Commit 4b39d461 authored by Sven Over's avatar Sven Over Committed by Facebook Github Bot 8

Introducing folly::FunctionRef

Summary:
This commit introduces a simple function reference type, similar to
std::reference_wrapper, but the template parameter is the function
signature type rather than the type of the referenced object.

A folly::FunctionRef is cheap to construct as it contains only a
pointer to the referenced callable and a pointer to a function which
invokes the callable.

The user of FunctionRef must be aware of the reference semantics:
storing a copy of a FunctionRef is potentially dangerous and should
be avoided unless the referenced object definitely outlives the
FunctionRef object. Thus any function that accepts a FunctionRef
parameter should only use it to invoke the referenced function and
not store a copy of it. Knowing that FunctionRef itself has reference
semantics, it is generally okay to use it to reference lambdas that
capture by reference.

Reviewed By: ericniebler

Differential Revision: D3277364

fbshipit-source-id: 0a7676919cd240da5b6e1f94cadba4289e0aca28
parent 4450b4ac
......@@ -250,8 +250,7 @@ using IsSmall = std::integral_constant<
bool,
(sizeof(FunT) <= sizeof(Data::tiny) &&
// Same as is_nothrow_move_constructible, but w/ no template instantiation.
noexcept(FunT(std::declval<FunT&&>()))
)>;
noexcept(FunT(std::declval<FunT&&>())))>;
using SmallTag = std::true_type;
using HeapTag = std::false_type;
......@@ -390,6 +389,19 @@ bool execBig(Op o, Data* src, Data* dst) {
return true;
}
// Invoke helper
template <typename F, typename... Args>
inline auto invoke(F&& f, Args&&... args)
-> decltype(std::forward<F>(f)(std::forward<Args>(args)...)) {
return std::forward<F>(f)(std::forward<Args>(args)...);
}
template <typename M, typename C, typename... Args>
inline auto invoke(M(C::*d), Args&&... args)
-> decltype(std::mem_fn(d)(std::forward<Args>(args)...)) {
return std::mem_fn(d)(std::forward<Args>(args)...);
}
} // namespace function
} // namespace detail
......@@ -675,4 +687,80 @@ Function<ReturnType(Args...) const> constCastFunction(
Function<ReturnType(Args...) const>&& that) noexcept {
return std::move(that);
}
/**
* @class FunctionRef
*
* @brief A reference wrapper for callable objects
*
* FunctionRef is similar to std::reference_wrapper, but the template parameter
* is the function signature type rather than the type of the referenced object.
* A folly::FunctionRef is cheap to construct as it contains only a pointer to
* the referenced callable and a pointer to a function which invokes the
* callable.
*
* The user of FunctionRef must be aware of the reference semantics: storing a
* copy of a FunctionRef is potentially dangerous and should be avoided unless
* the referenced object definitely outlives the FunctionRef object. Thus any
* function that accepts a FunctionRef parameter should only use it to invoke
* the referenced function and not store a copy of it. Knowing that FunctionRef
* itself has reference semantics, it is generally okay to use it to reference
* lambdas that capture by reference.
*/
template <typename FunctionType>
class FunctionRef;
template <typename ReturnType, typename... Args>
class FunctionRef<ReturnType(Args...)> final {
using Call = ReturnType (*)(void*, Args&&...);
void* object_{nullptr};
Call call_{&FunctionRef::uninitCall};
static ReturnType uninitCall(void*, Args&&...) {
throw std::bad_function_call();
}
template <typename Fun>
static ReturnType call(void* object, Args&&... args) {
return static_cast<ReturnType>(detail::function::invoke(
*static_cast<Fun*>(object), static_cast<Args&&>(args)...));
}
public:
/**
* Default constructor. Constructs an empty FunctionRef.
*
* Invoking it will throw std::bad_function_call.
*/
FunctionRef() = default;
/**
* Construct a FunctionRef from a reference to a callable object.
*/
template <typename Fun>
/* implicit */ FunctionRef(Fun&& fun) noexcept {
using ReferencedType = typename std::remove_reference<Fun>::type;
static_assert(
std::is_convertible<
typename std::result_of<ReferencedType&(Args && ...)>::type,
ReturnType>::value,
"FunctionRef cannot be constructed from object with "
"incompatible function signature");
// `Fun` may be a const type, in which case we have to do a const_cast
// to store the address in a `void*`. This is safe because the `void*`
// will be cast back to `Fun*` (which is a const pointer whenever `Fun`
// is a const type) inside `FunctionRef::call`
object_ = const_cast<void*>(static_cast<void const*>(std::addressof(fun)));
call_ = &FunctionRef::call<ReferencedType>;
}
ReturnType operator()(Args... args) const {
return call_(object_, static_cast<Args&&>(args)...);
}
};
} // namespace folly
/*
* Copyright 2016 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <list>
#include <folly/Function.h>
#include <folly/portability/GTest.h>
using folly::Function;
using folly::FunctionRef;
TEST(FunctionRef, Simple) {
int x = 1000;
auto lambda = [&x](int v) { return x += v; };
FunctionRef<int(int)> fref = lambda;
EXPECT_EQ(1005, fref(5));
EXPECT_EQ(1011, fref(6));
EXPECT_EQ(1018, fref(7));
FunctionRef<int(int)> const cfref = lambda;
EXPECT_EQ(1023, cfref(5));
EXPECT_EQ(1029, cfref(6));
EXPECT_EQ(1036, cfref(7));
auto const& clambda = lambda;
FunctionRef<int(int)> fcref = clambda;
EXPECT_EQ(1041, fcref(5));
EXPECT_EQ(1047, fcref(6));
EXPECT_EQ(1054, fcref(7));
FunctionRef<int(int)> const cfcref = clambda;
EXPECT_EQ(1059, cfcref(5));
EXPECT_EQ(1065, cfcref(6));
EXPECT_EQ(1072, cfcref(7));
}
TEST(FunctionRef, FunctionPtr) {
int (*funcptr)(int) = [](int v) { return v * v; };
FunctionRef<int(int)> fref = funcptr;
EXPECT_EQ(100, fref(10));
EXPECT_EQ(121, fref(11));
FunctionRef<int(int)> const cfref = funcptr;
EXPECT_EQ(100, cfref(10));
EXPECT_EQ(121, cfref(11));
}
TEST(FunctionRef, OverloadedFunctor) {
struct OverloadedFunctor {
// variant 1
int operator()(int x) {
return 100 + 1 * x;
}
// variant 2 (const-overload of v1)
int operator()(int x) const {
return 100 + 2 * x;
}
// variant 3
int operator()(int x, int) {
return 100 + 3 * x;
}
// variant 4 (const-overload of v3)
int operator()(int x, int) const {
return 100 + 4 * x;
}
// variant 5 (non-const, has no const-overload)
int operator()(int x, char const*) {
return 100 + 5 * x;
}
// variant 6 (const only)
int operator()(int x, std::vector<int> const&) const {
return 100 + 6 * x;
}
};
OverloadedFunctor of;
auto const& cof = of;
FunctionRef<int(int)> variant1 = of;
EXPECT_EQ(100 + 1 * 15, variant1(15));
FunctionRef<int(int)> const cvariant1 = of;
EXPECT_EQ(100 + 1 * 15, cvariant1(15));
FunctionRef<int(int)> variant2 = cof;
EXPECT_EQ(100 + 2 * 16, variant2(16));
FunctionRef<int(int)> const cvariant2 = cof;
EXPECT_EQ(100 + 2 * 16, cvariant2(16));
FunctionRef<int(int, int)> variant3 = of;
EXPECT_EQ(100 + 3 * 17, variant3(17, 0));
FunctionRef<int(int, int)> const cvariant3 = of;
EXPECT_EQ(100 + 3 * 17, cvariant3(17, 0));
FunctionRef<int(int, int)> variant4 = cof;
EXPECT_EQ(100 + 4 * 18, variant4(18, 0));
FunctionRef<int(int, int)> const cvariant4 = cof;
EXPECT_EQ(100 + 4 * 18, cvariant4(18, 0));
FunctionRef<int(int, char const*)> variant5 = of;
EXPECT_EQ(100 + 5 * 19, variant5(19, "foo"));
FunctionRef<int(int, char const*)> const cvariant5 = of;
EXPECT_EQ(100 + 5 * 19, cvariant5(19, "foo"));
FunctionRef<int(int, std::vector<int> const&)> variant6 = of;
EXPECT_EQ(100 + 6 * 20, variant6(20, {}));
EXPECT_EQ(100 + 6 * 20, variant6(20, {1, 2, 3}));
FunctionRef<int(int, std::vector<int> const&)> const cvariant6 = of;
EXPECT_EQ(100 + 6 * 20, cvariant6(20, {}));
EXPECT_EQ(100 + 6 * 20, cvariant6(20, {1, 2, 3}));
FunctionRef<int(int, std::vector<int> const&)> variant6const = cof;
EXPECT_EQ(100 + 6 * 21, variant6const(21, {}));
FunctionRef<int(int, std::vector<int> const&)> const cvariant6const = cof;
EXPECT_EQ(100 + 6 * 21, cvariant6const(21, {}));
}
TEST(FunctionRef, DefaultConstructAndAssign) {
FunctionRef<int(int, int)> fref;
EXPECT_THROW(fref(1, 2), std::bad_function_call);
int (*func)(int, int) = [](int x, int y) { return 10 * x + y; };
fref = func;
EXPECT_EQ(42, fref(4, 2));
}
template <typename ValueType>
class ForEach {
public:
template <typename InputIterator>
ForEach(InputIterator begin, InputIterator end)
: func_([begin, end](FunctionRef<void(ValueType)> f) {
for (auto it = begin; it != end; ++it) {
f(*it);
}
}) {}
void operator()(FunctionRef<void(ValueType)> f) const {
func_(f);
}
private:
Function<void(FunctionRef<void(ValueType)>) const> const func_;
};
TEST(FunctionRef, ForEach) {
std::list<int> s{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int sum = 0;
ForEach<int> fe{s.begin(), s.end()};
fe([&](int x) { sum += x; });
EXPECT_EQ(55, sum);
}
......@@ -288,7 +288,9 @@ futures_test_SOURCES = \
futures_test_LDADD = libfollytestmain.la
TESTS += futures_test
function_test_SOURCES = FunctionTest.cpp
function_test_SOURCES = \
FunctionRefTest.cpp \
FunctionTest.cpp
function_test_LDADD = libfollytestmain.la
TESTS += function_test
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment