Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
O
OpenXG-RAN
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wangjie
OpenXG-RAN
Commits
0f71ebd2
Commit
0f71ebd2
authored
Oct 15, 2019
by
sebastian
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Experimental changes for layered processing BG2
parent
6548ae15
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
1295 additions
and
7 deletions
+1295
-7
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_cnProc.h
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_cnProc.h
+568
-4
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_decoder.c
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_decoder.c
+212
-3
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_mPass.h
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_mPass.h
+507
-0
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_types.h
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_types.h
+8
-0
No files found.
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_cnProc.h
View file @
0f71ebd2
...
@@ -31,6 +31,570 @@
...
@@ -31,6 +31,570 @@
#ifndef __NR_LDPC_CNPROC__H__
#ifndef __NR_LDPC_CNPROC__H__
#define __NR_LDPC_CNPROC__H__
#define __NR_LDPC_CNPROC__H__
/**
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to processing buffers
\param Z Lifting size
*/
/*
static inline void nrLDPC_cnProcCore(t_nrLDPC_lut* p_lut, t_nrLDPC_procBuf* p_procBuf, t_nrLDPC_cnProcGroup* p_cnProcGroup, uint16_t Z)
{
__m256i* p_cnProcBuf = (__m256i*) p_cnProcGroup->cnProcBufGroup;
__m256i* p_cnProcBufRes = (__m256i*) p_cnProcGroup->cnProcBufResGroup;
const uint8_t numConnectedBn = p_cnProcGroup->numConnectedBn;
const uint8_t numCnInCnGroup = p_cnProcGroup->numCnInCnGroup;
const uint8_t numCnInCnGroupMax = p_cnProcGroup->numCnInCnGroupMax;
const uint16_t (*idxCnProcGroup)[numConnectedBn-1] = (uint16_t(*)[numConnectedBn-1]) p_cnProcGroup->idxCnProcGroup;
// Number of CNs in Groups
uint32_t M;
uint32_t i;
uint32_t j;
uint32_t k;
// Offset to each bit within a group in terms of 32 Byte
uint32_t bitOffsetInGroup;
__m256i ymm0, min, sgn;
__m256i* p_cnProcBufResBit;
const __m256i* p_ones = (__m256i*) ones256_epi8;
const __m256i* p_maxLLR = (__m256i*) maxLLR256_epi8;
// =====================================================================
// Process group
if (numCnInCnGroup > 0)
{
// Number of groups of 32 CNs for parallel processing
// Ceil for values not divisible by 32
M = (numCnInCnGroup*Z + 31)>>5;
// Set the offset to each bit within a group in terms of 32 Byte
bitOffsetInGroup = (numCnInCnGroupMax*NR_LDPC_ZMAX)>>5;
// Loop over every BN
for (j=0; j<numConnectedBn; j++)
{
// Set of results pointer to correct BN address
p_cnProcBufResBit = p_cnProcBufRes + (j*bitOffsetInGroup);
// Loop over CNs
for (i=0; i<M; i++)
{
// Abs and sign of 32 CNs (first BN)
ymm0 = p_cnProcBuf[idxCnProcGroup[j][0] + i];
sgn = _mm256_sign_epi8(*p_ones, ymm0);
min = _mm256_abs_epi8(ymm0);
//mexPrintf("idxCnProcGroup[%d][0] = %d\n",j,idxCnProcGroup[j][0]);
// Loop over BNs
for (k=1; k<(numConnectedBn-1); k++)
{
//mexPrintf("idxCnProcGroup[%d][%d] = %d\n",j,k,idxCnProcGroup[j][k]);
ymm0 = p_cnProcBuf[idxCnProcGroup[j][k] + i];
min = _mm256_min_epu8(min, _mm256_abs_epi8(ymm0));
sgn = _mm256_sign_epi8(sgn, ymm0);
}
// Store result
min = _mm256_min_epu8(min, *p_maxLLR); // 128 in epi8 is -127
*p_cnProcBufResBit = _mm256_sign_epi8(min, sgn);
p_cnProcBufResBit++;
}
}
}
}
*/
/**
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cnProc_BG2_CNG3
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
__m256i
*
p_cnProcBuf
;
__m256i
*
p_cnProcBufRes
;
// Number of CNs in Groups
uint32_t
M
;
uint32_t
i
;
uint32_t
j
;
// Offset to each bit within a group in terms of 32 Byte
uint32_t
bitOffsetInGroup
;
__m256i
ymm0
,
min
,
sgn
;
__m256i
*
p_cnProcBufResBit
;
const
__m256i
*
p_ones
=
(
__m256i
*
)
ones256_epi8
;
const
__m256i
*
p_maxLLR
=
(
__m256i
*
)
maxLLR256_epi8
;
// LUT with offsets for bits that need to be processed
// 1. bit proc requires LLRs of 2. and 3. bit, 2.bits of 1. and 3. etc.
// Offsets are in units of bitOffsetInGroup
const
uint8_t
lut_idxCnProcG3
[
3
][
2
]
=
{{
72
,
144
},
{
0
,
144
},
{
0
,
72
}};
if
(
lut_numCnInCnGroups
[
0
]
>
0
)
{
// Number of groups of 32 CNs for parallel processing
// Ceil for values not divisible by 32
M
=
(
lut_numCnInCnGroups
[
0
]
*
Z
+
31
)
>>
5
;
// Set the offset to each bit within a group in terms of 32 Byte
bitOffsetInGroup
=
(
lut_numCnInCnGroups_BG2_R15
[
0
]
*
NR_LDPC_ZMAX
)
>>
5
;
// Set pointers to start of group 3
p_cnProcBuf
=
(
__m256i
*
)
&
cnProcBuf
[
lut_startAddrCnGroups
[
0
]];
p_cnProcBufRes
=
(
__m256i
*
)
&
cnProcBufRes
[
lut_startAddrCnGroups
[
0
]];
// Loop over every BN
for
(
j
=
0
;
j
<
3
;
j
++
)
{
// Set of results pointer to correct BN address
p_cnProcBufResBit
=
p_cnProcBufRes
+
(
j
*
bitOffsetInGroup
);
// Loop over CNs
for
(
i
=
0
;
i
<
M
;
i
++
)
{
// Abs and sign of 32 CNs (first BN)
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG3
[
j
][
0
]
+
i
];
sgn
=
_mm256_sign_epi8
(
*
p_ones
,
ymm0
);
min
=
_mm256_abs_epi8
(
ymm0
);
// 32 CNs of second BN
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG3
[
j
][
1
]
+
i
];
min
=
_mm256_min_epu8
(
min
,
_mm256_abs_epi8
(
ymm0
));
sgn
=
_mm256_sign_epi8
(
sgn
,
ymm0
);
// Store result
min
=
_mm256_min_epu8
(
min
,
*
p_maxLLR
);
// 128 in epi8 is -127
*
p_cnProcBufResBit
=
_mm256_sign_epi8
(
min
,
sgn
);
p_cnProcBufResBit
++
;
}
}
}
}
/**
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cnProc_BG2_CNG4
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
__m256i
*
p_cnProcBuf
;
__m256i
*
p_cnProcBufRes
;
// Number of CNs in Groups
uint32_t
M
;
uint32_t
i
;
uint32_t
j
;
uint32_t
k
;
// Offset to each bit within a group in terms of 32 Byte
uint32_t
bitOffsetInGroup
;
__m256i
ymm0
,
min
,
sgn
;
__m256i
*
p_cnProcBufResBit
;
const
__m256i
*
p_ones
=
(
__m256i
*
)
ones256_epi8
;
const
__m256i
*
p_maxLLR
=
(
__m256i
*
)
maxLLR256_epi8
;
// =====================================================================
// Process group with 4 BNs
// Offset is 20*384/32 = 240
const
uint16_t
lut_idxCnProcG4
[
4
][
3
]
=
{{
240
,
480
,
720
},
{
0
,
480
,
720
},
{
0
,
240
,
720
},
{
0
,
240
,
480
}};
if
(
lut_numCnInCnGroups
[
1
]
>
0
)
{
// Number of groups of 32 CNs for parallel processing
// Ceil for values not divisible by 32
M
=
(
lut_numCnInCnGroups
[
1
]
*
Z
+
31
)
>>
5
;
// Set the offset to each bit within a group in terms of 32 Byte
bitOffsetInGroup
=
(
lut_numCnInCnGroups_BG2_R15
[
1
]
*
NR_LDPC_ZMAX
)
>>
5
;
// Set pointers to start of group 4
p_cnProcBuf
=
(
__m256i
*
)
&
cnProcBuf
[
lut_startAddrCnGroups
[
1
]];
p_cnProcBufRes
=
(
__m256i
*
)
&
cnProcBufRes
[
lut_startAddrCnGroups
[
1
]];
// Loop over every BN
for
(
j
=
0
;
j
<
4
;
j
++
)
{
// Set of results pointer to correct BN address
p_cnProcBufResBit
=
p_cnProcBufRes
+
(
j
*
bitOffsetInGroup
);
// Loop over CNs
for
(
i
=
0
;
i
<
M
;
i
++
)
{
// Abs and sign of 32 CNs (first BN)
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG4
[
j
][
0
]
+
i
];
sgn
=
_mm256_sign_epi8
(
*
p_ones
,
ymm0
);
min
=
_mm256_abs_epi8
(
ymm0
);
// Loop over BNs
for
(
k
=
1
;
k
<
3
;
k
++
)
{
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG4
[
j
][
k
]
+
i
];
min
=
_mm256_min_epu8
(
min
,
_mm256_abs_epi8
(
ymm0
));
sgn
=
_mm256_sign_epi8
(
sgn
,
ymm0
);
}
// Store result
min
=
_mm256_min_epu8
(
min
,
*
p_maxLLR
);
// 128 in epi8 is -127
*
p_cnProcBufResBit
=
_mm256_sign_epi8
(
min
,
sgn
);
p_cnProcBufResBit
++
;
}
}
}
}
/**
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cnProc_BG2_CNG5
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
__m256i
*
p_cnProcBuf
;
__m256i
*
p_cnProcBufRes
;
// Number of CNs in Groups
uint32_t
M
;
uint32_t
i
;
uint32_t
j
;
uint32_t
k
;
// Offset to each bit within a group in terms of 32 Byte
uint32_t
bitOffsetInGroup
;
__m256i
ymm0
,
min
,
sgn
;
__m256i
*
p_cnProcBufResBit
;
const
__m256i
*
p_ones
=
(
__m256i
*
)
ones256_epi8
;
const
__m256i
*
p_maxLLR
=
(
__m256i
*
)
maxLLR256_epi8
;
// =====================================================================
// Process group with 5 BNs
// Offset is 9*384/32 = 108
const
uint16_t
lut_idxCnProcG5
[
5
][
4
]
=
{{
108
,
216
,
324
,
432
},
{
0
,
216
,
324
,
432
},
{
0
,
108
,
324
,
432
},
{
0
,
108
,
216
,
432
},
{
0
,
108
,
216
,
324
}};
if
(
lut_numCnInCnGroups
[
2
]
>
0
)
{
// Number of groups of 32 CNs for parallel processing
// Ceil for values not divisible by 32
M
=
(
lut_numCnInCnGroups
[
2
]
*
Z
+
31
)
>>
5
;
// Set the offset to each bit within a group in terms of 32 Byte
bitOffsetInGroup
=
(
lut_numCnInCnGroups_BG2_R15
[
2
]
*
NR_LDPC_ZMAX
)
>>
5
;
// Set pointers to start of group 5
p_cnProcBuf
=
(
__m256i
*
)
&
cnProcBuf
[
lut_startAddrCnGroups
[
2
]];
p_cnProcBufRes
=
(
__m256i
*
)
&
cnProcBufRes
[
lut_startAddrCnGroups
[
2
]];
// Loop over every BN
for
(
j
=
0
;
j
<
5
;
j
++
)
{
// Set of results pointer to correct BN address
p_cnProcBufResBit
=
p_cnProcBufRes
+
(
j
*
bitOffsetInGroup
);
// Loop over CNs
for
(
i
=
0
;
i
<
M
;
i
++
)
{
// Abs and sign of 32 CNs (first BN)
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG5
[
j
][
0
]
+
i
];
sgn
=
_mm256_sign_epi8
(
*
p_ones
,
ymm0
);
min
=
_mm256_abs_epi8
(
ymm0
);
// Loop over BNs
for
(
k
=
1
;
k
<
4
;
k
++
)
{
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG5
[
j
][
k
]
+
i
];
min
=
_mm256_min_epu8
(
min
,
_mm256_abs_epi8
(
ymm0
));
sgn
=
_mm256_sign_epi8
(
sgn
,
ymm0
);
}
// Store result
min
=
_mm256_min_epu8
(
min
,
*
p_maxLLR
);
// 128 in epi8 is -127
*
p_cnProcBufResBit
=
_mm256_sign_epi8
(
min
,
sgn
);
p_cnProcBufResBit
++
;
}
}
}
}
/**
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cnProc_BG2_CNG6
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
__m256i
*
p_cnProcBuf
;
__m256i
*
p_cnProcBufRes
;
// Number of CNs in Groups
uint32_t
M
;
uint32_t
i
;
uint32_t
j
;
uint32_t
k
;
// Offset to each bit within a group in terms of 32 Byte
uint32_t
bitOffsetInGroup
;
__m256i
ymm0
,
min
,
sgn
;
__m256i
*
p_cnProcBufResBit
;
const
__m256i
*
p_ones
=
(
__m256i
*
)
ones256_epi8
;
const
__m256i
*
p_maxLLR
=
(
__m256i
*
)
maxLLR256_epi8
;
// =====================================================================
// Process group with 6 BNs
// Offset is 3*384/32 = 36
const
uint16_t
lut_idxCnProcG6
[
6
][
5
]
=
{{
36
,
72
,
108
,
144
,
180
},
{
0
,
72
,
108
,
144
,
180
},
{
0
,
36
,
108
,
144
,
180
},
{
0
,
36
,
72
,
144
,
180
},
{
0
,
36
,
72
,
108
,
180
},
{
0
,
36
,
72
,
108
,
144
}};
if
(
lut_numCnInCnGroups
[
3
]
>
0
)
{
// Number of groups of 32 CNs for parallel processing
// Ceil for values not divisible by 32
M
=
(
lut_numCnInCnGroups
[
3
]
*
Z
+
31
)
>>
5
;
// Set the offset to each bit within a group in terms of 32 Byte
bitOffsetInGroup
=
(
lut_numCnInCnGroups_BG2_R15
[
3
]
*
NR_LDPC_ZMAX
)
>>
5
;
// Set pointers to start of group 6
p_cnProcBuf
=
(
__m256i
*
)
&
cnProcBuf
[
lut_startAddrCnGroups
[
3
]];
p_cnProcBufRes
=
(
__m256i
*
)
&
cnProcBufRes
[
lut_startAddrCnGroups
[
3
]];
// Loop over every BN
for
(
j
=
0
;
j
<
6
;
j
++
)
{
// Set of results pointer to correct BN address
p_cnProcBufResBit
=
p_cnProcBufRes
+
(
j
*
bitOffsetInGroup
);
// Loop over CNs
for
(
i
=
0
;
i
<
M
;
i
++
)
{
// Abs and sign of 32 CNs (first BN)
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG6
[
j
][
0
]
+
i
];
sgn
=
_mm256_sign_epi8
(
*
p_ones
,
ymm0
);
min
=
_mm256_abs_epi8
(
ymm0
);
// Loop over BNs
for
(
k
=
1
;
k
<
5
;
k
++
)
{
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG6
[
j
][
k
]
+
i
];
min
=
_mm256_min_epu8
(
min
,
_mm256_abs_epi8
(
ymm0
));
sgn
=
_mm256_sign_epi8
(
sgn
,
ymm0
);
}
// Store result
min
=
_mm256_min_epu8
(
min
,
*
p_maxLLR
);
// 128 in epi8 is -127
*
p_cnProcBufResBit
=
_mm256_sign_epi8
(
min
,
sgn
);
p_cnProcBufResBit
++
;
}
}
}
}
/**
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cnProc_BG2_CNG8
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
__m256i
*
p_cnProcBuf
;
__m256i
*
p_cnProcBufRes
;
// Number of CNs in Groups
uint32_t
M
;
uint32_t
i
;
uint32_t
j
;
uint32_t
k
;
// Offset to each bit within a group in terms of 32 Byte
uint32_t
bitOffsetInGroup
;
__m256i
ymm0
,
min
,
sgn
;
__m256i
*
p_cnProcBufResBit
;
const
__m256i
*
p_ones
=
(
__m256i
*
)
ones256_epi8
;
const
__m256i
*
p_maxLLR
=
(
__m256i
*
)
maxLLR256_epi8
;
// =====================================================================
// Process group with 8 BNs
// Offset is 2*384/32 = 24
const
uint8_t
lut_idxCnProcG8
[
8
][
7
]
=
{{
24
,
48
,
72
,
96
,
120
,
144
,
168
},
{
0
,
48
,
72
,
96
,
120
,
144
,
168
},
{
0
,
24
,
72
,
96
,
120
,
144
,
168
},
{
0
,
24
,
48
,
96
,
120
,
144
,
168
},
{
0
,
24
,
48
,
72
,
120
,
144
,
168
},
{
0
,
24
,
48
,
72
,
96
,
144
,
168
},
{
0
,
24
,
48
,
72
,
96
,
120
,
168
},
{
0
,
24
,
48
,
72
,
96
,
120
,
144
}};
if
(
lut_numCnInCnGroups
[
4
]
>
0
)
{
// Number of groups of 32 CNs for parallel processing
// Ceil for values not divisible by 32
M
=
(
lut_numCnInCnGroups
[
4
]
*
Z
+
31
)
>>
5
;
// Set the offset to each bit within a group in terms of 32 Byte
bitOffsetInGroup
=
(
lut_numCnInCnGroups_BG2_R15
[
4
]
*
NR_LDPC_ZMAX
)
>>
5
;
// Set pointers to start of group 8
p_cnProcBuf
=
(
__m256i
*
)
&
cnProcBuf
[
lut_startAddrCnGroups
[
4
]];
p_cnProcBufRes
=
(
__m256i
*
)
&
cnProcBufRes
[
lut_startAddrCnGroups
[
4
]];
// Loop over every BN
for
(
j
=
0
;
j
<
8
;
j
++
)
{
// Set of results pointer to correct BN address
p_cnProcBufResBit
=
p_cnProcBufRes
+
(
j
*
bitOffsetInGroup
);
// Loop over CNs
for
(
i
=
0
;
i
<
M
;
i
++
)
{
// Abs and sign of 32 CNs (first BN)
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG8
[
j
][
0
]
+
i
];
sgn
=
_mm256_sign_epi8
(
*
p_ones
,
ymm0
);
min
=
_mm256_abs_epi8
(
ymm0
);
// Loop over BNs
for
(
k
=
1
;
k
<
7
;
k
++
)
{
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG8
[
j
][
k
]
+
i
];
min
=
_mm256_min_epu8
(
min
,
_mm256_abs_epi8
(
ymm0
));
sgn
=
_mm256_sign_epi8
(
sgn
,
ymm0
);
}
// Store result
min
=
_mm256_min_epu8
(
min
,
*
p_maxLLR
);
// 128 in epi8 is -127
*
p_cnProcBufResBit
=
_mm256_sign_epi8
(
min
,
sgn
);
p_cnProcBufResBit
++
;
}
}
}
}
/**
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cnProc_BG2_CNG10
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
__m256i
*
p_cnProcBuf
;
__m256i
*
p_cnProcBufRes
;
// Number of CNs in Groups
uint32_t
M
;
uint32_t
i
;
uint32_t
j
;
uint32_t
k
;
// Offset to each bit within a group in terms of 32 Byte
uint32_t
bitOffsetInGroup
;
__m256i
ymm0
,
min
,
sgn
;
__m256i
*
p_cnProcBufResBit
;
const
__m256i
*
p_ones
=
(
__m256i
*
)
ones256_epi8
;
const
__m256i
*
p_maxLLR
=
(
__m256i
*
)
maxLLR256_epi8
;
// =====================================================================
// Process group with 10 BNs
// Offset is 2*384/32 = 24
const
uint8_t
lut_idxCnProcG10
[
10
][
9
]
=
{{
24
,
48
,
72
,
96
,
120
,
144
,
168
,
192
,
216
},
{
0
,
48
,
72
,
96
,
120
,
144
,
168
,
192
,
216
},
{
0
,
24
,
72
,
96
,
120
,
144
,
168
,
192
,
216
},
{
0
,
24
,
48
,
96
,
120
,
144
,
168
,
192
,
216
},
{
0
,
24
,
48
,
72
,
120
,
144
,
168
,
192
,
216
},
{
0
,
24
,
48
,
72
,
96
,
144
,
168
,
192
,
216
},
{
0
,
24
,
48
,
72
,
96
,
120
,
168
,
192
,
216
},
{
0
,
24
,
48
,
72
,
96
,
120
,
144
,
192
,
216
},
{
0
,
24
,
48
,
72
,
96
,
120
,
144
,
168
,
216
},
{
0
,
24
,
48
,
72
,
96
,
120
,
144
,
168
,
192
}};
if
(
lut_numCnInCnGroups
[
5
]
>
0
)
{
// Number of groups of 32 CNs for parallel processing
// Ceil for values not divisible by 32
M
=
(
lut_numCnInCnGroups
[
5
]
*
Z
+
31
)
>>
5
;
// Set the offset to each bit within a group in terms of 32 Byte
bitOffsetInGroup
=
(
lut_numCnInCnGroups_BG2_R15
[
5
]
*
NR_LDPC_ZMAX
)
>>
5
;
// Set pointers to start of group 10
p_cnProcBuf
=
(
__m256i
*
)
&
cnProcBuf
[
lut_startAddrCnGroups
[
5
]];
p_cnProcBufRes
=
(
__m256i
*
)
&
cnProcBufRes
[
lut_startAddrCnGroups
[
5
]];
// Loop over every BN
for
(
j
=
0
;
j
<
10
;
j
++
)
{
// Set of results pointer to correct BN address
p_cnProcBufResBit
=
p_cnProcBufRes
+
(
j
*
bitOffsetInGroup
);
// Loop over CNs
for
(
i
=
0
;
i
<
M
;
i
++
)
{
// Abs and sign of 32 CNs (first BN)
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG10
[
j
][
0
]
+
i
];
sgn
=
_mm256_sign_epi8
(
*
p_ones
,
ymm0
);
min
=
_mm256_abs_epi8
(
ymm0
);
// Loop over BNs
for
(
k
=
1
;
k
<
9
;
k
++
)
{
ymm0
=
p_cnProcBuf
[
lut_idxCnProcG10
[
j
][
k
]
+
i
];
min
=
_mm256_min_epu8
(
min
,
_mm256_abs_epi8
(
ymm0
));
sgn
=
_mm256_sign_epi8
(
sgn
,
ymm0
);
}
// Store result
min
=
_mm256_min_epu8
(
min
,
*
p_maxLLR
);
// 128 in epi8 is -127
*
p_cnProcBufResBit
=
_mm256_sign_epi8
(
min
,
sgn
);
p_cnProcBufResBit
++
;
}
}
}
}
/**
/**
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\brief Performs CN processing for BG2 on the CN processing buffer and stores the results in the CN processing results buffer.
\param p_lut Pointer to decoder LUTs
\param p_lut Pointer to decoder LUTs
...
...
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_decoder.c
View file @
0f71ebd2
...
@@ -38,7 +38,7 @@
...
@@ -38,7 +38,7 @@
#include "nrLDPC_cnProc.h"
#include "nrLDPC_cnProc.h"
#include "nrLDPC_bnProc.h"
#include "nrLDPC_bnProc.h"
#define NR_LDPC_ENABLE_PARITY_CHECK
//
#define NR_LDPC_ENABLE_PARITY_CHECK
//#define NR_LDPC_PROFILER_DETAIL
//#define NR_LDPC_PROFILER_DETAIL
#ifdef NR_LDPC_DEBUG_MODE
#ifdef NR_LDPC_DEBUG_MODE
...
@@ -83,11 +83,13 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
...
@@ -83,11 +83,13 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
// Minimum number of iterations is 1
// Minimum number of iterations is 1
// 0 iterations means hard-decision on input LLRs
// 0 iterations means hard-decision on input LLRs
uint32_t
i
=
1
;
uint32_t
i
=
0
;
// Initialize with parity check fail != 0
// Initialize with parity check fail != 0
int32_t
pcRes
=
1
;
int32_t
pcRes
=
1
;
int8_t
*
p_llrOut
;
int8_t
*
p_llrOut
;
uint32_t
l
;
if
(
outMode
==
nrLDPC_outMode_LLRINT8
)
if
(
outMode
==
nrLDPC_outMode_LLRINT8
)
{
{
p_llrOut
=
p_out
;
p_llrOut
=
p_out
;
...
@@ -100,6 +102,10 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
...
@@ -100,6 +102,10 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
memset
(
p_llrOut
,
0
,
NR_LDPC_MAX_NUM_LLR
*
sizeof
(
int8_t
));
memset
(
p_llrOut
,
0
,
NR_LDPC_MAX_NUM_LLR
*
sizeof
(
int8_t
));
}
}
// CN processing layers for BG2
static
const
t_nrLDPC_cnProcGroup
cnProcLayers_BG2
[
NR_LDPC_NUM_CN_GROUPS_BG2
]
=
{
nrLDPC_cnProc_BG2_CNG3
,
nrLDPC_cnProc_BG2_CNG4
,
nrLDPC_cnProc_BG2_CNG5
,
nrLDPC_cnProc_BG2_CNG6
,
nrLDPC_cnProc_BG2_CNG8
,
nrLDPC_cnProc_BG2_CNG10
};
static
const
t_nrLDPC_cn2bnProcBufGroup
cn2bnProcBufLayers_BG2
[
NR_LDPC_NUM_CN_GROUPS_BG2
]
=
{
nrLDPC_cn2bnProcBuf_BG2_CNG3
,
nrLDPC_cn2bnProcBuf_BG2_CNG4
,
nrLDPC_cn2bnProcBuf_BG2_CNG5
,
nrLDPC_cn2bnProcBuf_BG2_CNG6
,
nrLDPC_cn2bnProcBuf_BG2_CNG8
,
nrLDPC_cn2bnProcBuf_BG2_CNG10
};
static
const
t_nrLDPC_bn2cnProcBufGroup
bn2cnProcBufLayers_BG2
[
NR_LDPC_NUM_CN_GROUPS_BG2
]
=
{
nrLDPC_bn2cnProcBuf_BG2_CNG3
,
nrLDPC_bn2cnProcBuf_BG2_CNG4
,
nrLDPC_bn2cnProcBuf_BG2_CNG5
,
nrLDPC_bn2cnProcBuf_BG2_CNG6
,
nrLDPC_bn2cnProcBuf_BG2_CNG8
,
nrLDPC_bn2cnProcBuf_BG2_CNG10
};
// Initialization
// Initialization
#ifdef NR_LDPC_PROFILER_DETAIL
#ifdef NR_LDPC_PROFILER_DETAIL
...
@@ -132,15 +138,208 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
...
@@ -132,15 +138,208 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
#ifdef NR_LDPC_DEBUG_MODE
#ifdef NR_LDPC_DEBUG_MODE
nrLDPC_debug_initBuffer2File
(
nrLDPC_buffers_CN_PROC
);
nrLDPC_debug_initBuffer2File
(
nrLDPC_buffers_CN_PROC
);
nrLDPC_debug_initBuffer2File
(
nrLDPC_buffers_CN_PROC_RES
);
nrLDPC_debug_initBuffer2File
(
nrLDPC_buffers_BN_PROC
);
nrLDPC_debug_initBuffer2File
(
nrLDPC_buffers_LLR_RES
);
nrLDPC_debug_initBuffer2File
(
nrLDPC_buffers_BN_PROC_RES
);
#endif
#ifdef NR_LDPC_ENABLE_LAYERED_DECODING
// Buffers have to be set to zero otherwise previous call will impact decoding with current implementation
memset
(
p_procBuf
->
cnProcBuf
,
0
,
NR_LDPC_SIZE_CN_PROC_BUF
*
sizeof
(
int8_t
));
memset
(
p_procBuf
->
cnProcBufRes
,
0
,
NR_LDPC_SIZE_CN_PROC_BUF
*
sizeof
(
int8_t
));
memset
(
p_procBuf
->
bnProcBuf
,
0
,
NR_LDPC_SIZE_BN_PROC_BUF
*
sizeof
(
int8_t
));
memset
(
p_procBuf
->
bnProcBufRes
,
0
,
NR_LDPC_SIZE_BN_PROC_BUF
*
sizeof
(
int8_t
));
#endif
// Iterations
while
(
(
i
<
numMaxIter
)
&&
(
pcRes
!=
0
)
)
{
//mexPrintf("i = %d, pcRes = %d\n", i, pcRes);
#ifdef NR_LDPC_ENABLE_LAYERED_DECODING
// Processing layers
for
(
l
=
0
;
l
<
6
;
l
++
)
{
// CN Processing
#ifdef NR_LDPC_DEBUG_MODE
nrLDPC_debug_writeBuffer2File
(
nrLDPC_buffers_CN_PROC
,
p_procBuf
);
nrLDPC_debug_writeBuffer2File
(
nrLDPC_buffers_CN_PROC
,
p_procBuf
);
#endif
#endif
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
cnProc
);
#endif
cnProcLayers_BG2
[
l
](
p_lut
,
p_procBuf
,
Z
);
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
cnProc
);
#endif
#ifdef NR_LDPC_DEBUG_MODE
nrLDPC_debug_writeBuffer2File
(
nrLDPC_buffers_CN_PROC_RES
,
p_procBuf
);
#endif
// CN -> BN
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
cn2bnProcBuf
);
#endif
cn2bnProcBufLayers_BG2
[
l
](
p_lut
,
p_procBuf
,
Z
);
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
cn2bnProcBuf
);
#endif
#ifdef NR_LDPC_DEBUG_MODE
nrLDPC_debug_writeBuffer2File
(
nrLDPC_buffers_BN_PROC
,
p_procBuf
);
#endif
// BN Processing
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
bnProcPc
);
#endif
nrLDPC_bnProcPc
(
p_lut
,
p_procBuf
,
Z
);
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
bnProcPc
);
#endif
#ifdef NR_LDPC_DEBUG_MODE
nrLDPC_debug_writeBuffer2File
(
nrLDPC_buffers_LLR_RES
,
p_procBuf
);
#endif
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
bnProc
);
#endif
nrLDPC_bnProc
(
p_lut
,
p_procBuf
,
Z
);
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
bnProc
);
#endif
#ifdef NR_LDPC_DEBUG_MODE
nrLDPC_debug_writeBuffer2File
(
nrLDPC_buffers_BN_PROC_RES
,
p_procBuf
);
#endif
// BN -> CN
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
bn2cnProcBuf
);
#endif
bn2cnProcBufLayers_BG2
[
l
](
p_lut
,
p_procBuf
,
Z
);
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
bn2cnProcBuf
);
#endif
}
#else
// No layers
// CN Processing
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
cnProc
);
#endif
for
(
l
=
0
;
l
<
6
;
l
++
)
{
cnProcLayers_BG2
[
l
](
p_lut
,
p_procBuf
,
Z
);
}
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
cnProc
);
#endif
// CN -> BN
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
cn2bnProcBuf
);
#endif
for
(
l
=
0
;
l
<
6
;
l
++
)
{
cn2bnProcBufLayers_BG2
[
l
](
p_lut
,
p_procBuf
,
Z
);
}
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
cn2bnProcBuf
);
#endif
// BN Processing
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
bnProcPc
);
#endif
nrLDPC_bnProcPc
(
p_lut
,
p_procBuf
,
Z
);
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
bnProcPc
);
#endif
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
bnProc
);
#endif
nrLDPC_bnProc
(
p_lut
,
p_procBuf
,
Z
);
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
bnProc
);
#endif
// BN -> CN
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
bn2cnProcBuf
);
#endif
for
(
l
=
0
;
l
<
6
;
l
++
)
{
bn2cnProcBufLayers_BG2
[
l
](
p_lut
,
p_procBuf
,
Z
);
}
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
bn2cnProcBuf
);
#endif
// END NR_LDPC_ENABLE_LAYERED_DECODING
#endif
// Parity Check
#ifdef NR_LDPC_ENABLE_PARITY_CHECK
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
cnProcPc
);
#endif
if
(
BG
==
1
)
{
pcRes
=
nrLDPC_cnProcPc_BG1
(
p_lut
,
p_procBuf
,
Z
);
}
else
{
pcRes
=
nrLDPC_cnProcPc_BG2
(
p_lut
,
p_procBuf
,
Z
);
}
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
cnProcPc
);
#endif
#endif
// Increase iteration counter
i
++
;
//mexPrintf("pcRes = %d\n", pcRes);
}
// If maximum number of iterations reached an PC still fails increase number of iterations
// Thus, i > numMaxIter indicates that PC has failed
#ifdef NR_LDPC_ENABLE_PARITY_CHECK
if
(
pcRes
!=
0
)
{
i
++
;
}
#endif
// Assign results from processing buffer to output
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
llrRes2llrOut
);
#endif
nrLDPC_llrRes2llrOut
(
p_lut
,
p_llrOut
,
p_procBuf
,
Z
,
BG
);
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
llrRes2llrOut
);
#endif
// Hard-decision
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas
(
&
p_profiler
->
llr2bit
);
#endif
if
(
outMode
==
nrLDPC_outMode_BIT
)
{
nrLDPC_llr2bitPacked
(
p_out
,
p_llrOut
,
numLLR
);
}
else
if
(
outMode
==
nrLDPC_outMode_BITINT8
)
{
nrLDPC_llr2bit
(
p_out
,
p_llrOut
,
numLLR
);
}
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas
(
&
p_profiler
->
llr2bit
);
#endif
return
i
;
}
/*
// First iteration
// First iteration
// CN processing
// CN processing
#ifdef NR_LDPC_PROFILER_DETAIL
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas(&p_profiler->cnProc);
start_meas(&p_profiler->cnProc);
#endif
#endif
if (BG == 1)
if (BG == 1)
{
{
nrLDPC_cnProc_BG1(p_lut, p_procBuf, Z);
nrLDPC_cnProc_BG1(p_lut, p_procBuf, Z);
...
@@ -149,6 +348,7 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
...
@@ -149,6 +348,7 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
{
{
nrLDPC_cnProc_BG2(p_lut, p_procBuf, Z);
nrLDPC_cnProc_BG2(p_lut, p_procBuf, Z);
}
}
#ifdef NR_LDPC_PROFILER_DETAIL
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas(&p_profiler->cnProc);
stop_meas(&p_profiler->cnProc);
#endif
#endif
...
@@ -248,6 +448,12 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
...
@@ -248,6 +448,12 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
{
{
nrLDPC_cnProc_BG2(p_lut, p_procBuf, Z);
nrLDPC_cnProc_BG2(p_lut, p_procBuf, Z);
}
}
for (k = 0; k < 6; k++)
{
cnProcLayers_BG2[k](p_lut, p_procBuf, Z);
}
#ifdef NR_LDPC_PROFILER_DETAIL
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas(&p_profiler->cnProc);
stop_meas(&p_profiler->cnProc);
#endif
#endif
...
@@ -350,6 +556,7 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
...
@@ -350,6 +556,7 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
#ifdef NR_LDPC_PROFILER_DETAIL
#ifdef NR_LDPC_PROFILER_DETAIL
start_meas(&p_profiler->cnProc);
start_meas(&p_profiler->cnProc);
#endif
#endif
if (BG == 1)
if (BG == 1)
{
{
nrLDPC_cnProc_BG1(p_lut, p_procBuf, Z);
nrLDPC_cnProc_BG1(p_lut, p_procBuf, Z);
...
@@ -358,6 +565,7 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
...
@@ -358,6 +565,7 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
{
{
nrLDPC_cnProc_BG2(p_lut, p_procBuf, Z);
nrLDPC_cnProc_BG2(p_lut, p_procBuf, Z);
}
}
#ifdef NR_LDPC_PROFILER_DETAIL
#ifdef NR_LDPC_PROFILER_DETAIL
stop_meas(&p_profiler->cnProc);
stop_meas(&p_profiler->cnProc);
#endif
#endif
...
@@ -490,3 +698,4 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
...
@@ -490,3 +698,4 @@ static inline uint32_t nrLDPC_decoder_core(int8_t* p_llr, int8_t* p_out, t_nrLDP
return i;
return i;
}
}
*/
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_mPass.h
View file @
0f71ebd2
...
@@ -472,6 +472,258 @@ static inline void nrLDPC_llr2CnProcBuf_BG2(t_nrLDPC_lut* p_lut, int8_t* llr, t_
...
@@ -472,6 +472,258 @@ static inline void nrLDPC_llr2CnProcBuf_BG2(t_nrLDPC_lut* p_lut, int8_t* llr, t_
}
}
}
}
/**
\brief Copies the values in the CN processing results buffer to their corresponding place in the BN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cn2bnProcBuf_BG2_CNG3
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG3
)
[
lut_numCnInCnGroups_BG2_R15
[
0
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
0
]])
p_lut
->
circShift
[
0
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG3
)
[
lut_numCnInCnGroups
[
0
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
0
]])
p_lut
->
startAddrBnProcBuf
[
0
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG3
)
[
lut_numCnInCnGroups
[
0
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
0
]])
p_lut
->
bnPosBnProcBuf
[
0
];
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
int8_t
*
bnProcBuf
=
p_procBuf
->
bnProcBuf
;
int8_t
*
p_cnProcBufRes
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 3 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
0
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
3
;
j
++
)
{
p_cnProcBufRes
=
&
cnProcBufRes
[
lut_startAddrCnGroups
[
0
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
0
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG3
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG3
[
j
][
i
]
*
Z
;
nrLDPC_inv_circ_memcpy
(
&
bnProcBuf
[
idxBn
],
p_cnProcBufRes
,
Z
,
lut_circShift_CNG3
[
j
][
i
]);
p_cnProcBufRes
+=
Z
;
}
}
}
/**
\brief Copies the values in the CN processing results buffer to their corresponding place in the BN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cn2bnProcBuf_BG2_CNG4
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG4
)
[
lut_numCnInCnGroups_BG2_R15
[
1
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
1
]])
p_lut
->
circShift
[
1
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG4
)
[
lut_numCnInCnGroups
[
1
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
1
]])
p_lut
->
startAddrBnProcBuf
[
1
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG4
)
[
lut_numCnInCnGroups
[
1
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
1
]])
p_lut
->
bnPosBnProcBuf
[
1
];
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
int8_t
*
bnProcBuf
=
p_procBuf
->
bnProcBuf
;
int8_t
*
p_cnProcBufRes
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 4 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
1
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
4
;
j
++
)
{
p_cnProcBufRes
=
&
cnProcBufRes
[
lut_startAddrCnGroups
[
1
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
1
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG4
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG4
[
j
][
i
]
*
Z
;
nrLDPC_inv_circ_memcpy
(
&
bnProcBuf
[
idxBn
],
p_cnProcBufRes
,
Z
,
lut_circShift_CNG4
[
j
][
i
]);
p_cnProcBufRes
+=
Z
;
}
}
}
/**
\brief Copies the values in the CN processing results buffer to their corresponding place in the BN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cn2bnProcBuf_BG2_CNG5
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG5
)
[
lut_numCnInCnGroups_BG2_R15
[
2
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
2
]])
p_lut
->
circShift
[
2
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG5
)
[
lut_numCnInCnGroups
[
2
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
2
]])
p_lut
->
startAddrBnProcBuf
[
2
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG5
)
[
lut_numCnInCnGroups
[
2
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
2
]])
p_lut
->
bnPosBnProcBuf
[
2
];
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
int8_t
*
bnProcBuf
=
p_procBuf
->
bnProcBuf
;
int8_t
*
p_cnProcBufRes
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 5 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
2
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
5
;
j
++
)
{
p_cnProcBufRes
=
&
cnProcBufRes
[
lut_startAddrCnGroups
[
2
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
2
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG5
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG5
[
j
][
i
]
*
Z
;
nrLDPC_inv_circ_memcpy
(
&
bnProcBuf
[
idxBn
],
p_cnProcBufRes
,
Z
,
lut_circShift_CNG5
[
j
][
i
]);
p_cnProcBufRes
+=
Z
;
}
}
}
/**
\brief Copies the values in the CN processing results buffer to their corresponding place in the BN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cn2bnProcBuf_BG2_CNG6
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG6
)
[
lut_numCnInCnGroups_BG2_R15
[
3
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
3
]])
p_lut
->
circShift
[
3
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG6
)
[
lut_numCnInCnGroups
[
3
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
3
]])
p_lut
->
startAddrBnProcBuf
[
3
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG6
)
[
lut_numCnInCnGroups
[
3
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
3
]])
p_lut
->
bnPosBnProcBuf
[
3
];
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
int8_t
*
bnProcBuf
=
p_procBuf
->
bnProcBuf
;
int8_t
*
p_cnProcBufRes
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 6 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
3
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
6
;
j
++
)
{
p_cnProcBufRes
=
&
cnProcBufRes
[
lut_startAddrCnGroups
[
3
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
3
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG6
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG6
[
j
][
i
]
*
Z
;
nrLDPC_inv_circ_memcpy
(
&
bnProcBuf
[
idxBn
],
p_cnProcBufRes
,
Z
,
lut_circShift_CNG6
[
j
][
i
]);
p_cnProcBufRes
+=
Z
;
}
}
}
/**
\brief Copies the values in the CN processing results buffer to their corresponding place in the BN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cn2bnProcBuf_BG2_CNG8
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG8
)
[
lut_numCnInCnGroups_BG2_R15
[
4
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
4
]])
p_lut
->
circShift
[
4
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG8
)
[
lut_numCnInCnGroups
[
4
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
4
]])
p_lut
->
startAddrBnProcBuf
[
4
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG8
)
[
lut_numCnInCnGroups
[
4
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
4
]])
p_lut
->
bnPosBnProcBuf
[
4
];
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
int8_t
*
bnProcBuf
=
p_procBuf
->
bnProcBuf
;
int8_t
*
p_cnProcBufRes
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 8 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
4
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
8
;
j
++
)
{
p_cnProcBufRes
=
&
cnProcBufRes
[
lut_startAddrCnGroups
[
4
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
4
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG8
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG8
[
j
][
i
]
*
Z
;
nrLDPC_inv_circ_memcpy
(
&
bnProcBuf
[
idxBn
],
p_cnProcBufRes
,
Z
,
lut_circShift_CNG8
[
j
][
i
]);
p_cnProcBufRes
+=
Z
;
}
}
}
/**
\brief Copies the values in the CN processing results buffer to their corresponding place in the BN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_cn2bnProcBuf_BG2_CNG10
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG10
)
[
lut_numCnInCnGroups_BG2_R15
[
5
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
5
]])
p_lut
->
circShift
[
5
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG10
)
[
lut_numCnInCnGroups
[
5
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
5
]])
p_lut
->
startAddrBnProcBuf
[
5
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG10
)
[
lut_numCnInCnGroups
[
5
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
5
]])
p_lut
->
bnPosBnProcBuf
[
5
];
int8_t
*
cnProcBufRes
=
p_procBuf
->
cnProcBufRes
;
int8_t
*
bnProcBuf
=
p_procBuf
->
bnProcBuf
;
int8_t
*
p_cnProcBufRes
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 10 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
5
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
10
;
j
++
)
{
p_cnProcBufRes
=
&
cnProcBufRes
[
lut_startAddrCnGroups
[
5
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
5
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG10
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG10
[
j
][
i
]
*
Z
;
nrLDPC_inv_circ_memcpy
(
&
bnProcBuf
[
idxBn
],
p_cnProcBufRes
,
Z
,
lut_circShift_CNG10
[
j
][
i
]);
p_cnProcBufRes
+=
Z
;
}
}
}
/**
/**
\brief Copies the values in the CN processing results buffer to their corresponding place in the BN processing buffer for BG2.
\brief Copies the values in the CN processing results buffer to their corresponding place in the BN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_lut Pointer to decoder LUTs
...
@@ -815,6 +1067,261 @@ static inline void nrLDPC_cn2bnProcBuf_BG1(t_nrLDPC_lut* p_lut, t_nrLDPC_procBuf
...
@@ -815,6 +1067,261 @@ static inline void nrLDPC_cn2bnProcBuf_BG1(t_nrLDPC_lut* p_lut, t_nrLDPC_procBuf
}
}
/**
\brief Copies the values in the BN processing results buffer to their corresponding place in the CN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_bn2cnProcBuf_BG2_CNG3
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG3
)
[
lut_numCnInCnGroups_BG2_R15
[
0
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
0
]])
p_lut
->
circShift
[
0
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG3
)
[
lut_numCnInCnGroups
[
0
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
0
]])
p_lut
->
startAddrBnProcBuf
[
0
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG3
)
[
lut_numCnInCnGroups
[
0
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
0
]])
p_lut
->
bnPosBnProcBuf
[
0
];
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
bnProcBufRes
=
p_procBuf
->
bnProcBufRes
;
int8_t
*
p_cnProcBuf
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// For CN groups 3 to 6 no need to send the last BN back since it's single edge
// and BN processing does not change the value already in the CN proc buf
// =====================================================================
// CN group with 3 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
0
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
2
;
j
++
)
{
p_cnProcBuf
=
&
cnProcBuf
[
lut_startAddrCnGroups
[
0
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
0
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG3
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG3
[
j
][
i
]
*
Z
;
nrLDPC_circ_memcpy
(
p_cnProcBuf
,
&
bnProcBufRes
[
idxBn
],
Z
,
lut_circShift_CNG3
[
j
][
i
]);
p_cnProcBuf
+=
Z
;
}
}
}
/**
\brief Copies the values in the BN processing results buffer to their corresponding place in the CN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_bn2cnProcBuf_BG2_CNG4
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG4
)
[
lut_numCnInCnGroups_BG2_R15
[
1
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
1
]])
p_lut
->
circShift
[
1
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG4
)
[
lut_numCnInCnGroups
[
1
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
1
]])
p_lut
->
startAddrBnProcBuf
[
1
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG4
)
[
lut_numCnInCnGroups
[
1
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
1
]])
p_lut
->
bnPosBnProcBuf
[
1
];
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
bnProcBufRes
=
p_procBuf
->
bnProcBufRes
;
int8_t
*
p_cnProcBuf
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 4 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
1
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
3
;
j
++
)
{
p_cnProcBuf
=
&
cnProcBuf
[
lut_startAddrCnGroups
[
1
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
1
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG4
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG4
[
j
][
i
]
*
Z
;
nrLDPC_circ_memcpy
(
p_cnProcBuf
,
&
bnProcBufRes
[
idxBn
],
Z
,
lut_circShift_CNG4
[
j
][
i
]);
p_cnProcBuf
+=
Z
;
}
}
}
/**
\brief Copies the values in the BN processing results buffer to their corresponding place in the CN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_bn2cnProcBuf_BG2_CNG5
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG5
)
[
lut_numCnInCnGroups_BG2_R15
[
2
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
2
]])
p_lut
->
circShift
[
2
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG5
)
[
lut_numCnInCnGroups
[
2
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
2
]])
p_lut
->
startAddrBnProcBuf
[
2
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG5
)
[
lut_numCnInCnGroups
[
2
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
2
]])
p_lut
->
bnPosBnProcBuf
[
2
];
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
bnProcBufRes
=
p_procBuf
->
bnProcBufRes
;
int8_t
*
p_cnProcBuf
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 5 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
2
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
4
;
j
++
)
{
p_cnProcBuf
=
&
cnProcBuf
[
lut_startAddrCnGroups
[
2
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
2
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG5
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG5
[
j
][
i
]
*
Z
;
nrLDPC_circ_memcpy
(
p_cnProcBuf
,
&
bnProcBufRes
[
idxBn
],
Z
,
lut_circShift_CNG5
[
j
][
i
]);
p_cnProcBuf
+=
Z
;
}
}
}
/**
\brief Copies the values in the BN processing results buffer to their corresponding place in the CN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_bn2cnProcBuf_BG2_CNG6
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG6
)
[
lut_numCnInCnGroups_BG2_R15
[
3
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
3
]])
p_lut
->
circShift
[
3
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG6
)
[
lut_numCnInCnGroups
[
3
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
3
]])
p_lut
->
startAddrBnProcBuf
[
3
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG6
)
[
lut_numCnInCnGroups
[
3
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
3
]])
p_lut
->
bnPosBnProcBuf
[
3
];
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
bnProcBufRes
=
p_procBuf
->
bnProcBufRes
;
int8_t
*
p_cnProcBuf
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 6 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
3
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
5
;
j
++
)
{
p_cnProcBuf
=
&
cnProcBuf
[
lut_startAddrCnGroups
[
3
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
3
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG6
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG6
[
j
][
i
]
*
Z
;
nrLDPC_circ_memcpy
(
p_cnProcBuf
,
&
bnProcBufRes
[
idxBn
],
Z
,
lut_circShift_CNG6
[
j
][
i
]);
p_cnProcBuf
+=
Z
;
}
}
}
/**
\brief Copies the values in the BN processing results buffer to their corresponding place in the CN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_bn2cnProcBuf_BG2_CNG8
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG8
)
[
lut_numCnInCnGroups_BG2_R15
[
4
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
4
]])
p_lut
->
circShift
[
4
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG8
)
[
lut_numCnInCnGroups
[
4
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
4
]])
p_lut
->
startAddrBnProcBuf
[
4
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG8
)
[
lut_numCnInCnGroups
[
4
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
4
]])
p_lut
->
bnPosBnProcBuf
[
4
];
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
bnProcBufRes
=
p_procBuf
->
bnProcBufRes
;
int8_t
*
p_cnProcBuf
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 8 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
4
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
8
;
j
++
)
{
p_cnProcBuf
=
&
cnProcBuf
[
lut_startAddrCnGroups
[
4
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
4
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG8
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG8
[
j
][
i
]
*
Z
;
nrLDPC_circ_memcpy
(
p_cnProcBuf
,
&
bnProcBufRes
[
idxBn
],
Z
,
lut_circShift_CNG8
[
j
][
i
]);
p_cnProcBuf
+=
Z
;
}
}
}
/**
\brief Copies the values in the BN processing results buffer to their corresponding place in the CN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_procBuf Pointer to the processing buffers
\param Z Lifting size
*/
static
inline
void
nrLDPC_bn2cnProcBuf_BG2_CNG10
(
t_nrLDPC_lut
*
p_lut
,
t_nrLDPC_procBuf
*
p_procBuf
,
uint16_t
Z
)
{
const
uint8_t
*
lut_numCnInCnGroups
=
p_lut
->
numCnInCnGroups
;
const
uint32_t
*
lut_startAddrCnGroups
=
p_lut
->
startAddrCnGroups
;
const
uint16_t
(
*
lut_circShift_CNG10
)
[
lut_numCnInCnGroups_BG2_R15
[
5
]]
=
(
uint16_t
(
*
)[
lut_numCnInCnGroups_BG2_R15
[
5
]])
p_lut
->
circShift
[
5
];
const
uint32_t
(
*
lut_startAddrBnProcBuf_CNG10
)
[
lut_numCnInCnGroups
[
5
]]
=
(
uint32_t
(
*
)[
lut_numCnInCnGroups
[
5
]])
p_lut
->
startAddrBnProcBuf
[
5
];
const
uint8_t
(
*
lut_bnPosBnProcBuf_CNG10
)
[
lut_numCnInCnGroups
[
5
]]
=
(
uint8_t
(
*
)[
lut_numCnInCnGroups
[
5
]])
p_lut
->
bnPosBnProcBuf
[
5
];
int8_t
*
cnProcBuf
=
p_procBuf
->
cnProcBuf
;
int8_t
*
bnProcBufRes
=
p_procBuf
->
bnProcBufRes
;
int8_t
*
p_cnProcBuf
;
uint32_t
bitOffsetInGroup
;
uint32_t
i
;
uint32_t
j
;
uint32_t
idxBn
=
0
;
// =====================================================================
// CN group with 10 BNs
bitOffsetInGroup
=
lut_numCnInCnGroups_BG2_R15
[
5
]
*
NR_LDPC_ZMAX
;
for
(
j
=
0
;
j
<
10
;
j
++
)
{
p_cnProcBuf
=
&
cnProcBuf
[
lut_startAddrCnGroups
[
5
]
+
j
*
bitOffsetInGroup
];
for
(
i
=
0
;
i
<
lut_numCnInCnGroups
[
5
];
i
++
)
{
idxBn
=
lut_startAddrBnProcBuf_CNG10
[
j
][
i
]
+
lut_bnPosBnProcBuf_CNG10
[
j
][
i
]
*
Z
;
nrLDPC_circ_memcpy
(
p_cnProcBuf
,
&
bnProcBufRes
[
idxBn
],
Z
,
lut_circShift_CNG10
[
j
][
i
]);
p_cnProcBuf
+=
Z
;
}
}
}
/**
/**
\brief Copies the values in the BN processing results buffer to their corresponding place in the CN processing buffer for BG2.
\brief Copies the values in the BN processing results buffer to their corresponding place in the CN processing buffer for BG2.
\param p_lut Pointer to decoder LUTs
\param p_lut Pointer to decoder LUTs
...
...
openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_types.h
View file @
0f71ebd2
...
@@ -103,4 +103,12 @@ typedef struct nrLDPC_procBuf {
...
@@ -103,4 +103,12 @@ typedef struct nrLDPC_procBuf {
int8_t
*
llrProcBuf
;
/**< LLR processing buffer */
int8_t
*
llrProcBuf
;
/**< LLR processing buffer */
}
t_nrLDPC_procBuf
;
}
t_nrLDPC_procBuf
;
/**
Structure for CN processing of one CN group
*/
typedef
void
(
*
t_nrLDPC_cnProcGroup
)(
t_nrLDPC_lut
*
,
t_nrLDPC_procBuf
*
,
uint16_t
);
typedef
void
(
*
t_nrLDPC_cn2bnProcBufGroup
)(
t_nrLDPC_lut
*
,
t_nrLDPC_procBuf
*
,
uint16_t
);
typedef
void
(
*
t_nrLDPC_bn2cnProcBufGroup
)(
t_nrLDPC_lut
*
,
t_nrLDPC_procBuf
*
,
uint16_t
);
#endif
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment