OAI EPC current development

Sebastien ROUX
Eurecom
sebastien.roux@eurecom.{r

July 16, 2013

Contents

[MME and S+P-Gateway]|

Inter-task interfacel
[B.1 _Concurrency|
3.2 verall description|
8.3 Signals from kernello o000
8.4 Priority handlingf 00000
[3.5 _Message scheduling|

3.6 essage definition]

377 Task message handling]
3.8 Messages logging| 0.,

P.1 Timer types| o
9.2 Requesting anew signall

5.3 Disable and remove a timer|o
b.4 Timer signal expiry|.

[Compiling core EPC|
6.1 Dependencies| L
6.1.1 ASNId.

[System configuration|
7.1 Global MME parameters|.
[7.1.1 Relative MME capacity|
712 Maximum number of Ukl

7.1.4 Tracking Area Identity|.
715 MMECoded

(7.1.6 MME Group Id|. 17
[72 Tntertask parameters| 17

[7.2.1 Queue size per task| 17
[7.3 SCTP parameters|. 17
[7.3.1 IN/OUT streams number] 17
7.4 SIAP parameters| o o 0oL 18
[(41 Outcome timer 18
7.5 Network interfaces parameters|. 18

List of Abbreviations

API
ASN.1
CPU
1IE
MCC
MMEC
MMEGID
MNC
PDU
S1AP
TAC
TAI
XML

Application Programming Interface
Abstract Syntax Notation.1
Control Processing Unit
Informations Elements
Mobile Country Code
MME Code

MME Group Id

Mobile Network Code
Protocol Data Unit

S1 Application Protocol
Tracking Area Code
Tracking Area Identity

Extensible Markup Language

MME and S+P-Gateway

S11
MME Application - 9[S+P-GW Application
| |
l l
NAS } }
l l
mmmm L - & PREREE oo
| S6a/Diameter S1-MME/S1AP ‘ S1-U/GTPU }—l SGi
[(_____ ! ‘ o el
‘ SCTP ‘ UDP ‘
‘ IP

D Control Plane
D User Plane

D Linux IP Stack
< -» Abstraction link

--» Control

Figure A: MME and S+P-GW architecture

Figure [A] shows the targeted implementation of Eurecom EPC.

S1AP layer

S1AP layer relies on ASN.1 messages description. Generating C code from the
specification implies three steps:

1. Modify .asn files to match tools limitation.
2. Generate IEs with the help of the asnlc free tool.

3. Use the provided script which generates PDU codecﬂ

IEncode/Decode

Inter-task interface

3.1 Concurrency

Code divided in layers should be able to be executed in parallel to use the full
CPUs power. We can achieve better performance by using some mechanisms
that runs part of code in parallel on UNIX platforms:

e Multi-process: no link between processes, usage of sockets or pipes is
mandatory.

e Forks: code is duplicated and data are stored in different spaces.
e Threads: only code is duplicated, data space is shared between processes

Data synchronization is the first issue to think about when using such mecha-
nisms.

3.2 Overall description

A single API (called ITT]E]) is used to manage messages exchanged between the
tasks which are running on separate threads. This will lead in better usage of
multi-core environments. Figure [B| describes the basic fonctionnement of the

Ej Message queue

Lo__T-—-__2' L __TFl____ { 7‘1 Thread

ITTI interface

Figure B: Overall process

inter-task interface. A message sent from Task A is en-queued to the message
queue belonging to the target task. Note that tasks can send messages to

1InTer-Task Interface

themselves. Another API (See Figure defines broadcast messaging where
any task can send a broadcast message to every other task.

Ej Message queue

‘L i: Thread

Figure C: Broadcasting process

Once a task received a new message and if the task is in sleep mode (i.e.
not handling any message), the task is waken up and the message is de-queued.
We can imagine a limit in number of parallel tasks, for example N+1 CPU’s.
Architectures using hyper-threading mechanism can have this value extended
to 2 x CPU’s. Every task is running in a separated pthread, awaiting for new
messages to handle.

3.3 Signals from kernel

Handling of signals from kernel is the more critical part as a signal can be raised
at any moment and will interrupt one of the running thread. Used signals should
be restricted to a single task that will handle them (using the POSIX sigmask
function) . Moreover, it isn’t thread-safe to use mutexes inside a signal handler,
a synchronization flag should be used to notify the signal handler task. This
task will then send the appropriate message to the right task. For example,
handling of signals can be done in the main thread or by a background task
scheduled periodically. To overcome these issues, sigtimedwait and sigwaitinfo
API functions can be used to wait for a signal to happen. Signals will be received
in the thread context, as far as other threads block these signals.

3.4 Priority handling

Usage of message prioritization enables tasks to send critical messages with a
faster delivery time regarding other messages en-queued for the target task. For
now only seven priority levels can be applied when defining tasks:

e TASK PRIORITY_MAX

TASK_PRIORITY_MAX_LEAST

TASK_PRIORITY_MED_PLUS

TASK_PRIORITY_MED

TASK_PRIORITY_MED_LEAST
TASK_PRIORITY_MIN_PLUS

TASK_PRIORITY_MIN

For now message priority does not involve any suitable scheduler: every time
a message is de-queued, message priority of other messages is incremented by
one.

3.5 Message scheduling

Currently, there is no software limit on the maximum number of threads ex-
ecuted in parallel. When a task sends a message, it is en-queued in the right
message queue, belonging to the target task. The queue is a double-linked
list. A mutex prevents other tasks from modifying this queue while a task is
en-queueing or removing a message.

3.6 Message definition

Messages are defined using a single macro that adds the message to the ids
enumeration and maps data of the message to the union of messages.

MESSAGE_DEF (S1AP_SCTP_NEW_MESSAGE_IND,
TASK_PRIORITY_MED, SlapSctpNewMessageInd
slapSctpNewMessageInd)

and the associated data:
typedef struct {
uint8_t *buffer;
uint32_t buflen;
int32_t assocld;
uint8_t stream;
uintl6_t instreams;

uintl6_t outstreams;

} SlapSctpNewMessagelInd;

11

12

13

14

15

17

18

19

20

21

22

23

3.7 Task message handling

void* slap_mme_thread(void *args) {

while (1) {

receive_msg(TASK_S1AP, &receivedMessage);

assert(receivedMessage

!= NULL) ;

switch(receivedMessage ->messageId) {
case S1AP_SCTP_NEW_MESSAGE_IND:

{
} break;
default:
{
S1AP_DEBUG ("Unkwnon message ID %d\n",
receivedMessage ->messageld);
} break;

}

free(receivedMessage) ;
receivedMessage = NULL;

}
return NULL;

}

3.8 Messages logging

Process

T(TCP socket ()7

Remote host 1

ITTI

L(TCP socket ()7

Remote host n

Figure D: Remote debugging

Logging of inter-tasks messages can be setup using an external tool that will
be connected to the ITTI. Based on an array of dumped messages, they are
serialized to produce an array of byte sent over a socket. A remote tool can
then decode messages and display fields, message number, time.

Additionaly, logs from standard output can be printed over the debug tool.
Multi-user debugging on only one running process can be achieved using this
interface. Messages to dump should be queued for a pure asynchronous com-
munication between the dump task and the remote hosts. Another interesting
feature could be to send a message to a task from an host, allowing run-time

re-configuration. The C pre-processor can be used to generate messages defini-
tion (using XML templates for example).

3.9 Limitations

Data pointers belonging to one task should never be passed to another task.
The presented mechanism does not prevent a task from being locked. In such a
case, the blocked task will no more handle messages incoming from other tasks.

3.10 Benefits

e Only a single entry point between all tasks (easy inter-task communication
tracking and debugging).

e Usage of message queues enables parallelization of layers.
e Message prioritization and scheduling.

e Protection of data between threads is done by the API at an higher level.

3.11 To do

e Implement a priority based scheduler. Currently the queue of messages
works as a FIFO.

e Limit the number of tasks thread that can be run in parallel

10

Signal API

On LINUX platforms, processes will receive signals comming from Kernel. A
single blocking entry point handles all used signals that are requested by the
MME. The main application thread is reserved to signal handling as this thread
will be blocked till a new signal is ready for handling.

Using this method prevents threads from being interrupted by signals handler
which can interrupt the thread at any time and as a consequence create some
misbehaving in threads contexts. Following is a sample list of signals handled:

e SIGABRT This is signal is sent to the process when abort() function is
called within the process and kill the process. Process can for example
display the stack once this signal is received.

e SIGRTMIN This signal is used by the timer API and is raised everytime
a timer has expired.

Till now there is no way for tasks to request a new signal.

11

1

Timer API

Timer API doesn’t consist of a task (i.e. tasks cannot send messages to it).
Handling of UNIX signal associated to the timers is a Real-time signal with an
id (SIGRTMIN) depending on the platform. Management of this signal is done
by the signal interface and developpers should not care about handling timer
signals incoming from Kernel. Once a timer has expired the task which has
requested it will receive the TIMER_HAS_EXPIRED signal. Note that timer_id
is of type long and thus its size is platform specific.

5.1 Timer types

e TIMER_ONE_SHOT After expiry and its associated signal, the timer is
removed.

e TIMER_PERIODIC The timer is automatically reloaded on each expiry
while the task which has setup this timer doesn’t cancel it.
5.2 Requesting a new signal

Any task can request a new signal by invoking the following API:

int timer_setup(

uint32_t interval_sec,
uint32_t interval_us,
task_id_t task_id,
timer_type_t type,

long *timer_id) ;

Note that timer id is a unique identifier to distinguish timers.

5.3 Disable and remove a timer

Disable and remove the timer referenced by timer_id.

int timer_remove (long timer_id);

12

5.4 Timer signal expiry

Once the signal dispatcher receives the SIGRTMIN signal, a new signal is sent
to the task which has requested the timer. Contrary to signal request, timer
expiry notification is achieved using the intertask mechanism. The signal data
associated to this event follows:

1 typedef struct {
2 long timer_id;
3 } timer_has_expired_t;

13

Compiling core EPC

The core EPC software has been tested on Ubuntu 12.04LTS x86 and ia64. Be-
fore compiling the core EPC, some packages should be installed on the platform.

6.1 Dependencies

e libsctp-dev

e libpthread-dev

e automake and autoconf
e libtoolize

e gcc, g++, make

e flex and bison

e openssl-dev

e asnlc (see section [6.1.1])
e libnettle (see section [6.1.2))
e freediameter (see section [6.1.4)) and gnutls 3.1.0 (see section |6.1.3))

Command-line to install the required packages:

sudo apt-get install cmake make gcc flex bison \
libsctpl libsctp-dev libidn2-0-dev libidnil-dev \
libmysqlclient -dev libxml2-dev swig python-dev \
cmake -curses-gui valgrind guile-2.0-dev \
libgmp-dev libgcryptll-dev gdb unzip \

libtasnl -3-dev g++ autoconf automake \
openssl-dev -y

6.1.1 ASNlc
6.1.2 libnettle

The nettle library is used by freediameter for certificate encryption and by core
EPC for key derivation.

14

wget ftp:

gunzip nettle-2.5.tar.gz

tar -xvf nettle-2.5.tar

cd nettle-2.5/

./configure --disable-openssl --enable-shared
make

make check

sudo make install

The commands provided above will download the required packages sources,
configure and install them on the system. Note that any packages which is not
in the Ubuntu repository is installed by default in /usr/local instead of /usr.
This behaviour can be overriden at configuration time by providing —prefix=/usr
to the configuration script (configure).

6.1.3 gnutls

The GNUTIs library is only used by freediameter for certificate handling and
as a consequence should be installed before trying to compile the freediameter
library.

wget ftp:

tar -xvf gnutls-3.1.0.tar.xz

cd gnutls-3.1.0/

./configure LDFLAGS=’-L/usr/local/lib’
make

sudo make install

Note: when dependencies are installed in /usr/local instead of /usr, LDFLAGS
has to be overriden with the path to libraries when configuring the package:
LDFLAGS="-L/usr/local/lib’.

6.1.4 freediameter

Freediameter is the package that provides diameter capabilities to the MME /HSS.
On top of this stack, S6A avp dictionnary is used to enable a compliant S6A
interface.

wget http:

tar -xvf 1.1.5.tar.gz

cd freeDiameter-1.1.5

patch -pl < ../../freediameter-1.1.5.patch
mkdir build

cd build

cmake ../

make

make test

sudo make install

15

If you want ot install this package in /usr instead of /usr/local,
-DCMAKE_INSTALL_PREFIX:PATH=/usr should be passed to cmake at con-
figuration.

16

1

System configuration

Currently there is two ways to configure the system:
e Compilation configuration
e Boot-up configuration

In the first type of configuration, the single system configuration structure is
filled in with default values that can be found in the mme_default_values.h
header file.

When Boot-up configuration is used, a configuration file is passed to the pro-
cess by using the either -c filename.conf or —conf=filename.conf. This file is
then parsed by the bison interpreter and values are replaced in the global sys-
tem configuration structure.

7.1 Global MME parameters

7.1.1 Relative MME capacity

Even though this parameter is not used by the MME for controlling the MME
load balancing within a pool (at least for now), the parameter has to be to
forwarded to the eNBs during association procedure. This parameter is encoded
on 8bits, acceptable values going from 0 to 255. (Default value = 15)

RELATIVE_CAPACITY = 10;

7.1.2 Maximum number of UE

This limit is present here only for debug purposes and is used to restrict the
number of served UE the MME can handle. In real network another mechanism
will trigger an MME overload for certain eNBs and will restrict certain types of
traffic. Such a mechanism would imply the Relative MME capacity.

MAXUE = 100;

7.1.3 Maximum number of eNB

Refer to[7.1.2
MAXENB = 10;

17

1

2

7.1.4 Tracking Area Identity

TAI is the concatenation of MCC, MNC and TAC. The TAC uniquely identifies
a PLMN within a Cell Id.

PLMN = mcc.mnc:tac;
Multiple values can be given using a comma separator. Example:

PLMN = 208.38:0,209.130:4,208.35:8;

7.1.5 MME Code

A list of a maximum of 256 values can be provided. MME Code is encoded on
8 bits, so acceptable range is: 0 to 255. Example:

MME_CODE = 30,56,1,8;

7.1.6 MME Group Id

A list of a maximum of 65356 values can be provided. MME Group Id is encoded
on 16 bits, so acceptable range is: 0 to 65535. Example:

MME_GID = 3,4,5,30,8,9,50021;

7.2 Intertask parameters

7.2.1 Queue size per task

To restrict the number of messages in queues or to detect a possible MME
overload, an upper bound for the queue size can be defined like this:

ITTI_QUEUE_SIZE = 2000000;

This parameter is expressed in bytes. Note that all messages exchanged by tasks
have the same size.

7.3 SCTP parameters

7.3.1 IN/OUT streams number

The number of input/output streams can be configured to limit the number
of streams used for UE-associated signalling. Note that stream with id = 0 is
reserved for non-UE associated signalling. At least two streams should be used
by the MME. (Default value = 64/64 streams)

SCTP_INSTREAMS = 32;
SCTP_OUTSTREAMS = 32;

18

7.4 S1AP parameters

7.4.1 Outcome timer

Once an outcome is sent from MME to eNB, the MME locally starts a timer
to abort the procedure and release UE contexts if the expected answer to this
outcome is not received at the expiry of this timer.

This timer is expressed in seconds. (Default value = 5 seconds)

S1AP_OUTCOME_TIMER = 10;

7.5 Network interfaces parameters
Three paramters can be tuned in the configuration file:
e Interface Name: The related interface will be bind to this interface name

e [P address: Currently only IPv4 address is allowed

10

11

13

14

16

o IP netwmask: Netmask for the LAN

These three paramters can be setup for five different interfaces used:

e SGW interface for S11

e SGW interface for S1U/S12/S4 in user plane
e SGW interface for S5/S8 in user plane

e PGW interface for S5/S8

e PGW interface for SGi

e MME interface for SI-MME in control plane

Example of configuration:

-———---- Interfaces definitions
SGW_INTERFACE_NAME_FOR_S11
SGW_IP_ADDRESS_FOR_S11

SGW_IP_NETMASK_FOR_S11

SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP
SGW_IP_ADDRESS_FOR_S1U_S12_5S4_UP
SGW_IP_NETMASK_FOR_S1U_S12_84_UP

SGW_INTERFACE_NAME_FOR_S5_S8_UP
SGW_IP_ADDRESS_FOR_S5_S8_UP
SGW_IP_NETMASK_FOR_S5_S8_UP

PGW_INTERFACE_NAME_FOR_S5_S8

PGW_IP_ADDRESS_FOR_S5_88
PGW_IP_NETMASK_FOR_S5_8S8

19

"sllsgw";
"192.168.10.1"

24 ;

"upsgw0";
"192.168.1.1";
24,

"upsgwl";
"192.168.5.2";
24,

Iluppgwoﬂ ;
"192.168.5.1";
24 ;

17

19

20

21

22

23

24

PGW_INTERFACE_NAME_FOR_SGI
PGW_IP_ADDR_FOR_SGI

PGW_IP_NETMASK_FOR_SGI

MME_INTERFACE_NAME_FOR_S1_MME
MME_IP_ADDRESS_FOR_S1_MME

>

MME_IP_NETMASK_FOR_S1_MME

20

"eth1";
"192.168.12.30

24,

"cpmmeO";
"192.168.11.1"

24 ;

	MME and S+P-Gateway
	S1AP layer
	Inter-task interface
	Concurrency
	Overall description
	Signals from kernel
	Priority handling
	Message scheduling
	Message definition
	Task message handling
	Messages logging
	Limitations
	Benefits
	To do

	Signal API
	Timer API
	Timer types
	Requesting a new signal
	Disable and remove a timer
	Timer signal expiry

	Compiling core EPC
	Dependencies
	ASN1c
	libnettle
	gnutls
	freediameter

	System configuration
	Global MME parameters
	Relative MME capacity
	Maximum number of UE
	Maximum number of eNB
	Tracking Area Identity
	MME Code
	MME Group Id

	Intertask parameters
	Queue size per task

	SCTP parameters
	IN/OUT streams number

	S1AP parameters
	Outcome timer

	Network interfaces parameters

