Commit 8573e0ec authored by Matthieu Kanj's avatar Matthieu Kanj

Merge branch 'develop-nb-iot' of...

Merge branch 'develop-nb-iot' of https://gitlab.eurecom.fr/oai/openairinterface5g into develop-nb-iot
parents 13052361 f2d2e36d
......@@ -1045,6 +1045,7 @@ set(PHY_SRC
${OPENAIR1_DIR}/PHY/LTE_ESTIMATION/freq_equalization.c
${OPENAIR1_DIR}/PHY/LTE_ESTIMATION/freq_equalization_NB_IoT.c
${OPENAIR1_DIR}/PHY/LTE_ESTIMATION/lte_sync_time.c
${OPENAIR1_DIR}/PHY/LTE_ESTIMATION/lte_sync_time_NB_IoT.c
${OPENAIR1_DIR}/PHY/LTE_ESTIMATION/lte_sync_timefreq.c
${OPENAIR1_DIR}/PHY/LTE_ESTIMATION/lte_adjust_sync.c
${OPENAIR1_DIR}/PHY/LTE_ESTIMATION/lte_adjust_sync_NB_IoT.c
......
......@@ -33,6 +33,19 @@ int lte_est_timing_advance(NB_IoT_DL_FRAME_PARMS *frame_parms,
short coef);
*/
////////// Vincent: NB-IoT DL synchronization //////////////////////////////////////////////////
int lte_sync_time_init_NB_IoT(NB_IoT_DL_FRAME_PARMS *frame_parms );
void lte_sync_time_free_NB_IoT(void);
int lte_sync_time_NB_IoT(int **rxdata, ///rx data in time domain
NB_IoT_DL_FRAME_PARMS *frame_parms,
int *eNB_id);
////////////////////////////////////////////////////////////////////////////////////////////////
int NB_IoT_est_timing_advance_pusch(PHY_VARS_eNB_NB_IoT* phy_vars_eNB,module_id_t UE_id);
......
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* file: lte_sync_time.c
purpose: coarse timing synchronization for LTE (using PSS)
author: florian.kaltenberger@eurecom.fr, oscar.tonelli@yahoo.it
date: 22.10.2009
*/
//#include <string.h>
#include "defs_NB_IoT.h"
#include "PHY/defs_NB_IoT.h"
#include "PHY/extern_NB_IoT.h"
// #include "SCHED/extern_NB_IoT.h"
#include <math.h>
#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/extern.h"
#include "RRC/LITE/extern.h"
#include "PHY_INTERFACE/extern.h"
#endif
//#define DEBUG_PHY
int* sync_corr_ue0 = NULL;
// int* sync_corr_ue1 = NULL;
// int* sync_corr_ue2 = NULL;
int sync_tmp[2048*4] __attribute__((aligned(32)));
short syncF_tmp[2048*2] __attribute__((aligned(32)));
int lte_sync_time_init_NB_IoT(NB_IoT_DL_FRAME_PARMS *frame_parms ) // LTE_UE_COMMON *common_vars
{
int i,k,k2,l;
sync_corr_ue0_NB_IoT = (int *)malloc16(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int)*frame_parms->samples_per_tti);
// sync_corr_ue1 = (int *)malloc16(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int)*frame_parms->samples_per_tti);
// sync_corr_ue2 = (int *)malloc16(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*sizeof(int)*frame_parms->samples_per_tti);
if (sync_corr_ue0) {
#ifdef DEBUG_PHY
msg("[openair][LTE_PHY][SYNC] sync_corr_ue allocated at %p\n", sync_corr_ue0);
#endif
//common_vars->sync_corr = sync_corr;
} else {
msg("[openair][LTE_PHY][SYNC] sync_corr_ue0 not allocated\n");
return(-1);
}
// if (sync_corr_ue1) {
// #ifdef DEBUG_PHY
// msg("[openair][LTE_PHY][SYNC] sync_corr_ue allocated at %p\n", sync_corr_ue1);
// #endif
// //common_vars->sync_corr = sync_corr;
// } else {
// msg("[openair][LTE_PHY][SYNC] sync_corr_ue1 not allocated\n");
// return(-1);
// }
// if (sync_corr_ue2) {
// #ifdef DEBUG_PHY
// msg("[openair][LTE_PHY][SYNC] sync_corr_ue allocated at %p\n", sync_corr_ue2);
// #endif
// //common_vars->sync_corr = sync_corr;
// } else {
// msg("[openair][LTE_PHY][SYNC] sync_corr_ue2 not allocated\n");
// return(-1);
// }
// primary_synch0_time = (int *)malloc16((frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
// Consider the CPs 10 normal length + 1 longer due to first symbol in slot
primary_synch0_time_NB_IoT = (int16_t *)malloc16((frame_parms->ofdm_symbol_size*11 + frame_parms->nb_prefix_samples*10 + frame_parms->nb_prefix_samples0)*sizeof(int16_t)*2); // 11 symbols per subframe dedicated to primary synchro
if (primary_synch0_time_NB_IoT) {
// bzero(primary_synch0_time,(frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
bzero(primary_synch0_time_NB_IoT,(frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2*11);
#ifdef DEBUG_PHY
msg("[openair][LTE_PHY][SYNC] primary_synch0_time allocated at %p\n", primary_synch0_time_NB_IoT);
#endif
} else {
msg("[openair][LTE_PHY][SYNC] primary_synch0_time not allocated\n");
return(-1);
}
// primary_synch1_time = (int *)malloc16((frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
// primary_synch1_time = (int16_t *)malloc16((frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
// if (primary_synch1_time) {
// // bzero(primary_synch1_time,(frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
// bzero(primary_synch1_time,(frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
// #ifdef DEBUG_PHY
// msg("[openair][LTE_PHY][SYNC] primary_synch1_time allocated at %p\n", primary_synch1_time);
// #endif
// } else {
// msg("[openair][LTE_PHY][SYNC] primary_synch1_time not allocated\n");
// return(-1);
// }
// // primary_synch2_time = (int *)malloc16((frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
// primary_synch2_time = (int16_t *)malloc16((frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
// if (primary_synch2_time) {
// // bzero(primary_synch2_time,(frame_parms->ofdm_symbol_size+frame_parms->nb_prefix_samples)*sizeof(int));
// bzero(primary_synch2_time,(frame_parms->ofdm_symbol_size)*sizeof(int16_t)*2);
// #ifdef DEBUG_PHY
// msg("[openair][LTE_PHY][SYNC] primary_synch2_time allocated at %p\n", primary_synch2_time);
// #endif
// } else {
// msg("[openair][LTE_PHY][SYNC] primary_synch2_time not allocated\n");
// return(-1);
// }
// generate oversampled sync_time sequences
if (frame_parms->NB_IoT_RB_ID <= (frame_parms->N_RB_DL>>1)) { // NB-IoT RB is in the first half
k = frame_parms->ofdm_symbol_size - frame_parms->N_RB_DL*6 + frame_parms->NB_IoT_RB_ID*12;
}else{// second half: DC carrier offset
k = 1 + 6*(2*frame_parms->NB_IoT_RB_ID - frame_parms->N_RB_DL);
}
for (l=0; l<11 ; l++){
k2 = k;
for (i=0; i<12; i++) { // 12 subcarriers in NB-IoT
syncF_tmp[2*k2] = primary_synch_NB_IoT[12*l + 2*i]>>2; //we need to shift input to avoid overflow in fft
syncF_tmp[2*k2+1] = primary_synch_NB_IoT[12*l + 2*i+1]>>2;
k2++;
}
switch (frame_parms->N_RB_DL) {
case 6:
idft128((short*)syncF_tmp, /// complex input
(short*)sync_tmp, /// complex output
1);
break;
case 25:
idft512((short*)syncF_tmp, /// complex input
(short*)sync_tmp, /// complex output
1);
break;
case 50:
idft1024((short*)syncF_tmp, /// complex input
(short*)sync_tmp, /// complex output
1);
break;
case 75:
idft1536((short*)syncF_tmp, /// complex input
(short*)sync_tmp,
1); /// complex output
break;
case 100:
idft2048((short*)syncF_tmp, /// complex input
(short*)sync_tmp, /// complex output
1);
break;
default:
LOG_E(PHY,"Unsupported N_RB_DL %d\n",frame_parms->N_RB_DL);
break;
}
for (i=0; i<frame_parms->ofdm_symbol_size; i++)
if (l < 4){ // Skip CP length
((int32_t*)primary_synch0_time_NB_IoT)[l*(frame_parms->nb_prefix_samples + frame_parms->ofdm_symbol_size) + i] = sync_tmp[i];
}else{
((int32_t*)primary_synch0_time_NB_IoT)[frame_parms->nb_prefix_samples0 + frame_parms->ofdm_symbol_size +
(l-1)*(frame_parms->nb_prefix_samples + frame_parms->ofdm_symbol_size) + i] = sync_tmp[i];
}
}
// k=frame_parms->ofdm_symbol_size-36;
// for (i=0; i<72; i++) {
// syncF_tmp[2*k] = primary_synch1[2*i]>>2; //we need to shift input to avoid overflow in fft
// syncF_tmp[2*k+1] = primary_synch1[2*i+1]>>2;
// k++;
// if (k >= frame_parms->ofdm_symbol_size) {
// k++; // skip DC carrier
// k-=frame_parms->ofdm_symbol_size;
// }
// }
// switch (frame_parms->N_RB_DL) {
// case 6:
// idft128((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// case 25:
// idft512((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// case 50:
// idft1024((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// case 75:
// idft1536((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// case 100:
// idft2048((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// default:
// LOG_E(PHY,"Unsupported N_RB_DL %d\n",frame_parms->N_RB_DL);
// break;
// }
// for (i=0; i<frame_parms->ofdm_symbol_size; i++)
// ((int32_t*)primary_synch1_time)[i] = sync_tmp[i];
// k=frame_parms->ofdm_symbol_size-36;
// for (i=0; i<72; i++) {
// syncF_tmp[2*k] = primary_synch2[2*i]>>2; //we need to shift input to avoid overflow in fft
// syncF_tmp[2*k+1] = primary_synch2[2*i+1]>>2;
// k++;
// if (k >= frame_parms->ofdm_symbol_size) {
// k++; // skip DC carrier
// k-=frame_parms->ofdm_symbol_size;
// }
// }
// switch (frame_parms->N_RB_DL) {
// case 6:
// idft128((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// case 25:
// idft512((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// case 50:
// idft1024((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// case 75:
// idft1536((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// case 100:
// idft2048((short*)syncF_tmp, /// complex input
// (short*)sync_tmp, /// complex output
// 1);
// break;
// default:
// LOG_E(PHY,"Unsupported N_RB_DL %d\n",frame_parms->N_RB_DL);
// break;
// }
// for (i=0; i<frame_parms->ofdm_symbol_size; i++)
// ((int32_t*)primary_synch2_time)[i] = sync_tmp[i];
#ifdef DEBUG_PHY
write_output("primary_sync0.m","psync0",primary_synch0_time,frame_parms->ofdm_symbol_size,1,1);
// write_output("primary_sync1.m","psync1",primary_synch1_time,frame_parms->ofdm_symbol_size,1,1);
// write_output("primary_sync2.m","psync2",primary_synch2_time,frame_parms->ofdm_symbol_size,1,1);
#endif
return (1);
}
void lte_sync_time_free_NB_IoT(void)
{
if (sync_corr_ue0) {
msg("Freeing sync_corr_ue (%p)...\n",sync_corr_ue0);
free(sync_corr_ue0);
}
// if (sync_corr_ue1) {
// msg("Freeing sync_corr_ue (%p)...\n",sync_corr_ue1);
// free(sync_corr_ue1);
// }
// if (sync_corr_ue2) {
// msg("Freeing sync_corr_ue (%p)...\n",sync_corr_ue2);
// free(sync_corr_ue2);
// }
if (primary_synch0_time_NB_IoT) {
msg("Freeing primary_sync0_time ...\n");
free(primary_synch0_time_NB_IoT);
}
// if (primary_synch1_time) {
// msg("Freeing primary_sync1_time ...\n");
// free(primary_synch1_time);
// }
// if (primary_synch2_time) {
// msg("Freeing primary_sync2_time ...\n");
// free(primary_synch2_time);
// }
sync_corr_ue0_NB_IoT = NULL;
// sync_corr_ue1 = NULL;
// sync_corr_ue2 = NULL;
primary_synch0_time_NB_IoT = NULL;
// primary_synch1_time = NULL;
// primary_synch2_time = NULL;
}
static inline int abs32(int x)
{
return (((int)((short*)&x)[0])*((int)((short*)&x)[0]) + ((int)((short*)&x)[1])*((int)((short*)&x)[1]));
}
#ifdef DEBUG_PHY
int debug_cnt=0;
#endif
#define SHIFT 17
int lte_sync_time_NB_IoT(int **rxdata, ///rx data in time domain
NB_IoT_DL_FRAME_PARMS *frame_parms,
int *eNB_id)
{
// perform a time domain correlation using the oversampled sync sequence
unsigned int n, ar, /*s,*/ peak_pos, peak_val/*, sync_source*/;
int result,result2;
// int sync_out[3] = {0,0,0},sync_out2[3] = {0,0,0};
// int tmp[3] = {0,0,0};
int sync_out = 0,sync_out2 = 0;
int tmp = 0;
// int length = LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*frame_parms->samples_per_tti>>1;
int length = LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*frame_parms->samples_per_tti;
//msg("[SYNC TIME] Calling sync_time.\n");
if (sync_corr_ue0 == NULL) {
msg("[SYNC TIME] sync_corr_ue0 not yet allocated! Exiting.\n");
return(-1);
}
// if (sync_corr_ue1 == NULL) {
// msg("[SYNC TIME] sync_corr_ue1 not yet allocated! Exiting.\n");
// return(-1);
// }
// if (sync_corr_ue2 == NULL) {
// msg("[SYNC TIME] sync_corr_ue2 not yet allocated! Exiting.\n");
// return(-1);
// }
peak_val = 0;
peak_pos = 0;
// sync_source = 0;
for (n=0; n<length; n+=4) {
#ifdef RTAI_ENABLED
// This is necessary since the sync takes a long time and it seems to block all other threads thus screwing up RTAI. If we pause it for a little while during its execution we give RTAI a chance to catch up with its other tasks.
if ((n%frame_parms->samples_per_tti == 0) && (n>0) && (openair_daq_vars.sync_state==0)) {
#ifdef DEBUG_PHY
msg("[SYNC TIME] pausing for 1000ns, n=%d\n",n);
#endif
rt_sleep(nano2count(1000));
}
#endif
sync_corr_ue0[n] = 0;
// sync_corr_ue0[n+length] = 0;
// sync_corr_ue1[n] = 0;
// sync_corr_ue1[n+length] = 0;
// sync_corr_ue2[n] = 0;
// sync_corr_ue2[n+length] = 0;
// for (s=0; s<3; s++) {
// sync_out[s]=0;
// sync_out2[s]=0;
// }
// if (n<(length-frame_parms->ofdm_symbol_size-frame_parms->nb_prefix_samples)) {
if (n<(length-frame_parms->ofdm_symbol_size)) {
//calculate dot product of primary_synch0_time and rxdata[ar][n] (ar=0..nb_ant_rx) and store the sum in temp[n];
// for (ar=0; ar<frame_parms->nb_antennas_rx; ar++) {
for (ar=0; ar<1; ar++) {
result = dot_product((short*)primary_synch0_time_NB_IoT, (short*) &(rxdata[ar][n]), 11*frame_parms->ofdm_symbol_size, SHIFT);
// result2 = dot_product((short*)primary_synch0_time, (short*) &(rxdata[ar][n+length]), 11*frame_parms->ofdm_symbol_size, SHIFT);
((short*)sync_corr_ue0_NB_IoT)[2*n] += ((short*) &result)[0];
((short*)sync_corr_ue0_NB_IoT)[2*n+1] += ((short*) &result)[1];
// ((short*)sync_corr_ue0)[2*(length+n)] += ((short*) &result2)[0];
// ((short*)sync_corr_ue0)[(2*(length+n))+1] += ((short*) &result2)[1];
((short*)sync_out)[0] += ((short*) &result)[0];
((short*)sync_out)[1] += ((short*) &result)[1];
// ((short*)sync_out2)[0] += ((short*) &result2)[0];
// ((short*)sync_out2)[1] += ((short*) &result2)[1];
}
// for (ar=0; ar<frame_parms->nb_antennas_rx; ar++) {
// result = dot_product((short*)primary_synch1_time, (short*) &(rxdata[ar][n]), frame_parms->ofdm_symbol_size, SHIFT);
// result2 = dot_product((short*)primary_synch1_time, (short*) &(rxdata[ar][n+length]), frame_parms->ofdm_symbol_size, SHIFT);
// ((short*)sync_corr_ue1)[2*n] += ((short*) &result)[0];
// ((short*)sync_corr_ue1)[2*n+1] += ((short*) &result)[1];
// ((short*)sync_corr_ue1)[2*(length+n)] += ((short*) &result2)[0];
// ((short*)sync_corr_ue1)[(2*(length+n))+1] += ((short*) &result2)[1];
// ((short*)sync_out)[2] += ((short*) &result)[0];
// ((short*)sync_out)[3] += ((short*) &result)[1];
// ((short*)sync_out2)[2] += ((short*) &result2)[0];
// ((short*)sync_out2)[3] += ((short*) &result2)[1];
// }
// for (ar=0; ar<frame_parms->nb_antennas_rx; ar++) {
// result = dot_product((short*)primary_synch2_time, (short*) &(rxdata[ar][n]), frame_parms->ofdm_symbol_size, SHIFT);
// result2 = dot_product((short*)primary_synch2_time, (short*) &(rxdata[ar][n+length]), frame_parms->ofdm_symbol_size, SHIFT);
// ((short*)sync_corr_ue2)[2*n] += ((short*) &result)[0];
// ((short*)sync_corr_ue2)[2*n+1] += ((short*) &result)[1];
// ((short*)sync_corr_ue2)[2*(length+n)] += ((short*) &result2)[0];
// ((short*)sync_corr_ue2)[(2*(length+n))+1] += ((short*) &result2)[1];
// ((short*)sync_out)[4] += ((short*) &result)[0];
// ((short*)sync_out)[5] += ((short*) &result)[1];
// ((short*)sync_out2)[4] += ((short*) &result2)[0];
// ((short*)sync_out2)[5] += ((short*) &result2)[1];
// }
}
// calculate the absolute value of sync_corr[n]
sync_corr_ue0_NB_IoT[n] = abs32(sync_corr_ue0_NB_IoT[n]);
// sync_corr_ue0[n+length] = abs32(sync_corr_ue0[n+length]);
// sync_corr_ue1[n] = abs32(sync_corr_ue1[n]);
// sync_corr_ue1[n+length] = abs32(sync_corr_ue1[n+length]);
// sync_corr_ue2[n] = abs32(sync_corr_ue2[n]);
// sync_corr_ue2[n+length] = abs32(sync_corr_ue2[n+length]);
// for (s=0; s<3; s++) {
tmp = (abs32(sync_out)>>1); // + (abs32(sync_out2)>>1);
if (tmp>peak_val) {
peak_val = tmp;
peak_pos = n;
// sync_source = s;
/*
printf("s %d: n %d sync_out %d, sync_out2 %d (sync_corr %d,%d), (%d,%d) (%d,%d)\n",s,n,abs32(sync_out[s]),abs32(sync_out2[s]),sync_corr_ue0[n],
sync_corr_ue0[n+length],((int16_t*)&sync_out[s])[0],((int16_t*)&sync_out[s])[1],((int16_t*)&sync_out2[s])[0],((int16_t*)&sync_out2[s])[1]);
*/
}
// }
}
// *eNB_id = sync_source;
LOG_D(PHY,"[UE] lte_sync_time: Peak found at pos %d, val = %d (%d dB)\n",peak_pos,peak_val,dB_fixed(peak_val)/2);
#ifdef DEBUG_PHY
if (debug_cnt == 0) {
write_output("sync_corr0_ue.m","synccorr0",sync_corr_ue0,2*length,1,2);
// write_output("sync_corr1_ue.m","synccorr1",sync_corr_ue1,2*length,1,2);
// write_output("sync_corr2_ue.m","synccorr2",sync_corr_ue2,2*length,1,2);
write_output("rxdata0.m","rxd0",rxdata[0],length<<1,1,1);
// exit(-1);
} else {
debug_cnt++;
}
#endif
return(peak_pos);
}
//#define DEBUG_PHY
// int lte_sync_time_eNB(int32_t **rxdata, ///rx data in time domain
// LTE_DL_FRAME_PARMS *frame_parms,
// uint32_t length,
// uint32_t *peak_val_out,
// uint32_t *sync_corr_eNB)
// {
// // perform a time domain correlation using the oversampled sync sequence
// unsigned int n, ar, peak_val, peak_pos;
// uint64_t mean_val;
// int result;
// short *primary_synch_time;
// int eNB_id = frame_parms->Nid_cell%3;
// // msg("[SYNC TIME] Calling sync_time_eNB(%p,%p,%d,%d)\n",rxdata,frame_parms,eNB_id,length);
// if (sync_corr_eNB == NULL) {
// LOG_E(PHY,"[SYNC TIME] sync_corr_eNB not yet allocated! Exiting.\n");
// return(-1);
// }
// switch (eNB_id) {
// case 0:
// primary_synch_time = (short*)primary_synch0_time;
// break;
// case 1:
// primary_synch_time = (short*)primary_synch1_time;
// break;
// case 2:
// primary_synch_time = (short*)primary_synch2_time;
// break;
// default:
// LOG_E(PHY,"[SYNC TIME] Illegal eNB_id!\n");
// return (-1);
// }
// peak_val = 0;
// peak_pos = 0;
// mean_val = 0;
// for (n=0; n<length; n+=4) {
// sync_corr_eNB[n] = 0;
// if (n<(length-frame_parms->ofdm_symbol_size-frame_parms->nb_prefix_samples)) {
// //calculate dot product of primary_synch0_time and rxdata[ar][n] (ar=0..nb_ant_rx) and store the sum in temp[n];
// for (ar=0; ar<frame_parms->nb_antennas_rx; ar++) {
// result = dot_product((short*)primary_synch_time, (short*) &(rxdata[ar][n]), frame_parms->ofdm_symbol_size, SHIFT);
// //((short*)sync_corr)[2*n] += ((short*) &result)[0];
// //((short*)sync_corr)[2*n+1] += ((short*) &result)[1];
// sync_corr_eNB[n] += abs32(result);
// }
// }
// /*
// if (eNB_id == 2) {
// printf("sync_time_eNB %d : %d,%d (%d)\n",n,sync_corr_eNB[n],mean_val,
// peak_val);
// }
// */
// mean_val += sync_corr_eNB[n];
// if (sync_corr_eNB[n]>peak_val) {
// peak_val = sync_corr_eNB[n];
// peak_pos = n;
// }
// }
// mean_val/=length;
// *peak_val_out = peak_val;
// if (peak_val <= (40*(uint32_t)mean_val)) {
// LOG_D(PHY,"[SYNC TIME] No peak found (%u,%u,%"PRIu64",%"PRIu64")\n",peak_pos,peak_val,mean_val,40*mean_val);
// return(-1);
// } else {
// LOG_D(PHY,"[SYNC TIME] Peak found at pos %u, val = %u, mean_val = %"PRIu64"\n",peak_pos,peak_val,mean_val);
// return(peak_pos);
// }
// }
// #ifdef PHY_ABSTRACTION
// #include "SIMULATION/TOOLS/defs.h"
// #include "SIMULATION/RF/defs.h"
// //extern channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX];
// int lte_sync_time_eNB_emul(PHY_VARS_eNB *phy_vars_eNB,
// uint8_t sect_id,
// int32_t *sync_val)
// {
// uint8_t UE_id;
// uint8_t CC_id = phy_vars_eNB->CC_id;
// msg("[PHY] EMUL lte_sync_time_eNB_emul eNB %d, sect_id %d\n",phy_vars_eNB->Mod_id,sect_id);
// *sync_val = 0;
// for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {
// //msg("[PHY] EMUL : eNB %d checking UE %d (PRACH %d) PL %d dB\n",phy_vars_eNB->Mod_id,UE_id,PHY_vars_UE_g[UE_id]->generate_prach,UE2eNB[UE_id][phy_vars_eNB->Mod_id]->path_loss_dB);
// if ((PHY_vars_UE_g[UE_id][CC_id]->generate_prach == 1) && (phy_vars_eNB->Mod_id == (UE_id % NB_eNB_INST))) {
// *sync_val = 1;
// return(0);
// }
// }
// return(-1);
// }
// #endif
......@@ -4138,17 +4138,17 @@ unsigned short dlsch_extract_rbs_single_NB_IoT(int **rxdataF,
//dl_ch0++;
}
// PBCH
if (subframe==0) {
rb_alloc_ind = 0;
}
// // PBCH
// if (subframe==0) {
// rb_alloc_ind = 0;
// }
//SSS
if (subframe==0 && frame%2==0) {
//NSSS subframe
if (subframe==9 && frame%2==0) {
rb_alloc_ind = 0;
}
//PSS
//NPSS subframe
if (subframe==5) {
rb_alloc_ind = 0;
}
......
......@@ -58,18 +58,20 @@ extern PHY_VARS_eNB_NB_IoT * PHY_vars_eNB_NB_IoT_g[MAX_eNB_NB_IoT][MAX_NUM_CCs];
//extern MAC_xface_NB_IoT *mac_xface_NB_IoT;
extern IF_Module_t *if_inst;
/*
extern short primary_synch0[144];
extern short primary_synch_NB_IoT[264];
/*
extern short primary_synch1[144];
extern short primary_synch2[144];
extern unsigned char primary_synch0_tab[72];
extern unsigned char primary_synch1_tab[72];
extern unsigned char primary_synch2_tab[72];
extern int16_t *primary_synch0_time; //!< index: [0..ofdm_symbol_size*2[
extern int16_t *primary_synch1_time; //!< index: [0..ofdm_symbol_size*2[
extern int16_t *primary_synch2_time; //!< index: [0..ofdm_symbol_size*2[
extern int *sync_corr_ue0; //!< index [0..10*samples_per_tti[
extern unsigned char primary_synch2_tab[72]; */
extern int16_t *primary_synch0_time_NB_IoT; //!< index: [0..ofdm_symbol_size*2[
// extern int16_t *primary_synch1_time; //!< index: [0..ofdm_symbol_size*2[
// extern int16_t *primary_synch2_time; //!< index: [0..ofdm_symbol_size*2[
extern int *sync_corr_ue0_NB_IoT; //!< index [0..10*samples_per_tti[
/*
extern int *sync_corr_ue1; //!< index [0..10*samples_per_tti[
extern int *sync_corr_ue2; //!< index [0..10*samples_per_tti[
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment