Commit 72529e6c authored by Robert Schmidt's avatar Robert Schmidt

remove useless file/pthread_single declaration

parent 184d51c6
......@@ -507,8 +507,6 @@ typedef struct eNB_proc_t_s {
int instance_cnt_synch;
/// \internal This variable is protected by \ref mutex_asynch_rxtx.
int instance_cnt_asynch_rxtx;
/// pthread structure for eNB single processing thread
pthread_t pthread_single;
/// pthread structure for asychronous RX/TX processing thread
pthread_t pthread_asynch_rxtx;
/// flag to indicate first RX acquisition
......
......@@ -341,8 +341,6 @@ typedef struct eNB_proc_NB_IoT_t_s {
int instance_cnt_asynch_rxtx;
/// pthread structure for FH processing thread
pthread_t pthread_FH;
/// pthread structure for eNB single processing thread
pthread_t pthread_single;
/// pthread structure for asychronous RX/TX processing thread
pthread_t pthread_asynch_rxtx;
/// flag to indicate first RX acquisition
......
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
/*! \file lte-enb.c
* \brief Top-level threads for eNodeB
* \author R. Knopp, F. Kaltenberger, Navid Nikaein
* \date 2012
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
* \note
* \warning
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sched.h>
#include <linux/sched.h>
#include <signal.h>
#include <execinfo.h>
#include <getopt.h>
#include <sys/sysinfo.h>
#include "rt_wrapper.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
#include "assertions.h"
#include "msc.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#include "../../ARCH/COMMON/common_lib.h"
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#include "PHY/LTE_TRANSPORT/if4_tools.h"
#include "PHY/LTE_TRANSPORT/if5_tools.h"
#include "PHY/extern.h"
#include "SCHED/extern.h"
#include "LAYER2/MAC/extern.h"
#include "../../SIMU/USER/init_lte.h"
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "LAYER2/MAC/proto.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#ifdef SMBV
#include "PHY/TOOLS/smbv.h"
unsigned short config_frames[4] = {2,9,11,13};
#endif
#include "UTIL/LOG/log_extern.h"
#include "UTIL/OTG/otg_tx.h"
#include "UTIL/OTG/otg_externs.h"
#include "UTIL/MATH/oml.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"
#include "enb_config.h"
//#include "PHY/TOOLS/time_meas.h"
#ifndef OPENAIR2
#include "UTIL/OTG/otg_extern.h"
#endif
#if defined(ENABLE_ITTI)
# if defined(ENABLE_USE_MME)
# include "s1ap_eNB.h"
#ifdef PDCP_USE_NETLINK
# include "SIMULATION/ETH_TRANSPORT/proto.h"
#endif
# endif
#endif
#include "T.h"
//#define DEBUG_THREADS 1
//#define USRP_DEBUG 1
struct timing_info_t {
//unsigned int frame, hw_slot, last_slot, next_slot;
RTIME time_min, time_max, time_avg, time_last, time_now;
//unsigned int mbox0, mbox1, mbox2, mbox_target;
unsigned int n_samples;
} timing_info;
// Fix per CC openair rf/if device update
// extern openair0_device openair0;
#if defined(ENABLE_ITTI)
extern volatile int start_eNB;
extern volatile int start_UE;
#endif
extern volatile int oai_exit;
extern openair0_config_t openair0_cfg[MAX_CARDS];
extern pthread_cond_t sync_cond;
extern pthread_mutex_t sync_mutex;
extern int sync_var;
//pthread_t main_eNB_thread;
time_stats_t softmodem_stats_mt; // main thread
time_stats_t softmodem_stats_hw; // hw acquisition
time_stats_t softmodem_stats_rxtx_sf; // total tx time
time_stats_t softmodem_stats_rx_sf; // total rx time
int32_t **rxdata;
int32_t **txdata;
uint8_t seqno; //sequence number
static int time_offset[4] = {0,0,0,0};
/* mutex, cond and variable to serialize phy proc TX calls
* (this mechanism may be relaxed in the future for better
* performances)
*/
static struct {
pthread_mutex_t mutex_phy_proc_tx;
pthread_cond_t cond_phy_proc_tx;
volatile uint8_t phy_proc_CC_id;
} sync_phy_proc;
void exit_fun(const char* s);
void init_eNB(eNB_func_t node_function[], eNB_timing_t node_timing[],int nb_inst,eth_params_t *,int);
void stop_eNB(int nb_inst);
void init_RU(RAN_CONTEXT *rc, eNB_func_t node_function, RU_if_in_t ru_if_in[], RU_if_timing_t ru_if_timing[], eth_params_t *eth_params);
void stop_RU();
// Generic thread initialisation function
static inline void thread_top_init(char *thread_name,
int affinity,
uint64_t runtime,
uint64_t deadline,
uint64_t period) {
MSC_START_USE();
#ifdef DEADLINE_SCHEDULER
struct sched_attr attr;
unsigned int flags = 0;
attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = runtime;
attr.sched_deadline = deadline;
attr.sched_period = period;
if (sched_setattr(0, &attr, flags) < 0 ) {
perror("[SCHED] eNB tx thread: sched_setattr failed\n");
exit_fun("Error setting deadline scheduler");
}
LOG_I( HW, "[SCHED] eNB %s deadline thread started on CPU %d\n", thread_name,sched_getcpu() );
#else //LOW_LATENCY
int policy, s, j;
struct sched_param sparam;
char cpu_affinity[1024];
cpu_set_t cpuset;
/* Set affinity mask to include CPUs 1 to MAX_CPUS */
/* CPU 0 is reserved for UHD threads */
/* CPU 1 is reserved for all RX_TX threads */
/* Enable CPU Affinity only if number of CPUs >2 */
CPU_ZERO(&cpuset);
#ifdef CPU_AFFINITY
if (get_nprocs() > 2)
{
if (affinity == 0)
CPU_SET(0,&cpuset);
else
for (j = 1; j < get_nprocs(); j++)
CPU_SET(j, &cpuset);
s = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (s != 0)
{
perror( "pthread_setaffinity_np");
exit_fun("Error setting processor affinity");
}
}
#endif //CPU_AFFINITY
/* Check the actual affinity mask assigned to the thread */
s = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (s != 0) {
perror( "pthread_getaffinity_np");
exit_fun("Error getting processor affinity ");
}
memset(cpu_affinity,0,sizeof(cpu_affinity));
for (j = 0; j < CPU_SETSIZE; j++)
if (CPU_ISSET(j, &cpuset)) {
char temp[1024];
sprintf (temp, " CPU_%d", j);
strcat(cpu_affinity, temp);
}
memset(&sparam, 0, sizeof(sparam));
sparam.sched_priority = sched_get_priority_max(SCHED_FIFO);
policy = SCHED_FIFO ;
s = pthread_setschedparam(pthread_self(), policy, &sparam);
if (s != 0) {
perror("pthread_setschedparam : ");
exit_fun("Error setting thread priority");
}
s = pthread_getschedparam(pthread_self(), &policy, &sparam);
if (s != 0) {
perror("pthread_getschedparam : ");
exit_fun("Error getting thread priority");
}
LOG_I(HW, "[SCHED][eNB] %s started on CPU %d TID %ld, sched_policy = %s , priority = %d, CPU Affinity=%s \n",thread_name,sched_getcpu(),gettid(),
(policy == SCHED_FIFO) ? "SCHED_FIFO" :
(policy == SCHED_RR) ? "SCHED_RR" :
(policy == SCHED_OTHER) ? "SCHED_OTHER" :
"???",
sparam.sched_priority, cpu_affinity );
#endif //LOW_LATENCY
mlockall(MCL_CURRENT | MCL_FUTURE);
}
static inline void wait_sync(char *thread_name) {
printf( "waiting for sync (%s)\n",thread_name);
pthread_mutex_lock( &sync_mutex );
while (sync_var<0)
pthread_cond_wait( &sync_cond, &sync_mutex );
pthread_mutex_unlock(&sync_mutex);
printf( "got sync (%s)\n", thread_name);
}
// RU OFDM Modulator, used in IF4p5 RRU, RCC/RAU with IF5, eNodeB
void do_OFDM_mod_rt(int subframe,PHY_VARS_eNB *phy_vars_eNB) {
unsigned int aa,slot_offset, slot_offset_F;
int dummy_tx_b[7680*4] __attribute__((aligned(32)));
int i,j, tx_offset;
int slot_sizeF = (phy_vars_eNB->frame_parms.ofdm_symbol_size)*
((phy_vars_eNB->frame_parms.Ncp==1) ? 6 : 7);
int len,len2;
int16_t *txdata;
// int CC_id = phy_vars_eNB->proc.CC_id;
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 1 );
slot_offset_F = (subframe<<1)*slot_sizeF;
slot_offset = subframe*phy_vars_eNB->frame_parms.samples_per_tti;
if ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_DL)||
((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_S))) {
// LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot);
for (aa=0; aa<phy_vars_eNB->frame_parms.nb_antennas_tx; aa++) {
if (phy_vars_eNB->frame_parms.Ncp == EXTENDED) {
PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
dummy_tx_b,
phy_vars_eNB->frame_parms.ofdm_symbol_size,
6,
phy_vars_eNB->frame_parms.nb_prefix_samples,
CYCLIC_PREFIX);
PHY_ofdm_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
phy_vars_eNB->frame_parms.ofdm_symbol_size,
6,
phy_vars_eNB->frame_parms.nb_prefix_samples,
CYCLIC_PREFIX);
} else {
normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F],
dummy_tx_b,
7,
&(phy_vars_eNB->frame_parms));
// if S-subframe generate first slot only
if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_DL)
normal_prefix_mod(&phy_vars_eNB->common_vars.txdataF[0][aa][slot_offset_F+slot_sizeF],
dummy_tx_b+(phy_vars_eNB->frame_parms.samples_per_tti>>1),
7,
&(phy_vars_eNB->frame_parms));
}
// if S-subframe generate first slot only
if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S)
len = phy_vars_eNB->frame_parms.samples_per_tti>>1;
else
len = phy_vars_eNB->frame_parms.samples_per_tti;
/*
for (i=0;i<len;i+=4) {
dummy_tx_b[i] = 0x100;
dummy_tx_b[i+1] = 0x01000000;
dummy_tx_b[i+2] = 0xff00;
dummy_tx_b[i+3] = 0xff000000;
}*/
if (slot_offset+time_offset[aa]<0) {
txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)+tx_offset];
len2 = -(slot_offset+time_offset[aa]);
len2 = (len2>len) ? len : len2;
for (i=0; i<(len2<<1); i++) {
txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
}
if (len2<len) {
txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
for (j=0; i<(len<<1); i++,j++) {
txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
}
}
}
else if ((slot_offset+time_offset[aa]+len)>(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti)) {
tx_offset = (int)slot_offset+time_offset[aa];
txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
len2 = -tx_offset+LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
for (i=0; i<(len2<<1); i++) {
txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
}
txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][0];
for (j=0; i<(len<<1); i++,j++) {
txdata[j++] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
}
}
else {
tx_offset = (int)slot_offset+time_offset[aa];
txdata = (int16_t*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset];
for (i=0; i<(len<<1); i++) {
txdata[i] = ((int16_t*)dummy_tx_b)[i]<<openair0_cfg[0].iq_txshift;
}
}
// if S-subframe switch to RX in second subframe
/*
if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S) {
for (i=0; i<len; i++) {
phy_vars_eNB->common_vars.txdata[0][aa][tx_offset++] = 0x00010001;
}
}
*/
if ((((phy_vars_eNB->frame_parms.tdd_config==0) ||
(phy_vars_eNB->frame_parms.tdd_config==1) ||
(phy_vars_eNB->frame_parms.tdd_config==2) ||
(phy_vars_eNB->frame_parms.tdd_config==6)) &&
(subframe==0)) || (subframe==5)) {
// turn on tx switch N_TA_offset before
//LOG_D(HW,"subframe %d, time to switch to tx (N_TA_offset %d, slot_offset %d) \n",subframe,phy_vars_eNB->N_TA_offset,slot_offset);
for (i=0; i<phy_vars_eNB->N_TA_offset; i++) {
tx_offset = (int)slot_offset+time_offset[aa]+i-phy_vars_eNB->N_TA_offset/2;
if (tx_offset<0)
tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti))
tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
phy_vars_eNB->common_vars.txdata[0][aa][tx_offset] = 0x00000000;
}
}
}
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 0 );
}
void proc_tx_high0(RU_t *ru,
eNB_rxtx_proc_t *proc,
relaying_type_t r_type,
PHY_VARS_RN *rn) {
int offset = proc == &eNB->proc.proc_rxtx[0] ? 0 : 1;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB+offset, proc->frame_tx );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB+offset, proc->subframe_tx );
phy_procedures_eNB_TX(eNB,proc,r_type,rn,1);
/* we're done, let the next one proceed */
if (pthread_mutex_lock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX proc\n");
exit_fun("nothing to add");
}
sync_phy_proc.phy_proc_CC_id++;
sync_phy_proc.phy_proc_CC_id %= MAX_NUM_CCs;
pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX proc\n");
exit_fun("nothing to add");
}
}
/*
void proc_tx_high(RU_t *ru,
eNB_rxtx_proc_t *proc,
relaying_type_t r_type,
PHY_VARS_RN *rn) {
// do PHY high
proc_tx_high0(eNB,proc,r_type,rn);
// if TX fronthaul go ahead
if (eNB->tx_fh) eNB->tx_fh(eNB,proc);
}
void proc_tx_full(RU_t *ru,
eNB_rxtx_proc_t *proc,
relaying_type_t r_type,
PHY_VARS_RN *rn) {
// do PHY high
proc_tx_high0(eNB,proc,r_type,rn);
}
*/
// RU IF5 TX fronthaul for 16-bit OAI format
static inline void tx_rcc_if5(PHY_vars_eNB_t *ru,ru_proc_t *proc) {
if (ru == RC.ru[0]) VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, eNB->timestamp_tx&0xffffffff );
send_IF5(ru, proc->timestamp_txp proc->subframe_tx, &seqno, IF5_RRH_GW_DL);
}
// RCC IF5 TX fronthaul for Mobipass packet format
static inline void tx_rcc_if5_mobipass(PHY_VARS_eNB_t *eNB,ru_proc_t *proc) {
if (eNB == RC.eNB[0][p]) VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, eNB->timestamp_tx&0xffffffff );
send_IF5(ru, proc->timestamp_tx, proc->subframe_tx, &seqno, IF5_MOBIPASS);
}
// RCC IF4p5 TX fronthaul
static inline void tx_rcc_if4p5(PHY_VARS_eNB_t *eNB,eNB_rxtx_proc_t *proc) {
send_IF4p5(eNB,proc->frame_tx, proc->subframe_tx, IF4p5_PDLFFT, 0);
}
// RAU IF5 TX fronthaul for 16-bit OAI format
static inline void tx_ru_if5(RU_t *ru) {
if (ru == RC.ru_list[0]) VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, ru->proc.timestamp_tx&0xffffffff );
send_IF5(eNB, ru->proc.timestamp_txp ru->proc.subframe_tx, &seqno, IF5_RRH_GW_DL);
}
// RAU IF5 TX fronthaul for Mobipass packet format
static inline void tx_ru_if5_mobipass(RU_t *ru) {
if (ru == RC.ru_list[0]) VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, ru->proc.timestamp_tx&0xffffffff );
send_IF5(eNB, ru->proc.timestamp_tx, ru->proc.subframe_tx, &seqno, IF5_MOBIPASS);
}
// RAU IF4p5 TX fronthaul
static inline void tx_fh_if4p5(RU_t *ru) {
send_IF4p5(eNB,proc->frame_tx, proc->subframe_tx, IF4p5_PDLFFT, 0);
}
// RRU/RAU IF4p5 TX fronthaul receiver. Assumes an if_device on input and if or rf device on output
// receives one subframe's worth of IF4p5 OFDM symbols and precodes (if required for RAU function) modulates via IDFT + prefix insertion (if required for RRU function)
void proc_tx_ru_if4p5(RU_t *ru) {
uint32_t symbol_number=0;
uint32_t symbol_mask, symbol_mask_full;
uint16_t packet_type;
ru_proc_t = &ru->proc;
// dump VCD output for first RU in list
if (ru == RC.ru_list[0]) {
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB, proc->frame_tx );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB, proc->subframe_tx );
}
/// **** incoming IF4p5 from remote RCC/RAU **** ///
symbol_number = 0;
symbol_mask = 0;
symbol_mask_full = (1<<ru->frame_parms.symbols_per_tti)-1;
for (PHY_VARS_eNB *eNB_tx = ru->eNB_list[0],i=0; eNB_tx[i] != NULL ; i++) {
do {
recv_IF4p5(ru, &proc->frame_tx, &proc->subframe_tx, &packet_type, &symbol_number);
symbol_mask = symbol_mask | (1<<symbol_number);
} while (symbol_mask != symbol_mask_full);
if (ru->do_precoding) ru->do_precoding(i,ru);
}
// do OFDM modulation if needed
if (ru->do_OFDM_mod) ru->do_OFDM_mod(ru);
// do outgoing TX fronthaul if needed
if (ru->tx_fh) ru->tx_fh(ru);
}
void proc_tx_ru_if5(RU_t *ru) {
if (ru == RC.ru_list[0]) {
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB, ru->proc.frame_tx );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB, ru->proc.subframe_tx );
}
/// **** recv_IF5 of txdata from BBU **** ///
recv_IF5(eNB, &ru->timestamp_tx, proc->subframe_tx, IF5_RRH_GW_DL);
// do OFDM modulation if needed
if (ru->do_OFDM_mod) ru->do_OFDM_mod(ru);
// do outgoing TX fronthaul if needed
if (ru->tx_fh) ru->tx_fh(ru);
}
int wait_CCs(eNB_rxtx_proc_t *proc) {
struct timespec wait;
wait.tv_sec=0;
wait.tv_nsec=5000000L;
if (pthread_mutex_timedlock(&sync_phy_proc.mutex_phy_proc_tx,&wait) != 0) {
LOG_E(PHY, "[SCHED][eNB] error locking PHY proc mutex for eNB TX\n");
exit_fun("nothing to add");
return(-1);
}
// wait for our turn or oai_exit
while (sync_phy_proc.phy_proc_CC_id != proc->CC_id && !oai_exit) {
pthread_cond_wait(&sync_phy_proc.cond_phy_proc_tx,
&sync_phy_proc.mutex_phy_proc_tx);
}
if (pthread_mutex_unlock(&sync_phy_proc.mutex_phy_proc_tx) != 0) {
LOG_E(PHY, "[SCHED][eNB] error unlocking PHY proc mutex for eNB TX\n");
exit_fun("nothing to add");
return(-1);
}
return(0);
}
static inline int rxtx(PHY_VARS_eNB eNB_t *eNB,eNB_rxtx_proc_t *proc, char *thread_name) {
start_meas(&softmodem_stats_rxtx_sf);
// ****************************************
// Common RX procedures subframe n
phy_procedures_eNB_common_RX(eNB);
// UE-specific RX processing for subframe n
if (eNB->proc_uespec_rx) eNB->proc_uespec_rx(eNB, proc, no_relay );
// *****************************************
// TX processing for subframe n+4
// run PHY TX procedures the one after the other for all CCs to avoid race conditions
// (may be relaxed in the future for performance reasons)
// *****************************************
//if (wait_CCs(proc)<0) return(-1);
if (oai_exit) return(-1);
if (eNB->proc_tx) eNB->proc_tx(eNB, proc, no_relay, NULL );
if (release_thread(&proc->mutex_rxtx,&proc->instance_cnt_rxtx,thread_name)<0) return(-1);
stop_meas( &softmodem_stats_rxtx_sf );
return(0);
}
/*!
* \brief The RX UE-specific and TX thread of eNB.
* \param param is a \ref eNB_proc_t structure which contains the info what to process.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void* eNB_thread_rxtx( void* param ) {
static int eNB_thread_rxtx_status;
eNB_rxtx_proc_t *proc = (eNB_rxtx_proc_t*)param;
PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
char thread_name[100];
// set default return value
eNB_thread_rxtx_status = 0;
sprintf(thread_name,"RXn_TXnp4_%d\n",&eNB->proc.proc_rxtx[0] == proc ? 0 : 1);
thread_top_init(thread_name,1,850000L,1000000L,2000000L);
while (!oai_exit) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
if (wait_on_condition(&proc->mutex_rxtx,&proc->cond_rxtx,&proc->instance_cnt_rxtx,thread_name)<0) break;
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 1 );
if (oai_exit) break;
if (rxtx(eNB,proc,thread_name) < 0) break;
} // while !oai_exit
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_eNB_PROC_RXTX0+(proc->subframe_rx&1), 0 );
printf( "Exiting eNB thread RXn_TXnp4\n");
eNB_thread_rxtx_status = 0;
return &eNB_thread_rxtx_status;
}
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
/* Wait for eNB application initialization to be complete (eNB registration to MME) */
static void wait_system_ready (char *message, volatile int *start_flag) {
static char *indicator[] = {". ", ".. ", "... ", ".... ", ".....",
" ....", " ...", " ..", " .", " "};
int i = 0;
while ((!oai_exit) && (*start_flag == 0)) {
LOG_N(EMU, message, indicator[i]);
fflush(stdout);
i = (i + 1) % (sizeof(indicator) / sizeof(indicator[0]));
usleep(200000);
}
LOG_D(EMU,"\n");
}
#endif
// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if5_asynch_UL(RU_t *ru,int *frame,int *subframe) {
eNB_proc_t *proc = &eNB->proc;
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
recv_IF5(eNB, &ru->timestamp_rx, *subframe, IF5_RRH_GW_UL);
proc->subframe_rx = (ru->timestamp_rx/fp->samples_per_tti)%10;
proc->frame_rx = (ru->timestamp_rx/(10*fp->samples_per_tti))&1023;
if (proc->first_rx != 0) {
proc->first_rx = 0;
*subframe = proc->subframe_rx;
*frame = proc->frame_rx;
}
else {
if (proc->subframe_rx != *subframe) {
LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
exit_fun("Exiting");
}
if (proc->frame_rx != *frame) {
LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->frame_rx,*frame);
exit_fun("Exiting");
}
}
} // eNodeB_3GPP_BBU
// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if4p5_asynch_UL(RU_t *ru,int *frame,int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_t *proc = &eNB->proc;
uint16_t packet_type;
uint32_t symbol_number,symbol_mask,symbol_mask_full,prach_rx;
symbol_number = 0;
symbol_mask = 0;
symbol_mask_full = (1<<fp->symbols_per_tti)-1;
prach_rx = 0;
do { // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
if (proc->first_rx != 0) {
*frame = proc->frame_rx;
*subframe = proc->subframe_rx;
proc->first_rx = 0;
}
else {
if (proc->frame_rx != *frame) {
LOG_E(PHY,"frame_rx %d is not what we expect %d\n",proc->frame_rx,*frame);
exit_fun("Exiting");
}
if (proc->subframe_rx != *subframe) {
LOG_E(PHY,"subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
exit_fun("Exiting");
}
}
if (packet_type == IF4p5_PULFFT) {
symbol_mask = symbol_mask | (1<<symbol_number);
prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;
} else if (packet_type == IF4p5_PRACH) {
prach_rx = 0;
}
} while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));
}
void fh_if5_asynch_DL(RU_t *ru,int *frame,int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_t *proc = &eNB->proc;
int subframe_tx,frame_tx;
openair0_timestamp timestamp_tx;
recv_IF5(eNB, &timestamp_tx, *subframe, IF5_RRH_GW_DL);
// printf("Received subframe %d (TS %llu) from RCC\n",subframe_tx,timestamp_tx);
subframe_tx = (timestamp_tx/fp->samples_per_tti)%10;
frame_tx = (timestamp_tx/(fp->samples_per_tti*10))&1023;
if (proc->first_tx != 0) {
*subframe = subframe_tx;
*frame = frame_tx;
proc->first_tx = 0;
}
else {
if (subframe_tx != *subframe) {
LOG_E(PHY,"subframe_tx %d is not what we expect %d\n",subframe_tx,*subframe);
exit_fun("Exiting");
}
if (frame_tx != *frame) {
LOG_E(PHY,"frame_tx %d is not what we expect %d\n",frame_tx,*frame);
exit_fun("Exiting");
}
}
}
void fh_if4p5_asynch_DL(RU_t *ru,int *frame,int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_t *proc = &eNB->proc;
uint16_t packet_type;
uint32_t symbol_number,symbol_mask,symbol_mask_full;
int subframe_tx,frame_tx;
symbol_number = 0;
symbol_mask = 0;
symbol_mask_full = (1<<fp->symbols_per_tti)-1;
do { // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
recv_IF4p5(eNB, &frame_tx, &subframe_tx, &packet_type, &symbol_number);
if (proc->first_tx != 0) {
*frame = frame_tx;
*subframe = subframe_tx;
proc->first_tx = 0;
}
else {
if (frame_tx != *frame) {
LOG_E(PHY,"frame_tx %d is not what we expect %d\n",frame_tx,*frame);
exit_fun("Exiting");
}
if (subframe_tx != *subframe) {
LOG_E(PHY,"subframe_tx %d is not what we expect %d\n",subframe_tx,*subframe);
exit_fun("Exiting");
}
}
if (packet_type == IF4p5_PDLFFT) {
symbol_mask = symbol_mask | (1<<symbol_number);
}
else {
LOG_E(PHY,"Illegal IF4p5 packet type (should only be IF4p5_PDLFFT%d\n",packet_type);
exit_fun("Exiting");
}
} while (symbol_mask != symbol_mask_full);
do_OFDM_mod_rt(subframe_tx, eNB);
}
/*!
* \brief The Asynchronous RX/TX FH thread of RAU/RCC/eNB/RRU.
* This handles the RX FH for an asynchronous RRU/UE
* \param param is a \ref eNB_proc_t structure which contains the info what to process.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void* eNB_thread_asynch_rxtx( void* param ) {
static int eNB_thread_asynch_rxtx_status;
eNB_proc_t *proc = (eNB_proc_t*)param;
PHY_VARS_eNB *eNB = PHY_vars_eNB_g[0][proc->CC_id];
int subframe=0, frame=0;
thread_top_init("thread_asynch",1,870000L,1000000L,1000000L);
// wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe
wait_sync("thread_asynch");
// wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe
printf( "waiting for devices (eNB_thread_asynch_rx)\n");
wait_on_condition(&proc->mutex_asynch_rxtx,&proc->cond_asynch_rxtx,&proc->instance_cnt_asynch_rxtx,"thread_asynch");
printf( "devices ok (eNB_thread_asynch_rx)\n");
while (!oai_exit) {
if (oai_exit) break;
if (subframe==9) {
subframe=0;
frame++;
frame&=1023;
} else {
subframe++;
}
if (eNB->fh_asynch) eNB->fh_asynch(eNB,&frame,&subframe);
else AssertFatal(1==0, "Unknown eNB->node_function %d",eNB->node_function);
}
eNB_thread_asynch_rxtx_status=0;
return(&eNB_thread_asynch_rxtx_status);
}
void rx_rf(RU_t *ru,int *frame,int *subframe) {
eNB_proc_t *proc = &eNB->proc;
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
void *rxp[fp->nb_antennas_rx],*txp[fp->nb_antennas_tx];
unsigned int rxs,txs;
int i;
int tx_sfoffset = 3;//(eNB->single_thread_flag == 1) ? 3 : 3;
if (proc->first_rx==0) {
// Transmit TX buffer based on timestamp from RX
// printf("trx_write -> USRP TS %llu (sf %d)\n", (ru->timestamp_rx+(3*fp->samples_per_tti)),(proc->subframe_rx+2)%10);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, (ru->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance)&0xffffffff );
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
// prepare tx buffer pointers
for (i=0; i<fp->nb_antennas_tx; i++)
txp[i] = (void*)&eNB->common_vars.txdata[0][i][((proc->subframe_rx+tx_sfoffset)%10)*fp->samples_per_tti];
txs = eNB->rfdevice.trx_write_func(&eNB->rfdevice,
ru->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance,
txp,
fp->samples_per_tti,
fp->nb_antennas_tx,
1);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );
if (txs != fp->samples_per_tti) {
LOG_E(PHY,"TX : Timeout (sent %d/%d)\n",txs, fp->samples_per_tti);
exit_fun( "problem transmitting samples" );
}
}
for (i=0; i<fp->nb_antennas_rx; i++)
rxp[i] = (void*)&eNB->common_vars.rxdata[0][i][*subframe*fp->samples_per_tti];
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 1 );
rxs = eNB->rfdevice.trx_read_func(&eNB->rfdevice,
&(ru->timestamp_rx),
rxp,
fp->samples_per_tti,
fp->nb_antennas_rx);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
if (proc->first_rx == 1)
eNB->ts_offset = ru->timestamp_rx;
proc->frame_rx = ((ru->timestamp_rx-eNB->ts_offset) / (fp->samples_per_tti*10))&1023;
proc->subframe_rx = ((ru->timestamp_rx-eNB->ts_offset) / fp->samples_per_tti)%10;
// synchronize first reception to frame 0 subframe 0
ru->timestamp_tx = ru->timestamp_rx+(4*fp->samples_per_tti);
//printf("trx_read <- USRP TS %llu (sf %d, f %d, first_rx %d)\n", ru->timestamp_rx,proc->subframe_rx,proc->frame_rx,proc->first_rx);
if (proc->first_rx == 0) {
if (proc->subframe_rx != *subframe){
LOG_E(PHY,"Received Timestamp (%llu) doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",ru->timestamp_rx,proc->subframe_rx,*subframe);
exit_fun("Exiting");
}
if (proc->frame_rx != *frame) {
LOG_E(PHY,"Received Timestamp (%llu) doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",ru->timestamp_rx,proc->frame_rx,*frame);
exit_fun("Exiting");
}
} else {
proc->first_rx = 0;
*frame = proc->frame_rx;
*subframe = proc->subframe_rx;
}
//printf("timestamp_rx %lu, frame %d(%d), subframe %d(%d)\n",ru->timestamp_rx,proc->frame_rx,frame,proc->subframe_rx,subframe);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, ru->timestamp_rx&0xffffffff );
if (rxs != fp->samples_per_tti)
exit_fun( "problem receiving samples" );
}
void rx_fh_if5(RU_t *ru,int *frame, int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_t *proc = &eNB->proc;
recv_IF5(eNB, &ru->timestamp_rx, *subframe, IF5_RRH_GW_UL);
proc->frame_rx = (proc->timestamp_rx / (fp->samples_per_tti*10))&1023;
proc->subframe_rx = (proc->timestamp_rx / fp->samples_per_tti)%10;
if (proc->first_rx == 0) {
if (proc->subframe_rx != *subframe){
LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,subframe);
exit_fun("Exiting");
}
if (proc->frame_rx != *frame) {
LOG_E(PHY,"Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,frame);
exit_fun("Exiting");
}
} else {
proc->first_rx = 0;
*frame = proc->frame_rx;
*subframe = proc->subframe_rx;
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
}
void rx_fh_if4p5(RU_t *ru,int *frame,int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_t *proc = &eNB->proc;
int prach_rx;
uint16_t packet_type;
uint32_t symbol_number=0;
uint32_t symbol_mask, symbol_mask_full;
symbol_mask = 0;
symbol_mask_full = (1<<fp->symbols_per_tti)-1;
prach_rx = 0;
do { // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
if (packet_type == IF4p5_PULFFT) {
symbol_mask = symbol_mask | (1<<symbol_number);
prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;
} else if (packet_type == IF4p5_PRACH) {
prach_rx = 0;
}
} while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));
//caculate timestamp_rx, timestamp_tx based on frame and subframe
proc->timestamp_rx = ((proc->frame_rx * 10) + proc->subframe_rx ) * fp->samples_per_tti ;
proc->timestamp_tx = proc->timestamp_rx + (4*fp->samples_per_tti);
if (proc->first_rx == 0) {
if (proc->subframe_rx != *subframe){
LOG_E(PHY,"Received Timestamp (IF4p5) doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d,CCid %d)\n",proc->subframe_rx,*subframe,eNB->CC_id);
exit_fun("Exiting");
}
if (proc->frame_rx != *frame) {
LOG_E(PHY,"Received Timestamp (IF4p5) doesn't correspond to the time we think it is (proc->frame_rx %d frame %d,CCid %d)\n",proc->frame_rx,*frame,eNB->CC_id);
exit_fun("Exiting");
}
} else {
proc->first_rx = 0;
*frame = proc->frame_rx;
*subframe = proc->subframe_rx;
}
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
}
void rx_fh_slave(RU_t *ru,int *frame,int *subframe) {
// This case is for synchronization to another thread
// it just waits for an external event. The actual rx_fh is handle by the asynchronous RX thread
eNB_proc_t *proc=&eNB->proc;
if (wait_on_condition(&proc->mutex_FH,&proc->cond_FH,&proc->instance_cnt_FH,"rx_fh_slave") < 0)
return;
release_thread(&proc->mutex_FH,&proc->instance_cnt_FH,"rx_fh_slave");
}
int wakeup_rxtx(eNB_proc_t *proc,eNB_rxtx_proc_t *proc_rxtx,LTE_DL_FRAME_PARMS *fp) {
int i;
struct timespec wait;
wait.tv_sec=0;
wait.tv_nsec=5000000L;
/* accept some delay in processing - up to 5ms */
for (i = 0; i < 10 && proc_rxtx->instance_cnt_rxtx == 0; i++) {
LOG_W( PHY,"[eNB] Frame %d, eNB RXn-TXnp4 thread busy!! (cnt_rxtx %i)\n", proc_rxtx->frame_tx, proc_rxtx->instance_cnt_rxtx);
usleep(500);
}
if (proc_rxtx->instance_cnt_rxtx == 0) {
exit_fun( "TX thread busy" );
return(-1);
}
// wake up TX for subframe n+4
// lock the TX mutex and make sure the thread is ready
if (pthread_mutex_timedlock(&proc_rxtx->mutex_rxtx,&wait) != 0) {
LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB RXTX thread %d (IC %d)\n", proc_rxtx->subframe_rx&1,proc_rxtx->instance_cnt_rxtx );
exit_fun( "error locking mutex_rxtx" );
return(-1);
}
++proc_rxtx->instance_cnt_rxtx;
// We have just received and processed the common part of a subframe, say n.
// TS_rx is the last received timestamp (start of 1st slot), TS_tx is the desired
// transmitted timestamp of the next TX slot (first).
// The last (TS_rx mod samples_per_frame) was n*samples_per_tti,
// we want to generate subframe (n+4), so TS_tx = TX_rx+4*samples_per_tti,
// and proc->subframe_tx = proc->subframe_rx+4
proc_rxtx->timestamp_tx = proc->timestamp_rx + (4*fp->samples_per_tti);
proc_rxtx->frame_rx = proc->frame_rx;
proc_rxtx->subframe_rx = proc->subframe_rx;
proc_rxtx->frame_tx = (proc_rxtx->subframe_rx > 5) ? (proc_rxtx->frame_rx+1)&1023 : proc_rxtx->frame_rx;
proc_rxtx->subframe_tx = (proc_rxtx->subframe_rx + 4)%10;
// the thread can now be woken up
if (pthread_cond_signal(&proc_rxtx->cond_rxtx) != 0) {
LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB RXn-TXnp4 thread\n");
exit_fun( "ERROR pthread_cond_signal" );
return(-1);
}
pthread_mutex_unlock( &proc_rxtx->mutex_rxtx );
return(0);
}
void wakeup_slaves(ru_proc_t *proc) {
int i;
struct timespec wait;
wait.tv_sec=0;
wait.tv_nsec=5000000L;
for (i=0;i<proc->num_slaves;i++) {
ru_proc_t *slave_proc = proc->slave_proc[i];
// wake up slave FH thread
// lock the FH mutex and make sure the thread is ready
if (pthread_mutex_timedlock(&slave_proc->mutex_FH,&wait) != 0) {
LOG_E( PHY, "[eNB] ERROR pthread_mutex_lock for eNB CCid %d slave CCid %d (IC %d)\n",proc->CC_id,slave_proc->CC_id);
exit_fun( "error locking mutex_rxtx" );
break;
}
int cnt_slave = ++slave_proc->instance_cnt_FH;
slave_proc->frame_rx = proc->frame_rx;
slave_proc->subframe_rx = proc->subframe_rx;
slave_proc->timestamp_rx = proc->timestamp_rx;
slave_proc->timestamp_tx = proc->timestamp_tx;
pthread_mutex_unlock( &slave_proc->mutex_FH );
if (cnt_slave == 0) {
// the thread was presumably waiting where it should and can now be woken up
if (pthread_cond_signal(&slave_proc->cond_FH) != 0) {
LOG_E( PHY, "[eNB] ERROR pthread_cond_signal for eNB CCid %d, slave CCid %d\n",proc->CC_id,slave_proc->CC_id);
exit_fun( "ERROR pthread_cond_signal" );
break;
}
} else {
LOG_W( PHY,"[RU] Frame %d, slave CC_id %d thread busy!! (cnt_FH %i)\n",slave_proc->frame_rx,slave_proc->CC_id, cnt_slave);
exit_fun( "FH thread busy" );
break;
}
}
}
/*!
* \brief The Fronthaul thread of RRU/RAU/RCC/eNB
* In the case of RRU/eNB, handles interface with external RF
* In the case of RAU/RCC, handles fronthaul interface with RRU/RAU
* \param param is a \ref eNB_proc_t structure which contains the info what to process.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
/*!
* \brief The prach receive thread of eNB.
* \param param is a \ref eNB_proc_t structure which contains the info what to process.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void* eNB_thread_prach( void* param ) {
static int eNB_thread_prach_status;
eNB_proc_t *proc = (eNB_proc_t*)param;
PHY_VARS_eNB *eNB= PHY_vars_eNB_g[0][proc->CC_id];
// set default return value
eNB_thread_prach_status = 0;
thread_top_init("eNB_thread_prach",1,500000L,1000000L,20000000L);
while (!oai_exit) {
if (oai_exit) break;
if (wait_on_condition(&proc->mutex_prach,&proc->cond_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
prach_procedures(eNB);
if (release_thread(&proc->mutex_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
}
printf( "Exiting eNB thread PRACH\n");
eNB_thread_prach_status = 0;
return &eNB_thread_prach_status;
}
static void* ru_thread( void* param ) {
static int ru_thread_status;
RU_t *ru=(RU_t*)param;
ru_proc_t *proc=ru->proc;
int subframe=0, frame=0;
// set default return value
ru_thread_status = 0;
thread_top_init("ru_thread",0,870000,1000000,1000000);
wait_sync("ru_thread");
/*
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
if (eNB->node_function < NGFI_RRU_IF5)
wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif
*/
// wakeup asnych_rxtx thread because the devices are ready at this point
pthread_mutex_lock(&proc->mutex_asynch_rxtx);
proc->instance_cnt_asynch_rxtx=0;
pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
pthread_cond_signal(&proc->cond_asynch_rxtx);
// This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
while (!oai_exit) {
// these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
// They are set on the first rx/tx in the underly FH routines.
if (subframe==9) {
subframe=0;
frame++;
frame&=1023;
} else {
subframe++;
}
LOG_D(PHY,"RU thread %p (proc %p), frame %d (%p), subframe %d (%p)\n",
pthread_self(), proc, frame,&frame,subframe,&subframe);
// synchronization on FH interface, acquire signals/data and block
if (ru->rx_fh) ru->rx_fh(ru,&frame,&subframe);
else AssertFatal(1==0, "No fronthaul interface : eNB->node_function %d",eNB->node_function);
T(T_ENB_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx), T_INT(proc->subframe_rx));
/*
// wakeup correct eNB processes
proc_rxtx->subframe_rx = proc->subframe_rx;
proc_rxtx->frame_rx = proc->frame_rx;
proc_rxtx->subframe_tx = (proc->subframe_rx+4)%10;
proc_rxtx->frame_tx = (proc->subframe_rx < 6) ? proc->frame_rx : (proc->frame_rx+1)&1023;
proc_rxtx->timestamp_tx = proc->timestamp_tx;
*/
// At this point, all information for subframe has been received on FH interface
// If this proc is to provide synchronization, do so
wakeup_slaves(proc);
// wait until eNBs are finished subframe RX n and TX n+4
// if (rxtx(eNB,proc_rxtx,"eNB_thread_single") < 0) break;
}
printf( "Exiting ru_thread \n");
ru_thread_status = 0;
return &ru_thread_status;
}
extern void init_fep_thread(PHY_VARS_eNB *, pthread_attr_t *);_
extern void init_td_thread(PHY_VARS_eNB *, pthread_attr_t *);
extern void init_te_thread(PHY_VARS_eNB *, pthread_attr_t *);
void init_eNB_proc(int inst) {
int i;
int CC_id;
PHY_VARS_eNB *eNB;
eNB_proc_t *proc;
eNB_rxtx_proc_t *proc_rxtx;
pthread_attr_t *attr0=NULL,*attr1=NULL,*attr_prach=NULL,*attr_asynch=NULL,*attr_single=NULL,*attr_fep=NULL,*attr_td=NULL,*attr_te;
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
eNB = PHY_vars_eNB_g[inst][CC_id];
LOG_I(PHY,"Initializing eNB %d CC_id %d (%s,%s),\n",inst,CC_id,eNB_functions[eNB->node_function],eNB_timing[eNB->node_timing]);
proc = &eNB->proc;
proc_rxtx = proc->proc_rxtx;
proc_rxtx[0].instance_cnt_rxtx = -1;
proc_rxtx[1].instance_cnt_rxtx = -1;
proc->instance_cnt_prach = -1;
proc->instance_cnt_asynch_rxtx = -1;
proc->CC_id = CC_id;
proc->first_rx=1;
proc->first_tx=1;
pthread_mutex_init( &proc_rxtx[0].mutex_rxtx, NULL);
pthread_mutex_init( &proc_rxtx[1].mutex_rxtx, NULL);
pthread_cond_init( &proc_rxtx[0].cond_rxtx, NULL);
pthread_cond_init( &proc_rxtx[1].cond_rxtx, NULL);
pthread_mutex_init( &proc->mutex_prach, NULL);
pthread_mutex_init( &proc->mutex_asynch_rxtx, NULL);
pthread_cond_init( &proc->cond_prach, NULL);
pthread_cond_init( &proc->cond_asynch_rxtx, NULL);
pthread_attr_init( &proc->attr_prach);
pthread_attr_init( &proc->attr_asynch_rxtx);
pthread_attr_init( &proc->attr_single);
pthread_attr_init( &proc->attr_fep);
pthread_attr_init( &proc->attr_td);
pthread_attr_init( &proc->attr_te);
pthread_attr_init( &proc_rxtx[0].attr_rxtx);
pthread_attr_init( &proc_rxtx[1].attr_rxtx);
#ifndef DEADLINE_SCHEDULER
attr0 = &proc_rxtx[0].attr_rxtx;
attr1 = &proc_rxtx[1].attr_rxtx;
attr_prach = &proc->attr_prach;
attr_asynch = &proc->attr_asynch_rxtx;
attr_single = &proc->attr_single;
attr_fep = &proc->attr_fep;
attr_td = &proc->attr_td;
attr_te = &proc->attr_te;
#endif
if (eNB->single_thread_flag==0) {
pthread_create( &proc_rxtx[0].pthread_rxtx, attr0, eNB_thread_rxtx, &proc_rxtx[0] );
pthread_create( &proc_rxtx[1].pthread_rxtx, attr1, eNB_thread_rxtx, &proc_rxtx[1] );
}
else {
pthread_create(&proc->pthread_single, attr_single, eNB_thread_single, &eNB->proc);
init_fep_thread(eNB,attr_fep);
init_td_thread(eNB,attr_td);
init_te_thread(eNB,attr_te);
}
pthread_create( &proc->pthread_prach, attr_prach, eNB_thread_prach, &eNB->proc );
if ((eNB->node_timing == synch_to_other) ||
(eNB->node_function == NGFI_RRU_IF5) ||
(eNB->node_function == NGFI_RRU_IF4p5))
pthread_create( &proc->pthread_asynch_rxtx, attr_asynch, eNB_thread_asynch_rxtx, &eNB->proc );
char name[16];
if (eNB->single_thread_flag == 0) {
snprintf( name, sizeof(name), "RXTX0 %d", i );
pthread_setname_np( proc_rxtx[0].pthread_rxtx, name );
snprintf( name, sizeof(name), "RXTX1 %d", i );
pthread_setname_np( proc_rxtx[1].pthread_rxtx, name );
}
else {
snprintf( name, sizeof(name), " %d", i );
pthread_setname_np( proc->pthread_single, name );
}
}
//for multiple CCs: setup master and slaves
/*
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
eNB = PHY_vars_eNB_g[inst][CC_id];
if (eNB->node_timing == synch_to_ext_device) { //master
eNB->proc.num_slaves = MAX_NUM_CCs-1;
eNB->proc.slave_proc = (eNB_proc_t**)malloc(eNB->proc.num_slaves*sizeof(eNB_proc_t*));
for (i=0; i< eNB->proc.num_slaves; i++) {
if (i < CC_id) eNB->proc.slave_proc[i] = &(PHY_vars_eNB_g[inst][i]->proc);
if (i >= CC_id) eNB->proc.slave_proc[i] = &(PHY_vars_eNB_g[inst][i+1]->proc);
}
}
}*/
/* setup PHY proc TX sync mechanism */
pthread_mutex_init(&sync_phy_proc.mutex_phy_proc_tx, NULL);
pthread_cond_init(&sync_phy_proc.cond_phy_proc_tx, NULL);
sync_phy_proc.phy_proc_CC_id = 0;
}
/*!
* \brief Terminate eNB TX and RX threads.
*/
void kill_eNB_proc(int inst) {
int *status;
PHY_VARS_eNB *eNB;
eNB_proc_t *proc;
eNB_rxtx_proc_t *proc_rxtx;
for (int CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
eNB=PHY_vars_eNB_g[inst][CC_id];
proc = &eNB->proc;
proc_rxtx = &proc->proc_rxtx[0];
#ifdef DEBUG_THREADS
printf( "Killing TX CC_id %d thread %d\n", CC_id, i );
#endif
proc_rxtx[0].instance_cnt_rxtx = 0; // FIXME data race!
proc_rxtx[1].instance_cnt_rxtx = 0; // FIXME data race!
proc->instance_cnt_prach = 0;
pthread_cond_signal( &proc_rxtx[0].cond_rxtx );
pthread_cond_signal( &proc_rxtx[1].cond_rxtx );
pthread_cond_signal( &proc->cond_prach );
pthread_cond_broadcast(&sync_phy_proc.cond_phy_proc_tx);
pthread_join( proc->pthread_FH, (void**)&status );
pthread_mutex_destroy( &proc->mutex_FH );
pthread_cond_destroy( &proc->cond_FH );
pthread_join( proc->pthread_prach, (void**)&status );
pthread_mutex_destroy( &proc->mutex_prach );
pthread_cond_destroy( &proc->cond_prach );
int i;
for (i=0;i<2;i++) {
pthread_join( proc_rxtx[i].pthread_rxtx, (void**)&status );
pthread_mutex_destroy( &proc_rxtx[i].mutex_rxtx );
pthread_cond_destroy( &proc_rxtx[i].cond_rxtx );
}
}
}
/* this function maps the phy_vars_eNB tx and rx buffers to the available rf chains.
Each rf chain is is addressed by the card number and the chain on the card. The
rf_map specifies for each CC, on which rf chain the mapping should start. Multiple
antennas are mapped to successive RF chains on the same card. */
int setup_eNB_buffers(PHY_VARS_eNB **phy_vars_eNB, openair0_config_t *openair0_cfg) {
int i, CC_id;
int j;
uint16_t N_TA_offset = 0;
LTE_DL_FRAME_PARMS *frame_parms;
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
if (phy_vars_eNB[CC_id]) {
frame_parms = &(phy_vars_eNB[CC_id]->frame_parms);
printf("setup_eNB_buffers: frame_parms = %p\n",frame_parms);
} else {
printf("phy_vars_eNB[%d] not initialized\n", CC_id);
return(-1);
}
if (frame_parms->frame_type == TDD) {
if (frame_parms->N_RB_DL == 100)
N_TA_offset = 624;
else if (frame_parms->N_RB_DL == 50)
N_TA_offset = 624/2;
else if (frame_parms->N_RB_DL == 25)
N_TA_offset = 624/4;
}
if (openair0_cfg[CC_id].mmapped_dma == 1) {
// replace RX signal buffers with mmaped HW versions
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
printf("Mapping eNB CC_id %d, rx_ant %d\n",CC_id,i);
free(phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
phy_vars_eNB[CC_id]->common_vars.rxdata[0][i] = openair0_cfg[CC_id].rxbase[i];
printf("rxdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
for (j=0; j<16; j++) {
printf("rxbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->common_vars.rxdata[0][i][j]);
phy_vars_eNB[CC_id]->common_vars.rxdata[0][i][j] = 16-j;
}
}
for (i=0; i<frame_parms->nb_antennas_tx; i++) {
printf("Mapping eNB CC_id %d, tx_ant %d\n",CC_id,i);
free(phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
phy_vars_eNB[CC_id]->common_vars.txdata[0][i] = openair0_cfg[CC_id].txbase[i];//(int32_t*) openair0_exmimo_pci[rf_map[CC_id].card].dac_head[rf_map[CC_id].chain+i];
printf("txdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
for (j=0; j<16; j++) {
printf("txbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->common_vars.txdata[0][i][j]);
phy_vars_eNB[CC_id]->common_vars.txdata[0][i][j] = 16-j;
}
}
}
else { // not memory-mapped DMA
rxdata = (int32_t**)malloc16(frame_parms->nb_antennas_rx*sizeof(int32_t*));
txdata = (int32_t**)malloc16(frame_parms->nb_antennas_tx*sizeof(int32_t*));
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
free(phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
rxdata[i] = (int32_t*)(32 + malloc16(32+frame_parms->samples_per_tti*10*sizeof(int32_t))); // FIXME broken memory allocation
phy_vars_eNB[CC_id]->common_vars.rxdata[0][i] = rxdata[i]-N_TA_offset; // N_TA offset for TDD FIXME! N_TA_offset > 16 => access of unallocated memory
memset(rxdata[i], 0, frame_parms->samples_per_tti*10*sizeof(int32_t));
printf("rxdata[%d] @ %p (%p) (N_TA_OFFSET %d)\n", i, phy_vars_eNB[CC_id]->common_vars.rxdata[0][i],rxdata[i],N_TA_offset);
}
for (i=0; i<frame_parms->nb_antennas_tx; i++) {
free(phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
txdata[i] = (int32_t*)(32 + malloc16(32 + frame_parms->samples_per_tti*10*sizeof(int32_t))); // FIXME broken memory allocation
phy_vars_eNB[CC_id]->common_vars.txdata[0][i] = txdata[i];
memset(txdata[i],0, frame_parms->samples_per_tti*10*sizeof(int32_t));
printf("txdata[%d] @ %p\n", i, phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
}
}
}
return(0);
}
void reset_opp_meas(void) {
int sfn;
reset_meas(&softmodem_stats_mt);
reset_meas(&softmodem_stats_hw);
for (sfn=0; sfn < 10; sfn++) {
reset_meas(&softmodem_stats_rxtx_sf);
reset_meas(&softmodem_stats_rx_sf);
}
}
void print_opp_meas(void) {
int sfn=0;
print_meas(&softmodem_stats_mt, "Main ENB Thread", NULL, NULL);
print_meas(&softmodem_stats_hw, "HW Acquisation", NULL, NULL);
for (sfn=0; sfn < 10; sfn++) {
print_meas(&softmodem_stats_rxtx_sf,"[eNB][total_phy_proc_rxtx]",NULL, NULL);
print_meas(&softmodem_stats_rx_sf,"[eNB][total_phy_proc_rx]",NULL,NULL);
}
}
int start_if(PHY_VARS_eNB *eNB) {
return(eNB->ifdevice.trx_start_func(&eNB->ifdevice));
}
int start_rf(PHY_VARS_eNB *eNB) {
return(eNB->rfdevice.trx_start_func(&eNB->rfdevice));
}
extern void eNB_fep_rru_if5(PHY_VARS_eNB *eNB);
extern void eNB_fep_full(PHY_VARS_eNB *eNB);
extern void eNB_fep_full_2thread(PHY_VARS_eNB *eNB);
extern void do_prach(PHY_VARS_eNB *eNB);
void init_RU(RAN_CONTEXT *rc, eNB_func_t node_function, RU_if_in_t ru_if_in[], RU_if_timing_t ru_if_timing[], eth_params_t *eth_params) {
int ru_id;
for (ru_id=0;ru_id<rc->nb_RU;ru_id++) {
ru = &rc.ru_desc[ru_id];
ru->RU_if_in[ru_id] = ru_if_in[ru_id];
ru->RU_if_timing = ru_if_timing[ru_id];
LOG_I(PHY,"Initializing RRU descriptor %d : (%s,%s)\n",ru_id,ru_if_types[ru_if_in[ru_id]],eNB_timing[ru_timing[ru_id]]);
switch (ru->RU_if_in[ru_id]) {
case LOCAL_RF: // this is an RRU or eNB with integrated RF
if (node_function == NGFI_RRU_IF5) {
ru->do_prach = NULL; // no prach processing
ru->fep_rx = eNB_fep_rru_if5; // need only to do send_IF5
ru->fep_tx = NULL; // nothing (this is a time-domain signal)
ru->fh_asynch = fh_if5_asynch_DL; // TX packets come asynchronously
ru->start_if = start_if; // need to start the if interface for if5
ru->ifdevice.host_type = RRH_HOST;
ru->rfdevice.host_type = RRH_HOST;
}
else if (node_function == NGFI_RRU_IF4p5) {
ru->do_prach = do_prach; // IF4p5 needs to do part of prach processing in RRU
ru->fep_rx = ru_fep_full; // this is DFTs + send_IF4p5
ru->fep_tx = ru_fep_idft; // this is fep with idft only (no precoding in RRU)
ru->fh_asynch = fh_if4p5_asynch_DL; // TX packets come asynchronously
ru->start_if = start_if; // need to start the if interface for if4p5
ru->ifdevice.host_type = RRH_HOST;
ru->rfdevice.host_type = RRH_HOST;
}
else if (node_function == eNodeB_3GPP) {
ru->do_prach = NULL; // prach is done completely in eNB processing
ru->fep_rx = eNB_fep_full; // this is DFTs only
ru->fep_tx = pc_fep_idft_prec; // this is fep with idft and precoding
ru->fh_asynch = NULL; // no incoming fronthaul
ru->start_if = NULL; // no if interface
ru->rfdevice.host_type = BBU_HOST;
}
ru->rx_fh = rx_rf; // local synchronous RF RX
ru->tx_fh = NULL; // nothing connected directly to radio
ru->start_rf = start_rf; // need to start the local RF interface
ret = openair0_device_load(&ru->rfdevice, &openair0_cfg[ru_id]);
if (setup_RU_buffers(rc,ru_id,&openair0_cfg[ru_id])!=0) {
printf("Exiting, cannot initialize eNodeB Buffers\n");
exit(-1);
}
break;
case REMOTE_IF5: // the remote unit is IF5 RRU
ru->do_prach = NULL; // no prach processing in RU
ru->fep_rx = eNB_fep_full; // this is DFTs
ru->fep_tx = pc_fep_tx_rru_if5; // need to do transmit Precoding + FEP + IF5 fronthaul
if (ru->RU_if_timing == synch_to_other) {
ru->rx_fh = rx_fh_slave; // synchronize to master
ru->tx_fh = tx_fh_if5_mobipass; // use send_IF5 for mobipass
ru->fh_asynch = fh_if5_asynch_UL; // UL is asynchronous
}
else {
ru->tx_fh = tx_fh_if5; // synchronous IF5 transmission
ru->rx_fh = rx_fh_if5; // synchronous IF5 reception
ru->fh_asynch = NULL; // no asynchronous UL
}
ru->start_rf = NULL; // no local RF
ru->start_if = start_if; // need to start if interface for IF5
ru->fh_asynch = fh_if5_asynch_DL;
ru->ifdevice.host_type = BBU_HOST;
ret = openair0_transport_load(&ru->ifdevice, &openair0_cfg[ru_id], (eth_params+ru_id));
printf("openair0_transport_init returns %d for ru_id %d\n",ret,ru_id);
if (ret<0) {
printf("Exiting, cannot initialize transport protocol\n");
exit(-1);
}
break;
case REMOTE_IF4p5:
ru->do_prach = NULL; // no prach processing in RU
ru->fep_rx = eNB_fep_full; // this is DFTs
ru->fep_tx = proc_tx_high; // need to do transmit Precoding + IF4p5 fronthaul (no IDFTs)
ru->tx_fh = tx_fh_if4p5; // synchronous IF5 transmission
ru->rx_fh = rx_fh_if4p5; // synchronous IF5 reception
ru->fh_asynch = (ru->RU_if_timing == synch_to_other) ? fh_if4p5_asynch_UL : NULL; // asynchronous UL if synch_to_other
ru->start_rf = NULL; // no local RF
ru->start_if = start_if; // need to start if interface for IF4p5
ru->fh_asynch = fh_if5_asynch_DL;
ru->ifdevice.host_type = BBU_HOST;
ret = openair0_transport_load(&ru->ifdevice, &openair0_cfg[ru_id], (eth_params+ru_id));
printf("openair0_transport_init returns %d for ru_id %d\n",ret,ru_id);
if (ret<0) {
printf("Exiting, cannot initialize transport protocol\n");
exit(-1);
}
malloc_IF4p5_buffer(eNB);
break;
case REMOTE_IF1pp:
LOG_E(PHY,"RU with IF1pp not supported yet\n");
break;
} // switch on interface type
} // for ru_id
sleep(1);
LOG_D(HW,"[lte-softmodem.c] eNB threads created\n");
}
void init_RAN(RAN_CONTEXT *rc,eNB_func_t node_function[], eNB_timing_t node_timing[],eth_params_t *eth_params,int single_thread_flag) {
int CC_id;
int inst;
PHY_VARS_eNB *eNB;
int ret;
for (inst=0;inst<rc->nb_inst;inst++) {
for (CC_id=0;CC_id<rc->nb_CC;CC_id++) {
eNB = rc->eNB[inst][CC_id];
if (eNB) {
eNB->node_function = node_function[CC_id];
eNB->node_timing = node_timing[CC_id];
eNB->abstraction_flag = 0;
eNB->single_thread_flag = single_thread_flag;
eNB->ts_offset = 0;
LOG_I(PHY,"Initializing eNB %d CC_id %d : (%s,%s)\n",inst,CC_id,eNB_functions[node_function[CC_id]],eNB_timing[node_timing[CC_id]]);
switch (node_function[CC_id]) {
case NGFI_RRU_IF5:
eNB->td = NULL;
eNB->te = NULL;
eNB->proc_uespec_rx = NULL;
eNB->proc_tx = NULL;
break;
case NGFI_RRU_IF4p5:
eNB->td = NULL;
eNB->te = NULL;
eNB->proc_uespec_rx = NULL;
eNB->proc_tx = NULL;//proc_tx_rru_if4p5;
break;
case eNodeB_3GPP:
eNB->do_prach = do_prach;
eNB->td = ulsch_decoding_data;//(single_thread_flag==1) ? ulsch_decoding_data_2thread : ulsch_decoding_data;
eNB->te = dlsch_encoding;//(single_thread_flag==1) ? dlsch_encoding_2threads : dlsch_encoding;
eNB->proc_uespec_rx = phy_procedures_eNB_uespec_RX;
eNB->proc_tx = proc_tx_full;
break;
case eNodeB_3GPP_BBU:
eNB->do_prach = do_prach;
eNB->td = ulsch_decoding_data;//(single_thread_flag==1) ? ulsch_decoding_data_2thread : ulsch_decoding_data;
eNB->te = dlsch_encoding;//(single_thread_flag==1) ? dlsch_encoding_2threads : dlsch_encoding;
eNB->proc_uespec_rx = phy_procedures_eNB_uespec_RX;
eNB->proc_tx = proc_tx_full;
break;
case NGFI_RCC_IF4p5:
eNB->do_prach = do_prach;
eNB->td = ulsch_decoding_data;//(single_thread_flag==1) ? ulsch_decoding_data_2thread : ulsch_decoding_data;
eNB->te = dlsch_encoding;//(single_thread_flag==1) ? dlsch_encoding_2threads : dlsch_encoding;
eNB->proc_uespec_rx = phy_procedures_eNB_uespec_RX;
eNB->proc_tx = proc_tx_high;
break;
case NGFI_RAU_IF4p5:
eNB->do_prach = do_prach;
eNB->td = ulsch_decoding_data;//(single_thread_flag==1) ? ulsch_decoding_data_2thread : ulsch_decoding_data;
eNB->te = dlsch_encoding;//(single_thread_flag==1) ? dlsch_encoding_2threads : dlsch_encoding;
eNB->proc_uespec_rx = phy_procedures_eNB_uespec_RX;
eNB->proc_tx = proc_tx_high;
break;
}
// initialize eNB procedure threads if needed
init_eNB_proc(rc,inst);
}
}
}
sleep(1);
LOG_D(HW,"[lte-softmodem.c] eNB threads created\n");
}
void stop_eNB(int nb_inst) {
for (int inst=0;inst<nb_inst;inst++) {
printf("Killing eNB %d processing threads\n",inst);
kill_eNB_proc(inst);
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment