t sect_id)
{
msg("[PHY] EMUL eNB generate_pss_emul eNB %d, sect_id %d\n",phy_vars_eNb->Mod_id,sect_id);
......
......@@ -13,7 +13,7 @@
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "defs.h"
#include "PHY/extern.h"
......
......@@ -12,11 +12,11 @@
* \warning
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/LTE_REFSIG/defs_NB_IoT.h"
void generate_pilots_NB_IoT(PHY_VARS_eNB *phy_vars_eNB,
void generate_pilots_NB_IoT(PHY_VARS_eNB_NB_IoT *phy_vars_eNB,
int32_t **txdataF,
int16_t amp,
uint16_t Ntti, // Ntti = 10
......
......@@ -55,7 +55,7 @@ int generate_sss_NB_IoT(int32_t **txdataF,
//NRS
void generate_pilots_NB_IoT(PHY_VARS_eNB *phy_vars_eNB,
void generate_pilots_NB_IoT(PHY_VARS_eNB_NB_IoT *phy_vars_eNB,
int32_t **txdataF,
int16_t amp,
uint16_t Ntti, // Ntti = 10
......@@ -100,7 +100,7 @@ void add_dci_NB_IoT(DCI_PDU_NB *DCI_pdu,
uint8_t npdcch_start_symbol);
/*Use the UL DCI Information to configure PHY and also Pack the DCI*/
int generate_eNB_ulsch_params_from_dci_NB_IoT(PHY_VARS_eNB *eNB,
int generate_eNB_ulsch_params_from_dci_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
DCI_CONTENT *DCI_Content,
uint16_t rnti,
......@@ -110,7 +110,7 @@ int generate_eNB_ulsch_params_from_dci_NB_IoT(PHY_VARS_eNB *eNB,
uint8_t npdcch_start_symbol);
/*Use the DL DCI Information to configure PHY and also Pack the DCI*/
int generate_eNB_dlsch_params_from_dci_NB_IoT(PHY_VARS_eNB *eNB,
int generate_eNB_dlsch_params_from_dci_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
int frame,
uint8_t subframe,
DCI_CONTENT *DCI_Content,
......
......@@ -80,8 +80,23 @@
//#define RX_IQRESCALELEN 15
//#endif
//! \brief Allocate \c size bytes of memory on the heap with alignment 16 and zero it afterwards.
//! If no more memory is available, this function will terminate the program with an assertion error.
//******************************************************************************************************
/*
static inline void* malloc16_clear( size_t size )
{
#ifdef __AVX2__
void* ptr = memalign(32, size);
#else
void* ptr = memalign(16, size);
#endif
DevAssert(ptr);
memset( ptr, 0, size );
return ptr;
}
*/
#define PAGE_MASK 0xfffff000
......@@ -127,12 +142,56 @@
#define NUMBER_OF_eNB_SECTORS_MAX 3
#define NB_BANDS_MAX 8
/*
#ifdef OCP_FRAMEWORK
#include <enums.h>
#else
typedef enum {normal_txrx=0,rx_calib_ue=1,rx_calib_ue_med=2,rx_calib_ue_byp=3,debug_prach=4,no_L2_connect=5,calib_prach_tx=6,rx_dump_frame=7,loop_through_memory=8} runmode_t;
enum transmission_access_mode {
NO_ACCESS=0,
POSTPONED_ACCESS,
CANCELED_ACCESS,
UNKNOWN_ACCESS,
SCHEDULED_ACCESS,
CBA_ACCESS};
typedef enum {
eNodeB_3GPP=0, // classical eNodeB function
eNodeB_3GPP_BBU, // eNodeB with NGFI IF5
NGFI_RCC_IF4p5, // NGFI_RCC (NGFI radio cloud center)
NGFI_RAU_IF4p5,
NGFI_RRU_IF5, // NGFI_RRU (NGFI remote radio-unit,IF5)
NGFI_RRU_IF4p5 // NGFI_RRU (NGFI remote radio-unit,IF4p5)
} eNB_func_t;
typedef enum {
synch_to_ext_device=0, // synch to RF or Ethernet device
synch_to_other // synch to another source (timer, other CC_id)
} eNB_timing_t;
#endif
typedef struct UE_SCAN_INFO_s {
/// 10 best amplitudes (linear) for each pss signals
int32_t amp[3][10];
/// 10 frequency offsets (kHz) corresponding to best amplitudes, with respect do minimum DL frequency in the band
int32_t freq_offset_Hz[3][10];
} UE_SCAN_INFO_t;
/// Top-level PHY Data Structure for RN
typedef struct {
/// Module ID indicator for this instance
uint8_t Mod_id;
uint32_t frame;
// phy_vars_eNB_NB_IoT
// phy_vars ue
// cuurently only used to store and forward the PMCH
uint8_t mch_avtive[10];
uint8_t sync_area[10]; // num SF
LTE_UE_DLSCH_t *dlsch_rn_MCH[10];
} PHY_VARS_RN;
*/
/// Context data structure for RX/TX portion of subframe processing
typedef struct {
/// Component Carrier index
......@@ -161,13 +220,28 @@ typedef struct {
/// scheduling parameters for RXn-TXnp4 thread
struct sched_param sched_param_rxtx;
/// for IF_Module
/// NB-IoT for IF_Module
pthread_t pthread_l2;
pthread_cond_t cond_l2;
pthread_mutex_t mutex_l2;
int instance_cnt_l2;
pthread_attr_t attr_l2;
} eNB_rxtx_proc_NB_t;
/*
typedef struct {
struct PHY_VARS_eNB_NB_IoT_s *eNB;
int UE_id;
int harq_pid;
int llr8_flag;
int ret;
} td_params;
typedef struct {
struct PHY_VARS_eNB_NB_IoT_s *eNB;
LTE_eNB_DLSCH_t *dlsch;
int G;
} te_params;
*/
/// Context data structure for eNB subframe processing
typedef struct eNB_proc_NB_t_s {
......@@ -293,13 +367,706 @@ typedef struct eNB_proc_NB_t_s {
td_params tdp;
/// parameters for turbo-encoding worker thread
te_params tep;
/// number of slave threads
int num_slaves;
/// array of pointers to slaves
struct eNB_proc_t_s **slave_proc;
/// set of scheduling variables RXn-TXnp4 threads
// newly added for NB_IoT
eNB_rxtx_proc_NB_t proc_rxtx[2];
} eNB_proc_NB_t;
/*
/// Context data structure for RX/TX portion of subframe processing
typedef struct {
/// index of the current UE RX/TX proc
int proc_id;
/// Component Carrier index
uint8_t CC_id;
/// timestamp transmitted to HW
openair0_timestamp timestamp_tx;
/// subframe to act upon for transmission
int subframe_tx;
/// subframe to act upon for reception
int subframe_rx;
/// frame to act upon for transmission
int frame_tx;
/// frame to act upon for reception
int frame_rx;
/// \brief Instance count for RXn-TXnp4 processing thread.
/// \internal This variable is protected by \ref mutex_rxtx.
int instance_cnt_rxtx;
/// pthread structure for RXn-TXnp4 processing thread
pthread_t pthread_rxtx;
/// pthread attributes for RXn-TXnp4 processing thread
pthread_attr_t attr_rxtx;
/// condition variable for tx processing thread
pthread_cond_t cond_rxtx;
/// mutex for RXn-TXnp4 processing thread
pthread_mutex_t mutex_rxtx;
/// scheduling parameters for RXn-TXnp4 thread
struct sched_param sched_param_rxtx;
int sub_frame_start;
int sub_frame_step;
unsigned long long gotIQs;
} UE_rxtx_proc_t;
/// Context data structure for eNB subframe processing
typedef struct {
/// Component Carrier index
uint8_t CC_id;
/// Last RX timestamp
openair0_timestamp timestamp_rx;
/// pthread attributes for main UE thread
pthread_attr_t attr_ue;
/// scheduling parameters for main UE thread
struct sched_param sched_param_ue;
/// pthread descriptor main UE thread
pthread_t pthread_ue;
/// \brief Instance count for synch thread.
/// \internal This variable is protected by \ref mutex_synch.
int instance_cnt_synch;
/// pthread attributes for synch processing thread
pthread_attr_t attr_synch;
/// scheduling parameters for synch thread
struct sched_param sched_param_synch;
/// pthread descriptor synch thread
pthread_t pthread_synch;
/// condition variable for UE synch thread;
pthread_cond_t cond_synch;
/// mutex for UE synch thread
pthread_mutex_t mutex_synch;
/// set of scheduling variables RXn-TXnp4 threads
UE_rxtx_proc_t proc_rxtx[2];
} UE_proc_t;
*/
/// Top-level PHY Data Structure for eNB
typedef struct PHY_VARS_eNB_NB_IoT_s {
/// Module ID indicator for this instance
module_id_t Mod_id;
uint8_t CC_id;
eNB_proc_t proc;
eNB_func_t node_function;
eNB_timing_t node_timing;
eth_params_t *eth_params;
int single_thread_flag;
openair0_rf_map rf_map;
int abstraction_flag;
openair0_timestamp ts_offset;
// indicator for synchronization state of eNB
int in_synch;
// indicator for master/slave (RRU)
int is_slave;
// indicator for precoding function (eNB,3GPP_eNB_BBU)
int do_precoding;
void (*do_prach)(struct PHY_VARS_eNB_NB_IoT_s *eNB,int frame,int subframe);
void (*fep)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_t *proc);
int (*td)(struct PHY_VARS_eNB_NB_IoT_s *eNB,int UE_id,int harq_pid,int llr8_flag);
int (*te)(struct PHY_VARS_eNB_NB_IoT_s *,uint8_t *,uint8_t,LTE_eNB_DLSCH_t *,int,uint8_t,time_stats_t *,time_stats_t *,time_stats_t *);
void (*proc_uespec_rx)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_t *proc,const relaying_type_t r_type);
void (*proc_tx)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_t *proc,relaying_type_t r_type,PHY_VARS_RN *rn);
void (*tx_fh)(struct PHY_VARS_eNB_NB_IoT_s *eNB,eNB_rxtx_proc_t *proc);
void (*rx_fh)(struct PHY_VARS_eNB_NB_IoT_s *eNB,int *frame, int *subframe);
int (*start_rf)(struct PHY_VARS_eNB_NB_IoT_s *eNB);
int (*start_if)(struct PHY_VARS_eNB_NB_IoT_s *eNB);
void (*fh_asynch)(struct PHY_VARS_eNB_NB_IoT_s *eNB,int *frame, int *subframe);
uint8_t local_flag;
uint32_t rx_total_gain_dB;
LTE_DL_FRAME_PARMS frame_parms;
PHY_MEASUREMENTS_eNB measurements[NUMBER_OF_eNB_SECTORS_MAX]; /// Measurement variables
LTE_eNB_COMMON common_vars;
LTE_eNB_SRS srs_vars[NUMBER_OF_UE_MAX];
LTE_eNB_PBCH pbch;
LTE_eNB_PUSCH *pusch_vars[NUMBER_OF_UE_MAX];
LTE_eNB_PRACH prach_vars;
LTE_eNB_DLSCH_t *dlsch[NUMBER_OF_UE_MAX][2]; // Nusers times two spatial streams
LTE_eNB_ULSCH_t *ulsch[NUMBER_OF_UE_MAX+1]; // Nusers + number of RA (the ulsch[0] contains RAR)
LTE_eNB_DLSCH_t *dlsch_SI,*dlsch_ra;
LTE_eNB_DLSCH_t *dlsch_MCH;
LTE_eNB_UE_stats UE_stats[NUMBER_OF_UE_MAX];
LTE_eNB_UE_stats *UE_stats_ptr[NUMBER_OF_UE_MAX];
/// cell-specific reference symbols
uint32_t lte_gold_table[20][2][14];
/// UE-specific reference symbols (p=5), TM 7
uint32_t lte_gold_uespec_port5_table[NUMBER_OF_UE_MAX][20][38];
/// UE-specific reference symbols (p=7...14), TM 8/9/10
uint32_t lte_gold_uespec_table[2][20][2][21];
/// mbsfn reference symbols
uint32_t lte_gold_mbsfn_table[10][3][42];
uint32_t X_u[64][839];
uint8_t pbch_pdu[4]; //PBCH_PDU_SIZE
char eNB_generate_rar;
/// Indicator set to 0 after first SR
uint8_t first_sr[NUMBER_OF_UE_MAX];
uint32_t max_peak_val;
int max_eNB_id, max_sync_pos;
int N_TA_offset; ///timing offset used in TDD
/// \brief sinr for all subcarriers of the current link (used only for abstraction).
/// first index: ? [0..N_RB_DL*12[
double *sinr_dB;
/// N0 (used for abstraction)
double N0;
unsigned char first_run_timing_advance[NUMBER_OF_UE_MAX];
unsigned char first_run_I0_measurements;
unsigned char cooperation_flag; // for cooperative communication
unsigned char is_secondary_eNB; // primary by default
unsigned char is_init_sync; /// Flag to tell if initial synchronization is performed. This affects how often the secondary eNB will listen to the PSS from the primary system.
unsigned char has_valid_precoder; /// Flag to tell if secondary eNB has channel estimates to create NULL-beams from, and this B/F vector is created.
unsigned char PeNB_id; /// id of Primary eNB
int rx_offset; /// Timing offset (used if is_secondary_eNB)
/// hold the precoder for NULL beam to the primary user
int **dl_precoder_SeNB[3];
char log2_maxp; /// holds the maximum channel/precoder coefficient
/// if ==0 enables phy only test mode
int mac_enabled;
/// For emulation only (used by UE abstraction to retrieve DCI)
uint8_t num_common_dci[2]; // num_dci in even/odd subframes
uint8_t num_ue_spec_dci[2]; // num_dci in even/odd subframes
DCI_ALLOC_t dci_alloc[2][NUM_DCI_MAX]; // dci_alloc from even/odd subframes
// PDSCH Varaibles
PDSCH_CONFIG_DEDICATED pdsch_config_dedicated[NUMBER_OF_UE_MAX];
// PUSCH Varaibles
PUSCH_CONFIG_DEDICATED pusch_config_dedicated[NUMBER_OF_UE_MAX];
// PUCCH variables
PUCCH_CONFIG_DEDICATED pucch_config_dedicated[NUMBER_OF_UE_MAX];
// UL-POWER-Control
UL_POWER_CONTROL_DEDICATED ul_power_control_dedicated[NUMBER_OF_UE_MAX];
// TPC
TPC_PDCCH_CONFIG tpc_pdcch_config_pucch[NUMBER_OF_UE_MAX];
TPC_PDCCH_CONFIG tpc_pdcch_config_pusch[NUMBER_OF_UE_MAX];
// CQI reporting
CQI_REPORT_CONFIG cqi_report_config[NUMBER_OF_UE_MAX];
// SRS Variables
SOUNDINGRS_UL_CONFIG_DEDICATED soundingrs_ul_config_dedicated[NUMBER_OF_UE_MAX];
uint8_t ncs_cell[20][7];
// Scheduling Request Config
SCHEDULING_REQUEST_CONFIG scheduling_request_config[NUMBER_OF_UE_MAX];
// Transmission mode per UE
uint8_t transmission_mode[NUMBER_OF_UE_MAX];
/// cba_last successful reception for each group, used for collision detection
uint8_t cba_last_reception[4];
// Pointers for active physicalConfigDedicated to be applied in current subframe
struct PhysicalConfigDedicated *physicalConfigDedicated[NUMBER_OF_UE_MAX];
//Pointers for actve physicalConfigDedicated for NB-IoT to be applied in current subframe
struct PhysicalConfigDedicated_NB_r13 *phy_config_dedicated_NB[NUMBER_OF_UE_MAX];
uint32_t rb_mask_ul[4];
/// Information regarding TM5
MU_MIMO_mode mu_mimo_mode[NUMBER_OF_UE_MAX];
/// target_ue_dl_mcs : only for debug purposes
uint32_t target_ue_dl_mcs;
/// target_ue_ul_mcs : only for debug purposes
uint32_t target_ue_ul_mcs;
/// target_ue_dl_rballoc : only for debug purposes
uint32_t ue_dl_rb_alloc;
/// target ul PRBs : only for debug
uint32_t ue_ul_nb_rb;
///check for Total Transmissions
uint32_t check_for_total_transmissions;
///check for MU-MIMO Transmissions
uint32_t check_for_MUMIMO_transmissions;
///check for SU-MIMO Transmissions
uint32_t check_for_SUMIMO_transmissions;
///check for FULL MU-MIMO Transmissions
uint32_t FULL_MUMIMO_transmissions;
/// Counter for total bitrate, bits and throughput in downlink
uint32_t total_dlsch_bitrate;
uint32_t total_transmitted_bits;
uint32_t total_system_throughput;
int hw_timing_advance;
time_stats_t phy_proc;
time_stats_t phy_proc_tx;
time_stats_t phy_proc_rx;
time_stats_t rx_prach;
time_stats_t ofdm_mod_stats;
time_stats_t dlsch_encoding_stats;
time_stats_t dlsch_modulation_stats;
time_stats_t dlsch_scrambling_stats;
time_stats_t dlsch_rate_matching_stats;
time_stats_t dlsch_turbo_encoding_stats;
time_stats_t dlsch_interleaving_stats;
time_stats_t ofdm_demod_stats;
time_stats_t rx_dft_stats;
time_stats_t ulsch_channel_estimation_stats;
time_stats_t ulsch_freq_offset_estimation_stats;
time_stats_t ulsch_decoding_stats;
time_stats_t ulsch_demodulation_stats;
time_stats_t ulsch_rate_unmatching_stats;
time_stats_t ulsch_turbo_decoding_stats;
time_stats_t ulsch_deinterleaving_stats;
time_stats_t ulsch_demultiplexing_stats;
time_stats_t ulsch_llr_stats;
time_stats_t ulsch_tc_init_stats;
time_stats_t ulsch_tc_alpha_stats;
time_stats_t ulsch_tc_beta_stats;
time_stats_t ulsch_tc_gamma_stats;
time_stats_t ulsch_tc_ext_stats;
time_stats_t ulsch_tc_intl1_stats;
time_stats_t ulsch_tc_intl2_stats;
#ifdef LOCALIZATION
/// time state for localization
time_stats_t localization_stats;
#endif
int32_t pucch1_stats_cnt[NUMBER_OF_UE_MAX][10];
int32_t pucch1_stats[NUMBER_OF_UE_MAX][10*1024];
int32_t pucch1_stats_thres[NUMBER_OF_UE_MAX][10*1024];
int32_t pucch1ab_stats_cnt[NUMBER_OF_UE_MAX][10];
int32_t pucch1ab_stats[NUMBER_OF_UE_MAX][2*10*1024];
int32_t pusch_stats_rb[NUMBER_OF_UE_MAX][10240];
int32_t pusch_stats_round[NUMBER_OF_UE_MAX][10240];
int32_t pusch_stats_mcs[NUMBER_OF_UE_MAX][10240];
int32_t pusch_stats_bsr[NUMBER_OF_UE_MAX][10240];
int32_t pusch_stats_BO[NUMBER_OF_UE_MAX][10240];
/// RF and Interface devices per CC
openair0_device rfdevice;
openair0_device ifdevice;
/// Pointer for ifdevice buffer struct
if_buffer_t ifbuffer;
//------------------------
// NB-IoT
//------------------------
/*
* NUMBER_OF_UE_MAX_NB_IoT maybe in the future should be dynamic because could be very large and the memory may explode
* (is almost the indication of the number of UE context that we are storing at PHY layer)
*
* reasoning: the following data structure (ndlsch, nulsch ecc..) are used to store the context that should be transmitted in at least n+4 subframe later
* (the minimum interval between NPUSCH and the ACK for this)
* the problem is that in NB_IoT the ACK for the UPLINK is contained in the DCI through the NDI field (if this value change from the previous one then it means ACK)
* but may we could schedule this DCI long time later so may lots of contents shuld be stored (there is no concept of phich channel in NB-IoT)
* For the DL transmission the UE send a proper ACK/NACK message
*
* *the HARQ process should be killed when the NDI change
*
* *In the Structure for nulsch we should also store the information related to the subframe (because each time we should read it and understand what should be done
* in that subframe)
*
*/
/*
* TIMING
* the entire transmission and scheduling are done for the "subframe" concept but the subframe = proc->subframe_tx (that in reality is the subframe_rx +4)
* (see USER/lte-enb/wakeup_rxtx )
*
* Related to FAPI:
* DCI and DL_CONFIG.request (also more that 1) and MAC_PDU are transmitted in the same subframe (our assumption) so will be all contained in the schedule_response getting from the scheduler
* DCI0 and UL_CONFIG.request are transmitted in the same subframe (our assumption) so contained in the schedule_response
*
*/
//TODO: check what should be NUMBER_OF_UE_MAX_NB_IoT value
NB_IoT_eNB_NPBCH_t *npbch;
NB_IoT_eNB_NPDCCH_t *npdcch[NUMBER_OF_UE_MAX_NB_IoT];
NB_IoT_eNB_NDLSCH_t *ndlsch[NUMBER_OF_UE_MAX_NB_IoT];
NB_IoT_eNB_NULSCH_t *nulsch[NUMBER_OF_UE_MAX_NB_IoT+1]; //nulsch[0] contains the RAR
NB_IoT_eNB_NDLSCH_t *ndlsch_SI,*ndlsch_ra, *ndlsch_SIB1;
NB_IoT_DL_FRAME_PARMS frame_parms_nb_iot;
// DCI for at most 2 DCI pdus
DCI_PDU_NB *DCI_pdu;
} PHY_VARS_eNB_NB_IoT;
/*
#define debug_msg if (((mac_xface->frame%100) == 0) || (mac_xface->frame < 50)) msg
/// Top-level PHY Data Structure for UE
typedef struct {
/// \brief Module ID indicator for this instance
uint8_t Mod_id;
/// \brief Component carrier ID for this PHY instance
uint8_t CC_id;
/// \brief Mapping of CC_id antennas to cards
openair0_rf_map rf_map;
//uint8_t local_flag;
/// \brief Indicator of current run mode of UE (normal_txrx, rx_calib_ue, no_L2_connect, debug_prach)
runmode_t mode;
/// \brief Indicator that UE should perform band scanning
int UE_scan;
/// \brief Indicator that UE should perform coarse scanning around carrier
int UE_scan_carrier;
/// \brief Indicator that UE is synchronized to an eNB
int is_synchronized;
/// Data structure for UE process scheduling
UE_proc_t proc;
/// Flag to indicate the UE shouldn't do timing correction at all
int no_timing_correction;
/// \brief Total gain of the TX chain (16-bit baseband I/Q to antenna)
uint32_t tx_total_gain_dB;
/// \brief Total gain of the RX chain (antenna to baseband I/Q) This is a function of rx_gain_mode (and the corresponding gain) and the rx_gain of the card.
uint32_t rx_total_gain_dB;
/// \brief Total gains with maximum RF gain stage (ExpressMIMO2/Lime)
uint32_t rx_gain_max[4];
/// \brief Total gains with medium RF gain stage (ExpressMIMO2/Lime)
uint32_t rx_gain_med[4];
/// \brief Total gains with bypassed RF gain stage (ExpressMIMO2/Lime)
uint32_t rx_gain_byp[4];
/// \brief Current transmit power
int16_t tx_power_dBm[10];
/// \brief Total number of REs in current transmission
int tx_total_RE[10];
/// \brief Maximum transmit power
int8_t tx_power_max_dBm;
/// \brief Number of eNB seen by UE
uint8_t n_connected_eNB;
/// \brief indicator that Handover procedure has been initiated
uint8_t ho_initiated;
/// \brief indicator that Handover procedure has been triggered
uint8_t ho_triggered;
/// \brief Measurement variables.
PHY_MEASUREMENTS measurements;
LTE_DL_FRAME_PARMS frame_parms;
/// \brief Frame parame before ho used to recover if ho fails.
LTE_DL_FRAME_PARMS frame_parms_before_ho;
LTE_UE_COMMON common_vars;
LTE_UE_PDSCH *pdsch_vars[2][NUMBER_OF_CONNECTED_eNB_MAX+1]; // two RxTx Threads
LTE_UE_PDSCH_FLP *pdsch_vars_flp[NUMBER_OF_CONNECTED_eNB_MAX+1];
LTE_UE_PDSCH *pdsch_vars_SI[NUMBER_OF_CONNECTED_eNB_MAX+1];
LTE_UE_PDSCH *pdsch_vars_ra[NUMBER_OF_CONNECTED_eNB_MAX+1];
LTE_UE_PDSCH *pdsch_vars_p[NUMBER_OF_CONNECTED_eNB_MAX+1];
LTE_UE_PDSCH *pdsch_vars_MCH[NUMBER_OF_CONNECTED_eNB_MAX];
LTE_UE_PBCH *pbch_vars[NUMBER_OF_CONNECTED_eNB_MAX];
LTE_UE_PDCCH *pdcch_vars[2][NUMBER_OF_CONNECTED_eNB_MAX];
LTE_UE_PRACH *prach_vars[NUMBER_OF_CONNECTED_eNB_MAX];
LTE_UE_DLSCH_t *dlsch[2][NUMBER_OF_CONNECTED_eNB_MAX][2]; // two RxTx Threads
LTE_UE_ULSCH_t *ulsch[NUMBER_OF_CONNECTED_eNB_MAX];
LTE_UE_DLSCH_t *dlsch_SI[NUMBER_OF_CONNECTED_eNB_MAX];
LTE_UE_DLSCH_t *dlsch_ra[NUMBER_OF_CONNECTED_eNB_MAX];
LTE_UE_DLSCH_t *dlsch_p[NUMBER_OF_CONNECTED_eNB_MAX];
LTE_UE_DLSCH_t *dlsch_MCH[NUMBER_OF_CONNECTED_eNB_MAX];
// This is for SIC in the UE, to store the reencoded data
LTE_eNB_DLSCH_t *dlsch_eNB[NUMBER_OF_CONNECTED_eNB_MAX];
//Paging parameters
uint32_t IMSImod1024;
uint32_t PF;
uint32_t PO;
// For abstraction-purposes only
uint8_t sr[10];
uint8_t pucch_sel[10];
uint8_t pucch_payload[22];
UE_MODE_t UE_mode[NUMBER_OF_CONNECTED_eNB_MAX];
/// cell-specific reference symbols
uint32_t lte_gold_table[7][20][2][14];
/// UE-specific reference symbols (p=5), TM 7
uint32_t lte_gold_uespec_port5_table[20][38];
/// ue-specific reference symbols
uint32_t lte_gold_uespec_table[2][20][2][21];
/// mbsfn reference symbols
uint32_t lte_gold_mbsfn_table[10][3][42];
uint32_t X_u[64][839];
uint32_t high_speed_flag;
uint32_t perfect_ce;
int16_t ch_est_alpha;
int generate_ul_signal[NUMBER_OF_CONNECTED_eNB_MAX];
UE_SCAN_INFO_t scan_info[NB_BANDS_MAX];
char ulsch_no_allocation_counter[NUMBER_OF_CONNECTED_eNB_MAX];
unsigned char ulsch_Msg3_active[NUMBER_OF_CONNECTED_eNB_MAX];
uint32_t ulsch_Msg3_frame[NUMBER_OF_CONNECTED_eNB_MAX];
unsigned char ulsch_Msg3_subframe[NUMBER_OF_CONNECTED_eNB_MAX];
PRACH_RESOURCES_t *prach_resources[NUMBER_OF_CONNECTED_eNB_MAX];
int turbo_iterations, turbo_cntl_iterations;
/// \brief ?.
/// - first index: eNB [0..NUMBER_OF_CONNECTED_eNB_MAX[ (hard coded)
uint32_t total_TBS[NUMBER_OF_CONNECTED_eNB_MAX];
/// \brief ?.
/// - first index: eNB [0..NUMBER_OF_CONNECTED_eNB_MAX[ (hard coded)
uint32_t total_TBS_last[NUMBER_OF_CONNECTED_eNB_MAX];
/// \brief ?.
/// - first index: eNB [0..NUMBER_OF_CONNECTED_eNB_MAX[ (hard coded)
uint32_t bitrate[NUMBER_OF_CONNECTED_eNB_MAX];
/// \brief ?.
/// - first index: eNB [0..NUMBER_OF_CONNECTED_eNB_MAX[ (hard coded)
uint32_t total_received_bits[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_errors[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_errors_last[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_received[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_received_last[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_fer[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_SI_received[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_SI_errors[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_ra_received[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_ra_errors[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_p_received[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_p_errors[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_mch_received_sf[MAX_MBSFN_AREA][NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_mch_received[NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_mcch_received[MAX_MBSFN_AREA][NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_mtch_received[MAX_MBSFN_AREA][NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_mcch_errors[MAX_MBSFN_AREA][NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_mtch_errors[MAX_MBSFN_AREA][NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_mcch_trials[MAX_MBSFN_AREA][NUMBER_OF_CONNECTED_eNB_MAX];
int dlsch_mtch_trials[MAX_MBSFN_AREA][NUMBER_OF_CONNECTED_eNB_MAX];
int current_dlsch_cqi[NUMBER_OF_CONNECTED_eNB_MAX];
unsigned char first_run_timing_advance[NUMBER_OF_CONNECTED_eNB_MAX];
uint8_t generate_prach;
uint8_t prach_cnt;
uint8_t prach_PreambleIndex;
// uint8_t prach_timer;
uint8_t decode_SIB;
uint8_t decode_MIB;
int rx_offset; /// Timing offset
int rx_offset_diff; /// Timing adjustment for ofdm symbol0 on HW USRP
int timing_advance; ///timing advance signalled from eNB
int hw_timing_advance;
int N_TA_offset; ///timing offset used in TDD
/// Flag to tell if UE is secondary user (cognitive mode)
unsigned char is_secondary_ue;
/// Flag to tell if secondary eNB has channel estimates to create NULL-beams from.
unsigned char has_valid_precoder;
/// hold the precoder for NULL beam to the primary eNB
int **ul_precoder_S_UE;
/// holds the maximum channel/precoder coefficient
char log2_maxp;
/// if ==0 enables phy only test mode
int mac_enabled;
/// Flag to initialize averaging of PHY measurements
int init_averaging;
/// \brief sinr for all subcarriers of the current link (used only for abstraction).
/// - first index: ? [0..12*N_RB_DL[
double *sinr_dB;
/// \brief sinr for all subcarriers of first symbol for the CQI Calculation.
/// - first index: ? [0..12*N_RB_DL[
double *sinr_CQI_dB;
/// sinr_effective used for CQI calulcation
double sinr_eff;
/// N0 (used for abstraction)
double N0;
/// PDSCH Varaibles
PDSCH_CONFIG_DEDICATED pdsch_config_dedicated[NUMBER_OF_CONNECTED_eNB_MAX];
/// PUSCH Varaibles
PUSCH_CONFIG_DEDICATED pusch_config_dedicated[NUMBER_OF_CONNECTED_eNB_MAX];
/// PUSCH contention-based access vars
PUSCH_CA_CONFIG_DEDICATED pusch_ca_config_dedicated[NUMBER_OF_eNB_MAX]; // lola
/// PUCCH variables
PUCCH_CONFIG_DEDICATED pucch_config_dedicated[NUMBER_OF_CONNECTED_eNB_MAX];
uint8_t ncs_cell[20][7];
/// UL-POWER-Control
UL_POWER_CONTROL_DEDICATED ul_power_control_dedicated[NUMBER_OF_CONNECTED_eNB_MAX];
/// TPC
TPC_PDCCH_CONFIG tpc_pdcch_config_pucch[NUMBER_OF_CONNECTED_eNB_MAX];
TPC_PDCCH_CONFIG tpc_pdcch_config_pusch[NUMBER_OF_CONNECTED_eNB_MAX];
/// CQI reporting
CQI_REPORT_CONFIG cqi_report_config[NUMBER_OF_CONNECTED_eNB_MAX];
/// SRS Variables
SOUNDINGRS_UL_CONFIG_DEDICATED soundingrs_ul_config_dedicated[NUMBER_OF_CONNECTED_eNB_MAX];
/// Scheduling Request Config
SCHEDULING_REQUEST_CONFIG scheduling_request_config[NUMBER_OF_CONNECTED_eNB_MAX];
/// Transmission mode per eNB
uint8_t transmission_mode[NUMBER_OF_CONNECTED_eNB_MAX];
time_stats_t phy_proc;
time_stats_t phy_proc_tx;
time_stats_t phy_proc_rx[2];
uint32_t use_ia_receiver;
time_stats_t ofdm_mod_stats;
time_stats_t ulsch_encoding_stats;
time_stats_t ulsch_modulation_stats;
time_stats_t ulsch_segmentation_stats;
time_stats_t ulsch_rate_matching_stats;
time_stats_t ulsch_turbo_encoding_stats;
time_stats_t ulsch_interleaving_stats;
time_stats_t ulsch_multiplexing_stats;
time_stats_t generic_stat;
time_stats_t pdsch_procedures_stat;
time_stats_t dlsch_procedures_stat;
time_stats_t ofdm_demod_stats;
time_stats_t dlsch_rx_pdcch_stats;
time_stats_t rx_dft_stats;
time_stats_t dlsch_channel_estimation_stats;
time_stats_t dlsch_freq_offset_estimation_stats;
time_stats_t dlsch_decoding_stats[2];
time_stats_t dlsch_demodulation_stats;
time_stats_t dlsch_rate_unmatching_stats;
time_stats_t dlsch_turbo_decoding_stats;
time_stats_t dlsch_deinterleaving_stats;
time_stats_t dlsch_llr_stats;
time_stats_t dlsch_unscrambling_stats;
time_stats_t dlsch_rate_matching_stats;
time_stats_t dlsch_turbo_encoding_stats;
time_stats_t dlsch_interleaving_stats;
time_stats_t dlsch_tc_init_stats;
time_stats_t dlsch_tc_alpha_stats;
time_stats_t dlsch_tc_beta_stats;
time_stats_t dlsch_tc_gamma_stats;
time_stats_t dlsch_tc_ext_stats;
time_stats_t dlsch_tc_intl1_stats;
time_stats_t dlsch_tc_intl2_stats;
time_stats_t tx_prach;
/// RF and Interface devices per CC
openair0_device rfdevice;
time_stats_t dlsch_encoding_SIC_stats;
time_stats_t dlsch_scrambling_SIC_stats;
time_stats_t dlsch_modulation_SIC_stats;
time_stats_t dlsch_llr_stripping_unit_SIC_stats;
time_stats_t dlsch_unscrambling_SIC_stats;
#if ENABLE_RAL
hash_table_t *ral_thresholds_timed;
SLIST_HEAD(ral_thresholds_gen_poll_s, ral_threshold_phy_t) ral_thresholds_gen_polled[RAL_LINK_PARAM_GEN_MAX];
SLIST_HEAD(ral_thresholds_lte_poll_s, ral_threshold_phy_t) ral_thresholds_lte_polled[RAL_LINK_PARAM_LTE_MAX];
#endif
} PHY_VARS_UE;
*/
/*
void exit_fun(const char* s);
static inline int wait_on_condition(pthread_mutex_t *mutex,pthread_cond_t *cond,int *instance_cnt,char *name) {
// lock the mutex, if lock successfully, it would return the 0, the other value means failed
if (pthread_mutex_lock(mutex) != 0) {
LOG_E( PHY, "[SCHED][eNB] error locking mutex for %s\n",name);
exit_fun("nothing to add");
return(-1);
}
while (*instance_cnt < 0) {
// most of the time the thread is waiting here
// proc->instance_cnt_rxtx is -1
pthread_cond_wait(cond,mutex); // this unlocks mutex_rxtx while waiting and then locks it again
}
if (pthread_mutex_unlock(mutex) != 0) {
LOG_E(PHY,"[SCHED][eNB] error unlocking mutex for %s\n",name);
exit_fun("nothing to add");
return(-1);
}
return(0);
}
static inline int wait_on_busy_condition(pthread_mutex_t *mutex,pthread_cond_t *cond,int *instance_cnt,char *name) {
if (pthread_mutex_lock(mutex) != 0) {
LOG_E( PHY, "[SCHED][eNB] error locking mutex for %s\n",name);
exit_fun("nothing to add");
return(-1);
}
while (*instance_cnt == 0) {
// most of the time the thread will skip this
// waits only if proc->instance_cnt_rxtx is 0
pthread_cond_wait(cond,mutex); // this unlocks mutex_rxtx while waiting and then locks it again
}
if (pthread_mutex_unlock(mutex) != 0) {
LOG_E(PHY,"[SCHED][eNB] error unlocking mutex for %s\n",name);
exit_fun("nothing to add");
return(-1);
}
return(0);
}
static inline int release_thread(pthread_mutex_t *mutex,int *instance_cnt,char *name) {
if (pthread_mutex_lock(mutex) != 0) {
LOG_E( PHY, "[SCHED][eNB] error locking mutex for %s\n",name);
exit_fun("nothing to add");
return(-1);
}
*instance_cnt=*instance_cnt-1;
if (pthread_mutex_unlock(mutex) != 0) {
LOG_E( PHY, "[SCHED][eNB] error unlocking mutex for %s\n",name);
exit_fun("nothing to add");
return(-1);
}
return(0);
}
*/
#include "PHY/INIT/defs.h"
#include "PHY/LTE_REFSIG/defs.h"
#include "PHY/MODULATION/defs.h"
......
......@@ -2,13 +2,14 @@
#include "../SCHED/defs.h"
#include "../SCHED/defs_nb_iot.h"
#include "common/utils/itti/assertions.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/extern.h"
#include "PHY/vars.h"
#include "PHY/INIT/defs_nb_iot.h"
void handle_nfapi_dlsch_pdu_NB(PHY_VARS_eNB *eNB,
void handle_nfapi_dlsch_pdu_NB(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
nfapi_dl_config_request_pdu_t *dl_config_pdu,
uint8_t *sdu)
......@@ -158,7 +159,7 @@ void handle_nfapi_dlsch_pdu_NB(PHY_VARS_eNB *eNB,
/////////////////////////////////////////////////////////////////////////////////////////////////
//Memo for initialization TODO: target/SIMU/USER/init_lte.c/init_lte_eNB --> new_eNB_dlsch(..) //
//this is where the allocation of PHy_vars_eNB and all the ndlsch structures happen //
//this is where the allocation of PHy_vars_eNB_NB_IoT and all the ndlsch structures happen //
/////////////////////////////////////////////////////////////////////////////////////////////////
......@@ -167,7 +168,7 @@ void schedule_response(Sched_Rsp_t *Sched_INFO)
{
//XXX check if correct to take eNB like this
PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][Sched_INFO->CC_id];
PHY_VARS_eNB_NB_IoT *eNB = PHY_vars_eNB_g[0][Sched_INFO->CC_id];
eNB_rxtx_proc_t *proc = &eNB->proc.proc_rxtx[0];
NB_IoT_eNB_NPBCH_t *npbch;
......
......@@ -13,7 +13,8 @@ void schedule_response(Sched_Rsp_t *Sched_INFO);
* Trigger the phy_config_xxx functions using parameters from the shared PHY_Config structure
* */
void PHY_config_req(PHY_Config_t* config_INFO);
void handle_nfapi_dlsch_pdu_NB(PHY_VARS_eNB *eNB,
void handle_nfapi_dlsch_pdu_NB(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
nfapi_dl_config_request_pdu_t *dl_config_pdu,
uint8_t *sdu);
......
......@@ -3,28 +3,28 @@
#ifndef __openair_SCHED_NB_IOT_H__
#define __openair_SCHED_NB_IOT_H__
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "openair2/PHY_INTERFACE/IF_Module_nb_iot.h"
void process_schedule_rsp_NB_IoT(Sched_Rsp_t *sched_rsp,
PHY_VARS_eNB *eNB,
PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc);
/*Processing the ue-specific resources for uplink in NB-IoT*/
void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc, UL_IND_t *UL_INFO);
void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc, UL_IND_t *UL_INFO);
/* For NB-IoT, we put NPBCH in later part, since it would be scheduled by MAC scheduler,this generates NRS/NPSS/NSSS*/
void common_signal_procedures_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc);
void common_signal_procedures_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc);
/*Generate the ulsch params and do the mapping for the FAPI style parameters to OAI, and then do the packing*/
void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc,nfapi_hi_dci0_request_pdu_t *hi_dci0_pdu);
void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc,nfapi_hi_dci0_request_pdu_t *hi_dci0_pdu);
/*Generate the dlsch params and do the mapping for the FAPI style parameters to OAI, and then do the packing*/
void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t * proc,nfapi_dl_config_request_pdu_t *dl_config_pdu);
void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t * proc,nfapi_dl_config_request_pdu_t *dl_config_pdu);
/*Process all the scheduling result from MAC and also common signals.*/
void phy_procedures_eNB_TX_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc,int do_meas);
void phy_procedures_eNB_TX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc,int do_meas);
#endif
......@@ -30,7 +30,7 @@
* \warning
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/extern.h" //where we get the global Sched_Rsp_t structure filled
#include "SCHED/defs.h"
......@@ -103,7 +103,7 @@ extern int rx_sig_fifo;
* It generates NRS/NPSS/NSSS
*
*/
void common_signal_procedures_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc)
void common_signal_procedures_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc)
{
NB_IoT_DL_FRAME_PARMS *fp=&eNB->frame_parms;
int **txdataF = eNB->common_vars.txdataF[0];
......@@ -159,7 +159,7 @@ void common_signal_procedures_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc)
}
void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc,UL_IND_t *UL_INFO)
void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc,UL_IND_t *UL_INFO)
{
//RX processing for ue-specific resources (i
......@@ -480,7 +480,7 @@ void phy_procedures_eNB_uespec_RX_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc
/*Generate eNB ndlsch params for NB-IoT from the NPDCCH PDU of the DCI, modify the input to the Sched Rsp variable*/
void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t * proc,nfapi_dl_config_request_pdu_t *dl_config_pdu)
void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t * proc,nfapi_dl_config_request_pdu_t *dl_config_pdu)
{
int UE_id = -1;
NB_IoT_DL_FRAME_PARMS *fp=&eNB->frame_parms_nb_iot;
......@@ -612,7 +612,7 @@ void generate_eNB_dlsch_params_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t * proc,n
void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc,nfapi_hi_dci0_request_pdu_t *hi_dci0_pdu) {
void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_t *proc,nfapi_hi_dci0_request_pdu_t *hi_dci0_pdu) {
int UE_id = -1;
int harq_pid = 0;
......@@ -667,7 +667,7 @@ void generate_eNB_ulsch_params_NB_IoT(PHY_VARS_eNB *eNB,eNB_rxtx_proc_t *proc,nf
* ** CQI and PMI are not present in NB-IoT
* ** redundancy version exist only in UL for NB-IoT and not in DL
*/
void npdsch_procedures(PHY_VARS_eNB *eNB,
void npdsch_procedures(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc, //Context data structure for RX/TX portion of subframe processing
NB_IoT_eNB_NDLSCH_t *ndlsch,
//int num_pdcch_symbols, (BCOM says are not needed
......@@ -933,7 +933,7 @@ extern int oai_exit;
* (in OAI in principle is every subframe)
*/
void phy_procedures_eNB_TX_NB_IoT(PHY_VARS_eNB *eNB,
void phy_procedures_eNB_TX_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
eNB_rxtx_proc_t *proc,
int do_meas)
{
......
......@@ -40,7 +40,8 @@
//#include "COMMON/openair_defs.h"
#include "COMMON/platform_constants.h"
#include "COMMON/mac_rrc_primitives.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "RadioResourceConfigCommonSIB-NB-r13.h"
#include "RadioResourceConfigDedicated-NB-r13.h"
#include "RACH-ConfigCommon-NB-r13.h"
......
......@@ -31,7 +31,7 @@
#include "assertions.h"
#include "platform_types.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/extern.h"
#include "msc.h"
......@@ -52,6 +52,7 @@
#include "RRC/L2_INTERFACE/openair_rrc_L2_interface.h"
//NB-IoT
#include "PHY/defs_nb_iot.h"
#include "proto_nb_iot.h"
#include "defs_nb_iot.h"
#include "math.h"
......
......@@ -30,7 +30,7 @@
*/
#include "assertions.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
......@@ -45,6 +45,7 @@
#include "OCG.h"
#include "OCG_extern.h"
//NB-IoT
#include "PHY/defs_nb_iot.h"
#include "defs_nb_iot.h"
#include "proto_nb_iot.h"
......
......@@ -30,7 +30,8 @@
*/
#include "assertions.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
......
......@@ -30,7 +30,7 @@
*/
#include "assertions.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
......@@ -49,6 +49,7 @@
#include "RRC/LITE/extern.h"
#include "RRC/L2_INTERFACE/openair_rrc_L2_interface.h"
//NB-IoT
#include "PHY/defs_nb_iot.h"
#include "defs_nb_iot.h"
#include "proto_nb_iot.h"
//#include "LAYER2/MAC/pre_processor.c"
......
......@@ -30,7 +30,7 @@
*/
#include "assertions.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/extern.h"
#include "SCHED/defs.h"
......@@ -48,6 +48,7 @@
#include "RRC/LITE/extern.h"
#include "RRC/L2_INTERFACE/openair_rrc_L2_interface.h"
//NB-IoT
#include "PHY/defs_nb_iot.h"
#include "LAYER2/MAC/defs_nb_iot.h"
#include "LAYER2/MAC/proto_nb_iot.h"
......
......@@ -63,7 +63,7 @@ typedef struct{
/*Dedicated configuration -->not supported by FAPI (may not needed)
* In OAI at least are needed when we manage the phy_procedures_eNB_TX in which we call the phy_config_dedicated_eNB_step2
* that use the physicalConfigDedicated info previously stored in the PHY_VARS_eNB structure through the phy_config_dedicated procedure
* that use the physicalConfigDedicated info previously stored in the PHY_VARS_eNB_NB_IoT structure through the phy_config_dedicated procedure
*/
//PhysicalConfigDedicated_NB_r13_t *phy_config_dedicated;
......
......@@ -26,7 +26,8 @@
* \company Eurecom
* \email: raymond.knopp@eurecom.fr
*/
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/INIT/defs_nb_iot.h"
#include "SCHED/defs.h"
#include "platform_types.h"
......
......@@ -71,10 +71,10 @@
#include "SIB-Type-NB-r13.h"
#include "RRCConnectionResume-NB.h"
#include "RRCConnectionReestablishment-NB.h"
#include "PHY/defs_nb_iot.h"
//----------------------------------------
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "enb_config.h"
#if defined(ENABLE_ITTI)
......
......@@ -39,7 +39,8 @@
#include "collection/tree.h"
#include "rrc_types.h"
#include "PHY/defs.h"
//#include "PHY/defs.h"
#include "PHY/defs_nb_iot.h"
#include "COMMON/platform_constants.h"
#include "COMMON/platform_types.h"
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment