Commit 148cba11 authored by Tudor Bosman's avatar Tudor Bosman Committed by Jordan DeLong

Add SpookyHashV2

Summary:
SpookyHashV2 is backwards incompatible with V1.  I renamed the existing
SpookyHash class to SpookyHashV1 (and fixed all uses); the new class is
called SpookyHashV2.

From http://burtleburtle.net/bob/hash/spooky.html:

Both V1 and V2 pass all the tests. V2 corrects two oversights in V1:

In the short hash, there was a d = length that should have been d += length,
which means some entropy got dropped on the floor. It passed the tests anyhow,
but fixing this probably means more distinct info from the message makes it
into the result.

The long hash always ended in mix()+end(), but only end() was needed. Removing
the extra call to mix() makes all long hashes faster by a small constant
amount.

Test Plan: test added; unicorn compiles

Reviewed By: andrei.alexandrescu@fb.com

FB internal diff: D597173
parent 05783709
......@@ -22,7 +22,8 @@
#include <string>
#include <utility>
#include "folly/SpookyHash.h"
#include "folly/SpookyHashV1.h"
#include "folly/SpookyHashV2.h"
/*
* Various hashing functions.
......
......@@ -66,7 +66,8 @@ nobase_follyinclude_HEADERS = \
SmallLocks.h \
small_vector.h \
sorted_vector_types.h \
SpookyHash.h \
SpookyHashV1.h \
SpookyHashV2.h \
StlAllocator.h \
String.h \
String-inl.h \
......@@ -108,7 +109,8 @@ libfolly_la_SOURCES = \
FormatTables.cpp \
String.cpp \
Bits.cpp \
SpookyHash.cpp
SpookyHashV1.cpp \
SpookyHashV2.cpp
libfolly_la_LIBADD = $(BOOST_THREAD_LIB) -lpthread
......
/*
* Copyright 2012 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Spooky Hash
// A 128-bit noncryptographic hash, for checksums and table lookup
// By Bob Jenkins. Public domain.
// Oct 31 2010: published framework, disclaimer ShortHash isn't right
// Nov 7 2010: disabled ShortHash
// Oct 31 2011: replace End, ShortMix, ShortEnd, enable ShortHash again
// April 10 2012: buffer overflow on platforms without unaligned reads
// July 12 2012: was passing out variables in final to in/out in short
// July 30 2012: I reintroduced the buffer overflow
#include "folly/SpookyHashV1.h"
#include <cstring>
#define ALLOW_UNALIGNED_READS 1
namespace folly {
namespace hash {
//
// short hash ... it could be used on any message,
// but it's used by Spooky just for short messages.
//
void SpookyHashV1::Short(
const void *message,
size_t length,
uint64_t *hash1,
uint64_t *hash2)
{
uint64_t buf[2*sc_numVars];
union
{
const uint8_t *p8;
uint32_t *p32;
uint64_t *p64;
size_t i;
} u;
u.p8 = (const uint8_t *)message;
if (!ALLOW_UNALIGNED_READS && (u.i & 0x7))
{
memcpy(buf, message, length);
u.p64 = buf;
}
size_t remainder = length%32;
uint64_t a=*hash1;
uint64_t b=*hash2;
uint64_t c=sc_const;
uint64_t d=sc_const;
if (length > 15)
{
const uint64_t *end = u.p64 + (length/32)*4;
// handle all complete sets of 32 bytes
for (; u.p64 < end; u.p64 += 4)
{
c += u.p64[0];
d += u.p64[1];
ShortMix(a,b,c,d);
a += u.p64[2];
b += u.p64[3];
}
//Handle the case of 16+ remaining bytes.
if (remainder >= 16)
{
c += u.p64[0];
d += u.p64[1];
ShortMix(a,b,c,d);
u.p64 += 2;
remainder -= 16;
}
}
// Handle the last 0..15 bytes, and its length
d = ((uint64_t)length) << 56;
switch (remainder)
{
case 15:
d += ((uint64_t)u.p8[14]) << 48;
case 14:
d += ((uint64_t)u.p8[13]) << 40;
case 13:
d += ((uint64_t)u.p8[12]) << 32;
case 12:
d += u.p32[2];
c += u.p64[0];
break;
case 11:
d += ((uint64_t)u.p8[10]) << 16;
case 10:
d += ((uint64_t)u.p8[9]) << 8;
case 9:
d += (uint64_t)u.p8[8];
case 8:
c += u.p64[0];
break;
case 7:
c += ((uint64_t)u.p8[6]) << 48;
case 6:
c += ((uint64_t)u.p8[5]) << 40;
case 5:
c += ((uint64_t)u.p8[4]) << 32;
case 4:
c += u.p32[0];
break;
case 3:
c += ((uint64_t)u.p8[2]) << 16;
case 2:
c += ((uint64_t)u.p8[1]) << 8;
case 1:
c += (uint64_t)u.p8[0];
break;
case 0:
c += sc_const;
d += sc_const;
}
ShortEnd(a,b,c,d);
*hash1 = a;
*hash2 = b;
}
// do the whole hash in one call
void SpookyHashV1::Hash128(
const void *message,
size_t length,
uint64_t *hash1,
uint64_t *hash2)
{
if (length < sc_bufSize)
{
Short(message, length, hash1, hash2);
return;
}
uint64_t h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11;
uint64_t buf[sc_numVars];
uint64_t *end;
union
{
const uint8_t *p8;
uint64_t *p64;
size_t i;
} u;
size_t remainder;
h0=h3=h6=h9 = *hash1;
h1=h4=h7=h10 = *hash2;
h2=h5=h8=h11 = sc_const;
u.p8 = (const uint8_t *)message;
end = u.p64 + (length/sc_blockSize)*sc_numVars;
// handle all whole sc_blockSize blocks of bytes
if (ALLOW_UNALIGNED_READS || ((u.i & 0x7) == 0))
{
while (u.p64 < end)
{
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
else
{
while (u.p64 < end)
{
memcpy(buf, u.p64, sc_blockSize);
Mix(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
// handle the last partial block of sc_blockSize bytes
remainder = (length - ((const uint8_t *)end-(const uint8_t *)message));
memcpy(buf, end, remainder);
memset(((uint8_t *)buf)+remainder, 0, sc_blockSize-remainder);
((uint8_t *)buf)[sc_blockSize-1] = remainder;
Mix(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
// do some final mixing
End(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
*hash1 = h0;
*hash2 = h1;
}
// init spooky state
void SpookyHashV1::Init(uint64_t seed1, uint64_t seed2)
{
m_length = 0;
m_remainder = 0;
m_state[0] = seed1;
m_state[1] = seed2;
}
// add a message fragment to the state
void SpookyHashV1::Update(const void *message, size_t length)
{
uint64_t h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11;
size_t newLength = length + m_remainder;
uint8_t remainder;
union
{
const uint8_t *p8;
uint64_t *p64;
size_t i;
} u;
const uint64_t *end;
// Is this message fragment too short? If it is, stuff it away.
if (newLength < sc_bufSize)
{
memcpy(&((uint8_t *)m_data)[m_remainder], message, length);
m_length = length + m_length;
m_remainder = (uint8_t)newLength;
return;
}
// init the variables
if (m_length < sc_bufSize)
{
h0=h3=h6=h9 = m_state[0];
h1=h4=h7=h10 = m_state[1];
h2=h5=h8=h11 = sc_const;
}
else
{
h0 = m_state[0];
h1 = m_state[1];
h2 = m_state[2];
h3 = m_state[3];
h4 = m_state[4];
h5 = m_state[5];
h6 = m_state[6];
h7 = m_state[7];
h8 = m_state[8];
h9 = m_state[9];
h10 = m_state[10];
h11 = m_state[11];
}
m_length = length + m_length;
// if we've got anything stuffed away, use it now
if (m_remainder)
{
uint8_t prefix = sc_bufSize-m_remainder;
memcpy(&(((uint8_t *)m_data)[m_remainder]), message, prefix);
u.p64 = m_data;
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
Mix(&u.p64[sc_numVars], h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p8 = ((const uint8_t *)message) + prefix;
length -= prefix;
}
else
{
u.p8 = (const uint8_t *)message;
}
// handle all whole blocks of sc_blockSize bytes
end = u.p64 + (length/sc_blockSize)*sc_numVars;
remainder = (uint8_t)(length-((const uint8_t *)end-u.p8));
if (ALLOW_UNALIGNED_READS || (u.i & 0x7) == 0)
{
while (u.p64 < end)
{
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
else
{
while (u.p64 < end)
{
memcpy(m_data, u.p8, sc_blockSize);
Mix(m_data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
// stuff away the last few bytes
m_remainder = remainder;
memcpy(m_data, end, remainder);
// stuff away the variables
m_state[0] = h0;
m_state[1] = h1;
m_state[2] = h2;
m_state[3] = h3;
m_state[4] = h4;
m_state[5] = h5;
m_state[6] = h6;
m_state[7] = h7;
m_state[8] = h8;
m_state[9] = h9;
m_state[10] = h10;
m_state[11] = h11;
}
// report the hash for the concatenation of all message fragments so far
void SpookyHashV1::Final(uint64_t *hash1, uint64_t *hash2)
{
// init the variables
if (m_length < sc_bufSize)
{
*hash1 = m_state[0];
*hash2 = m_state[1];
Short( m_data, m_length, hash1, hash2);
return;
}
const uint64_t *data = (const uint64_t *)m_data;
uint8_t remainder = m_remainder;
uint64_t h0 = m_state[0];
uint64_t h1 = m_state[1];
uint64_t h2 = m_state[2];
uint64_t h3 = m_state[3];
uint64_t h4 = m_state[4];
uint64_t h5 = m_state[5];
uint64_t h6 = m_state[6];
uint64_t h7 = m_state[7];
uint64_t h8 = m_state[8];
uint64_t h9 = m_state[9];
uint64_t h10 = m_state[10];
uint64_t h11 = m_state[11];
if (remainder >= sc_blockSize)
{
// m_data can contain two blocks; handle any whole first block
Mix(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
data += sc_numVars;
remainder -= sc_blockSize;
}
// mix in the last partial block, and the length mod sc_blockSize
memset(&((uint8_t *)data)[remainder], 0, (sc_blockSize-remainder));
((uint8_t *)data)[sc_blockSize-1] = remainder;
Mix(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
// do some final mixing
End(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
*hash1 = h0;
*hash2 = h1;
}
} // namespace hash
} // namespace folly
/*
* Copyright 2012 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This is version 1 of SpookyHash, incompatible with version 2.
//
// SpookyHash: a 128-bit noncryptographic hash function
// By Bob Jenkins, public domain
// Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
// Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
// Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
// Feb 2 2012: production, same bits as beta
// Feb 5 2012: adjusted definitions of uint* to be more portable
// Mar 30 2012: 3 bytes/cycle, not 4. Alpha was 4 but wasn't thorough enough.
//
// Up to 3 bytes/cycle for long messages. Reasonably fast for short messages.
// All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
//
// This was developed for and tested on 64-bit x86-compatible processors.
// It assumes the processor is little-endian. There is a macro
// controlling whether unaligned reads are allowed (by default they are).
// This should be an equally good hash on big-endian machines, but it will
// compute different results on them than on little-endian machines.
//
// Google's CityHash has similar specs to SpookyHash, and CityHash is faster
// on some platforms. MD4 and MD5 also have similar specs, but they are orders
// of magnitude slower. CRCs are two or more times slower, but unlike
// SpookyHash, they have nice math for combining the CRCs of pieces to form
// the CRCs of wholes. There are also cryptographic hashes, but those are even
// slower than MD5.
//
#ifndef FOLLY_SPOOKYHASHV1_H_
#define FOLLY_SPOOKYHASHV1_H_
#include <cstddef>
#include <cstdint>
namespace folly {
namespace hash {
class SpookyHashV1
{
public:
//
// SpookyHash: hash a single message in one call, produce 128-bit output
//
static void Hash128(
const void *message, // message to hash
size_t length, // length of message in bytes
uint64_t *hash1, // in/out: in seed 1, out hash value 1
uint64_t *hash2); // in/out: in seed 2, out hash value 2
//
// Hash64: hash a single message in one call, return 64-bit output
//
static uint64_t Hash64(
const void *message, // message to hash
size_t length, // length of message in bytes
uint64_t seed) // seed
{
uint64_t hash1 = seed;
Hash128(message, length, &hash1, &seed);
return hash1;
}
//
// Hash32: hash a single message in one call, produce 32-bit output
//
static uint32_t Hash32(
const void *message, // message to hash
size_t length, // length of message in bytes
uint32_t seed) // seed
{
uint64_t hash1 = seed, hash2 = seed;
Hash128(message, length, &hash1, &hash2);
return (uint32_t)hash1;
}
//
// Init: initialize the context of a SpookyHash
//
void Init(
uint64_t seed1, // any 64-bit value will do, including 0
uint64_t seed2); // different seeds produce independent hashes
//
// Update: add a piece of a message to a SpookyHash state
//
void Update(
const void *message, // message fragment
size_t length); // length of message fragment in bytes
//
// Final: compute the hash for the current SpookyHash state
//
// This does not modify the state; you can keep updating it afterward
//
// The result is the same as if SpookyHash() had been called with
// all the pieces concatenated into one message.
//
void Final(
uint64_t *hash1, // out only: first 64 bits of hash value.
uint64_t *hash2); // out only: second 64 bits of hash value.
//
// left rotate a 64-bit value by k bytes
//
static inline uint64_t Rot64(uint64_t x, int k)
{
return (x << k) | (x >> (64 - k));
}
//
// This is used if the input is 96 bytes long or longer.
//
// The internal state is fully overwritten every 96 bytes.
// Every input bit appears to cause at least 128 bits of entropy
// before 96 other bytes are combined, when run forward or backward
// For every input bit,
// Two inputs differing in just that input bit
// Where "differ" means xor or subtraction
// And the base value is random
// When run forward or backwards one Mix
// I tried 3 pairs of each; they all differed by at least 212 bits.
//
static inline void Mix(
const uint64_t *data,
uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3,
uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7,
uint64_t &s8, uint64_t &s9, uint64_t &s10,uint64_t &s11)
{
s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1;
s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2;
s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3;
s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4;
s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5;
s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6;
s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7;
s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8;
s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9;
s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10;
s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11;
s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0;
}
//
// Mix all 12 inputs together so that h0, h1 are a hash of them all.
//
// For two inputs differing in just the input bits
// Where "differ" means xor or subtraction
// And the base value is random, or a counting value starting at that bit
// The final result will have each bit of h0, h1 flip
// For every input bit,
// with probability 50 +- .3%
// For every pair of input bits,
// with probability 50 +- 3%
//
// This does not rely on the last Mix() call having already mixed some.
// Two iterations was almost good enough for a 64-bit result, but a
// 128-bit result is reported, so End() does three iterations.
//
static inline void EndPartial(
uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
{
h11+= h1; h2 ^= h11; h1 = Rot64(h1,44);
h0 += h2; h3 ^= h0; h2 = Rot64(h2,15);
h1 += h3; h4 ^= h1; h3 = Rot64(h3,34);
h2 += h4; h5 ^= h2; h4 = Rot64(h4,21);
h3 += h5; h6 ^= h3; h5 = Rot64(h5,38);
h4 += h6; h7 ^= h4; h6 = Rot64(h6,33);
h5 += h7; h8 ^= h5; h7 = Rot64(h7,10);
h6 += h8; h9 ^= h6; h8 = Rot64(h8,13);
h7 += h9; h10^= h7; h9 = Rot64(h9,38);
h8 += h10; h11^= h8; h10= Rot64(h10,53);
h9 += h11; h0 ^= h9; h11= Rot64(h11,42);
h10+= h0; h1 ^= h10; h0 = Rot64(h0,54);
}
static inline void End(
uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
{
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
}
//
// The goal is for each bit of the input to expand into 128 bits of
// apparent entropy before it is fully overwritten.
// n trials both set and cleared at least m bits of h0 h1 h2 h3
// n: 2 m: 29
// n: 3 m: 46
// n: 4 m: 57
// n: 5 m: 107
// n: 6 m: 146
// n: 7 m: 152
// when run forwards or backwards
// for all 1-bit and 2-bit diffs
// with diffs defined by either xor or subtraction
// with a base of all zeros plus a counter, or plus another bit, or random
//
static inline void ShortMix(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
{
h2 = Rot64(h2,50); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,52); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,30); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,41); h1 += h2; h3 ^= h1;
h2 = Rot64(h2,54); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,48); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,38); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,37); h1 += h2; h3 ^= h1;
h2 = Rot64(h2,62); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,34); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,5); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,36); h1 += h2; h3 ^= h1;
}
//
// Mix all 4 inputs together so that h0, h1 are a hash of them all.
//
// For two inputs differing in just the input bits
// Where "differ" means xor or subtraction
// And the base value is random, or a counting value starting at that bit
// The final result will have each bit of h0, h1 flip
// For every input bit,
// with probability 50 +- .3% (it is probably better than that)
// For every pair of input bits,
// with probability 50 +- .75% (the worst case is approximately that)
//
static inline void ShortEnd(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
{
h3 ^= h2; h2 = Rot64(h2,15); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,52); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,26); h1 += h0;
h2 ^= h1; h1 = Rot64(h1,51); h2 += h1;
h3 ^= h2; h2 = Rot64(h2,28); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,9); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,47); h1 += h0;
h2 ^= h1; h1 = Rot64(h1,54); h2 += h1;
h3 ^= h2; h2 = Rot64(h2,32); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,25); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,63); h1 += h0;
}
private:
//
// Short is used for messages under 192 bytes in length
// Short has a low startup cost, the normal mode is good for long
// keys, the cost crossover is at about 192 bytes. The two modes were
// held to the same quality bar.
//
static void Short(
const void *message, // message (array of bytes, not necessarily aligned)
size_t length, // length of message (in bytes)
uint64_t *hash1, // in/out: in the seed, out the hash value
uint64_t *hash2); // in/out: in the seed, out the hash value
// number of uint64_t's in internal state
static const size_t sc_numVars = 12;
// size of the internal state
static const size_t sc_blockSize = sc_numVars*8;
// size of buffer of unhashed data, in bytes
static const size_t sc_bufSize = 2*sc_blockSize;
//
// sc_const: a constant which:
// * is not zero
// * is odd
// * is a not-very-regular mix of 1's and 0's
// * does not need any other special mathematical properties
//
static const uint64_t sc_const = 0xdeadbeefdeadbeefLL;
uint64_t m_data[2*sc_numVars]; // unhashed data, for partial messages
uint64_t m_state[sc_numVars]; // internal state of the hash
size_t m_length; // total length of the input so far
uint8_t m_remainder; // length of unhashed data stashed in m_data
};
} // namespace hash
} // namespace folly
#endif
/*
* Copyright 2012 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Spooky Hash
// A 128-bit noncryptographic hash, for checksums and table lookup
// By Bob Jenkins. Public domain.
// Oct 31 2010: published framework, disclaimer ShortHash isn't right
// Nov 7 2010: disabled ShortHash
// Oct 31 2011: replace End, ShortMix, ShortEnd, enable ShortHash again
// April 10 2012: buffer overflow on platforms without unaligned reads
// July 12 2012: was passing out variables in final to in/out in short
// July 30 2012: I reintroduced the buffer overflow
// August 5 2012: SpookyV2: d = should be d += in short hash, and remove extra mix from long hash
#include "folly/SpookyHashV2.h"
#include <cstring>
#define ALLOW_UNALIGNED_READS 1
namespace folly {
namespace hash {
//
// short hash ... it could be used on any message,
// but it's used by Spooky just for short messages.
//
void SpookyHashV2::Short(
const void *message,
size_t length,
uint64_t *hash1,
uint64_t *hash2)
{
uint64_t buf[2*sc_numVars];
union
{
const uint8_t *p8;
uint32_t *p32;
uint64_t *p64;
size_t i;
} u;
u.p8 = (const uint8_t *)message;
if (!ALLOW_UNALIGNED_READS && (u.i & 0x7))
{
memcpy(buf, message, length);
u.p64 = buf;
}
size_t remainder = length%32;
uint64_t a=*hash1;
uint64_t b=*hash2;
uint64_t c=sc_const;
uint64_t d=sc_const;
if (length > 15)
{
const uint64_t *end = u.p64 + (length/32)*4;
// handle all complete sets of 32 bytes
for (; u.p64 < end; u.p64 += 4)
{
c += u.p64[0];
d += u.p64[1];
ShortMix(a,b,c,d);
a += u.p64[2];
b += u.p64[3];
}
//Handle the case of 16+ remaining bytes.
if (remainder >= 16)
{
c += u.p64[0];
d += u.p64[1];
ShortMix(a,b,c,d);
u.p64 += 2;
remainder -= 16;
}
}
// Handle the last 0..15 bytes, and its length
d += ((uint64_t)length) << 56;
switch (remainder)
{
case 15:
d += ((uint64_t)u.p8[14]) << 48;
case 14:
d += ((uint64_t)u.p8[13]) << 40;
case 13:
d += ((uint64_t)u.p8[12]) << 32;
case 12:
d += u.p32[2];
c += u.p64[0];
break;
case 11:
d += ((uint64_t)u.p8[10]) << 16;
case 10:
d += ((uint64_t)u.p8[9]) << 8;
case 9:
d += (uint64_t)u.p8[8];
case 8:
c += u.p64[0];
break;
case 7:
c += ((uint64_t)u.p8[6]) << 48;
case 6:
c += ((uint64_t)u.p8[5]) << 40;
case 5:
c += ((uint64_t)u.p8[4]) << 32;
case 4:
c += u.p32[0];
break;
case 3:
c += ((uint64_t)u.p8[2]) << 16;
case 2:
c += ((uint64_t)u.p8[1]) << 8;
case 1:
c += (uint64_t)u.p8[0];
break;
case 0:
c += sc_const;
d += sc_const;
}
ShortEnd(a,b,c,d);
*hash1 = a;
*hash2 = b;
}
// do the whole hash in one call
void SpookyHashV2::Hash128(
const void *message,
size_t length,
uint64_t *hash1,
uint64_t *hash2)
{
if (length < sc_bufSize)
{
Short(message, length, hash1, hash2);
return;
}
uint64_t h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11;
uint64_t buf[sc_numVars];
uint64_t *end;
union
{
const uint8_t *p8;
uint64_t *p64;
size_t i;
} u;
size_t remainder;
h0=h3=h6=h9 = *hash1;
h1=h4=h7=h10 = *hash2;
h2=h5=h8=h11 = sc_const;
u.p8 = (const uint8_t *)message;
end = u.p64 + (length/sc_blockSize)*sc_numVars;
// handle all whole sc_blockSize blocks of bytes
if (ALLOW_UNALIGNED_READS || ((u.i & 0x7) == 0))
{
while (u.p64 < end)
{
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
else
{
while (u.p64 < end)
{
memcpy(buf, u.p64, sc_blockSize);
Mix(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
// handle the last partial block of sc_blockSize bytes
remainder = (length - ((const uint8_t *)end-(const uint8_t *)message));
memcpy(buf, end, remainder);
memset(((uint8_t *)buf)+remainder, 0, sc_blockSize-remainder);
((uint8_t *)buf)[sc_blockSize-1] = remainder;
// do some final mixing
End(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
*hash1 = h0;
*hash2 = h1;
}
// init spooky state
void SpookyHashV2::Init(uint64_t seed1, uint64_t seed2)
{
m_length = 0;
m_remainder = 0;
m_state[0] = seed1;
m_state[1] = seed2;
}
// add a message fragment to the state
void SpookyHashV2::Update(const void *message, size_t length)
{
uint64_t h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11;
size_t newLength = length + m_remainder;
uint8_t remainder;
union
{
const uint8_t *p8;
uint64_t *p64;
size_t i;
} u;
const uint64_t *end;
// Is this message fragment too short? If it is, stuff it away.
if (newLength < sc_bufSize)
{
memcpy(&((uint8_t *)m_data)[m_remainder], message, length);
m_length = length + m_length;
m_remainder = (uint8_t)newLength;
return;
}
// init the variables
if (m_length < sc_bufSize)
{
h0=h3=h6=h9 = m_state[0];
h1=h4=h7=h10 = m_state[1];
h2=h5=h8=h11 = sc_const;
}
else
{
h0 = m_state[0];
h1 = m_state[1];
h2 = m_state[2];
h3 = m_state[3];
h4 = m_state[4];
h5 = m_state[5];
h6 = m_state[6];
h7 = m_state[7];
h8 = m_state[8];
h9 = m_state[9];
h10 = m_state[10];
h11 = m_state[11];
}
m_length = length + m_length;
// if we've got anything stuffed away, use it now
if (m_remainder)
{
uint8_t prefix = sc_bufSize-m_remainder;
memcpy(&(((uint8_t *)m_data)[m_remainder]), message, prefix);
u.p64 = m_data;
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
Mix(&u.p64[sc_numVars], h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p8 = ((const uint8_t *)message) + prefix;
length -= prefix;
}
else
{
u.p8 = (const uint8_t *)message;
}
// handle all whole blocks of sc_blockSize bytes
end = u.p64 + (length/sc_blockSize)*sc_numVars;
remainder = (uint8_t)(length-((const uint8_t *)end-u.p8));
if (ALLOW_UNALIGNED_READS || (u.i & 0x7) == 0)
{
while (u.p64 < end)
{
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
else
{
while (u.p64 < end)
{
memcpy(m_data, u.p8, sc_blockSize);
Mix(m_data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
u.p64 += sc_numVars;
}
}
// stuff away the last few bytes
m_remainder = remainder;
memcpy(m_data, end, remainder);
// stuff away the variables
m_state[0] = h0;
m_state[1] = h1;
m_state[2] = h2;
m_state[3] = h3;
m_state[4] = h4;
m_state[5] = h5;
m_state[6] = h6;
m_state[7] = h7;
m_state[8] = h8;
m_state[9] = h9;
m_state[10] = h10;
m_state[11] = h11;
}
// report the hash for the concatenation of all message fragments so far
void SpookyHashV2::Final(uint64_t *hash1, uint64_t *hash2)
{
// init the variables
if (m_length < sc_bufSize)
{
*hash1 = m_state[0];
*hash2 = m_state[1];
Short( m_data, m_length, hash1, hash2);
return;
}
const uint64_t *data = (const uint64_t *)m_data;
uint8_t remainder = m_remainder;
uint64_t h0 = m_state[0];
uint64_t h1 = m_state[1];
uint64_t h2 = m_state[2];
uint64_t h3 = m_state[3];
uint64_t h4 = m_state[4];
uint64_t h5 = m_state[5];
uint64_t h6 = m_state[6];
uint64_t h7 = m_state[7];
uint64_t h8 = m_state[8];
uint64_t h9 = m_state[9];
uint64_t h10 = m_state[10];
uint64_t h11 = m_state[11];
if (remainder >= sc_blockSize)
{
// m_data can contain two blocks; handle any whole first block
Mix(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
data += sc_numVars;
remainder -= sc_blockSize;
}
// mix in the last partial block, and the length mod sc_blockSize
memset(&((uint8_t *)data)[remainder], 0, (sc_blockSize-remainder));
((uint8_t *)data)[sc_blockSize-1] = remainder;
// do some final mixing
End(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
*hash1 = h0;
*hash2 = h1;
}
} // namespace hash
} // namespace folly
/*
* Copyright 2012 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This is version 2 of SpookyHash, incompatible with version 1.
//
// SpookyHash: a 128-bit noncryptographic hash function
// By Bob Jenkins, public domain
// Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
// Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
// Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
// Feb 2 2012: production, same bits as beta
// Feb 5 2012: adjusted definitions of uint* to be more portable
// Mar 30 2012: 3 bytes/cycle, not 4. Alpha was 4 but wasn't thorough enough.
// August 5 2012: SpookyV2 (different results)
//
// Up to 3 bytes/cycle for long messages. Reasonably fast for short messages.
// All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
//
// This was developed for and tested on 64-bit x86-compatible processors.
// It assumes the processor is little-endian. There is a macro
// controlling whether unaligned reads are allowed (by default they are).
// This should be an equally good hash on big-endian machines, but it will
// compute different results on them than on little-endian machines.
//
// Google's CityHash has similar specs to SpookyHash, and CityHash is faster
// on new Intel boxes. MD4 and MD5 also have similar specs, but they are orders
// of magnitude slower. CRCs are two or more times slower, but unlike
// SpookyHash, they have nice math for combining the CRCs of pieces to form
// the CRCs of wholes. There are also cryptographic hashes, but those are even
// slower than MD5.
//
#ifndef FOLLY_SPOOKYHASHV2_H_
#define FOLLY_SPOOKYHASHV2_H_
#include <cstddef>
#include <cstdint>
namespace folly {
namespace hash {
class SpookyHashV2
{
public:
//
// SpookyHash: hash a single message in one call, produce 128-bit output
//
static void Hash128(
const void *message, // message to hash
size_t length, // length of message in bytes
uint64_t *hash1, // in/out: in seed 1, out hash value 1
uint64_t *hash2); // in/out: in seed 2, out hash value 2
//
// Hash64: hash a single message in one call, return 64-bit output
//
static uint64_t Hash64(
const void *message, // message to hash
size_t length, // length of message in bytes
uint64_t seed) // seed
{
uint64_t hash1 = seed;
Hash128(message, length, &hash1, &seed);
return hash1;
}
//
// Hash32: hash a single message in one call, produce 32-bit output
//
static uint32_t Hash32(
const void *message, // message to hash
size_t length, // length of message in bytes
uint32_t seed) // seed
{
uint64_t hash1 = seed, hash2 = seed;
Hash128(message, length, &hash1, &hash2);
return (uint32_t)hash1;
}
//
// Init: initialize the context of a SpookyHash
//
void Init(
uint64_t seed1, // any 64-bit value will do, including 0
uint64_t seed2); // different seeds produce independent hashes
//
// Update: add a piece of a message to a SpookyHash state
//
void Update(
const void *message, // message fragment
size_t length); // length of message fragment in bytes
//
// Final: compute the hash for the current SpookyHash state
//
// This does not modify the state; you can keep updating it afterward
//
// The result is the same as if SpookyHash() had been called with
// all the pieces concatenated into one message.
//
void Final(
uint64_t *hash1, // out only: first 64 bits of hash value.
uint64_t *hash2); // out only: second 64 bits of hash value.
//
// left rotate a 64-bit value by k bytes
//
static inline uint64_t Rot64(uint64_t x, int k)
{
return (x << k) | (x >> (64 - k));
}
//
// This is used if the input is 96 bytes long or longer.
//
// The internal state is fully overwritten every 96 bytes.
// Every input bit appears to cause at least 128 bits of entropy
// before 96 other bytes are combined, when run forward or backward
// For every input bit,
// Two inputs differing in just that input bit
// Where "differ" means xor or subtraction
// And the base value is random
// When run forward or backwards one Mix
// I tried 3 pairs of each; they all differed by at least 212 bits.
//
static inline void Mix(
const uint64_t *data,
uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3,
uint64_t &s4, uint64_t &s5, uint64_t &s6, uint64_t &s7,
uint64_t &s8, uint64_t &s9, uint64_t &s10,uint64_t &s11)
{
s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1;
s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2;
s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3;
s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4;
s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5;
s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6;
s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7;
s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8;
s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9;
s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10;
s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11;
s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0;
}
//
// Mix all 12 inputs together so that h0, h1 are a hash of them all.
//
// For two inputs differing in just the input bits
// Where "differ" means xor or subtraction
// And the base value is random, or a counting value starting at that bit
// The final result will have each bit of h0, h1 flip
// For every input bit,
// with probability 50 +- .3%
// For every pair of input bits,
// with probability 50 +- 3%
//
// This does not rely on the last Mix() call having already mixed some.
// Two iterations was almost good enough for a 64-bit result, but a
// 128-bit result is reported, so End() does three iterations.
//
static inline void EndPartial(
uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
{
h11+= h1; h2 ^= h11; h1 = Rot64(h1,44);
h0 += h2; h3 ^= h0; h2 = Rot64(h2,15);
h1 += h3; h4 ^= h1; h3 = Rot64(h3,34);
h2 += h4; h5 ^= h2; h4 = Rot64(h4,21);
h3 += h5; h6 ^= h3; h5 = Rot64(h5,38);
h4 += h6; h7 ^= h4; h6 = Rot64(h6,33);
h5 += h7; h8 ^= h5; h7 = Rot64(h7,10);
h6 += h8; h9 ^= h6; h8 = Rot64(h8,13);
h7 += h9; h10^= h7; h9 = Rot64(h9,38);
h8 += h10; h11^= h8; h10= Rot64(h10,53);
h9 += h11; h0 ^= h9; h11= Rot64(h11,42);
h10+= h0; h1 ^= h10; h0 = Rot64(h0,54);
}
static inline void End(
const uint64_t *data,
uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3,
uint64_t &h4, uint64_t &h5, uint64_t &h6, uint64_t &h7,
uint64_t &h8, uint64_t &h9, uint64_t &h10,uint64_t &h11)
{
h0 += data[0]; h1 += data[1]; h2 += data[2]; h3 += data[3];
h4 += data[4]; h5 += data[5]; h6 += data[6]; h7 += data[7];
h8 += data[8]; h9 += data[9]; h10 += data[10]; h11 += data[11];
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
}
//
// The goal is for each bit of the input to expand into 128 bits of
// apparent entropy before it is fully overwritten.
// n trials both set and cleared at least m bits of h0 h1 h2 h3
// n: 2 m: 29
// n: 3 m: 46
// n: 4 m: 57
// n: 5 m: 107
// n: 6 m: 146
// n: 7 m: 152
// when run forwards or backwards
// for all 1-bit and 2-bit diffs
// with diffs defined by either xor or subtraction
// with a base of all zeros plus a counter, or plus another bit, or random
//
static inline void ShortMix(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
{
h2 = Rot64(h2,50); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,52); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,30); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,41); h1 += h2; h3 ^= h1;
h2 = Rot64(h2,54); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,48); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,38); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,37); h1 += h2; h3 ^= h1;
h2 = Rot64(h2,62); h2 += h3; h0 ^= h2;
h3 = Rot64(h3,34); h3 += h0; h1 ^= h3;
h0 = Rot64(h0,5); h0 += h1; h2 ^= h0;
h1 = Rot64(h1,36); h1 += h2; h3 ^= h1;
}
//
// Mix all 4 inputs together so that h0, h1 are a hash of them all.
//
// For two inputs differing in just the input bits
// Where "differ" means xor or subtraction
// And the base value is random, or a counting value starting at that bit
// The final result will have each bit of h0, h1 flip
// For every input bit,
// with probability 50 +- .3% (it is probably better than that)
// For every pair of input bits,
// with probability 50 +- .75% (the worst case is approximately that)
//
static inline void ShortEnd(uint64_t &h0, uint64_t &h1, uint64_t &h2, uint64_t &h3)
{
h3 ^= h2; h2 = Rot64(h2,15); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,52); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,26); h1 += h0;
h2 ^= h1; h1 = Rot64(h1,51); h2 += h1;
h3 ^= h2; h2 = Rot64(h2,28); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,9); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,47); h1 += h0;
h2 ^= h1; h1 = Rot64(h1,54); h2 += h1;
h3 ^= h2; h2 = Rot64(h2,32); h3 += h2;
h0 ^= h3; h3 = Rot64(h3,25); h0 += h3;
h1 ^= h0; h0 = Rot64(h0,63); h1 += h0;
}
private:
//
// Short is used for messages under 192 bytes in length
// Short has a low startup cost, the normal mode is good for long
// keys, the cost crossover is at about 192 bytes. The two modes were
// held to the same quality bar.
//
static void Short(
const void *message, // message (array of bytes, not necessarily aligned)
size_t length, // length of message (in bytes)
uint64_t *hash1, // in/out: in the seed, out the hash value
uint64_t *hash2); // in/out: in the seed, out the hash value
// number of uint64_t's in internal state
static const size_t sc_numVars = 12;
// size of the internal state
static const size_t sc_blockSize = sc_numVars*8;
// size of buffer of unhashed data, in bytes
static const size_t sc_bufSize = 2*sc_blockSize;
//
// sc_const: a constant which:
// * is not zero
// * is odd
// * is a not-very-regular mix of 1's and 0's
// * does not need any other special mathematical properties
//
static const uint64_t sc_const = 0xdeadbeefdeadbeefLL;
uint64_t m_data[2*sc_numVars]; // unhashed data, for partial messages
uint64_t m_state[sc_numVars]; // internal state of the hash
size_t m_length; // total length of the input so far
uint8_t m_remainder; // length of unhashed data stashed in m_data
};
} // namespace hash
} // namespace folly
#endif
......@@ -173,8 +173,12 @@ cpuid_test_SOURCES = CpuIdTest.cpp
cpuid_test_LDADD = libgtestmain.la $(top_builddir)/libfolly.la
TESTS += cpuid_test
spooky_hash_test_SOURCES = SpookyHashTest.cpp
spooky_hash_test_SOURCES = SpookyHashV1Test.cpp
spooky_hash_test_LDADD = -lrt $(top_builddir)/libfolly.la
TESTS += spooky_hash_test
TESTS += spooky_hash_v1_test
spooky_hash_test_SOURCES = SpookyHashV2Test.cpp
spooky_hash_test_LDADD = -lrt $(top_builddir)/libfolly.la
TESTS += spooky_hash_v2_test
check_PROGRAMS= $(TESTS)
/*
* Copyright 2012 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SpookyHash: a 128-bit noncryptographic hash function
// By Bob Jenkins, public domain
#include "folly/SpookyHashV1.h"
#include <cstdio>
#include <cstddef>
#include <cstring>
#include <cstdlib>
#include <ctime>
using namespace ::folly::hash;
static bool failed = false;
static uint64_t GetTickCount() {
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return ts.tv_sec * 1000 + ts.tv_nsec / 1000000; // milliseconds
}
class Random
{
public:
inline uint64_t Value()
{
uint64_t e = m_a - Rot64(m_b, 23);
m_a = m_b ^ Rot64(m_c, 16);
m_b = m_c + Rot64(m_d, 11);
m_c = m_d + e;
m_d = e + m_a;
return m_d;
}
inline void Init( uint64_t seed)
{
m_a = 0xdeadbeef;
m_b = m_c = m_d = seed;
for (int i=0; i<20; ++i)
(void)Value();
}
private:
static inline uint64_t Rot64(uint64_t x, int k)
{
return (x << k) | (x >> (64-(k)));
}
uint64_t m_a;
uint64_t m_b;
uint64_t m_c;
uint64_t m_d;
};
// fastest conceivable hash function (for comparison)
static void Add(const void *data, size_t length, uint64_t *hash1, uint64_t *hash2)
{
uint64_t *p64 = (uint64_t *)data;
uint64_t *end = p64 + length/8;
uint64_t hash = *hash1 + *hash2;
while (p64 < end)
{
hash += *p64;
++p64;
}
*hash1 = hash;
*hash2 = hash;
}
#define BUFSIZE (512)
void TestResults()
{
printf("\ntesting results ...\n");
static const uint32_t expected[BUFSIZE] = {
0xa24295ec, 0xfe3a05ce, 0x257fd8ef, 0x3acd5217,
0xfdccf85c, 0xc7b5f143, 0x3b0c3ff0, 0x5220f13c,
0xa6426724, 0x4d5426b4, 0x43e76b26, 0x051bc437,
0xd8f28a02, 0x23ccc30e, 0x811d1a2d, 0x039128d4,
0x9cd96a73, 0x216e6a8d, 0x97293fe8, 0xe4fc6d09,
0x1ad34423, 0x9722d7e4, 0x5a6fdeca, 0x3c94a7e1,
0x81a9a876, 0xae3f7c0e, 0x624b50ee, 0x875e5771,
0x0095ab74, 0x1a7333fb, 0x056a4221, 0xa38351fa,
0x73f575f1, 0x8fded05b, 0x9097138f, 0xbd74620c,
0x62d3f5f2, 0x07b78bd0, 0xbafdd81e, 0x0638f2ff,
0x1f6e3aeb, 0xa7786473, 0x71700e1d, 0x6b4625ab,
0xf02867e1, 0xb2b2408f, 0x9ce21ce5, 0xa62baaaf,
0x26720461, 0x434813ee, 0x33bc0f14, 0xaaab098a,
0x750af488, 0xc31bf476, 0x9cecbf26, 0x94793cf3,
0xe1a27584, 0xe80c4880, 0x1299f748, 0x25e55ed2,
0x405e3feb, 0x109e2412, 0x3e55f94f, 0x59575864,
0x365c869d, 0xc9852e6a, 0x12c30c62, 0x47f5b286,
0xb47e488d, 0xa6667571, 0x78220d67, 0xa49e30b9,
0x2005ef88, 0xf6d3816d, 0x6926834b, 0xe6116805,
0x694777aa, 0x464af25b, 0x0e0e2d27, 0x0ea92eae,
0x602c2ca9, 0x1d1d79c5, 0x6364f280, 0x939ee1a4,
0x3b851bd8, 0x5bb6f19f, 0x80b9ed54, 0x3496a9f1,
0xdf815033, 0x91612339, 0x14c516d6, 0xa3f0a804,
0x5e78e975, 0xf408bcd9, 0x63d525ed, 0xa1e459c3,
0xfde303af, 0x049fc17f, 0xe7ed4489, 0xfaeefdb6,
0x2b1b2fa8, 0xc67579a6, 0x5505882e, 0xe3e1c7cb,
0xed53bf30, 0x9e628351, 0x8fa12113, 0x7500c30f,
0xde1bee00, 0xf1fefe06, 0xdc759c00, 0x4c75e5ab,
0xf889b069, 0x695bf8ae, 0x47d6600f, 0xd2a84f87,
0xa0ca82a9, 0x8d2b750c, 0xe03d8cd7, 0x581fea33,
0x969b0460, 0x36c7b7de, 0x74b3fd20, 0x2bb8bde6,
0x13b20dec, 0xa2dcee89, 0xca36229d, 0x06fdb74e,
0x6d9a982d, 0x02503496, 0xbdb4e0d9, 0xbd1f94cf,
0x6d26f82d, 0xcf5e41cd, 0x88b67b65, 0x3e1b3ee4,
0xb20e5e53, 0x1d9be438, 0xcef9c692, 0x299bd1b2,
0xb1279627, 0x210b5f3d, 0x5569bd88, 0x9652ed43,
0x7e8e0f8c, 0xdfa01085, 0xcd6d6343, 0xb8739826,
0xa52ce9a0, 0xd33ef231, 0x1b4d92c2, 0xabfa116d,
0xcdf47800, 0x3a4eefdc, 0xd01f3bcf, 0x30a32f46,
0xfb54d851, 0x06a98f67, 0xbdcd0a71, 0x21a00949,
0xfe7049c9, 0x67ef46d2, 0xa1fabcbc, 0xa4c72db4,
0x4a8a910d, 0x85a890ad, 0xc37e9454, 0xfc3d034a,
0x6f46cc52, 0x742be7a8, 0xe94ecbc5, 0x5f993659,
0x98270309, 0x8d1adae9, 0xea6e035e, 0x293d5fae,
0x669955b3, 0x5afe23b5, 0x4c74efbf, 0x98106505,
0xfbe09627, 0x3c00e8df, 0x5b03975d, 0x78edc83c,
0x117c49c6, 0x66cdfc73, 0xfa55c94f, 0x5bf285fe,
0x2db49b7d, 0xfbfeb8f0, 0xb7631bab, 0x837849f3,
0xf77f3ae5, 0x6e5db9bc, 0xfdd76f15, 0x545abf92,
0x8b538102, 0xdd5c9b65, 0xa5adfd55, 0xecbd7bc5,
0x9f99ebdd, 0x67500dcb, 0xf5246d1f, 0x2b0c061c,
0x927a3747, 0xc77ba267, 0x6da9f855, 0x6240d41a,
0xe9d1701d, 0xc69f0c55, 0x2c2c37cf, 0x12d82191,
0x47be40d3, 0x165b35cd, 0xb7db42e1, 0x358786e4,
0x84b8fc4e, 0x92f57c28, 0xf9c8bbd7, 0xab95a33d,
0x11009238, 0xe9770420, 0xd6967e2a, 0x97c1589f,
0x2ee7e7d3, 0x32cc86da, 0xe47767d1, 0x73e9b61e,
0xd35bac45, 0x835a62bb, 0x5d9217b0, 0x43f3f0ed,
0x8a97911e, 0x4ec7eb55, 0x4b5a988c, 0xb9056683,
0x45456f97, 0x1669fe44, 0xafb861b8, 0x8e83a19c,
0x0bab08d6, 0xe6a145a9, 0xc31e5fc2, 0x27621f4c,
0x795692fa, 0xb5e33ab9, 0x1bc786b6, 0x45d1c106,
0x986531c9, 0x40c9a0ec, 0xff0fdf84, 0xa7359a42,
0xfd1c2091, 0xf73463d4, 0x51b0d635, 0x1d602fb4,
0xc56b69b7, 0x6909d3f7, 0xa04d68f4, 0x8d1001a7,
0x8ecace50, 0x21ec4765, 0x3530f6b0, 0x645f3644,
0x9963ef1e, 0x2b3c70d5, 0xa20c823b, 0x8d26dcae,
0x05214e0c, 0x1993896d, 0x62085a35, 0x7b620b67,
0x1dd85da2, 0x09ce9b1d, 0xd7873326, 0x063ff730,
0xf4ff3c14, 0x09a49d69, 0x532062ba, 0x03ba7729,
0xbd9a86cc, 0xe26d02a7, 0x7ccbe5d3, 0x4f662214,
0x8b999a66, 0x3d0b92b4, 0x70b210f0, 0xf5b8f16f,
0x32146d34, 0x430b92bf, 0x8ab6204c, 0x35e6e1ff,
0xc2f6c2fa, 0xa2df8a1a, 0x887413ec, 0x7cb7a69f,
0x7ac6dbe6, 0x9102d1cb, 0x8892a590, 0xc804fe3a,
0xdfc4920a, 0xfc829840, 0x8910d2eb, 0x38a210fd,
0x9d840cc9, 0x7b9c827f, 0x3444ca0c, 0x071735ab,
0x5e9088e4, 0xc995d60e, 0xbe0bb942, 0x17b089ae,
0x050e1054, 0xcf4324f7, 0x1e3e64dd, 0x436414bb,
0xc48fc2e3, 0x6b6b83d4, 0x9f6558ac, 0x781b22c5,
0x7147cfe2, 0x3c221b4d, 0xa5602765, 0x8f01a4f0,
0x2a9f14ae, 0x12158cb8, 0x28177c50, 0x1091a165,
0x39e4e4be, 0x3e451b7a, 0xd965419c, 0x52053005,
0x0798aa53, 0xe6773e13, 0x1207f671, 0xd2ef998b,
0xab88a38f, 0xc77a8482, 0xa88fb031, 0x5199e0cd,
0x01b30536, 0x46eeb0ef, 0x814259ff, 0x9789a8cf,
0x376ec5ac, 0x7087034a, 0x948b6bdd, 0x4281e628,
0x2c848370, 0xd76ce66a, 0xe9b6959e, 0x24321a8e,
0xdeddd622, 0xb890f960, 0xea26c00a, 0x55e7d8b2,
0xeab67f09, 0x9227fb08, 0xeebbed06, 0xcac1b0d1,
0xb6412083, 0x05d2b0e7, 0x9037624a, 0xc9702198,
0x2c8d1a86, 0x3e7d416e, 0xc3f1a39f, 0xf04bdce4,
0xc88cdb61, 0xbdc89587, 0x4d29b63b, 0x6f24c267,
0x4b529c87, 0x573f5a53, 0xdb3316e9, 0x288eb53b,
0xd2c074bd, 0xef44a99a, 0x2b404d2d, 0xf6706464,
0xfe824f4c, 0xc3debaf8, 0x12f44f98, 0x03135e76,
0xb4888e7f, 0xb6b2325d, 0x3a138259, 0x513c83ec,
0x2386d214, 0x94555500, 0xfbd1522d, 0xda2af018,
0x15b054c0, 0x5ad654e6, 0xb6ed00aa, 0xa2f2180e,
0x5f662825, 0xecd11366, 0x1de5e99d, 0x07afd2ad,
0xcf457b04, 0xe631e10b, 0x83ae8a21, 0x709f0d59,
0x3e278bf9, 0x246816db, 0x9f5e8fd3, 0xc5b5b5a2,
0xd54a9d5c, 0x4b6f2856, 0x2eb5a666, 0xfc68bdd4,
0x1ed1a7f8, 0x98a34b75, 0xc895ada9, 0x2907cc69,
0x87b0b455, 0xddaf96d9, 0xe7da15a6, 0x9298c82a,
0x72bd5cab, 0x2e2a6ad4, 0x7f4b6bb8, 0x525225fe,
0x985abe90, 0xac1fd6e1, 0xb8340f23, 0x92985159,
0x7d29501d, 0xe75dc744, 0x687501b4, 0x92077dc3,
0x58281a67, 0xe7e8e9be, 0xd0e64fd1, 0xb2eb0a30,
0x0e1feccd, 0xc0dc4a9e, 0x5c4aeace, 0x2ca5b93c,
0xee0ec34f, 0xad78467b, 0x0830e76e, 0x0df63f8b,
0x2c2dfd95, 0x9b41ed31, 0x9ff4cddc, 0x1590c412,
0x2366fc82, 0x7a83294f, 0x9336c4de, 0x2343823c,
0x5b681096, 0xf320e4c2, 0xc22b70e2, 0xb5fbfb2a,
0x3ebc2fed, 0x11af07bd, 0x429a08c5, 0x42bee387,
0x58629e33, 0xfb63b486, 0x52135fbe, 0xf1380e60,
0x6355de87, 0x2f0bb19a, 0x167f63ac, 0x507224cf,
0xf7c99d00, 0x71646f50, 0x74feb1ca, 0x5f9abfdd,
0x278f7d68, 0x70120cd7, 0x4281b0f2, 0xdc8ebe5c,
0x36c32163, 0x2da1e884, 0x61877598, 0xbef04402,
0x304db695, 0xfa8e9add, 0x503bac31, 0x0fe04722,
0xf0d59f47, 0xcdc5c595, 0x918c39dd, 0x0cad8d05,
0x6b3ed1eb, 0x4d43e089, 0x7ab051f8, 0xdeec371f,
0x0f4816ae, 0xf8a1a240, 0xd15317f6, 0xb8efbf0b,
0xcdd05df8, 0x4fd5633e, 0x7cf19668, 0x25d8f422,
0x72d156f2, 0x2a778502, 0xda7aefb9, 0x4f4f66e8,
0x19db6bff, 0x74e468da, 0xa754f358, 0x7339ec50,
0x139006f6, 0xefbd0b91, 0x217e9a73, 0x939bd79c
};
uint8_t buf[BUFSIZE];
uint32_t saw[BUFSIZE];
for (int i=0; i<BUFSIZE; ++i)
{
buf[i] = i+128;
saw[i] = SpookyHashV1::Hash32(buf, i, 0);
if (saw[i] != expected[i])
{
printf("%d: saw 0x%.8x, expected 0x%.8x\n", i, saw[i], expected[i]);
failed = true;
}
}
}
#undef BUFSIZE
#define NUMBUF (1<<10)
#define BUFSIZE (1<<20)
void DoTimingBig(int seed)
{
printf("\ntesting time to hash 2^^30 bytes ...\n");
char *buf[NUMBUF];
for (int i=0; i<NUMBUF; ++i)
{
buf[i] = (char *)malloc(BUFSIZE);
memset(buf[i], (char)seed, BUFSIZE);
}
uint64_t a = GetTickCount();
uint64_t hash1 = seed;
uint64_t hash2 = seed;
for (uint64_t i=0; i<NUMBUF; ++i)
{
SpookyHashV1::Hash128(buf[i], BUFSIZE, &hash1, &hash2);
}
uint64_t z = GetTickCount();
printf("SpookyHashV1::Hash128, uncached: time is %4lu milliseconds\n", z-a);
a = GetTickCount();
for (uint64_t i=0; i<NUMBUF; ++i)
{
Add(buf[i], BUFSIZE, &hash1, &hash2);
}
z = GetTickCount();
printf("Addition , uncached: time is %4lu milliseconds\n", z-a);
a = GetTickCount();
for (uint64_t i=0; i<NUMBUF*BUFSIZE/1024; ++i)
{
SpookyHashV1::Hash128(buf[0], 1024, &hash1, &hash2);
}
z = GetTickCount();
printf("SpookyHashV1::Hash128, cached: time is %4lu milliseconds\n", z-a);
a = GetTickCount();
for (uint64_t i=0; i<NUMBUF*BUFSIZE/1024; ++i)
{
Add(buf[0], 1024, &hash1, &hash2);
}
z = GetTickCount();
printf("Addition , cached: time is %4lu milliseconds\n", z-a);
for (int i=0; i<NUMBUF; ++i)
{
free(buf[i]);
buf[i] = 0;
}
}
#undef NUMBUF
#undef BUFSIZE
#define BUFSIZE (1<<14)
#define NUMITER 10000000
void DoTimingSmall(int seed)
{
printf("\ntesting timing of hashing up to %d cached aligned bytes %d times ...\n",
BUFSIZE, NUMITER);
uint64_t buf[BUFSIZE/8];
for (int i=0; i<BUFSIZE/8; ++i)
{
buf[i] = i+seed;
}
for (int i=1; i <= BUFSIZE; i <<= 1)
{
uint64_t a = GetTickCount();
uint64_t hash1 = seed;
uint64_t hash2 = seed+i;
for (int j=0; j<NUMITER; ++j)
{
SpookyHashV1::Hash128((char *)buf, i, &hash1, &hash2);
}
uint64_t z = GetTickCount();
printf("%d bytes: hash is %.16lx %.16lx, time is %lu\n",
i, hash1, hash2, z-a);
}
}
#undef BUFSIZE
#define BUFSIZE 1024
void TestAlignment()
{
printf("\ntesting alignment ...\n");
char buf[BUFSIZE];
uint64_t hash[8];
for (int i=0; i<BUFSIZE-16; ++i)
{
for (int j=0; j<8; ++j)
{
buf[j] = (char)i+j;
for (int k=1; k<=i; ++k)
{
buf[j+k] = k;
}
buf[j+i+1] = (char)i+j;
hash[j] = SpookyHashV1::Hash64((const void *)(buf+j+1), i, 0);
}
for (int j=1; j<8; ++j)
{
if (hash[0] != hash[j])
{
printf("alignment problems: %d %d\n", i, j);
failed = true;
}
}
}
}
#undef BUFSIZE
// test that all deltas of one or two input bits affect all output bits
#define BUFSIZE 256
#define TRIES 50
#define MEASURES 6
void TestDeltas(int seed)
{
printf("\nall 1 or 2 bit input deltas get %d tries to flip every output bit ...\n", TRIES);
Random random;
random.Init((uint64_t)seed);
// for messages 0..BUFSIZE-1 bytes
for (int h=0; h<BUFSIZE; ++h)
{
int maxk = 0;
// first bit to set
for (int i=0; i<h*8; ++i)
{
// second bit to set, or don't have a second bit
for (int j=0; j<=i; ++j)
{
uint64_t measure[MEASURES][2];
uint64_t counter[MEASURES][2];
for (int l=0; l<2; ++l)
{
for (int m=0; m<MEASURES; ++m)
{
counter[m][l] = 0;
}
}
// try to hit every output bit TRIES times
int k;
for (k=0; k<TRIES; ++k)
{
uint8_t buf1[BUFSIZE];
uint8_t buf2[BUFSIZE];
int done = 1;
for (int l=0; l<h; ++l)
{
buf1[l] = buf2[l] = random.Value();
}
buf1[i/8] ^= (1 << (i%8));
if (j != i)
{
buf1[j/8] ^= (1 << (j%8));
}
SpookyHashV1::Hash128(buf1, h, &measure[0][0], &measure[0][1]);
SpookyHashV1::Hash128(buf2, h, &measure[1][0], &measure[1][1]);
for (int l=0; l<2; ++l) {
measure[2][l] = measure[0][l] ^ measure[1][l];
measure[3][l] = ~(measure[0][l] ^ measure[1][l]);
measure[4][l] = measure[0][l] - measure[1][l];
measure[4][l] ^= (measure[4][l]>>1);
measure[5][l] = measure[0][l] + measure[1][l];
measure[5][l] ^= (measure[4][l]>>1);
}
for (int l=0; l<2; ++l)
{
for (int m=0; m<MEASURES; ++m)
{
counter[m][l] |= measure[m][l];
if (~counter[m][l]) done = 0;
}
}
if (done) break;
}
if (k == TRIES)
{
printf("failed %d %d %d\n", h, i, j);
failed = true;
}
else if (k > maxk)
{
maxk = k;
}
}
}
printf("passed for buffer size %d max %d\n", h, maxk);
}
}
#undef BUFSIZE
#undef TRIES
#undef MEASURES
// test that hashing pieces has the same behavior as hashing the whole
#define BUFSIZE 1024
void TestPieces()
{
printf("\ntesting pieces ...\n");
char buf[BUFSIZE];
for (int i=0; i<BUFSIZE; ++i)
{
buf[i] = i;
}
for (int i=0; i<BUFSIZE; ++i)
{
uint64_t a,b,c,d,seed1=1,seed2=2;
SpookyHashV1 state;
// all as one call
a = seed1;
b = seed2;
SpookyHashV1::Hash128(buf, i, &a, &b);
// all as one piece
c = 0xdeadbeefdeadbeef;
d = 0xbaceba11baceba11;
state.Init(seed1, seed2);
state.Update(buf, i);
state.Final(&c, &d);
if (a != c)
{
printf("wrong a %d: %.16lx %.16lx\n", i, a,c);
failed = true;
}
if (b != d)
{
printf("wrong b %d: %.16lx %.16lx\n", i, b,d);
failed = true;
}
// all possible two consecutive pieces
for (int j=0; j<i; ++j)
{
c = seed1;
d = seed2;
state.Init(c, d);
state.Update(&buf[0], j);
state.Update(&buf[j], i-j);
state.Final(&c, &d);
if (a != c)
{
printf("wrong a %d %d: %.16lx %.16lx\n", j, i, a,c);
failed = true;
}
if (b != d)
{
printf("wrong b %d %d: %.16lx %.16lx\n", j, i, b,d);
failed = true;
}
}
}
}
#undef BUFSIZE
int main(int argc, const char **argv)
{
TestResults();
TestAlignment();
TestPieces();
DoTimingBig(argc);
// tudorb@fb.com: Commented out slow tests
#if 0
DoTimingSmall(argc);
TestDeltas(argc);
#endif
return failed;
}
/*
* Copyright 2012 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// SpookyHash: a 128-bit noncryptographic hash function
// By Bob Jenkins, public domain
#include "folly/SpookyHashV2.h"
#include <cstdio>
#include <cstddef>
#include <cstring>
#include <cstdlib>
#include <ctime>
using namespace ::folly::hash;
static bool failed = false;
static uint64_t GetTickCount() {
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
return ts.tv_sec * 1000 + ts.tv_nsec / 1000000; // milliseconds
}
class Random
{
public:
inline uint64_t Value()
{
uint64_t e = m_a - Rot64(m_b, 23);
m_a = m_b ^ Rot64(m_c, 16);
m_b = m_c + Rot64(m_d, 11);
m_c = m_d + e;
m_d = e + m_a;
return m_d;
}
inline void Init( uint64_t seed)
{
m_a = 0xdeadbeef;
m_b = m_c = m_d = seed;
for (int i=0; i<20; ++i)
(void)Value();
}
private:
static inline uint64_t Rot64(uint64_t x, int k)
{
return (x << k) | (x >> (64-(k)));
}
uint64_t m_a;
uint64_t m_b;
uint64_t m_c;
uint64_t m_d;
};
// fastest conceivable hash function (for comparison)
static void Add(const void *data, size_t length, uint64_t *hash1, uint64_t *hash2)
{
uint64_t *p64 = (uint64_t *)data;
uint64_t *end = p64 + length/8;
uint64_t hash = *hash1 + *hash2;
while (p64 < end)
{
hash += *p64;
++p64;
}
*hash1 = hash;
*hash2 = hash;
}
#define BUFSIZE (512)
void TestResults()
{
printf("\ntesting results ...\n");
static const uint64_t expected[BUFSIZE] = {
0x6bf50919,0x70de1d26,0xa2b37298,0x35bc5fbf,0x8223b279,0x5bcb315e,0x53fe88a1,0xf9f1a233,
0xee193982,0x54f86f29,0xc8772d36,0x9ed60886,0x5f23d1da,0x1ed9f474,0xf2ef0c89,0x83ec01f9,
0xf274736c,0x7e9ac0df,0xc7aed250,0xb1015811,0xe23470f5,0x48ac20c4,0xe2ab3cd5,0x608f8363,
0xd0639e68,0xc4e8e7ab,0x863c7c5b,0x4ea63579,0x99ae8622,0x170c658b,0x149ba493,0x027bca7c,
0xe5cfc8b6,0xce01d9d7,0x11103330,0x5d1f5ed4,0xca720ecb,0xef408aec,0x733b90ec,0x855737a6,
0x9856c65f,0x647411f7,0x50777c74,0xf0f1a8b7,0x9d7e55a5,0xc68dd371,0xfc1af2cc,0x75728d0a,
0x390e5fdc,0xf389b84c,0xfb0ccf23,0xc95bad0e,0x5b1cb85a,0x6bdae14f,0x6deb4626,0x93047034,
0x6f3266c6,0xf529c3bd,0x396322e7,0x3777d042,0x1cd6a5a2,0x197b402e,0xc28d0d2b,0x09c1afb4,
0x069c8bb7,0x6f9d4e1e,0xd2621b5c,0xea68108d,0x8660cb8f,0xd61e6de6,0x7fba15c7,0xaacfaa97,
0xdb381902,0x4ea22649,0x5d414a1e,0xc3fc5984,0xa0fc9e10,0x347dc51c,0x37545fb6,0x8c84b26b,
0xf57efa5d,0x56afaf16,0xb6e1eb94,0x9218536a,0xe3cc4967,0xd3275ef4,0xea63536e,0x6086e499,
0xaccadce7,0xb0290d82,0x4ebfd0d6,0x46ccc185,0x2eeb10d3,0x474e3c8c,0x23c84aee,0x3abae1cb,
0x1499b81a,0xa2993951,0xeed176ad,0xdfcfe84c,0xde4a961f,0x4af13fe6,0xe0069c42,0xc14de8f5,
0x6e02ce8f,0x90d19f7f,0xbca4a484,0xd4efdd63,0x780fd504,0xe80310e3,0x03abbc12,0x90023849,
0xd6f6fb84,0xd6b354c5,0x5b8575f0,0x758f14e4,0x450de862,0x90704afb,0x47209a33,0xf226b726,
0xf858dab8,0x7c0d6de9,0xb05ce777,0xee5ff2d4,0x7acb6d5c,0x2d663f85,0x41c72a91,0x82356bf2,
0x94e948ec,0xd358d448,0xeca7814d,0x78cd7950,0xd6097277,0x97782a5d,0xf43fc6f4,0x105f0a38,
0x9e170082,0x4bfe566b,0x4371d25f,0xef25a364,0x698eb672,0x74f850e4,0x4678ff99,0x4a290dc6,
0x3918f07c,0x32c7d9cd,0x9f28e0af,0x0d3c5a86,0x7bfc8a45,0xddf0c7e1,0xdeacb86b,0x970b3c5c,
0x5e29e199,0xea28346d,0x6b59e71b,0xf8a8a46a,0x862f6ce4,0x3ccb740b,0x08761e9e,0xbfa01e5f,
0xf17cfa14,0x2dbf99fb,0x7a0be420,0x06137517,0xe020b266,0xd25bfc61,0xff10ed00,0x42e6be8b,
0x029ef587,0x683b26e0,0xb08afc70,0x7c1fd59e,0xbaae9a70,0x98c8c801,0xb6e35a26,0x57083971,
0x90a6a680,0x1b44169e,0x1dce237c,0x518e0a59,0xccb11358,0x7b8175fb,0xb8fe701a,0x10d259bb,
0xe806ce10,0x9212be79,0x4604ae7b,0x7fa22a84,0xe715b13a,0x0394c3b2,0x11efbbae,0xe13d9e19,
0x77e012bd,0x2d05114c,0xaecf2ddd,0xb2a2b4aa,0xb9429546,0x55dce815,0xc89138f8,0x46dcae20,
0x1f6f7162,0x0c557ebc,0x5b996932,0xafbbe7e2,0xd2bd5f62,0xff475b9f,0x9cec7108,0xeaddcffb,
0x5d751aef,0xf68f7bdf,0xf3f4e246,0x00983fcd,0x00bc82bb,0xbf5fd3e7,0xe80c7e2c,0x187d8b1f,
0xefafb9a7,0x8f27a148,0x5c9606a9,0xf2d2be3e,0xe992d13a,0xe4bcd152,0xce40b436,0x63d6a1fc,
0xdc1455c4,0x64641e39,0xd83010c9,0x2d535ae0,0x5b748f3e,0xf9a9146b,0x80f10294,0x2859acd4,
0x5fc846da,0x56d190e9,0x82167225,0x98e4daba,0xbf7865f3,0x00da7ae4,0x9b7cd126,0x644172f8,
0xde40c78f,0xe8803efc,0xdd331a2b,0x48485c3c,0x4ed01ddc,0x9c0b2d9e,0xb1c6e9d7,0xd797d43c,
0x274101ff,0x3bf7e127,0x91ebbc56,0x7ffeb321,0x4d42096f,0xd6e9456a,0x0bade318,0x2f40ee0b,
0x38cebf03,0x0cbc2e72,0xbf03e704,0x7b3e7a9a,0x8e985acd,0x90917617,0x413895f8,0xf11dde04,
0xc66f8244,0xe5648174,0x6c420271,0x2469d463,0x2540b033,0xdc788e7b,0xe4140ded,0x0990630a,
0xa54abed4,0x6e124829,0xd940155a,0x1c8836f6,0x38fda06c,0x5207ab69,0xf8be9342,0x774882a8,
0x56fc0d7e,0x53a99d6e,0x8241f634,0x9490954d,0x447130aa,0x8cc4a81f,0x0868ec83,0xc22c642d,
0x47880140,0xfbff3bec,0x0f531f41,0xf845a667,0x08c15fb7,0x1996cd81,0x86579103,0xe21dd863,
0x513d7f97,0x3984a1f1,0xdfcdc5f4,0x97766a5e,0x37e2b1da,0x41441f3f,0xabd9ddba,0x23b755a9,
0xda937945,0x103e650e,0x3eef7c8f,0x2760ff8d,0x2493a4cd,0x1d671225,0x3bf4bd4c,0xed6e1728,
0xc70e9e30,0x4e05e529,0x928d5aa6,0x164d0220,0xb5184306,0x4bd7efb3,0x63830f11,0xf3a1526c,
0xf1545450,0xd41d5df5,0x25a5060d,0x77b368da,0x4fe33c7e,0xeae09021,0xfdb053c4,0x2930f18d,
0xd37109ff,0x8511a781,0xc7e7cdd7,0x6aeabc45,0xebbeaeaa,0x9a0c4f11,0xda252cbb,0x5b248f41,
0x5223b5eb,0xe32ab782,0x8e6a1c97,0x11d3f454,0x3e05bd16,0x0059001d,0xce13ac97,0xf83b2b4c,
0x71db5c9a,0xdc8655a6,0x9e98597b,0x3fcae0a2,0x75e63ccd,0x076c72df,0x4754c6ad,0x26b5627b,
0xd818c697,0x998d5f3d,0xe94fc7b2,0x1f49ad1a,0xca7ff4ea,0x9fe72c05,0xfbd0cbbf,0xb0388ceb,
0xb76031e3,0xd0f53973,0xfb17907c,0xa4c4c10f,0x9f2d8af9,0xca0e56b0,0xb0d9b689,0xfcbf37a3,
0xfede8f7d,0xf836511c,0x744003fc,0x89eba576,0xcfdcf6a6,0xc2007f52,0xaaaf683f,0x62d2f9ca,
0xc996f77f,0x77a7b5b3,0x8ba7d0a4,0xef6a0819,0xa0d903c0,0x01b27431,0x58fffd4c,0x4827f45c,
0x44eb5634,0xae70edfc,0x591c740b,0x478bf338,0x2f3b513b,0x67bf518e,0x6fef4a0c,0x1e0b6917,
0x5ac0edc5,0x2e328498,0x077de7d5,0x5726020b,0x2aeda888,0x45b637ca,0xcf60858d,0x3dc91ae2,
0x3e6d5294,0xe6900d39,0x0f634c71,0x827a5fa4,0xc713994b,0x1c363494,0x3d43b615,0xe5fe7d15,
0xf6ada4f2,0x472099d5,0x04360d39,0x7f2a71d0,0x88a4f5ff,0x2c28fac5,0x4cd64801,0xfd78dd33,
0xc9bdd233,0x21e266cc,0x9bbf419d,0xcbf7d81d,0x80f15f96,0x04242657,0x53fb0f66,0xded11e46,
0xf2fdba97,0x8d45c9f1,0x4eeae802,0x17003659,0xb9db81a7,0xe734b1b2,0x9503c54e,0xb7c77c3e,
0x271dd0ab,0xd8b906b5,0x0d540ec6,0xf03b86e0,0x0fdb7d18,0x95e261af,0xad9ec04e,0x381f4a64,
0xfec798d7,0x09ea20be,0x0ef4ca57,0x1e6195bb,0xfd0da78b,0xcea1653b,0x157d9777,0xf04af50f,
0xad7baa23,0xd181714a,0x9bbdab78,0x6c7d1577,0x645eb1e7,0xa0648264,0x35839ca6,0x2287ef45,
0x32a64ca3,0x26111f6f,0x64814946,0xb0cddaf1,0x4351c59e,0x1b30471c,0xb970788a,0x30e9f597,
0xd7e58df1,0xc6d2b953,0xf5f37cf4,0x3d7c419e,0xf91ecb2d,0x9c87fd5d,0xb22384ce,0x8c7ac51c,
0x62c96801,0x57e54091,0x964536fe,0x13d3b189,0x4afd1580,0xeba62239,0xb82ea667,0xae18d43a,
0xbef04402,0x1942534f,0xc54bf260,0x3c8267f5,0xa1020ddd,0x112fcc8a,0xde596266,0xe91d0856,
0xf300c914,0xed84478e,0x5b65009e,0x4764da16,0xaf8e07a2,0x4088dc2c,0x9a0cad41,0x2c3f179b,
0xa67b83f7,0xf27eab09,0xdbe10e28,0xf04c911f,0xd1169f87,0x8e1e4976,0x17f57744,0xe4f5a33f,
0x27c2e04b,0x0b7523bd,0x07305776,0xc6be7503,0x918fa7c9,0xaf2e2cd9,0x82046f8e,0xcc1c8250
};
uint8_t buf[BUFSIZE];
uint32_t saw[BUFSIZE];
for (int i=0; i<BUFSIZE; ++i)
{
buf[i] = i+128;
saw[i] = SpookyHashV2::Hash32(buf, i, 0);
if (saw[i] != expected[i])
{
printf("%3d: saw 0x%.8x, expected 0x%.8lx\n", i, saw[i], expected[i]);
failed = true;
}
}
}
#undef BUFSIZE
#define NUMBUF (1<<10)
#define BUFSIZE (1<<20)
void DoTimingBig(int seed)
{
printf("\ntesting time to hash 2^^30 bytes ...\n");
char *buf[NUMBUF];
for (int i=0; i<NUMBUF; ++i)
{
buf[i] = (char *)malloc(BUFSIZE);
memset(buf[i], (char)seed, BUFSIZE);
}
uint64_t a = GetTickCount();
uint64_t hash1 = seed;
uint64_t hash2 = seed;
for (uint64_t i=0; i<NUMBUF; ++i)
{
SpookyHashV2::Hash128(buf[i], BUFSIZE, &hash1, &hash2);
}
uint64_t z = GetTickCount();
printf("SpookyHashV2::Hash128, uncached: time is %4ld milliseconds\n", z-a);
a = GetTickCount();
for (uint64_t i=0; i<NUMBUF; ++i)
{
Add(buf[i], BUFSIZE, &hash1, &hash2);
}
z = GetTickCount();
printf("Addition , uncached: time is %4ld milliseconds\n", z-a);
a = GetTickCount();
for (uint64_t i=0; i<NUMBUF*BUFSIZE/1024; ++i)
{
SpookyHashV2::Hash128(buf[0], 1024, &hash1, &hash2);
}
z = GetTickCount();
printf("SpookyHashV2::Hash128, cached: time is %4ld milliseconds\n", z-a);
a = GetTickCount();
for (uint64_t i=0; i<NUMBUF*BUFSIZE/1024; ++i)
{
Add(buf[0], 1024, &hash1, &hash2);
}
z = GetTickCount();
printf("Addition , cached: time is %4ld milliseconds\n", z-a);
for (int i=0; i<NUMBUF; ++i)
{
free(buf[i]);
buf[i] = 0;
}
}
#undef NUMBUF
#undef BUFSIZE
#define BUFSIZE (1<<14)
#define NUMITER 10000000
void DoTimingSmall(int seed)
{
printf("\ntesting timing of hashing up to %d cached aligned bytes %d times ...\n",
BUFSIZE, NUMITER);
uint64_t buf[BUFSIZE/8];
for (int i=0; i<BUFSIZE/8; ++i)
{
buf[i] = i+seed;
}
for (int i=1; i <= BUFSIZE; i <<= 1)
{
uint64_t a = GetTickCount();
uint64_t hash1 = seed;
uint64_t hash2 = seed+i;
for (int j=0; j<NUMITER; ++j)
{
SpookyHashV2::Hash128((char *)buf, i, &hash1, &hash2);
}
uint64_t z = GetTickCount();
printf("%d bytes: hash is %.16lx %.16lx, time is %ld\n",
i, hash1, hash2, z-a);
}
}
#undef BUFSIZE
#define BUFSIZE 1024
void TestAlignment()
{
printf("\ntesting alignment ...\n");
char buf[BUFSIZE];
uint64_t hash[8];
for (int i=0; i<BUFSIZE-16; ++i)
{
for (int j=0; j<8; ++j)
{
buf[j] = (char)i+j;
for (int k=1; k<=i; ++k)
{
buf[j+k] = k;
}
buf[j+i+1] = (char)i+j;
hash[j] = SpookyHashV2::Hash64((const void *)(buf+j+1), i, 0);
}
for (int j=1; j<8; ++j)
{
if (hash[0] != hash[j])
{
printf("alignment problems: %d %d\n", i, j);
failed = true;
}
}
}
}
#undef BUFSIZE
// test that all deltas of one or two input bits affect all output bits
#define BUFSIZE 256
#define TRIES 50
#define MEASURES 6
void TestDeltas(int seed)
{
printf("\nall 1 or 2 bit input deltas get %d tries to flip every output bit ...\n", TRIES);
Random random;
random.Init((uint64_t)seed);
// for messages 0..BUFSIZE-1 bytes
for (int h=0; h<BUFSIZE; ++h)
{
int maxk = 0;
// first bit to set
for (int i=0; i<h*8; ++i)
{
// second bit to set, or don't have a second bit
for (int j=0; j<=i; ++j)
{
uint64_t measure[MEASURES][2];
uint64_t counter[MEASURES][2];
for (int l=0; l<2; ++l)
{
for (int m=0; m<MEASURES; ++m)
{
counter[m][l] = 0;
}
}
// try to hit every output bit TRIES times
int k;
for (k=0; k<TRIES; ++k)
{
uint8_t buf1[BUFSIZE];
uint8_t buf2[BUFSIZE];
int done = 1;
for (int l=0; l<h; ++l)
{
buf1[l] = buf2[l] = random.Value();
}
buf1[i/8] ^= (1 << (i%8));
if (j != i)
{
buf1[j/8] ^= (1 << (j%8));
}
SpookyHashV2::Hash128(buf1, h, &measure[0][0], &measure[0][1]);
SpookyHashV2::Hash128(buf2, h, &measure[1][0], &measure[1][1]);
for (int l=0; l<2; ++l) {
measure[2][l] = measure[0][l] ^ measure[1][l];
measure[3][l] = ~(measure[0][l] ^ measure[1][l]);
measure[4][l] = measure[0][l] - measure[1][l];
measure[4][l] ^= (measure[4][l]>>1);
measure[5][l] = measure[0][l] + measure[1][l];
measure[5][l] ^= (measure[4][l]>>1);
}
for (int l=0; l<2; ++l)
{
for (int m=0; m<MEASURES; ++m)
{
counter[m][l] |= measure[m][l];
if (~counter[m][l]) done = 0;
}
}
if (done) break;
}
if (k == TRIES)
{
printf("failed %d %d %d\n", h, i, j);
failed = true;
}
else if (k > maxk)
{
maxk = k;
}
}
}
printf("passed for buffer size %d max %d\n", h, maxk);
}
}
#undef BUFSIZE
#undef TRIES
#undef MEASURES
// test that hashing pieces has the same behavior as hashing the whole
#define BUFSIZE 1024
void TestPieces()
{
printf("\ntesting pieces ...\n");
char buf[BUFSIZE];
for (int i=0; i<BUFSIZE; ++i)
{
buf[i] = i;
}
for (int i=0; i<BUFSIZE; ++i)
{
uint64_t a,b,c,d,seed1=1,seed2=2;
SpookyHashV2 state;
// all as one call
a = seed1;
b = seed2;
SpookyHashV2::Hash128(buf, i, &a, &b);
// all as one piece
c = 0xdeadbeefdeadbeef;
d = 0xbaceba11baceba11;
state.Init(seed1, seed2);
state.Update(buf, i);
state.Final(&c, &d);
if (a != c)
{
printf("wrong a %d: %.16lx %.16lx\n", i, a,c);
failed = true;
}
if (b != d)
{
printf("wrong b %d: %.16lx %.16lx\n", i, b,d);
failed = true;
}
// all possible two consecutive pieces
for (int j=0; j<i; ++j)
{
c = seed1;
d = seed2;
state.Init(c, d);
state.Update(&buf[0], j);
state.Update(&buf[j], i-j);
state.Final(&c, &d);
if (a != c)
{
printf("wrong a %d %d: %.16lx %.16lx\n", j, i, a,c);
failed = true;
}
if (b != d)
{
printf("wrong b %d %d: %.16lx %.16lx\n", j, i, b,d);
failed = true;
}
}
}
}
#undef BUFSIZE
int main(int argc, const char **argv)
{
TestResults();
TestAlignment();
TestPieces();
DoTimingBig(argc);
// tudorb@fb.com: Commented out slow tests
#if 0
DoTimingSmall(argc);
TestDeltas(argc);
#endif
return failed;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment