Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
D
DROO
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
CommunityXG
DROO
Commits
424f8af1
Commit
424f8af1
authored
Sep 29, 2021
by
Suzhi Bi
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
bdb470bd
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
146 additions
and
0 deletions
+146
-0
memoryTF2.py
memoryTF2.py
+146
-0
No files found.
memoryTF2.py
0 → 100644
View file @
424f8af1
# #################################################################
# This file contains the main DROO operations, including building DNN,
# Storing data sample, Training DNN, and generating quantized binary offloading decisions.
# version 1.0 -- January 2020. Written based on Tensorflow 2 by Weijian Pan and
# Liang Huang (lianghuang AT zjut.edu.cn)
# #################################################################
from
__future__
import
print_function
import
tensorflow
as
tf
from
tensorflow
import
keras
from
tensorflow.keras
import
layers
import
numpy
as
np
print
(
tf
.
__version__
)
print
(
tf
.
keras
.
__version__
)
# DNN network for memory
class
MemoryDNN
:
def
__init__
(
self
,
net
,
learning_rate
=
0.01
,
training_interval
=
10
,
batch_size
=
100
,
memory_size
=
1000
,
output_graph
=
False
):
self
.
net
=
net
# the size of the DNN
self
.
training_interval
=
training_interval
# learn every #training_interval
self
.
lr
=
learning_rate
self
.
batch_size
=
batch_size
self
.
memory_size
=
memory_size
# store all binary actions
self
.
enumerate_actions
=
[]
# stored # memory entry
self
.
memory_counter
=
1
# store training cost
self
.
cost_his
=
[]
# initialize zero memory [h, m]
self
.
memory
=
np
.
zeros
((
self
.
memory_size
,
self
.
net
[
0
]
+
self
.
net
[
-
1
]))
# construct memory network
self
.
_build_net
()
def
_build_net
(
self
):
self
.
model
=
keras
.
Sequential
([
layers
.
Dense
(
self
.
net
[
1
],
activation
=
'relu'
),
# the first hidden layer
layers
.
Dense
(
self
.
net
[
2
],
activation
=
'relu'
),
# the second hidden layer
layers
.
Dense
(
self
.
net
[
-
1
],
activation
=
'sigmoid'
)
# the output layer
])
self
.
model
.
compile
(
optimizer
=
keras
.
optimizers
.
Adam
(
lr
=
self
.
lr
),
loss
=
tf
.
losses
.
binary_crossentropy
,
metrics
=
[
'accuracy'
])
def
remember
(
self
,
h
,
m
):
# replace the old memory with new memory
idx
=
self
.
memory_counter
%
self
.
memory_size
self
.
memory
[
idx
,
:]
=
np
.
hstack
((
h
,
m
))
self
.
memory_counter
+=
1
def
encode
(
self
,
h
,
m
):
# encoding the entry
self
.
remember
(
h
,
m
)
# train the DNN every 10 step
# if self.memory_counter> self.memory_size / 2 and self.memory_counter % self.training_interval == 0:
if
self
.
memory_counter
%
self
.
training_interval
==
0
:
self
.
learn
()
def
learn
(
self
):
# sample batch memory from all memory
if
self
.
memory_counter
>
self
.
memory_size
:
sample_index
=
np
.
random
.
choice
(
self
.
memory_size
,
size
=
self
.
batch_size
)
else
:
sample_index
=
np
.
random
.
choice
(
self
.
memory_counter
,
size
=
self
.
batch_size
)
batch_memory
=
self
.
memory
[
sample_index
,
:]
h_train
=
batch_memory
[:,
0
:
self
.
net
[
0
]]
m_train
=
batch_memory
[:,
self
.
net
[
0
]:]
# print(h_train) # (128, 10)
# print(m_train) # (128, 10)
# train the DNN
hist
=
self
.
model
.
fit
(
h_train
,
m_train
,
verbose
=
0
)
self
.
cost
=
hist
.
history
[
'loss'
][
0
]
assert
(
self
.
cost
>
0
)
self
.
cost_his
.
append
(
self
.
cost
)
def
decode
(
self
,
h
,
k
=
1
,
mode
=
'OP'
):
# to have batch dimension when feed into tf placeholder
h
=
h
[
np
.
newaxis
,
:]
m_pred
=
self
.
model
.
predict
(
h
)
if
mode
is
'OP'
:
return
self
.
knm
(
m_pred
[
0
],
k
)
elif
mode
is
'KNN'
:
return
self
.
knn
(
m_pred
[
0
],
k
)
else
:
print
(
"The action selection must be 'OP' or 'KNN'"
)
def
knm
(
self
,
m
,
k
=
1
):
# return k order-preserving binary actions
m_list
=
[]
# generate the first binary offloading decision with respect to equation (8)
m_list
.
append
(
1
*
(
m
>
0.5
))
if
k
>
1
:
# generate the remaining K-1 binary offloading decisions with respect to equation (9)
m_abs
=
abs
(
m
-
0.5
)
idx_list
=
np
.
argsort
(
m_abs
)[:
k
-
1
]
for
i
in
range
(
k
-
1
):
if
m
[
idx_list
[
i
]]
>
0.5
:
# set the \hat{x}_{t,(k-1)} to 0
m_list
.
append
(
1
*
(
m
-
m
[
idx_list
[
i
]]
>
0
))
else
:
# set the \hat{x}_{t,(k-1)} to 1
m_list
.
append
(
1
*
(
m
-
m
[
idx_list
[
i
]]
>=
0
))
return
m_list
def
knn
(
self
,
m
,
k
=
1
):
# list all 2^N binary offloading actions
if
len
(
self
.
enumerate_actions
)
is
0
:
import
itertools
self
.
enumerate_actions
=
np
.
array
(
list
(
map
(
list
,
itertools
.
product
([
0
,
1
],
repeat
=
self
.
net
[
0
]))))
# the 2-norm
sqd
=
((
self
.
enumerate_actions
-
m
)
**
2
).
sum
(
1
)
idx
=
np
.
argsort
(
sqd
)
return
self
.
enumerate_actions
[
idx
[:
k
]]
def
plot_cost
(
self
):
import
matplotlib.pyplot
as
plt
plt
.
plot
(
np
.
arange
(
len
(
self
.
cost_his
))
*
self
.
training_interval
,
self
.
cost_his
)
plt
.
ylabel
(
'Training Loss'
)
plt
.
xlabel
(
'Time Frames'
)
plt
.
show
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment