Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
O
OpenXG UE
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Michael Black
OpenXG UE
Commits
6fb57d74
Commit
6fb57d74
authored
Feb 22, 2019
by
laurent
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
issue 403
parent
a68f851f
Changes
17
Hide whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
986 additions
and
1078 deletions
+986
-1078
openair1/PHY/CODING/TESTBENCH/polartest.c
openair1/PHY/CODING/TESTBENCH/polartest.c
+2
-5
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoder.c
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoder.c
+5
-5
openair1/PHY/CODING/nrPolar_tools/nr_polar_defs.h
openair1/PHY/CODING/nrPolar_tools/nr_polar_defs.h
+11
-18
openair1/PHY/CODING/nrPolar_tools/nr_polar_encoder.c
openair1/PHY/CODING/nrPolar_tools/nr_polar_encoder.c
+6
-6
openair1/PHY/CODING/nr_polar_init.c
openair1/PHY/CODING/nr_polar_init.c
+17
-33
openair1/PHY/INIT/nr_init.c
openair1/PHY/INIT/nr_init.c
+0
-5
openair1/PHY/NR_TRANSPORT/nr_dci.c
openair1/PHY/NR_TRANSPORT/nr_dci.c
+1
-3
openair1/PHY/NR_TRANSPORT/nr_dci.h
openair1/PHY/NR_TRANSPORT/nr_dci.h
+0
-1
openair1/PHY/NR_TRANSPORT/nr_pbch.c
openair1/PHY/NR_TRANSPORT/nr_pbch.c
+3
-2
openair1/PHY/NR_TRANSPORT/nr_transport.h
openair1/PHY/NR_TRANSPORT/nr_transport.h
+0
-1
openair1/PHY/NR_UE_TRANSPORT/dci_nr.c
openair1/PHY/NR_UE_TRANSPORT/dci_nr.c
+1
-4
openair1/PHY/NR_UE_TRANSPORT/nr_pbch.c
openair1/PHY/NR_UE_TRANSPORT/nr_pbch.c
+1
-9
openair1/PHY/defs_gNB.h
openair1/PHY/defs_gNB.h
+0
-1
openair1/PHY/defs_nr_UE.h
openair1/PHY/defs_nr_UE.h
+0
-3
openair1/SCHED_NR/phy_procedures_nr_gNB.c
openair1/SCHED_NR/phy_procedures_nr_gNB.c
+0
-2
targets/ARCH/rfsimulator/simulator.c
targets/ARCH/rfsimulator/simulator.c
+42
-38
targets/RT/USER/nr-ue.c
targets/RT/USER/nr-ue.c
+897
-942
No files found.
openair1/PHY/CODING/TESTBENCH/polartest.c
View file @
6fb57d74
...
...
@@ -158,9 +158,7 @@ int main(int argc, char *argv[]) {
int16_t
channelOutput_int16
[
coderLength
];
t_nrPolar_paramsPtr
nrPolar_params
=
NULL
,
currentPtr
=
NULL
;
nr_polar_init
(
&
nrPolar_params
,
polarMessageType
,
testLength
,
aggregation_level
);
currentPtr
=
nr_polar_params
(
nrPolar_params
,
polarMessageType
,
testLength
,
aggregation_level
);
t_nrPolar_params
currentPtr
=
nr_polar_params
(
polarMessageType
,
testLength
,
aggregation_level
);
#ifdef DEBUG_DCI_POLAR_PARAMS
uint32_t
dci_pdu
[
4
];
...
...
@@ -173,8 +171,7 @@ int main(int argc, char *argv[]) {
uint16_t
size
=
41
;
uint16_t
rnti
=
3
;
aggregation_level
=
8
;
nr_polar_init
(
&
nrPolar_params
,
1
,
size
,
aggregation_level
);
t_nrPolar_paramsPtr
currentPtrDCI
=
nr_polar_params
(
nrPolar_params
,
1
,
size
,
aggregation_level
);
t_nrPolar_params
*
currentPtrDCI
=
nr_polar_params
(
1
,
size
,
aggregation_level
);
polar_encoder_dci
(
dci_pdu
,
encoder_output
,
currentPtrDCI
,
rnti
);
for
(
int
i
=
0
;
i
<
54
;
i
++
)
...
...
openair1/PHY/CODING/nrPolar_tools/nr_polar_decoder.c
View file @
6fb57d74
...
...
@@ -42,7 +42,7 @@
int8_t
polar_decoder
(
double
*
input
,
uint8_t
*
out
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint8_t
listSize
,
uint8_t
pathMetricAppr
)
{
...
...
@@ -282,7 +282,7 @@ int8_t polar_decoder(
int8_t
polar_decoder_aPriori
(
double
*
input
,
uint32_t
*
out
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint8_t
listSize
,
uint8_t
pathMetricAppr
,
double
*
aPrioriPayload
)
...
...
@@ -538,7 +538,7 @@ int8_t polar_decoder_aPriori(double *input,
int8_t
polar_decoder_aPriori_timing
(
double
*
input
,
uint32_t
*
out
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint8_t
listSize
,
uint8_t
pathMetricAppr
,
double
*
aPrioriPayload
,
...
...
@@ -793,7 +793,7 @@ int8_t polar_decoder_aPriori_timing(double *input,
int8_t
polar_decoder_dci
(
double
*
input
,
uint32_t
*
out
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint8_t
listSize
,
uint8_t
pathMetricAppr
,
uint16_t
n_RNTI
)
...
...
@@ -1073,7 +1073,7 @@ void init_polar_deinterleaver_table(t_nrPolar_params *polarParams) {
uint32_t
polar_decoder_int16
(
int16_t
*
input
,
uint64_t
*
out
,
t_nrPolar_params
*
polarParams
)
const
t_nrPolar_params
*
polarParams
)
{
...
...
openair1/PHY/CODING/nrPolar_tools/nr_polar_defs.h
View file @
6fb57d74
...
...
@@ -136,42 +136,41 @@ struct nrPolar_params {
decoder_tree_t
tree
;
}
__attribute__
((
__packed__
));
typedef
struct
nrPolar_params
t_nrPolar_params
;
typedef
t_nrPolar_params
*
t_nrPolar_paramsPtr
;
void
polar_encoder
(
uint32_t
*
input
,
uint32_t
*
output
,
t_nrPolar_params
Ptr
polarParams
);
t_nrPolar_params
*
polarParams
);
void
polar_encoder_dci
(
uint32_t
*
in
,
uint32_t
*
out
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint16_t
n_RNTI
);
void
polar_encoder_fast
(
uint64_t
*
A
,
uint32_t
*
out
,
int32_t
crcmask
,
t_nrPolar_params
Ptr
polarParams
);
t_nrPolar_params
*
polarParams
);
int8_t
polar_decoder
(
double
*
input
,
uint8_t
*
output
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint8_t
listSize
,
uint8_t
pathMetricAppr
);
uint32_t
polar_decoder_int16
(
int16_t
*
input
,
uint64_t
*
out
,
t_nrPolar_params
*
polarParams
);
const
t_nrPolar_params
*
polarParams
);
int8_t
polar_decoder_aPriori
(
double
*
input
,
uint32_t
*
output
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint8_t
listSize
,
uint8_t
pathMetricAppr
,
double
*
aPrioriPayload
);
int8_t
polar_decoder_aPriori_timing
(
double
*
input
,
uint32_t
*
output
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint8_t
listSize
,
uint8_t
pathMetricAppr
,
double
*
aPrioriPayload
,
...
...
@@ -180,7 +179,7 @@ int8_t polar_decoder_aPriori_timing(double *input,
int8_t
polar_decoder_dci
(
double
*
input
,
uint32_t
*
out
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint8_t
listSize
,
uint8_t
pathMetricAppr
,
uint16_t
n_RNTI
);
...
...
@@ -189,18 +188,12 @@ void generic_polar_decoder(t_nrPolar_params *,
decoder_node_t
*
);
void
build_decoder_tree
(
t_nrPolar_params
*
pp
);
void
build_polar_tables
(
t_nrPolar_params
Ptr
polarParams
);
void
build_polar_tables
(
t_nrPolar_params
*
polarParams
);
void
init_polar_deinterleaver_table
(
t_nrPolar_params
*
polarParams
);
void
nr_polar_init
(
t_nrPolar_paramsPtr
*
polarParams
,
int8_t
messageType
,
uint16_t
messageLength
,
uint8_t
aggregation_level
);
void
nr_polar_print_polarParams
(
t_nrPolar_params
*
polarParams
);
void
nr_polar_print_polarParams
(
t_nrPolar_paramsPtr
polarParams
);
t_nrPolar_paramsPtr
nr_polar_params
(
t_nrPolar_paramsPtr
polarParams
,
int8_t
messageType
,
t_nrPolar_params
*
nr_polar_params
(
int8_t
messageType
,
uint16_t
messageLength
,
uint8_t
aggregation_level
);
...
...
openair1/PHY/CODING/nrPolar_tools/nr_polar_encoder.c
View file @
6fb57d74
...
...
@@ -42,7 +42,7 @@
void
polar_encoder
(
uint32_t
*
in
,
uint32_t
*
out
,
t_nrPolar_params
Ptr
polarParams
)
t_nrPolar_params
*
polarParams
)
{
if
(
polarParams
->
idx
==
0
){
//PBCH
/*
...
...
@@ -151,7 +151,7 @@ nr_bit2byte_uint32_8_t((uint32_t*)&B, polarParams->K, polarParams->nr_polar_B);*
void
polar_encoder_dci
(
uint32_t
*
in
,
uint32_t
*
out
,
t_nrPolar_params
Ptr
polarParams
,
t_nrPolar_params
*
polarParams
,
uint16_t
n_RNTI
)
{
#ifdef DEBUG_POLAR_ENCODER_DCI
...
...
@@ -284,9 +284,9 @@ void polar_encoder_dci(uint32_t *in,
#endif
}
static
inline
void
polar_rate_matching
(
t_nrPolar_params
Ptr
polarParams
,
void
*
in
,
void
*
out
)
__attribute__
((
always_inline
));
static
inline
void
polar_rate_matching
(
t_nrPolar_params
*
polarParams
,
void
*
in
,
void
*
out
)
__attribute__
((
always_inline
));
static
inline
void
polar_rate_matching
(
t_nrPolar_params
Ptr
polarParams
,
void
*
in
,
void
*
out
)
{
static
inline
void
polar_rate_matching
(
t_nrPolar_params
*
polarParams
,
void
*
in
,
void
*
out
)
{
if
(
polarParams
->
groupsize
==
8
)
for
(
int
i
=
0
;
i
<
polarParams
->
encoderLength
>>
3
;
i
++
)
((
uint8_t
*
)
out
)[
i
]
=
((
uint8_t
*
)
in
)[
polarParams
->
rm_tab
[
i
]];
...
...
@@ -296,7 +296,7 @@ static inline void polar_rate_matching(t_nrPolar_paramsPtr polarParams,void *in,
}
}
void
build_polar_tables
(
t_nrPolar_params
Ptr
polarParams
)
{
void
build_polar_tables
(
t_nrPolar_params
*
polarParams
)
{
// build table b -> c'
...
...
@@ -388,7 +388,7 @@ void build_polar_tables(t_nrPolar_paramsPtr polarParams) {
void
polar_encoder_fast
(
uint64_t
*
A
,
uint32_t
*
out
,
int32_t
crcmask
,
t_nrPolar_params
Ptr
polarParams
)
{
t_nrPolar_params
*
polarParams
)
{
AssertFatal
(
polarParams
->
K
>
32
,
"K = %d < 33, is not supported yet
\n
"
,
polarParams
->
K
);
AssertFatal
(
polarParams
->
K
<
129
,
"K = %d > 128, is not supported yet
\n
"
,
polarParams
->
K
);
...
...
openair1/PHY/CODING/nr_polar_init.c
View file @
6fb57d74
...
...
@@ -41,12 +41,12 @@ static int intcmp(const void *p1,const void *p2) {
return
(
*
(
int16_t
*
)
p1
>
*
(
int16_t
*
)
p2
);
}
void
nr_polar_init
(
t_nrPolar_paramsPtr
*
polarParams
,
static
void
nr_polar_init
(
t_nrPolar_params
*
*
polarParams
,
int8_t
messageType
,
uint16_t
messageLength
,
uint8_t
aggregation_level
)
{
t_nrPolar_params
Ptr
currentPtr
=
*
polarParams
;
t_nrPolar_params
*
currentPtr
=
*
polarParams
;
uint16_t
aggregation_prime
=
nr_polar_aggregation_prime
(
aggregation_level
);
//Parse the list. If the node is already created, return without initialization.
...
...
@@ -58,7 +58,7 @@ void nr_polar_init(t_nrPolar_paramsPtr *polarParams,
// printf("currentPtr %p (polarParams %p)\n",currentPtr,polarParams);
//Else, initialize and add node to the end of the linked list.
t_nrPolar_params
Ptr
newPolarInitNode
=
malloc
(
sizeof
(
t_nrPolar_params
));
t_nrPolar_params
*
newPolarInitNode
=
malloc
(
sizeof
(
t_nrPolar_params
));
if
(
newPolarInitNode
!=
NULL
)
{
...
...
@@ -170,30 +170,15 @@ void nr_polar_init(t_nrPolar_paramsPtr *polarParams,
//printf("decoder tree nodes %d\n",newPolarInitNode->tree.num_nodes);
}
else
{
AssertFatal
(
1
==
0
,
"[nr_polar_init] New t_nrPolar_params
Ptr
could not be created"
);
AssertFatal
(
1
==
0
,
"[nr_polar_init] New t_nrPolar_params
*
could not be created"
);
}
currentPtr
=
*
polarParams
;
//If polarParams is empty:
if
(
currentPtr
==
NULL
)
{
*
polarParams
=
newPolarInitNode
;
//printf("Creating first polarParams entry index %d, %p\n",newPolarInitNode->idx,*polarParams);
return
;
}
//Else, add node to the end of the linked list.
while
(
currentPtr
->
nextPtr
!=
NULL
)
{
currentPtr
=
currentPtr
->
nextPtr
;
}
currentPtr
->
nextPtr
=
newPolarInitNode
;
printf
(
"Adding new polarParams entry to list index %d,%p
\n
"
,
newPolarInitNode
->
idx
,
currentPtr
->
nextPtr
);
newPolarInitNode
->
nextPtr
=*
polarParams
;
*
polarParams
=
newPolarInitNode
;
return
;
}
void
nr_polar_print_polarParams
(
t_nrPolar_params
Ptr
polarParams
)
void
nr_polar_print_polarParams
(
t_nrPolar_params
*
polarParams
)
{
uint8_t
i
=
0
;
if
(
polarParams
==
NULL
)
{
...
...
@@ -208,23 +193,22 @@ void nr_polar_print_polarParams(t_nrPolar_paramsPtr polarParams)
return
;
}
t_nrPolar_paramsPtr
nr_polar_params
(
t_nrPolar_paramsPtr
polarParams
,
int8_t
messageType
,
t_nrPolar_params
*
nr_polar_params
(
int8_t
messageType
,
uint16_t
messageLength
,
uint8_t
aggregation_level
)
{
t_nrPolar_paramsPtr
currentPtr
=
NULL
;
static
t_nrPolar_params
*
polarList
=
NULL
;
nr_polar_init
(
&
polarList
,
messageType
,
messageLength
,
aggregation_level
);
t_nrPolar_params
*
polarParams
=
polarList
;
const
int
tag
=
messageType
*
messageLength
*
nr_polar_aggregation_prime
(
aggregation_level
);
while
(
polarParams
!=
NULL
)
{
if
(
polarParams
->
idx
==
(
messageType
*
messageLength
*
(
nr_polar_aggregation_prime
(
aggregation_level
))
))
{
currentPtr
=
polarParams
;
break
;
}
else
{
if
(
polarParams
->
idx
==
tag
)
return
polarParams
;
polarParams
=
polarParams
->
nextPtr
;
}
}
return
currentPtr
;
AssertFatal
(
false
,
"Polar Init tables internal failure
\n
"
);
return
NULL
;
}
uint16_t
nr_polar_aggregation_prime
(
uint8_t
aggregation_level
)
...
...
openair1/PHY/INIT/nr_init.c
View file @
6fb57d74
...
...
@@ -126,11 +126,6 @@ int phy_init_nr_gNB(PHY_VARS_gNB *gNB,
nr_init_pbch_dmrs
(
gNB
);
// Polar encoder init for PBCH
nr_polar_init
(
&
gNB
->
nrPolar_params
,
NR_POLAR_PBCH_MESSAGE_TYPE
,
NR_POLAR_PBCH_PAYLOAD_BITS
,
NR_POLAR_PBCH_AGGREGATION_LEVEL
);
//PDCCH DMRS init
gNB
->
nr_gold_pdcch_dmrs
=
(
uint32_t
***
)
malloc16
(
fp
->
slots_per_frame
*
sizeof
(
uint32_t
**
));
uint32_t
***
pdcch_dmrs
=
gNB
->
nr_gold_pdcch_dmrs
;
...
...
openair1/PHY/NR_TRANSPORT/nr_dci.c
View file @
6fb57d74
...
...
@@ -159,7 +159,6 @@ void nr_pdcch_scrambling(uint32_t *in,
}
uint8_t
nr_generate_dci_top
(
NR_gNB_PDCCH
pdcch_vars
,
t_nrPolar_paramsPtr
*
nrPolar_params
,
uint32_t
**
gold_pdcch_dmrs
,
int32_t
*
txdataF
,
int16_t
amp
,
...
...
@@ -249,8 +248,7 @@ uint8_t nr_generate_dci_top(NR_gNB_PDCCH pdcch_vars,
uint16_t
Nid
=
(
pdcch_params
.
search_space_type
==
NFAPI_NR_SEARCH_SPACE_TYPE_UE_SPECIFIC
)
?
pdcch_params
.
scrambling_id
:
config
.
sch_config
.
physical_cell_id
.
value
;
nr_polar_init
(
nrPolar_params
,
NR_POLAR_DCI_MESSAGE_TYPE
,
dci_alloc
.
size
,
dci_alloc
.
L
);
t_nrPolar_paramsPtr
currentPtr
=
nr_polar_params
(
*
nrPolar_params
,
NR_POLAR_DCI_MESSAGE_TYPE
,
dci_alloc
.
size
,
dci_alloc
.
L
);
t_nrPolar_params
*
currentPtr
=
nr_polar_params
(
NR_POLAR_DCI_MESSAGE_TYPE
,
dci_alloc
.
size
,
dci_alloc
.
L
);
polar_encoder_fast
(
dci_alloc
.
dci_pdu
,
encoder_output
,
pdcch_params
.
rnti
,
currentPtr
);
...
...
openair1/PHY/NR_TRANSPORT/nr_dci.h
View file @
6fb57d74
...
...
@@ -33,7 +33,6 @@ uint16_t nr_get_dci_size(nfapi_nr_dci_format_e format,
nfapi_nr_config_request_t
*
config
);
uint8_t
nr_generate_dci_top
(
NR_gNB_PDCCH
pdcch_vars
,
t_nrPolar_paramsPtr
*
nrPolar_params
,
uint32_t
**
gold_pdcch_dmrs
,
int32_t
*
txdataF
,
int16_t
amp
,
...
...
openair1/PHY/NR_TRANSPORT/nr_pbch.c
View file @
6fb57d74
...
...
@@ -225,7 +225,6 @@ void nr_init_pbch_interleaver(uint8_t *interleaver) {
}
int
nr_generate_pbch
(
NR_gNB_PBCH
*
pbch
,
t_nrPolar_paramsPtr
polar_params
,
uint8_t
*
pbch_pdu
,
uint8_t
*
interleaver
,
int32_t
*
txdataF
,
...
...
@@ -307,7 +306,9 @@ int nr_generate_pbch(NR_gNB_PBCH *pbch,
/// CRC, coding and rate matching
polar_encoder_fast
(
&
a_reversed
,
(
uint32_t
*
)
pbch
->
pbch_e
,
0
,
polar_params
);
polar_encoder_fast
(
&
a_reversed
,
(
uint32_t
*
)
pbch
->
pbch_e
,
0
,
nr_polar_params
(
NR_POLAR_PBCH_MESSAGE_TYPE
,
NR_POLAR_PBCH_PAYLOAD_BITS
,
NR_POLAR_PBCH_AGGREGATION_LEVEL
)
);
#ifdef DEBUG_PBCH_ENCODING
printf
(
"Channel coding:
\n
"
);
for
(
int
i
=
0
;
i
<
NR_POLAR_PBCH_E_DWORD
;
i
++
)
...
...
openair1/PHY/NR_TRANSPORT/nr_transport.h
View file @
6fb57d74
...
...
@@ -85,7 +85,6 @@ void nr_pbch_scrambling(NR_gNB_PBCH *pbch,
@returns 0 on success
*/
int
nr_generate_pbch
(
NR_gNB_PBCH
*
pbch
,
t_nrPolar_paramsPtr
polar_params
,
uint8_t
*
pbch_pdu
,
uint8_t
*
interleaver
,
int32_t
*
txdataF
,
...
...
openair1/PHY/NR_UE_TRANSPORT/dci_nr.c
View file @
6fb57d74
...
...
@@ -1136,7 +1136,6 @@ void nr_dci_decoding_procedure0(int s,
int
coreset_nbr_cce_per_symbol
=
0
;
t_nrPolar_paramsPtr
nrPolar_params
=
pdcch_vars
[
eNB_id
]
->
nrPolar_params
;
#ifdef NR_PDCCH_DCI_DEBUG
printf
(
"
\t\t
<-NR_PDCCH_DCI_DEBUG (nr_dci_decoding_procedure0)-> format_found is %d
\n
"
,
*
format_found
);
...
...
@@ -1364,9 +1363,7 @@ void nr_dci_decoding_procedure0(int s,
uint64_t
dci_estimation
[
2
]
=
{
0
};
nr_polar_init
(
&
nrPolar_params
,
1
,
sizeof_bits
,
L2
);
t_nrPolar_paramsPtr
currentPtrDCI
=
nr_polar_params
(
nrPolar_params
,
1
,
sizeof_bits
,
L2
);
const
t_nrPolar_params
*
currentPtrDCI
=
nr_polar_params
(
1
,
sizeof_bits
,
L2
);
decoderState
=
polar_decoder_int16
(
&
pdcch_vars
[
eNB_id
]
->
e_rx
[
CCEind
*
9
*
6
*
2
],
dci_estimation
,
currentPtrDCI
);
...
...
openair1/PHY/NR_UE_TRANSPORT/nr_pbch.c
View file @
6fb57d74
...
...
@@ -566,15 +566,7 @@ int nr_rx_pbch( PHY_VARS_NR_UE *ue,
//polar decoding de-rate matching
nr_polar_init
(
&
nr_ue_pbch_vars
->
nrPolar_params
,
NR_POLAR_PBCH_MESSAGE_TYPE
,
NR_POLAR_PBCH_PAYLOAD_BITS
,
NR_POLAR_PBCH_AGGREGATION_LEVEL
);
AssertFatal
(
nr_ue_pbch_vars
->
nrPolar_params
!=
NULL
,
"nr_ue_pbch_vars->nrPolar_params is null
\n
"
);
t_nrPolar_params
*
currentPtr
=
nr_polar_params
(
nr_ue_pbch_vars
->
nrPolar_params
,
NR_POLAR_PBCH_MESSAGE_TYPE
,
NR_POLAR_PBCH_PAYLOAD_BITS
,
NR_POLAR_PBCH_AGGREGATION_LEVEL
);
const
t_nrPolar_params
*
currentPtr
=
nr_polar_params
(
NR_POLAR_PBCH_MESSAGE_TYPE
,
NR_POLAR_PBCH_PAYLOAD_BITS
,
NR_POLAR_PBCH_AGGREGATION_LEVEL
);
decoderState
=
polar_decoder_int16
(
pbch_e_rx
,(
uint64_t
*
)
&
nr_ue_pbch_vars
->
pbch_a_prime
,
currentPtr
);
...
...
openair1/PHY/defs_gNB.h
View file @
6fb57d74
...
...
@@ -391,7 +391,6 @@ typedef struct PHY_VARS_gNB_s {
Sched_Rsp_t
Sched_INFO
;
NR_gNB_PDCCH
pdcch_vars
;
NR_gNB_PBCH
pbch
;
t_nrPolar_paramsPtr
nrPolar_params
;
LTE_eNB_PHICH
phich_vars
[
2
];
NR_gNB_COMMON
common_vars
;
...
...
openair1/PHY/defs_nr_UE.h
View file @
6fb57d74
...
...
@@ -892,7 +892,6 @@ typedef struct {
//Check for specific DCIFormat and AgregationLevel
uint8_t
dciFormat
;
uint8_t
agregationLevel
;
t_nrPolar_paramsPtr
nrPolar_params
;
#ifdef NR_PDCCH_DEFS_NR_UE
int
nb_searchSpaces
;
// CORESET structure, where maximum number of CORESETs to be handled is 3 (according to 38.331 V15.1.0)
...
...
@@ -933,8 +932,6 @@ typedef struct {
/// \brief Pointer to PBCH decoded output.
/// - first index: ? [0..63] (hard coded)
uint8_t
*
decoded_output
;
/// polar decoder parameters
t_nrPolar_paramsPtr
nrPolar_params
;
/// \brief Total number of PDU errors.
uint32_t
pdu_errors
;
/// \brief Total number of PDU errors 128 frames ago.
...
...
openair1/SCHED_NR/phy_procedures_nr_gNB.c
View file @
6fb57d74
...
...
@@ -149,7 +149,6 @@ void nr_common_signal_procedures (PHY_VARS_gNB *gNB,int frame, int slot) {
nr_generate_pbch_dmrs
(
gNB
->
nr_gold_pbch_dmrs
[
n_hf
][
ssb_index
],
txdataF
[
0
],
AMP
,
ssb_start_symbol
,
cfg
,
fp
);
nr_generate_pbch
(
&
gNB
->
pbch
,
gNB
->
nrPolar_params
,
pbch_pdu
,
gNB
->
nr_pbch_interleaver
,
txdataF
[
0
],
...
...
@@ -201,7 +200,6 @@ void phy_procedures_gNB_TX(PHY_VARS_gNB *gNB,
if
(
nfapi_mode
==
0
||
nfapi_mode
==
1
){
nr_generate_dci_top
(
gNB
->
pdcch_vars
,
&
gNB
->
nrPolar_params
,
gNB
->
nr_gold_pdcch_dmrs
[
slot
],
gNB
->
common_vars
.
txdataF
[
0
],
AMP
,
*
fp
,
*
cfg
);
...
...
targets/ARCH/rfsimulator/simulator.c
View file @
6fb57d74
...
...
@@ -82,6 +82,17 @@ void removeCirBuf(rfsimulator_state_t *bridge, int sock) {
bridge
->
buf
[
sock
].
conn_sock
=-
1
;
}
void
socketError
(
rfsimulator_state_t
*
bridge
,
int
sock
)
{
if
(
bridge
->
buf
[
sock
].
conn_sock
!=-
1
)
{
LOG_W
(
HW
,
"Lost socket
\n
"
);
removeCirBuf
(
bridge
,
sock
);
if
(
bridge
->
typeStamp
==
MAGICUE
)
exit
(
1
);
}
}
#define helpTxt "\
\x1b[31m\
rfsimulator: error: you have to run one UE and one eNB\n\
...
...
@@ -108,32 +119,28 @@ void setblocking(int sock, enum blocking_t active) {
static
bool
flushInput
(
rfsimulator_state_t
*
t
);
int
fullwrite
(
int
fd
,
void
*
_buf
,
int
count
,
rfsimulator_state_t
*
t
)
{
void
fullwrite
(
int
fd
,
void
*
_buf
,
int
count
,
rfsimulator_state_t
*
t
)
{
char
*
buf
=
_buf
;
int
ret
=
0
;
int
l
;
setblocking
(
fd
,
notBlocking
);
while
(
count
)
{
l
=
write
(
fd
,
buf
,
count
);
if
(
l
<=
0
)
{
if
(
errno
==
EINTR
)
continue
;
if
(
errno
==
EAGAIN
)
{
flushInput
(
t
);
continue
;
}
else
return
-
1
;
flushInput
(
t
);
continue
;
}
else
return
;
}
count
-=
l
;
buf
+=
l
;
ret
+=
l
;
}
return
ret
;
}
int
server_start
(
openair0_device
*
device
)
{
...
...
@@ -143,9 +150,12 @@ int server_start(openair0_device *device) {
int
enable
=
1
;
AssertFatal
(
setsockopt
(
t
->
listen_sock
,
SOL_SOCKET
,
SO_REUSEADDR
,
&
enable
,
sizeof
(
int
))
==
0
,
""
);
struct
sockaddr_in
addr
=
{
sin_family:
AF_INET
,
sin_port:
htons
(
PORT
),
sin_addr:
{
s_addr
:
INADDR_ANY
}
sin_family:
AF_INET
,
sin_port:
htons
(
PORT
),
sin_addr:
{
s_addr
:
INADDR_ANY
}
};
bind
(
t
->
listen_sock
,
(
struct
sockaddr
*
)
&
addr
,
sizeof
(
addr
));
AssertFatal
(
listen
(
t
->
listen_sock
,
5
)
==
0
,
""
);
...
...
@@ -162,9 +172,12 @@ int start_ue(openair0_device *device) {
int
sock
;
AssertFatal
((
sock
=
socket
(
AF_INET
,
SOCK_STREAM
,
0
))
>=
0
,
""
);
struct
sockaddr_in
addr
=
{
sin_family:
AF_INET
,
sin_port:
htons
(
PORT
),
sin_addr:
{
s_addr
:
INADDR_ANY
}
sin_family:
AF_INET
,
sin_port:
htons
(
PORT
),
sin_addr:
{
s_addr
:
INADDR_ANY
}
};
addr
.
sin_addr
.
s_addr
=
inet_addr
(
t
->
ip
);
bool
connected
=
false
;
...
...
@@ -195,8 +208,7 @@ int rfsimulator_write(openair0_device *device, openair0_timestamp timestamp, voi
if
(
ptr
->
conn_sock
>=
0
)
{
transferHeader
header
=
{
t
->
typeStamp
,
nsamps
,
nbAnt
,
timestamp
};
int
n
=-
1
;
AssertFatal
(
fullwrite
(
ptr
->
conn_sock
,
&
header
,
sizeof
(
header
),
t
)
==
sizeof
(
header
),
""
);
fullwrite
(
ptr
->
conn_sock
,
&
header
,
sizeof
(
header
),
t
);
sample_t
tmpSamples
[
nsamps
][
nbAnt
];
for
(
int
a
=
0
;
a
<
nbAnt
;
a
++
)
{
...
...
@@ -206,13 +218,8 @@ int rfsimulator_write(openair0_device *device, openair0_timestamp timestamp, voi
tmpSamples
[
s
][
a
]
=
in
[
s
];
}
n
=
fullwrite
(
ptr
->
conn_sock
,
(
void
*
)
tmpSamples
,
sampleToByte
(
nsamps
,
nbAnt
),
t
);
if
(
n
!=
sampleToByte
(
nsamps
,
nbAnt
)
)
{
LOG_E
(
HW
,
"rfsimulator: write error ret %d (wanted %ld) error %s
\n
"
,
n
,
sampleToByte
(
nsamps
,
nbAnt
),
strerror
(
errno
));
abort
();
}
if
(
ptr
->
conn_sock
>=
0
)
fullwrite
(
ptr
->
conn_sock
,
(
void
*
)
tmpSamples
,
sampleToByte
(
nsamps
,
nbAnt
),
t
);
}
}
...
...
@@ -241,17 +248,11 @@ static bool flushInput(rfsimulator_state_t *t) {
int
conn_sock
;
AssertFatal
(
(
conn_sock
=
accept
(
t
->
listen_sock
,
NULL
,
NULL
))
!=
-
1
,
""
);
setblocking
(
conn_sock
,
notBlocking
);
allocCirBuf
(
t
,
conn_sock
);
LOG_I
(
HW
,
"A ue connected
\n
"
);
}
else
{
if
(
events
[
nbEv
].
events
&
(
EPOLLHUP
|
EPOLLERR
|
EPOLLRDHUP
)
)
{
LOG_W
(
HW
,
"Lost socket
\n
"
);
removeCirBuf
(
t
,
fd
);
if
(
t
->
typeStamp
==
MAGICUE
)
exit
(
1
);
socketError
(
t
,
fd
);
continue
;
}
...
...
@@ -292,7 +293,8 @@ static bool flushInput(rfsimulator_state_t *t) {
AssertFatal
(
(
t
->
typeStamp
==
MAGICUE
&&
b
->
th
.
magic
==
MAGICeNB
)
||
(
t
->
typeStamp
==
MAGICeNB
&&
b
->
th
.
magic
==
MAGICUE
),
"Socket Error in protocol"
);
b
->
headerMode
=
false
;
b
->
alreadyRead
=
true
;
b
->
alreadyRead
=
true
;
if
(
b
->
lastReceivedTS
!=
b
->
th
.
timestamp
)
{
int
nbAnt
=
b
->
th
.
nbAnt
;
...
...
@@ -331,7 +333,10 @@ static bool flushInput(rfsimulator_state_t *t) {
}
int
rfsimulator_read
(
openair0_device
*
device
,
openair0_timestamp
*
ptimestamp
,
void
**
samplesVoid
,
int
nsamps
,
int
nbAnt
)
{
if
(
nbAnt
!=
1
)
{
LOG_E
(
HW
,
"rfsimulator: only 1 antenna tested
\n
"
);
exit
(
1
);
}
if
(
nbAnt
!=
1
)
{
LOG_E
(
HW
,
"rfsimulator: only 1 antenna tested
\n
"
);
exit
(
1
);
}
rfsimulator_state_t
*
t
=
device
->
priv
;
LOG_D
(
HW
,
"Enter rfsimulator_read, expect %d samples, will release at TS: %ld
\n
"
,
nsamps
,
t
->
nextTimestamp
+
nsamps
);
...
...
@@ -351,7 +356,6 @@ int rfsimulator_read(openair0_device *device, openair0_timestamp *ptimestamp, vo
t
->
nextTimestamp
+=
nsamps
;
LOG_W
(
HW
,
"Generated void samples for Rx: %ld
\n
"
,
t
->
nextTimestamp
);
*
ptimestamp
=
t
->
nextTimestamp
-
nsamps
;
return
nsamps
;
}
...
...
@@ -443,8 +447,8 @@ int device_init(openair0_device *device, openair0_config_t *openair0_cfg) {
}
rfsimulator
->
typeStamp
=
strncasecmp
(
rfsimulator
->
ip
,
"enb"
,
3
)
==
0
?
MAGICeNB:
MAGICUE
;
MAGICeNB:
MAGICUE
;
LOG_I
(
HW
,
"rfsimulator: running as %s
\n
"
,
rfsimulator
->
typeStamp
==
MAGICeNB
?
"eNB"
:
"UE"
);
device
->
trx_start_func
=
rfsimulator
->
typeStamp
==
MAGICeNB
?
server_start
:
...
...
targets/RT/USER/nr-ue.c
View file @
6fb57d74
...
...
@@ -60,9 +60,9 @@
#include "T.h"
#ifdef XFORMS
#include "PHY/TOOLS/nr_phy_scope.h"
#include "PHY/TOOLS/nr_phy_scope.h"
extern
char
do_forms
;
extern
char
do_forms
;
#endif
...
...
@@ -138,9 +138,9 @@ extern double cpuf;
#define FIFO_PRIORITY 40
typedef
enum
{
pss
=
0
,
pbch
=
1
,
si
=
2
pss
=
0
,
pbch
=
1
,
si
=
2
}
sync_mode_t
;
void
init_UE_threads
(
PHY_VARS_NR_UE
*
UE
);
...
...
@@ -155,71 +155,69 @@ int32_t **txdata;
#define SAIF_ENABLED
#ifdef SAIF_ENABLED
uint64_t
g_ue_rx_thread_busy
=
0
;
uint64_t
g_ue_rx_thread_busy
=
0
;
#endif
typedef
struct
eutra_band_s
{
int16_t
band
;
uint32_t
ul_min
;
uint32_t
ul_max
;
uint32_t
dl_min
;
uint32_t
dl_max
;
lte_frame_type_t
frame_type
;
int16_t
band
;
uint32_t
ul_min
;
uint32_t
ul_max
;
uint32_t
dl_min
;
uint32_t
dl_max
;
lte_frame_type_t
frame_type
;
}
eutra_band_t
;
typedef
struct
band_info_s
{
int
nbands
;
eutra_band_t
band_info
[
100
];
int
nbands
;
eutra_band_t
band_info
[
100
];
}
band_info_t
;
band_info_t
bands_to_scan
;
static
const
eutra_band_t
eutra_bands
[]
=
{
{
1
,
1920
*
MHz
,
1980
*
MHz
,
2110
*
MHz
,
2170
*
MHz
,
FDD
},
{
2
,
1850
*
MHz
,
1910
*
MHz
,
1930
*
MHz
,
1990
*
MHz
,
FDD
},
{
3
,
1710
*
MHz
,
1785
*
MHz
,
1805
*
MHz
,
1880
*
MHz
,
FDD
},
{
4
,
1710
*
MHz
,
1755
*
MHz
,
2110
*
MHz
,
2155
*
MHz
,
FDD
},
{
5
,
824
*
MHz
,
849
*
MHz
,
869
*
MHz
,
894
*
MHz
,
FDD
},
{
6
,
830
*
MHz
,
840
*
MHz
,
875
*
MHz
,
885
*
MHz
,
FDD
},
{
7
,
2500
*
MHz
,
2570
*
MHz
,
2620
*
MHz
,
2690
*
MHz
,
FDD
},
{
8
,
880
*
MHz
,
915
*
MHz
,
925
*
MHz
,
960
*
MHz
,
FDD
},
{
9
,
1749900
*
KHz
,
1784900
*
KHz
,
1844900
*
KHz
,
1879900
*
KHz
,
FDD
},
{
10
,
1710
*
MHz
,
1770
*
MHz
,
2110
*
MHz
,
2170
*
MHz
,
FDD
},
{
11
,
1427900
*
KHz
,
1452900
*
KHz
,
1475900
*
KHz
,
1500900
*
KHz
,
FDD
},
{
12
,
698
*
MHz
,
716
*
MHz
,
728
*
MHz
,
746
*
MHz
,
FDD
},
{
13
,
777
*
MHz
,
787
*
MHz
,
746
*
MHz
,
756
*
MHz
,
FDD
},
{
14
,
788
*
MHz
,
798
*
MHz
,
758
*
MHz
,
768
*
MHz
,
FDD
},
{
17
,
704
*
MHz
,
716
*
MHz
,
734
*
MHz
,
746
*
MHz
,
FDD
},
{
20
,
832
*
MHz
,
862
*
MHz
,
791
*
MHz
,
821
*
MHz
,
FDD
},
{
22
,
3510
*
MHz
,
3590
*
MHz
,
3410
*
MHz
,
3490
*
MHz
,
FDD
},
{
33
,
1900
*
MHz
,
1920
*
MHz
,
1900
*
MHz
,
1920
*
MHz
,
TDD
},
{
34
,
2010
*
MHz
,
2025
*
MHz
,
2010
*
MHz
,
2025
*
MHz
,
TDD
},
{
35
,
1850
*
MHz
,
1910
*
MHz
,
1850
*
MHz
,
1910
*
MHz
,
TDD
},
{
36
,
1930
*
MHz
,
1990
*
MHz
,
1930
*
MHz
,
1990
*
MHz
,
TDD
},
{
37
,
1910
*
MHz
,
1930
*
MHz
,
1910
*
MHz
,
1930
*
MHz
,
TDD
},
{
38
,
2570
*
MHz
,
2620
*
MHz
,
2570
*
MHz
,
2630
*
MHz
,
TDD
},
{
39
,
1880
*
MHz
,
1920
*
MHz
,
1880
*
MHz
,
1920
*
MHz
,
TDD
},
{
40
,
2300
*
MHz
,
2400
*
MHz
,
2300
*
MHz
,
2400
*
MHz
,
TDD
},
{
41
,
2496
*
MHz
,
2690
*
MHz
,
2496
*
MHz
,
2690
*
MHz
,
TDD
},
{
42
,
3400
*
MHz
,
3600
*
MHz
,
3400
*
MHz
,
3600
*
MHz
,
TDD
},
{
43
,
3600
*
MHz
,
3800
*
MHz
,
3600
*
MHz
,
3800
*
MHz
,
TDD
},
{
44
,
703
*
MHz
,
803
*
MHz
,
703
*
MHz
,
803
*
MHz
,
TDD
},
{
1
,
1920
*
MHz
,
1980
*
MHz
,
2110
*
MHz
,
2170
*
MHz
,
FDD
},
{
2
,
1850
*
MHz
,
1910
*
MHz
,
1930
*
MHz
,
1990
*
MHz
,
FDD
},
{
3
,
1710
*
MHz
,
1785
*
MHz
,
1805
*
MHz
,
1880
*
MHz
,
FDD
},
{
4
,
1710
*
MHz
,
1755
*
MHz
,
2110
*
MHz
,
2155
*
MHz
,
FDD
},
{
5
,
824
*
MHz
,
849
*
MHz
,
869
*
MHz
,
894
*
MHz
,
FDD
},
{
6
,
830
*
MHz
,
840
*
MHz
,
875
*
MHz
,
885
*
MHz
,
FDD
},
{
7
,
2500
*
MHz
,
2570
*
MHz
,
2620
*
MHz
,
2690
*
MHz
,
FDD
},
{
8
,
880
*
MHz
,
915
*
MHz
,
925
*
MHz
,
960
*
MHz
,
FDD
},
{
9
,
1749900
*
KHz
,
1784900
*
KHz
,
1844900
*
KHz
,
1879900
*
KHz
,
FDD
},
{
10
,
1710
*
MHz
,
1770
*
MHz
,
2110
*
MHz
,
2170
*
MHz
,
FDD
},
{
11
,
1427900
*
KHz
,
1452900
*
KHz
,
1475900
*
KHz
,
1500900
*
KHz
,
FDD
},
{
12
,
698
*
MHz
,
716
*
MHz
,
728
*
MHz
,
746
*
MHz
,
FDD
},
{
13
,
777
*
MHz
,
787
*
MHz
,
746
*
MHz
,
756
*
MHz
,
FDD
},
{
14
,
788
*
MHz
,
798
*
MHz
,
758
*
MHz
,
768
*
MHz
,
FDD
},
{
17
,
704
*
MHz
,
716
*
MHz
,
734
*
MHz
,
746
*
MHz
,
FDD
},
{
20
,
832
*
MHz
,
862
*
MHz
,
791
*
MHz
,
821
*
MHz
,
FDD
},
{
22
,
3510
*
MHz
,
3590
*
MHz
,
3410
*
MHz
,
3490
*
MHz
,
FDD
},
{
33
,
1900
*
MHz
,
1920
*
MHz
,
1900
*
MHz
,
1920
*
MHz
,
TDD
},
{
34
,
2010
*
MHz
,
2025
*
MHz
,
2010
*
MHz
,
2025
*
MHz
,
TDD
},
{
35
,
1850
*
MHz
,
1910
*
MHz
,
1850
*
MHz
,
1910
*
MHz
,
TDD
},
{
36
,
1930
*
MHz
,
1990
*
MHz
,
1930
*
MHz
,
1990
*
MHz
,
TDD
},
{
37
,
1910
*
MHz
,
1930
*
MHz
,
1910
*
MHz
,
1930
*
MHz
,
TDD
},
{
38
,
2570
*
MHz
,
2620
*
MHz
,
2570
*
MHz
,
2630
*
MHz
,
TDD
},
{
39
,
1880
*
MHz
,
1920
*
MHz
,
1880
*
MHz
,
1920
*
MHz
,
TDD
},
{
40
,
2300
*
MHz
,
2400
*
MHz
,
2300
*
MHz
,
2400
*
MHz
,
TDD
},
{
41
,
2496
*
MHz
,
2690
*
MHz
,
2496
*
MHz
,
2690
*
MHz
,
TDD
},
{
42
,
3400
*
MHz
,
3600
*
MHz
,
3400
*
MHz
,
3600
*
MHz
,
TDD
},
{
43
,
3600
*
MHz
,
3800
*
MHz
,
3600
*
MHz
,
3800
*
MHz
,
TDD
},
{
44
,
703
*
MHz
,
803
*
MHz
,
703
*
MHz
,
803
*
MHz
,
TDD
},
};
PHY_VARS_NR_UE
*
init_nr_ue_vars
(
NR_DL_FRAME_PARMS
*
frame_parms
,
uint8_t
UE_id
,
uint8_t
abstraction_flag
)
PHY_VARS_NR_UE
*
init_nr_ue_vars
(
NR_DL_FRAME_PARMS
*
frame_parms
,
uint8_t
UE_id
,
uint8_t
abstraction_flag
)
{
PHY_VARS_NR_UE
*
ue
;
PHY_VARS_NR_UE
*
ue
;
if
(
frame_parms
!=
(
NR_DL_FRAME_PARMS
*
)
NULL
)
{
// if we want to give initial frame parms, allocate the PHY_VARS_UE structure and put them in
ue
=
(
PHY_VARS_NR_UE
*
)
malloc
(
sizeof
(
PHY_VARS_NR_UE
));
memset
(
ue
,
0
,
sizeof
(
PHY_VARS_NR_UE
));
memcpy
(
&
(
ue
->
frame_parms
),
frame_parms
,
sizeof
(
NR_DL_FRAME_PARMS
));
}
else
ue
=
PHY_vars_UE_g
[
UE_id
][
0
];
}
else
ue
=
PHY_vars_UE_g
[
UE_id
][
0
];
ue
->
Mod_id
=
UE_id
;
ue
->
mac_enabled
=
1
;
...
...
@@ -227,97 +225,99 @@ PHY_VARS_NR_UE* init_nr_ue_vars(NR_DL_FRAME_PARMS *frame_parms,
init_nr_ue_signal
(
ue
,
1
,
abstraction_flag
);
// intialize transport
init_nr_ue_transport
(
ue
,
abstraction_flag
);
return
(
ue
);
}
void
init_thread
(
int
sched_runtime
,
int
sched_deadline
,
int
sched_fifo
,
cpu_set_t
*
cpuset
,
char
*
name
)
{
void
init_thread
(
int
sched_runtime
,
int
sched_deadline
,
int
sched_fifo
,
cpu_set_t
*
cpuset
,
char
*
name
)
{
#ifdef DEADLINE_SCHEDULER
if
(
sched_runtime
!=
0
)
{
struct
sched_attr
attr
=
{
0
};
attr
.
size
=
sizeof
(
attr
);
attr
.
sched_policy
=
SCHED_DEADLINE
;
attr
.
sched_runtime
=
sched_runtime
;
attr
.
sched_deadline
=
sched_deadline
;
attr
.
sched_period
=
0
;
AssertFatal
(
sched_setattr
(
0
,
&
attr
,
0
)
==
0
,
"[SCHED] %s thread: sched_setattr failed %s
\n
"
,
name
,
strerror
(
errno
));
LOG_I
(
HW
,
"[SCHED][eNB] %s deadline thread %lu started on CPU %d
\n
"
,
name
,
(
unsigned
long
)
gettid
(),
sched_getcpu
());
}
if
(
sched_runtime
!=
0
)
{
struct
sched_attr
attr
=
{
0
};
attr
.
size
=
sizeof
(
attr
);
attr
.
sched_policy
=
SCHED_DEADLINE
;
attr
.
sched_runtime
=
sched_runtime
;
attr
.
sched_deadline
=
sched_deadline
;
attr
.
sched_period
=
0
;
AssertFatal
(
sched_setattr
(
0
,
&
attr
,
0
)
==
0
,
"[SCHED] %s thread: sched_setattr failed %s
\n
"
,
name
,
strerror
(
errno
));
LOG_I
(
HW
,
"[SCHED][eNB] %s deadline thread %lu started on CPU %d
\n
"
,
name
,
(
unsigned
long
)
gettid
(),
sched_getcpu
());
}
#else
if
(
CPU_COUNT
(
cpuset
)
>
0
)
AssertFatal
(
0
==
pthread_setaffinity_np
(
pthread_self
(),
sizeof
(
cpu_set_t
),
cpuset
),
""
);
struct
sched_param
sp
;
sp
.
sched_priority
=
sched_fifo
;
AssertFatal
(
pthread_setschedparam
(
pthread_self
(),
SCHED_FIFO
,
&
sp
)
==
0
,
"Can't set thread priority, Are you root?
\n
"
);
/* Check the actual affinity mask assigned to the thread */
cpu_set_t
*
cset
=
CPU_ALLOC
(
CPU_SETSIZE
);
if
(
0
==
pthread_getaffinity_np
(
pthread_self
(),
CPU_ALLOC_SIZE
(
CPU_SETSIZE
),
cset
))
{
char
txt
[
512
]
=
{
0
};
for
(
int
j
=
0
;
j
<
CPU_SETSIZE
;
j
++
)
if
(
CPU_ISSET
(
j
,
cset
))
sprintf
(
txt
+
strlen
(
txt
),
" %d "
,
j
);
printf
(
"CPU Affinity of thread %s is %s
\n
"
,
name
,
txt
);
}
CPU_FREE
(
cset
);
#endif
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall
(
MCL_CURRENT
|
MCL_FUTURE
);
pthread_setname_np
(
pthread_self
(),
name
);
// LTS: this sync stuff should be wrong
printf
(
"waiting for sync (%s)
\n
"
,
name
);
pthread_mutex_lock
(
&
sync_mutex
);
printf
(
"Locked sync_mutex, waiting (%s)
\n
"
,
name
);
while
(
sync_var
<
0
)
pthread_cond_wait
(
&
sync_cond
,
&
sync_mutex
);
pthread_mutex_unlock
(
&
sync_mutex
);
printf
(
"started %s as PID: %ld
\n
"
,
name
,
gettid
());
if
(
CPU_COUNT
(
cpuset
)
>
0
)
AssertFatal
(
0
==
pthread_setaffinity_np
(
pthread_self
(),
sizeof
(
cpu_set_t
),
cpuset
),
""
);
struct
sched_param
sp
;
sp
.
sched_priority
=
sched_fifo
;
AssertFatal
(
pthread_setschedparam
(
pthread_self
(),
SCHED_FIFO
,
&
sp
)
==
0
,
"Can't set thread priority, Are you root?
\n
"
);
/* Check the actual affinity mask assigned to the thread */
cpu_set_t
*
cset
=
CPU_ALLOC
(
CPU_SETSIZE
);
if
(
0
==
pthread_getaffinity_np
(
pthread_self
(),
CPU_ALLOC_SIZE
(
CPU_SETSIZE
),
cset
))
{
char
txt
[
512
]
=
{
0
};
for
(
int
j
=
0
;
j
<
CPU_SETSIZE
;
j
++
)
if
(
CPU_ISSET
(
j
,
cset
))
sprintf
(
txt
+
strlen
(
txt
),
" %d "
,
j
);
printf
(
"CPU Affinity of thread %s is %s
\n
"
,
name
,
txt
);
}
CPU_FREE
(
cset
);
#endif
// Lock memory from swapping. This is a process wide call (not constraint to this thread).
mlockall
(
MCL_CURRENT
|
MCL_FUTURE
);
pthread_setname_np
(
pthread_self
(),
name
);
// LTS: this sync stuff should be wrong
printf
(
"waiting for sync (%s)
\n
"
,
name
);
pthread_mutex_lock
(
&
sync_mutex
);
printf
(
"Locked sync_mutex, waiting (%s)
\n
"
,
name
);
while
(
sync_var
<
0
)
pthread_cond_wait
(
&
sync_cond
,
&
sync_mutex
);
pthread_mutex_unlock
(
&
sync_mutex
);
printf
(
"started %s as PID: %ld
\n
"
,
name
,
gettid
());
}
void
init_UE
(
int
nb_inst
)
{
int
inst
;
NR_UE_MAC_INST_t
*
mac_inst
;
for
(
inst
=
0
;
inst
<
nb_inst
;
inst
++
)
{
// UE->rfdevice.type = NONE_DEV;
//PHY_VARS_NR_UE *UE = PHY_vars_UE_g[inst][0];
LOG_I
(
PHY
,
"Initializing memory for UE instance %d (%p)
\n
"
,
inst
,
PHY_vars_UE_g
[
inst
]);
PHY_vars_UE_g
[
inst
][
0
]
=
init_nr_ue_vars
(
NULL
,
inst
,
0
);
PHY_VARS_NR_UE
*
UE
=
PHY_vars_UE_g
[
inst
][
0
];
AssertFatal
((
UE
->
if_inst
=
nr_ue_if_module_init
(
inst
))
!=
NULL
,
"can not initial IF module
\n
"
);
nr_l3_init_ue
();
nr_l2_init_ue
();
mac_inst
=
get_mac_inst
(
0
);
mac_inst
->
if_module
=
UE
->
if_inst
;
UE
->
if_inst
->
scheduled_response
=
nr_ue_scheduled_response
;
UE
->
if_inst
->
phy_config_request
=
nr_ue_phy_config_request
;
LOG_I
(
PHY
,
"Intializing UE Threads for instance %d (%p,%p)...
\n
"
,
inst
,
PHY_vars_UE_g
[
inst
],
PHY_vars_UE_g
[
inst
][
0
]);
//init_UE_threads(inst);
//UE = PHY_vars_UE_g[inst][0];
AssertFatal
(
0
==
pthread_create
(
&
UE
->
proc
.
pthread_ue
,
&
UE
->
proc
.
attr_ue
,
UE_thread
,
(
void
*
)
UE
),
""
);
}
void
init_UE
(
int
nb_inst
)
{
int
inst
;
NR_UE_MAC_INST_t
*
mac_inst
;
for
(
inst
=
0
;
inst
<
nb_inst
;
inst
++
)
{
// UE->rfdevice.type = NONE_DEV;
//PHY_VARS_NR_UE *UE = PHY_vars_UE_g[inst][0];
LOG_I
(
PHY
,
"Initializing memory for UE instance %d (%p)
\n
"
,
inst
,
PHY_vars_UE_g
[
inst
]);
PHY_vars_UE_g
[
inst
][
0
]
=
init_nr_ue_vars
(
NULL
,
inst
,
0
);
PHY_VARS_NR_UE
*
UE
=
PHY_vars_UE_g
[
inst
][
0
];
AssertFatal
((
UE
->
if_inst
=
nr_ue_if_module_init
(
inst
))
!=
NULL
,
"can not initial IF module
\n
"
);
nr_l3_init_ue
();
nr_l2_init_ue
();
mac_inst
=
get_mac_inst
(
0
);
mac_inst
->
if_module
=
UE
->
if_inst
;
UE
->
if_inst
->
scheduled_response
=
nr_ue_scheduled_response
;
UE
->
if_inst
->
phy_config_request
=
nr_ue_phy_config_request
;
LOG_I
(
PHY
,
"Intializing UE Threads for instance %d (%p,%p)...
\n
"
,
inst
,
PHY_vars_UE_g
[
inst
],
PHY_vars_UE_g
[
inst
][
0
]);
//init_UE_threads(inst);
//UE = PHY_vars_UE_g[inst][0];
AssertFatal
(
0
==
pthread_create
(
&
UE
->
proc
.
pthread_ue
,
&
UE
->
proc
.
attr_ue
,
UE_thread
,
(
void
*
)
UE
),
""
);
}
printf
(
"UE threads created by %ld
\n
"
,
gettid
());
#if 0
#if defined(ENABLE_USE_MME)
extern volatile int start_UE;
while (start_UE == 0) {
sleep(1);
}
#endif
#endif
}
...
...
@@ -329,290 +329,344 @@ void init_UE(int nb_inst)
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static
void
*
UE_thread_synch
(
void
*
arg
)
{
static
int
__thread
UE_thread_synch_retval
;
int
i
,
hw_slot_offset
;
PHY_VARS_NR_UE
*
UE
=
(
PHY_VARS_NR_UE
*
)
arg
;
int
current_band
=
0
;
int
current_offset
=
0
;
sync_mode_t
sync_mode
=
pbch
;
int
CC_id
=
UE
->
CC_id
;
int
freq_offset
=
0
;
char
threadname
[
128
];
cpu_set_t
cpuset
;
CPU_ZERO
(
&
cpuset
);
if
(
threads
.
sync
!=
-
1
)
CPU_SET
(
threads
.
sync
,
&
cpuset
);
// this thread priority must be lower that the main acquisition thread
sprintf
(
threadname
,
"sync UE %d"
,
UE
->
Mod_id
);
init_thread
(
100000
,
500000
,
FIFO_PRIORITY
-
1
,
&
cpuset
,
threadname
);
UE
->
is_synchronized
=
0
;
if
(
UE
->
UE_scan
==
0
)
{
int
ind
;
for
(
ind
=
0
;
ind
<
sizeof
(
eutra_bands
)
/
sizeof
(
eutra_bands
[
0
]);
ind
++
)
{
current_band
=
eutra_bands
[
ind
].
band
;
LOG_D
(
PHY
,
"Scanning band %d, dl_min %"
PRIu32
", ul_min %"
PRIu32
"
\n
"
,
current_band
,
eutra_bands
[
ind
].
dl_min
,
eutra_bands
[
ind
].
ul_min
);
if
(
eutra_bands
[
ind
].
dl_min
<=
downlink_frequency
[
0
][
0
]
&&
eutra_bands
[
ind
].
dl_max
>=
downlink_frequency
[
0
][
0
]
)
{
for
(
i
=
0
;
i
<
4
;
i
++
)
uplink_frequency_offset
[
CC_id
][
i
]
=
eutra_bands
[
ind
].
ul_min
-
eutra_bands
[
ind
].
dl_min
;
break
;
}
}
AssertFatal
(
ind
<
sizeof
(
eutra_bands
)
/
sizeof
(
eutra_bands
[
0
]),
"Can't find EUTRA band for frequency"
);
LOG_I
(
PHY
,
"[SCHED][UE] Check absolute frequency DL %"
PRIu32
", UL %"
PRIu32
" (oai_exit %d, rx_num_channels %d)
\n
"
,
downlink_frequency
[
0
][
0
],
downlink_frequency
[
0
][
0
]
+
uplink_frequency_offset
[
0
][
0
],
oai_exit
,
openair0_cfg
[
0
].
rx_num_channels
);
static
int
__thread
UE_thread_synch_retval
;
int
i
,
hw_slot_offset
;
PHY_VARS_NR_UE
*
UE
=
(
PHY_VARS_NR_UE
*
)
arg
;
int
current_band
=
0
;
int
current_offset
=
0
;
sync_mode_t
sync_mode
=
pbch
;
int
CC_id
=
UE
->
CC_id
;
int
freq_offset
=
0
;
char
threadname
[
128
];
cpu_set_t
cpuset
;
CPU_ZERO
(
&
cpuset
);
if
(
threads
.
sync
!=
-
1
)
CPU_SET
(
threads
.
sync
,
&
cpuset
);
// this thread priority must be lower that the main acquisition thread
sprintf
(
threadname
,
"sync UE %d"
,
UE
->
Mod_id
);
init_thread
(
100000
,
500000
,
FIFO_PRIORITY
-
1
,
&
cpuset
,
threadname
);
UE
->
is_synchronized
=
0
;
if
(
UE
->
UE_scan
==
0
)
{
int
ind
;
for
(
ind
=
0
;
ind
<
sizeof
(
eutra_bands
)
/
sizeof
(
eutra_bands
[
0
]);
ind
++
)
{
current_band
=
eutra_bands
[
ind
].
band
;
LOG_D
(
PHY
,
"Scanning band %d, dl_min %"
PRIu32
", ul_min %"
PRIu32
"
\n
"
,
current_band
,
eutra_bands
[
ind
].
dl_min
,
eutra_bands
[
ind
].
ul_min
);
if
(
eutra_bands
[
ind
].
dl_min
<=
downlink_frequency
[
0
][
0
]
&&
eutra_bands
[
ind
].
dl_max
>=
downlink_frequency
[
0
][
0
]
)
{
for
(
i
=
0
;
i
<
4
;
i
++
)
uplink_frequency_offset
[
CC_id
][
i
]
=
eutra_bands
[
ind
].
ul_min
-
eutra_bands
[
ind
].
dl_min
;
break
;
}
}
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
uplink_frequency_offset
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
autocal
[
UE
->
rf_map
.
chain
+
i
]
=
1
;
if
(
uplink_frequency_offset
[
CC_id
][
i
]
!=
0
)
//
openair0_cfg
[
UE
->
rf_map
.
card
].
duplex_mode
=
duplex_mode_FDD
;
else
//FDD
openair0_cfg
[
UE
->
rf_map
.
card
].
duplex_mode
=
duplex_mode_TDD
;
}
sync_mode
=
pbch
;
AssertFatal
(
ind
<
sizeof
(
eutra_bands
)
/
sizeof
(
eutra_bands
[
0
]),
"Can't find EUTRA band for frequency"
);
LOG_I
(
PHY
,
"[SCHED][UE] Check absolute frequency DL %"
PRIu32
", UL %"
PRIu32
" (oai_exit %d, rx_num_channels %d)
\n
"
,
downlink_frequency
[
0
][
0
],
downlink_frequency
[
0
][
0
]
+
uplink_frequency_offset
[
0
][
0
],
oai_exit
,
openair0_cfg
[
0
].
rx_num_channels
);
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
uplink_frequency_offset
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
autocal
[
UE
->
rf_map
.
chain
+
i
]
=
1
;
if
(
uplink_frequency_offset
[
CC_id
][
i
]
!=
0
)
//
openair0_cfg
[
UE
->
rf_map
.
card
].
duplex_mode
=
duplex_mode_FDD
;
else
//FDD
openair0_cfg
[
UE
->
rf_map
.
card
].
duplex_mode
=
duplex_mode_TDD
;
}
}
else
{
current_band
=
0
;
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
downlink_frequency
[
UE
->
rf_map
.
card
][
UE
->
rf_map
.
chain
+
i
]
=
bands_to_scan
.
band_info
[
CC_id
].
dl_min
;
uplink_frequency_offset
[
UE
->
rf_map
.
card
][
UE
->
rf_map
.
chain
+
i
]
=
bands_to_scan
.
band_info
[
CC_id
].
ul_min
-
bands_to_scan
.
band_info
[
CC_id
].
dl_min
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
uplink_frequency_offset
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_gain
[
UE
->
rf_map
.
chain
+
i
]
=
UE
->
rx_total_gain_dB
;
}
sync_mode
=
pbch
;
}
else
{
current_band
=
0
;
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
downlink_frequency
[
UE
->
rf_map
.
card
][
UE
->
rf_map
.
chain
+
i
]
=
bands_to_scan
.
band_info
[
CC_id
].
dl_min
;
uplink_frequency_offset
[
UE
->
rf_map
.
card
][
UE
->
rf_map
.
chain
+
i
]
=
bands_to_scan
.
band_info
[
CC_id
].
ul_min
-
bands_to_scan
.
band_info
[
CC_id
].
dl_min
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
uplink_frequency_offset
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_gain
[
UE
->
rf_map
.
chain
+
i
]
=
UE
->
rx_total_gain_dB
;
}
}
// AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");
// AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");
while
(
oai_exit
==
0
)
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
while
(
UE
->
proc
.
instance_cnt_synch
<
0
)
// the thread waits here most of the time
pthread_cond_wait
(
&
UE
->
proc
.
cond_synch
,
&
UE
->
proc
.
mutex_synch
);
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
while
(
oai_exit
==
0
)
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
switch
(
sync_mode
)
{
case
pss
:
LOG_I
(
PHY
,
"[SCHED][UE] Scanning band %d (%d), freq %u
\n
"
,
bands_to_scan
.
band_info
[
current_band
].
band
,
current_band
,
bands_to_scan
.
band_info
[
current_band
].
dl_min
+
current_offset
);
//lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
current_offset
+=
20000000
;
// increase by 20 MHz
while
(
UE
->
proc
.
instance_cnt_synch
<
0
)
// the thread waits here most of the time
pthread_cond_wait
(
&
UE
->
proc
.
cond_synch
,
&
UE
->
proc
.
mutex_synch
);
if
(
current_offset
>
bands_to_scan
.
band_info
[
current_band
].
dl_max
-
bands_to_scan
.
band_info
[
current_band
].
dl_min
)
{
current_band
++
;
current_offset
=
0
;
}
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
if
(
current_band
==
bands_to_scan
.
nbands
)
{
current_band
=
0
;
oai_exit
=
1
;
}
switch
(
sync_mode
)
{
case
pss
:
LOG_I
(
PHY
,
"[SCHED][UE] Scanning band %d (%d), freq %u
\n
"
,
bands_to_scan
.
band_info
[
current_band
].
band
,
current_band
,
bands_to_scan
.
band_info
[
current_band
].
dl_min
+
current_offset
);
//lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
current_offset
+=
20000000
;
// increase by 20 MHz
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
downlink_frequency
[
UE
->
rf_map
.
card
][
UE
->
rf_map
.
chain
+
i
]
=
bands_to_scan
.
band_info
[
current_band
].
dl_min
+
current_offset
;
uplink_frequency_offset
[
UE
->
rf_map
.
card
][
UE
->
rf_map
.
chain
+
i
]
=
bands_to_scan
.
band_info
[
current_band
].
ul_min
-
bands_to_scan
.
band_info
[
0
].
dl_min
+
current_offset
;
if
(
current_offset
>
bands_to_scan
.
band_info
[
current_band
].
dl_max
-
bands_to_scan
.
band_info
[
current_band
].
dl_min
)
{
current_band
++
;
current_offset
=
0
;
}
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
uplink_frequency_offset
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_gain
[
UE
->
rf_map
.
chain
+
i
]
=
UE
->
rx_total_gain_dB
;
if
(
UE
->
UE_scan_carrier
)
{
openair0_cfg
[
UE
->
rf_map
.
card
].
autocal
[
UE
->
rf_map
.
chain
+
i
]
=
1
;
}
if
(
current_band
==
bands_to_scan
.
nbands
)
{
current_band
=
0
;
oai_exit
=
1
;
}
}
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
downlink_frequency
[
UE
->
rf_map
.
card
][
UE
->
rf_map
.
chain
+
i
]
=
bands_to_scan
.
band_info
[
current_band
].
dl_min
+
current_offset
;
uplink_frequency_offset
[
UE
->
rf_map
.
card
][
UE
->
rf_map
.
chain
+
i
]
=
bands_to_scan
.
band_info
[
current_band
].
ul_min
-
bands_to_scan
.
band_info
[
0
].
dl_min
+
current_offset
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
uplink_frequency_offset
[
CC_id
][
i
];
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_gain
[
UE
->
rf_map
.
chain
+
i
]
=
UE
->
rx_total_gain_dB
;
break
;
if
(
UE
->
UE_scan_carrier
)
{
openair0_cfg
[
UE
->
rf_map
.
card
].
autocal
[
UE
->
rf_map
.
chain
+
i
]
=
1
;
}
}
case
pbch
:
break
;
case
pbch
:
#if DISABLE_LOG_X
printf
(
"[UE thread Synch] Running Initial Synch (mode %d)
\n
"
,
UE
->
mode
);
printf
(
"[UE thread Synch] Running Initial Synch (mode %d)
\n
"
,
UE
->
mode
);
#else
LOG_I
(
PHY
,
"[UE thread Synch] Running Initial Synch (mode %d)
\n
"
,
UE
->
mode
);
LOG_I
(
PHY
,
"[UE thread Synch] Running Initial Synch (mode %d)
\n
"
,
UE
->
mode
);
#endif
if
(
nr_initial_sync
(
UE
,
UE
->
mode
)
==
0
)
{
//write_output("txdata_sym.m", "txdata_sym", UE->common_vars.rxdata[0], (10*UE->frame_parms.samples_per_slot), 1, 1);
freq_offset
=
UE
->
common_vars
.
freq_offset
;
// frequency offset computed with pss in initial sync
hw_slot_offset
=
(
UE
->
rx_offset
<<
1
)
/
UE
->
frame_parms
.
samples_per_slot
;
printf
(
"Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %d (DL %u, UL %u), UE_scan_carrier %d
\n
"
,
hw_slot_offset
,
freq_offset
,
UE
->
rx_total_gain_dB
,
downlink_frequency
[
0
][
0
]
+
freq_offset
,
downlink_frequency
[
0
][
0
]
+
uplink_frequency_offset
[
0
][
0
]
+
freq_offset
,
UE
->
UE_scan_carrier
);
// rerun with new cell parameters and frequency-offset
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_gain
[
UE
->
rf_map
.
chain
+
i
]
=
UE
->
rx_total_gain_dB
;
//-USRP_GAIN_OFFSET;
if
(
freq_offset
>=
0
)
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
+=
abs
(
freq_offset
);
else
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
-=
abs
(
freq_offset
);
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
+
uplink_frequency_offset
[
CC_id
][
i
];
downlink_frequency
[
CC_id
][
i
]
=
openair0_cfg
[
CC_id
].
rx_freq
[
i
];
}
// reconfigure for potentially different bandwidth
switch
(
UE
->
frame_parms
.
N_RB_DL
)
{
case
6
:
openair0_cfg
[
UE
->
rf_map
.
card
].
sample_rate
=
1.92e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_bw
=
.96e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_bw
=
.96e6
;
// openair0_cfg[0].rx_gain[0] -= 12;
break
;
case
25
:
openair0_cfg
[
UE
->
rf_map
.
card
].
sample_rate
=
7.68e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_bw
=
2.5e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_bw
=
2.5e6
;
// openair0_cfg[0].rx_gain[0] -= 6;
break
;
case
50
:
openair0_cfg
[
UE
->
rf_map
.
card
].
sample_rate
=
15.36e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_bw
=
5.0e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_bw
=
5.0e6
;
// openair0_cfg[0].rx_gain[0] -= 3;
break
;
case
100
:
openair0_cfg
[
UE
->
rf_map
.
card
].
sample_rate
=
30.72e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_bw
=
10.0e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_bw
=
10.0e6
;
// openair0_cfg[0].rx_gain[0] -= 0;
break
;
}
if
(
UE
->
mode
!=
loop_through_memory
)
{
UE
->
rfdevice
.
trx_set_freq_func
(
&
UE
->
rfdevice
,
&
openair0_cfg
[
0
],
0
);
//UE->rfdevice.trx_set_gains_func(&openair0,&openair0_cfg[0]);
//UE->rfdevice.trx_stop_func(&UE->rfdevice);
// sleep(1);
//nr_init_frame_parms_ue(&UE->frame_parms);
/*if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) {
LOG_E(HW,"Could not start the device\n");
oai_exit=1;
}*/
}
if
(
UE
->
UE_scan_carrier
==
1
)
{
UE
->
UE_scan_carrier
=
0
;
if
(
nr_initial_sync
(
UE
,
UE
->
mode
)
==
0
)
{
//write_output("txdata_sym.m", "txdata_sym", UE->common_vars.rxdata[0], (10*UE->frame_parms.samples_per_slot), 1, 1);
freq_offset
=
UE
->
common_vars
.
freq_offset
;
// frequency offset computed with pss in initial sync
hw_slot_offset
=
(
UE
->
rx_offset
<<
1
)
/
UE
->
frame_parms
.
samples_per_slot
;
printf
(
"Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %d (DL %u, UL %u), UE_scan_carrier %d
\n
"
,
hw_slot_offset
,
freq_offset
,
UE
->
rx_total_gain_dB
,
downlink_frequency
[
0
][
0
]
+
freq_offset
,
downlink_frequency
[
0
][
0
]
+
uplink_frequency_offset
[
0
][
0
]
+
freq_offset
,
UE
->
UE_scan_carrier
);
// rerun with new cell parameters and frequency-offset
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_gain
[
UE
->
rf_map
.
chain
+
i
]
=
UE
->
rx_total_gain_dB
;
//-USRP_GAIN_OFFSET;
if
(
freq_offset
>=
0
)
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
+=
abs
(
freq_offset
);
else
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
-=
abs
(
freq_offset
);
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
+
uplink_frequency_offset
[
CC_id
][
i
];
downlink_frequency
[
CC_id
][
i
]
=
openair0_cfg
[
CC_id
].
rx_freq
[
i
];
}
// reconfigure for potentially different bandwidth
switch
(
UE
->
frame_parms
.
N_RB_DL
)
{
case
6
:
openair0_cfg
[
UE
->
rf_map
.
card
].
sample_rate
=
1.92e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_bw
=
.96e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_bw
=
.96e6
;
// openair0_cfg[0].rx_gain[0] -= 12;
break
;
case
25
:
openair0_cfg
[
UE
->
rf_map
.
card
].
sample_rate
=
7.68e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_bw
=
2.5e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_bw
=
2.5e6
;
// openair0_cfg[0].rx_gain[0] -= 6;
break
;
case
50
:
openair0_cfg
[
UE
->
rf_map
.
card
].
sample_rate
=
15.36e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_bw
=
5.0e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_bw
=
5.0e6
;
// openair0_cfg[0].rx_gain[0] -= 3;
break
;
case
100
:
openair0_cfg
[
UE
->
rf_map
.
card
].
sample_rate
=
30.72e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_bw
=
10.0e6
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_bw
=
10.0e6
;
// openair0_cfg[0].rx_gain[0] -= 0;
break
;
}
if
(
UE
->
mode
!=
loop_through_memory
)
{
UE
->
rfdevice
.
trx_set_freq_func
(
&
UE
->
rfdevice
,
&
openair0_cfg
[
0
],
0
);
//UE->rfdevice.trx_set_gains_func(&openair0,&openair0_cfg[0]);
//UE->rfdevice.trx_stop_func(&UE->rfdevice);
// sleep(1);
//nr_init_frame_parms_ue(&UE->frame_parms);
/*if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) {
LOG_E(HW,"Could not start the device\n");
oai_exit=1;
}*/
}
if
(
UE
->
UE_scan_carrier
==
1
)
{
UE
->
UE_scan_carrier
=
0
;
}
else
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
UE
->
is_synchronized
=
1
;
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
if
(
UE
->
mode
==
rx_dump_frame
)
{
FILE
*
fd
;
if
((
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
&
1
)
==
0
)
{
// this guarantees SIB1 is present
if
((
fd
=
fopen
(
"rxsig_frame0.dat"
,
"w"
))
!=
NULL
)
{
fwrite
((
void
*
)
&
UE
->
common_vars
.
rxdata
[
0
][
0
],
sizeof
(
int32_t
),
10
*
UE
->
frame_parms
.
samples_per_subframe
,
fd
);
LOG_I
(
PHY
,
"Dummping Frame ... bye bye
\n
"
);
fclose
(
fd
);
exit
(
0
);
}
else
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
UE
->
is_synchronized
=
1
;
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
if
(
UE
->
mode
==
rx_dump_frame
)
{
FILE
*
fd
;
if
((
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
&
1
)
==
0
)
{
// this guarantees SIB1 is present
if
((
fd
=
fopen
(
"rxsig_frame0.dat"
,
"w"
))
!=
NULL
)
{
fwrite
((
void
*
)
&
UE
->
common_vars
.
rxdata
[
0
][
0
],
sizeof
(
int32_t
),
10
*
UE
->
frame_parms
.
samples_per_subframe
,
fd
);
LOG_I
(
PHY
,
"Dummping Frame ... bye bye
\n
"
);
fclose
(
fd
);
exit
(
0
);
}
else
{
LOG_E
(
PHY
,
"Cannot open file for writing
\n
"
);
exit
(
0
);
}
}
else
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
UE
->
is_synchronized
=
0
;
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
}
}
}
}
else
{
// initial sync failed
// calculate new offset and try again
if
(
UE
->
UE_scan_carrier
==
1
)
{
if
(
freq_offset
>=
0
)
freq_offset
+=
100
;
freq_offset
*=
-
1
;
if
(
abs
(
freq_offset
)
>
7500
)
{
LOG_I
(
PHY
,
"[initial_sync] No cell synchronization found, abandoning
\n
"
);
FILE
*
fd
;
if
((
fd
=
fopen
(
"rxsig_frame0.dat"
,
"w"
))
!=
NULL
)
{
fwrite
((
void
*
)
&
UE
->
common_vars
.
rxdata
[
0
][
0
],
sizeof
(
int32_t
),
10
*
UE
->
frame_parms
.
samples_per_subframe
,
fd
);
LOG_I
(
PHY
,
"Dummping Frame ... bye bye
\n
"
);
fclose
(
fd
);
exit
(
0
);
}
//mac_xface->macphy_exit("No cell synchronization found, abandoning"); new mac
return
&
UE_thread_synch_retval
;
// not reached
}
LOG_E
(
PHY
,
"Cannot open file for writing
\n
"
);
exit
(
0
);
}
}
else
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
UE
->
is_synchronized
=
0
;
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
}
}
}
}
else
{
// initial sync failed
// calculate new offset and try again
if
(
UE
->
UE_scan_carrier
==
1
)
{
if
(
freq_offset
>=
0
)
freq_offset
+=
100
;
freq_offset
*=
-
1
;
if
(
abs
(
freq_offset
)
>
7500
)
{
LOG_I
(
PHY
,
"[initial_sync] No cell synchronization found, abandoning
\n
"
);
FILE
*
fd
;
if
((
fd
=
fopen
(
"rxsig_frame0.dat"
,
"w"
))
!=
NULL
)
{
fwrite
((
void
*
)
&
UE
->
common_vars
.
rxdata
[
0
][
0
],
sizeof
(
int32_t
),
10
*
UE
->
frame_parms
.
samples_per_subframe
,
fd
);
LOG_I
(
PHY
,
"Dummping Frame ... bye bye
\n
"
);
fclose
(
fd
);
exit
(
0
);
}
//mac_xface->macphy_exit("No cell synchronization found, abandoning"); new mac
return
&
UE_thread_synch_retval
;
// not reached
}
}
#if DISABLE_LOG_X
printf
(
"[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)
\n
"
,
freq_offset
,
UE
->
rx_total_gain_dB
,
downlink_frequency
[
0
][
0
]
+
freq_offset
,
downlink_frequency
[
0
][
0
]
+
uplink_frequency_offset
[
0
][
0
]
+
freq_offset
);
printf
(
"[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)
\n
"
,
freq_offset
,
UE
->
rx_total_gain_dB
,
downlink_frequency
[
0
][
0
]
+
freq_offset
,
downlink_frequency
[
0
][
0
]
+
uplink_frequency_offset
[
0
][
0
]
+
freq_offset
);
#else
LOG_I
(
PHY
,
"[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)
\n
"
,
freq_offset
,
UE
->
rx_total_gain_dB
,
downlink_frequency
[
0
][
0
]
+
freq_offset
,
downlink_frequency
[
0
][
0
]
+
uplink_frequency_offset
[
0
][
0
]
+
freq_offset
);
LOG_I
(
PHY
,
"[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)
\n
"
,
freq_offset
,
UE
->
rx_total_gain_dB
,
downlink_frequency
[
0
][
0
]
+
freq_offset
,
downlink_frequency
[
0
][
0
]
+
uplink_frequency_offset
[
0
][
0
]
+
freq_offset
);
#endif
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
freq_offset
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
uplink_frequency_offset
[
CC_id
][
i
]
+
freq_offset
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_gain
[
UE
->
rf_map
.
chain
+
i
]
=
UE
->
rx_total_gain_dB
;
//-USRP_GAIN_OFFSET;
if
(
UE
->
UE_scan_carrier
==
1
)
openair0_cfg
[
UE
->
rf_map
.
card
].
autocal
[
UE
->
rf_map
.
chain
+
i
]
=
1
;
}
if
(
UE
->
mode
!=
loop_through_memory
)
UE
->
rfdevice
.
trx_set_freq_func
(
&
UE
->
rfdevice
,
&
openair0_cfg
[
0
],
0
);
}
// initial_sync=0
break
;
case
si
:
default:
break
;
}
for
(
i
=
0
;
i
<
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_num_channels
;
i
++
)
{
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
freq_offset
;
openair0_cfg
[
UE
->
rf_map
.
card
].
tx_freq
[
UE
->
rf_map
.
chain
+
i
]
=
downlink_frequency
[
CC_id
][
i
]
+
uplink_frequency_offset
[
CC_id
][
i
]
+
freq_offset
;
openair0_cfg
[
UE
->
rf_map
.
card
].
rx_gain
[
UE
->
rf_map
.
chain
+
i
]
=
UE
->
rx_total_gain_dB
;
//-USRP_GAIN_OFFSET;
if
(
UE
->
UE_scan_carrier
==
1
)
openair0_cfg
[
UE
->
rf_map
.
card
].
autocal
[
UE
->
rf_map
.
chain
+
i
]
=
1
;
}
if
(
UE
->
mode
!=
loop_through_memory
)
UE
->
rfdevice
.
trx_set_freq_func
(
&
UE
->
rfdevice
,
&
openair0_cfg
[
0
],
0
);
}
// initial_sync=0
break
;
case
si
:
default:
break
;
}
#if 0 //defined XFORMS
if (do_forms) {
extern FD_lte_phy_scope_ue *form_ue[NUMBER_OF_UE_MAX];
phy_scope_UE(form_ue[0],
PHY_vars_UE_g[0][0],
0,0,1);
}
#endif
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
// indicate readiness
UE
->
proc
.
instance_cnt_synch
--
;
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
if (do_forms) {
extern FD_lte_phy_scope_ue *form_ue[NUMBER_OF_UE_MAX];
phy_scope_UE(form_ue[0],
PHY_vars_UE_g[0][0],
0,0,1);
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
(
VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_SYNCH
,
0
);
}
// while !oai_exit
#endif
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
// indicate readiness
UE
->
proc
.
instance_cnt_synch
--
;
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
(
VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_SYNCH
,
0
);
}
// while !oai_exit
return
&
UE_thread_synch_retval
;
}
return
&
UE_thread_synch_retval
;
void
processSubframeRX
(
PHY_VARS_NR_UE
*
UE
,
UE_nr_rxtx_proc_t
*
proc
)
{
// Process Rx data for one sub-frame
if
(
slot_select_nr
(
&
UE
->
frame_parms
,
proc
->
frame_tx
,
proc
->
nr_tti_tx
)
&
NR_DOWNLINK_SLOT
)
{
//clean previous FAPI MESSAGE
UE
->
rx_ind
.
number_pdus
=
0
;
UE
->
dci_ind
.
number_of_dcis
=
0
;
//clean previous FAPI MESSAGE
// call L2 for DL_CONFIG (DCI)
UE
->
dcireq
.
module_id
=
UE
->
Mod_id
;
UE
->
dcireq
.
gNB_index
=
0
;
UE
->
dcireq
.
cc_id
=
0
;
UE
->
dcireq
.
frame
=
proc
->
frame_rx
;
UE
->
dcireq
.
slot
=
proc
->
nr_tti_rx
;
nr_ue_dcireq
(
&
UE
->
dcireq
);
//to be replaced with function pointer later
NR_UE_MAC_INST_t
*
UE_mac
=
get_mac_inst
(
0
);
UE_mac
->
scheduled_response
.
dl_config
=
&
UE
->
dcireq
.
dl_config_req
;
UE_mac
->
scheduled_response
.
slot
=
proc
->
nr_tti_rx
;
nr_ue_scheduled_response
(
&
UE_mac
->
scheduled_response
);
//write_output("uerxdata_frame.m", "uerxdata_frame", UE->common_vars.rxdata[0], UE->frame_parms.samples_per_frame, 1, 1);
printf
(
"Processing slot %d
\n
"
,
proc
->
nr_tti_rx
);
#ifdef UE_SLOT_PARALLELISATION
phy_procedures_slot_parallelization_nrUE_RX
(
UE
,
proc
,
0
,
0
,
1
,
UE
->
mode
,
no_relay
,
NULL
);
#else
phy_procedures_nrUE_RX
(
UE
,
proc
,
0
,
1
,
UE
->
mode
);
// printf(">>> nr_ue_pdcch_procedures ended\n");
#endif
}
if
(
UE
->
mac_enabled
==
1
)
{
// trigger L2 to run ue_scheduler thru IF module
// [TODO] mapping right after NR initial sync
if
(
UE
->
if_inst
!=
NULL
&&
UE
->
if_inst
->
ul_indication
!=
NULL
)
{
UE
->
ul_indication
.
module_id
=
0
;
UE
->
ul_indication
.
gNB_index
=
0
;
UE
->
ul_indication
.
cc_id
=
0
;
UE
->
ul_indication
.
frame
=
proc
->
frame_rx
;
UE
->
ul_indication
.
slot
=
proc
->
nr_tti_rx
;
UE
->
if_inst
->
ul_indication
(
&
UE
->
ul_indication
);
}
}
}
/*!
...
...
@@ -624,146 +678,173 @@ static void *UE_thread_synch(void *arg) {
*/
static
void
*
UE_thread_rxn_txnp4
(
void
*
arg
)
{
static
__thread
int
UE_thread_rxtx_retval
;
struct
nr_rxtx_thread_data
*
rtd
=
arg
;
UE_nr_rxtx_proc_t
*
proc
=
rtd
->
proc
;
PHY_VARS_NR_UE
*
UE
=
rtd
->
UE
;
//proc->counter_decoder = 0;
proc
->
instance_cnt_rxtx
=-
1
;
proc
->
subframe_rx
=
proc
->
sub_frame_start
;
proc
->
dci_err_cnt
=
0
;
char
threadname
[
256
];
sprintf
(
threadname
,
"UE_%d_proc_%d"
,
UE
->
Mod_id
,
proc
->
sub_frame_start
);
cpu_set_t
cpuset
;
CPU_ZERO
(
&
cpuset
);
char
timing_proc_name
[
256
];
sprintf
(
timing_proc_name
,
"Delay to process sub-frame proc %d"
,
proc
->
sub_frame_start
);
if
(
(
proc
->
sub_frame_start
+
1
)
%
RX_NB_TH
==
0
&&
threads
.
one
!=
-
1
)
CPU_SET
(
threads
.
one
,
&
cpuset
);
if
(
(
proc
->
sub_frame_start
+
1
)
%
RX_NB_TH
==
1
&&
threads
.
two
!=
-
1
)
CPU_SET
(
threads
.
two
,
&
cpuset
);
if
(
(
proc
->
sub_frame_start
+
1
)
%
RX_NB_TH
==
2
&&
threads
.
three
!=
-
1
)
CPU_SET
(
threads
.
three
,
&
cpuset
);
//CPU_SET(threads.three, &cpuset);
init_thread
(
900000
,
1000000
,
FIFO_PRIORITY
-
1
,
&
cpuset
,
threadname
);
while
(
!
oai_exit
)
{
if
(
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
)
!=
0
)
{
LOG_E
(
PHY
,
"[SCHED][UE] error locking mutex for UE RXTX
\n
"
);
exit_fun
(
"nothing to add"
);
}
while
(
proc
->
instance_cnt_rxtx
<
0
)
{
// most of the time, the thread is waiting here
pthread_cond_wait
(
&
proc
->
cond_rxtx
,
&
proc
->
mutex_rxtx
);
}
if
(
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
)
!=
0
)
{
LOG_E
(
PHY
,
"[SCHED][UE] error unlocking mutex for UE RXn_TXnp4
\n
"
);
exit_fun
(
"nothing to add"
);
}
// initRefTimes(t2);
// initRefTimes(t3);
// pickTime(current);
// updateTimes(proc->gotIQs, &t2, 10000, "Delay to wake up UE_Thread_Rx (case 2)");
// Process Rx data for one sub-frame
if
(
slot_select_nr
(
&
UE
->
frame_parms
,
proc
->
frame_tx
,
proc
->
nr_tti_tx
)
&
NR_DOWNLINK_SLOT
)
{
//clean previous FAPI MESSAGE
UE
->
rx_ind
.
number_pdus
=
0
;
UE
->
dci_ind
.
number_of_dcis
=
0
;
//clean previous FAPI MESSAGE
// call L2 for DL_CONFIG (DCI)
UE
->
dcireq
.
module_id
=
UE
->
Mod_id
;
UE
->
dcireq
.
gNB_index
=
0
;
UE
->
dcireq
.
cc_id
=
0
;
UE
->
dcireq
.
frame
=
proc
->
frame_rx
;
UE
->
dcireq
.
slot
=
proc
->
nr_tti_rx
;
nr_ue_dcireq
(
&
UE
->
dcireq
);
//to be replaced with function pointer later
NR_UE_MAC_INST_t
*
UE_mac
=
get_mac_inst
(
0
);
UE_mac
->
scheduled_response
.
dl_config
=
&
UE
->
dcireq
.
dl_config_req
;
UE_mac
->
scheduled_response
.
slot
=
proc
->
nr_tti_rx
;
nr_ue_scheduled_response
(
&
UE_mac
->
scheduled_response
);
#ifdef UE_SLOT_PARALLELISATION
phy_procedures_slot_parallelization_nrUE_RX
(
UE
,
proc
,
0
,
0
,
1
,
UE
->
mode
,
no_relay
,
NULL
);
#else
phy_procedures_nrUE_RX
(
UE
,
proc
,
0
,
1
,
UE
->
mode
);
// printf(">>> nr_ue_pdcch_procedures ended\n");
#endif
}
#if UE_TIMING_TRACE
start_meas
(
&
UE
->
generic_stat
);
#endif
//printf(">>> mac init\n");
if
(
UE
->
mac_enabled
==
1
)
{
// trigger L2 to run ue_scheduler thru IF module
// [TODO] mapping right after NR initial sync
if
(
UE
->
if_inst
!=
NULL
&&
UE
->
if_inst
->
ul_indication
!=
NULL
){
UE
->
ul_indication
.
module_id
=
0
;
UE
->
ul_indication
.
gNB_index
=
0
;
UE
->
ul_indication
.
cc_id
=
0
;
UE
->
ul_indication
.
frame
=
proc
->
frame_rx
;
UE
->
ul_indication
.
slot
=
proc
->
nr_tti_rx
;
UE
->
if_inst
->
ul_indication
(
&
UE
->
ul_indication
);
}
}
#if UE_TIMING_TRACE
stop_meas
(
&
UE
->
generic_stat
);
#endif
//printf(">>> mac ended\n");
struct
nr_rxtx_thread_data
*
rtd
=
arg
;
UE_nr_rxtx_proc_t
*
proc
=
rtd
->
proc
;
PHY_VARS_NR_UE
*
UE
=
rtd
->
UE
;
//proc->counter_decoder = 0;
proc
->
instance_cnt_rxtx
=-
1
;
proc
->
subframe_rx
=
proc
->
sub_frame_start
;
proc
->
dci_err_cnt
=
0
;
char
threadname
[
256
];
sprintf
(
threadname
,
"UE_%d_proc_%d"
,
UE
->
Mod_id
,
proc
->
sub_frame_start
);
cpu_set_t
cpuset
;
CPU_ZERO
(
&
cpuset
);
char
timing_proc_name
[
256
];
sprintf
(
timing_proc_name
,
"Delay to process sub-frame proc %d"
,
proc
->
sub_frame_start
);
if
(
(
proc
->
sub_frame_start
+
1
)
%
RX_NB_TH
==
0
&&
threads
.
one
!=
-
1
)
CPU_SET
(
threads
.
one
,
&
cpuset
);
if
(
(
proc
->
sub_frame_start
+
1
)
%
RX_NB_TH
==
1
&&
threads
.
two
!=
-
1
)
CPU_SET
(
threads
.
two
,
&
cpuset
);
if
(
(
proc
->
sub_frame_start
+
1
)
%
RX_NB_TH
==
2
&&
threads
.
three
!=
-
1
)
CPU_SET
(
threads
.
three
,
&
cpuset
);
//CPU_SET(threads.three, &cpuset);
init_thread
(
900000
,
1000000
,
FIFO_PRIORITY
-
1
,
&
cpuset
,
threadname
);
while
(
!
oai_exit
)
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
),
"[SCHED][UE] error locking mutex for UE RXTX
\n
"
);
while
(
proc
->
instance_cnt_rxtx
<
0
)
{
// most of the time, the thread is waiting here
pthread_cond_wait
(
&
proc
->
cond_rxtx
,
&
proc
->
mutex_rxtx
);
}
// Prepare the future Tx data
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
),
"[SCHED][UE] error unlocking mutex for UE RXn_TXnp4
\n
"
);
processSubframeRX
(
UE
,
proc
);
//printf(">>> mac ended\n");
// Prepare the future Tx data
#if 0
#ifndef NO_RAT_NR
if (slot_select_nr(&UE->frame_parms, proc->frame_tx, proc->nr_tti_tx) & NR_UPLINK_SLOT)
if (slot_select_nr(&UE->frame_parms, proc->frame_tx, proc->nr_tti_tx) & NR_UPLINK_SLOT)
#else
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_UL) ||
(UE->frame_parms.frame_type == FDD) )
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_UL) ||
(UE->frame_parms.frame_type == FDD) )
#endif
if
(
UE
->
mode
!=
loop_through_memory
)
phy_procedures_nrUE_TX
(
UE
,
proc
,
0
,
0
,
UE
->
mode
,
no_relay
);
//phy_procedures_UE_TX(UE,proc,0,0,UE->mode,no_relay);
if
(
UE
->
mode
!=
loop_through_memory
)
phy_procedures_nrUE_TX
(
UE
,
proc
,
0
,
0
,
UE
->
mode
,
no_relay
);
//phy_procedures_UE_TX(UE,proc,0,0,UE->mode,no_relay);
#endif
#if 0
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_S) &&
(UE->frame_parms.frame_type == TDD))
if (UE->mode != loop_through_memory)
//phy_procedures_UE_S_TX(UE,0,0,no_relay);
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_S) &&
(UE->frame_parms.frame_type == TDD))
if (UE->mode != loop_through_memory)
//phy_procedures_UE_S_TX(UE,0,0,no_relay);
updateTimes(current, &t3, 10000, timing_proc_name);
#endif
if
(
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
)
!=
0
)
{
LOG_E
(
PHY
,
"[SCHED][UE] error locking mutex for UE RXTX
\n
"
);
exit_fun
(
"noting to add"
);
}
proc
->
instance_cnt_rxtx
--
;
#endif
AssertFatal
(
0
==
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
),
"[SCHED][UE] error locking mutex for UE RXTX
\n
"
);
proc
->
instance_cnt_rxtx
--
;
#if BASIC_SIMULATOR
if
(
pthread_cond_signal
(
&
proc
->
cond_rxtx
)
!=
0
)
abort
();
#endif
if
(
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
)
!=
0
)
{
LOG_E
(
PHY
,
"[SCHED][UE] error unlocking mutex for UE RXTX
\n
"
);
exit_fun
(
"noting to add"
);
}
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
),
"[SCHED][UE] error unlocking mutex for UE RXTX
\n
"
);
}
// thread finished
free
(
arg
);
return
NULL
;
}
void
readFrame
(
PHY_VARS_NR_UE
*
UE
,
openair0_timestamp
*
timestamp
)
{
void
*
rxp
[
NB_ANTENNAS_RX
];
void
*
dummy_tx
[
UE
->
frame_parms
.
nb_antennas_tx
];
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
dummy_tx
[
i
]
=
malloc16_clear
(
UE
->
frame_parms
.
samples_per_subframe
*
4
);
for
(
int
x
=
0
;
x
<
10
;
x
++
)
{
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_rx
;
i
++
)
rxp
[
i
]
=
((
void
*
)
&
UE
->
common_vars
.
rxdata
[
i
][
0
])
+
4
*
x
*
UE
->
frame_parms
.
samples_per_subframe
;
AssertFatal
(
UE
->
frame_parms
.
samples_per_subframe
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
timestamp
,
rxp
,
UE
->
frame_parms
.
samples_per_subframe
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
}
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
free
(
dummy_tx
[
i
]);
}
void
trashFrame
(
PHY_VARS_NR_UE
*
UE
,
openair0_timestamp
*
timestamp
)
{
void
*
dummy_tx
[
UE
->
frame_parms
.
nb_antennas_tx
];
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
dummy_tx
[
i
]
=
malloc16_clear
(
UE
->
frame_parms
.
samples_per_subframe
*
4
);
void
*
dummy_rx
[
UE
->
frame_parms
.
nb_antennas_rx
];
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_rx
;
i
++
)
dummy_rx
[
i
]
=
malloc16
(
UE
->
frame_parms
.
samples_per_subframe
*
4
);
for
(
int
sf
=
0
;
sf
<
NR_NUMBER_OF_SUBFRAMES_PER_FRAME
;
sf
++
)
{
// printf("Reading dummy sf %d\n",sf);
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
timestamp
,
dummy_rx
,
UE
->
frame_parms
.
samples_per_subframe
,
UE
->
frame_parms
.
nb_antennas_rx
);
usleep
(
500
);
// this sleep improves in the case of simulated RF and doesn't harm with true radio
}
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
free
(
dummy_tx
[
i
]);
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_rx
;
i
++
)
free
(
dummy_rx
[
i
]);
}
void
syncInFrame
(
PHY_VARS_NR_UE
*
UE
,
openair0_timestamp
*
timestamp
)
{
if
(
UE
->
no_timing_correction
==
0
)
{
LOG_I
(
PHY
,
"Resynchronizing RX by %d samples (mode = %d)
\n
"
,
UE
->
rx_offset
,
UE
->
mode
);
void
*
dummy_tx
[
UE
->
frame_parms
.
nb_antennas_tx
];
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
dummy_tx
[
i
]
=
malloc16_clear
(
UE
->
frame_parms
.
samples_per_subframe
*
4
);
for
(
int
size
=
UE
->
rx_offset
;
size
>
0
;
size
-=
UE
->
frame_parms
.
samples_per_subframe
)
{
int
unitTransfer
=
size
>
UE
->
frame_parms
.
samples_per_subframe
?
UE
->
frame_parms
.
samples_per_subframe
:
size
;
AssertFatal
(
unitTransfer
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
timestamp
,
(
void
**
)
UE
->
common_vars
.
rxdata
,
unitTransfer
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
}
// thread finished
free
(
arg
);
return
&
UE_thread_rxtx_retval
;
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
free
(
dummy_tx
[
i
]);
}
}
int
computeSamplesShift
(
PHY_VARS_NR_UE
*
UE
)
{
if
(
getenv
(
"RFSIMULATOR"
)
!=
0
)
{
LOG_E
(
PHY
,
"SET rx_offset %d
\n
"
,
UE
->
rx_offset
);
//UE->rx_offset_diff=0;
return
0
;
}
// compute TO compensation that should be applied for this frame
if
(
UE
->
rx_offset
<
5
*
UE
->
frame_parms
.
samples_per_slot
&&
UE
->
rx_offset
>
0
)
return
-
1
;
if
(
UE
->
rx_offset
>
5
*
UE
->
frame_parms
.
samples_per_slot
&&
UE
->
rx_offset
<
10
*
UE
->
frame_parms
.
samples_per_slot
)
return
1
;
return
0
;
}
/*!
...
...
@@ -777,389 +858,269 @@ static void *UE_thread_rxn_txnp4(void *arg) {
*/
void
*
UE_thread
(
void
*
arg
)
{
PHY_VARS_NR_UE
*
UE
=
(
PHY_VARS_NR_UE
*
)
arg
;
// int tx_enabled = 0;
openair0_timestamp
timestamp
;
void
*
rxp
[
NB_ANTENNAS_RX
],
*
txp
[
NB_ANTENNAS_TX
];
int
start_rx_stream
=
0
;
int
i
;
char
threadname
[
128
];
int
th_id
;
const
uint16_t
table_sf_slot
[
20
]
=
{
0
,
0
,
1
,
1
,
2
,
2
,
3
,
3
,
4
,
4
,
5
,
5
,
6
,
6
,
7
,
7
,
8
,
8
,
9
,
9
};
for
(
int
i
=
0
;
i
<
RX_NB_TH_MAX
;
i
++
)
UE
->
proc
.
proc_rxtx
[
i
].
counter_decoder
=
0
;
static
uint8_t
thread_idx
=
0
;
cpu_set_t
cpuset
;
CPU_ZERO
(
&
cpuset
);
if
(
threads
.
main
!=
-
1
)
CPU_SET
(
threads
.
main
,
&
cpuset
);
sprintf
(
threadname
,
"Main UE %d"
,
UE
->
Mod_id
);
init_thread
(
100000
,
500000
,
FIFO_PRIORITY
,
&
cpuset
,
threadname
);
if
((
oaisim_flag
==
0
)
&&
(
UE
->
mode
!=
loop_through_memory
))
AssertFatal
(
0
==
openair0_device_load
(
&
(
UE
->
rfdevice
),
&
openair0_cfg
[
0
]),
""
);
UE
->
rfdevice
.
host_type
=
RAU_HOST
;
init_UE_threads
(
UE
);
#ifdef NAS_UE
//MessageDef *message_p;
//message_p = itti_alloc_new_message(TASK_NAS_UE, INITIALIZE_MESSAGE);
//itti_send_msg_to_task (TASK_NAS_UE, UE->Mod_id + NB_eNB_INST, message_p);
#endif
int
nb_slot_frame
=
10
*
UE
->
frame_parms
.
slots_per_subframe
;
int
slot_nr
=-
1
;
PHY_VARS_NR_UE
*
UE
=
(
PHY_VARS_NR_UE
*
)
arg
;
// int tx_enabled = 0;
openair0_timestamp
timestamp
;
void
*
rxp
[
NB_ANTENNAS_RX
],
*
txp
[
NB_ANTENNAS_TX
];
int
start_rx_stream
=
0
;
int
i
;
char
threadname
[
128
];
int
th_id
;
for
(
int
i
=
0
;
i
<
RX_NB_TH_MAX
;
i
++
)
UE
->
proc
.
proc_rxtx
[
i
].
counter_decoder
=
0
;
static
uint8_t
thread_idx
=
0
;
uint16_t
table_sf_slot
[
20
]
=
{
0
,
0
,
1
,
1
,
2
,
2
,
3
,
3
,
4
,
4
,
5
,
5
,
6
,
6
,
7
,
7
,
8
,
8
,
9
,
9
};
cpu_set_t
cpuset
;
CPU_ZERO
(
&
cpuset
);
if
(
threads
.
main
!=
-
1
)
CPU_SET
(
threads
.
main
,
&
cpuset
);
sprintf
(
threadname
,
"Main UE %d"
,
UE
->
Mod_id
);
init_thread
(
100000
,
500000
,
FIFO_PRIORITY
,
&
cpuset
,
threadname
);
if
((
oaisim_flag
==
0
)
&&
(
UE
->
mode
!=
loop_through_memory
))
AssertFatal
(
0
==
openair0_device_load
(
&
(
UE
->
rfdevice
),
&
openair0_cfg
[
0
]),
""
);
UE
->
rfdevice
.
host_type
=
RAU_HOST
;
//int cumulated_shift=0;
if
((
oaisim_flag
==
0
)
&&
(
UE
->
mode
!=
loop_through_memory
))
AssertFatal
(
UE
->
rfdevice
.
trx_start_func
(
&
UE
->
rfdevice
)
==
0
,
"Could not start the device
\n
"
);
init_UE_threads
(
UE
);
while
(
!
oai_exit
)
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
int
instance_cnt_synch
=
UE
->
proc
.
instance_cnt_synch
;
int
is_synchronized
=
UE
->
is_synchronized
;
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
if
(
is_synchronized
==
0
)
{
#if BASIC_SIMULATOR
while
(
!
((
instance_cnt_synch
=
UE
->
proc
.
instance_cnt_synch
)
<
0
))
{
printf
(
"ue sync not ready
\n
"
);
usleep
(
500
*
1000
);
}
#ifdef NAS_UE
//MessageDef *message_p;
//message_p = itti_alloc_new_message(TASK_NAS_UE, INITIALIZE_MESSAGE);
//itti_send_msg_to_task (TASK_NAS_UE, UE->Mod_id + NB_eNB_INST, message_p);
#endif
int
nb_slot_frame
=
10
*
UE
->
frame_parms
.
slots_per_subframe
;
int
slot_nr
=-
1
;
//int cumulated_shift=0;
if
((
oaisim_flag
==
0
)
&&
(
UE
->
mode
!=
loop_through_memory
))
AssertFatal
(
UE
->
rfdevice
.
trx_start_func
(
&
UE
->
rfdevice
)
==
0
,
"Could not start the device
\n
"
);
while
(
!
oai_exit
)
{
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
int
instance_cnt_synch
=
UE
->
proc
.
instance_cnt_synch
;
int
is_synchronized
=
UE
->
is_synchronized
;
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
if
(
is_synchronized
==
0
)
{
if
(
UE
->
mode
!=
loop_through_memory
)
{
if
(
instance_cnt_synch
<
0
)
{
// we can invoke the synch
// grab 10 ms of signal and wakeup synch thread
readFrame
(
UE
,
&
timestamp
);
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
AssertFatal
(
0
==
++
UE
->
proc
.
instance_cnt_synch
,
"[SCHED][UE] UE sync thread busy!!
\n
"
);
AssertFatal
(
0
==
pthread_cond_signal
(
&
UE
->
proc
.
cond_synch
),
""
);
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
}
else
{
// grab 10 ms of signal into dummy buffer to wait result of sync detection
trashFrame
(
UE
,
&
timestamp
);
}
}
continue
;
}
if
(
start_rx_stream
==
0
)
{
start_rx_stream
=
1
;
if
(
UE
->
mode
!=
loop_through_memory
)
{
syncInFrame
(
UE
,
&
timestamp
);
UE
->
rx_offset
=
0
;
UE
->
time_sync_cell
=
0
;
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
++
;
//UE->proc.proc_rxtx[1].frame_rx++;
for
(
th_id
=
1
;
th_id
<
RX_NB_TH
;
th_id
++
)
{
UE
->
proc
.
proc_rxtx
[
th_id
].
frame_rx
=
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
;
}
//printf("first stream frame rx %d\n",UE->proc.proc_rxtx[0].frame_rx);
// read in first symbol
AssertFatal
(
UE
->
frame_parms
.
ofdm_symbol_size
+
UE
->
frame_parms
.
nb_prefix_samples0
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
(
void
**
)
UE
->
common_vars
.
rxdata
,
UE
->
frame_parms
.
ofdm_symbol_size
+
UE
->
frame_parms
.
nb_prefix_samples0
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
//write_output("txdata_sym.m", "txdata_sym", UE->common_vars.rxdata[0], (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0), 1, 1);
//nr_slot_fep(UE,0, 0, 0, 1, 1, NR_PDCCH_EST);
}
//UE->mode != loop_through_memory
else
rt_sleep_ns
(
1000
*
1000
);
continue
;
}
thread_idx
++
;
thread_idx
%=
RX_NB_TH
;
//printf("slot_nr %d nb slot frame %d\n",slot_nr, nb_slot_frame);
slot_nr
++
;
slot_nr
%=
nb_slot_frame
;
UE_nr_rxtx_proc_t
*
proc
=
&
UE
->
proc
.
proc_rxtx
[
thread_idx
];
// update thread index for received subframe
UE
->
current_thread_id
[
slot_nr
]
=
thread_idx
;
#if BASIC_SIMULATOR
while
(
!
((
instance_cnt_synch
=
UE
->
proc
.
instance_cnt_synch
)
<
0
))
{
printf
(
"ue sync not ready
\n
"
);
usleep
(
500
*
1000
);
}
for
(
int
t
=
0
;
t
<
RX_NB_TH
;
t
++
)
{
UE_rxtx_proc_t
*
proc
=
&
UE
->
proc
.
proc_rxtx
[
t
];
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
);
while
(
proc
->
instance_cnt_rxtx
>=
0
)
pthread_cond_wait
(
&
proc
->
cond_rxtx
,
&
proc
->
mutex_rxtx
);
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
);
}
#endif
LOG_W
(
PHY
,
"is_synchro %d
\n
"
,
is_synchronized
);
if
(
instance_cnt_synch
<
0
)
{
// we can invoke the synch
// grab 10 ms of signal and wakeup synch thread
if
(
UE
->
mode
!=
loop_through_memory
)
{
void
*
dummy_tx
[
UE
->
frame_parms
.
nb_antennas_tx
];
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
dummy_tx
[
i
]
=
malloc16_clear
(
UE
->
frame_parms
.
samples_per_subframe
*
4
);
for
(
int
x
=
0
;
x
<
10
;
x
++
)
{
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_rx
;
i
++
)
rxp
[
i
]
=
((
void
*
)
&
UE
->
common_vars
.
rxdata
[
i
][
0
])
+
4
*
x
*
UE
->
frame_parms
.
samples_per_subframe
;
AssertFatal
(
UE
->
frame_parms
.
samples_per_subframe
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
rxp
,
UE
->
frame_parms
.
samples_per_subframe
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
}
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
free
(
dummy_tx
[
i
]);
}
AssertFatal
(
0
==
pthread_mutex_lock
(
&
UE
->
proc
.
mutex_synch
),
""
);
AssertFatal
(
0
==
++
UE
->
proc
.
instance_cnt_synch
,
"[SCHED][UE] UE sync thread busy!!
\n
"
);
AssertFatal
(
0
==
pthread_cond_signal
(
&
UE
->
proc
.
cond_synch
),
""
);
AssertFatal
(
0
==
pthread_mutex_unlock
(
&
UE
->
proc
.
mutex_synch
),
""
);
LOG_D
(
PHY
,
"Process slot %d thread Idx %d
\n
"
,
slot_nr
,
UE
->
current_thread_id
[
slot_nr
]);
proc
->
nr_tti_rx
=
slot_nr
;
proc
->
subframe_rx
=
table_sf_slot
[
slot_nr
];
proc
->
frame_tx
=
proc
->
frame_rx
;
proc
->
nr_tti_tx
=
slot_nr
+
DURATION_RX_TO_TX
;
if
(
proc
->
nr_tti_tx
>
nb_slot_frame
)
{
proc
->
frame_tx
=
(
proc
->
frame_tx
+
1
)
%
MAX_FRAME_NUMBER
;
proc
->
nr_tti_tx
%=
nb_slot_frame
;
}
if
(
slot_nr
==
0
)
{
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
++
;
//UE->proc.proc_rxtx[1].frame_rx++;
for
(
th_id
=
1
;
th_id
<
RX_NB_TH
;
th_id
++
)
{
UE
->
proc
.
proc_rxtx
[
th_id
].
frame_rx
=
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
;
}
}
if
(
UE
->
mode
!=
loop_through_memory
)
{
for
(
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_rx
;
i
++
)
rxp
[
i
]
=
(
void
*
)
&
UE
->
common_vars
.
rxdata
[
i
][
UE
->
frame_parms
.
ofdm_symbol_size
+
UE
->
frame_parms
.
nb_prefix_samples0
+
slot_nr
*
UE
->
frame_parms
.
samples_per_slot
];
for
(
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
txp
[
i
]
=
(
void
*
)
&
UE
->
common_vars
.
txdata
[
i
][((
slot_nr
+
2
)
%
NR_NUMBER_OF_SUBFRAMES_PER_FRAME
)
*
UE
->
frame_parms
.
samples_per_slot
];
int
readBlockSize
,
writeBlockSize
;
if
(
slot_nr
<
(
nb_slot_frame
-
1
))
{
readBlockSize
=
UE
->
frame_parms
.
samples_per_slot
;
writeBlockSize
=
UE
->
frame_parms
.
samples_per_slot
;
}
else
{
// grab 10 ms of signal into dummy buffer to wait result of sync detection
if
(
UE
->
mode
!=
loop_through_memory
)
{
void
*
dummy_tx
[
UE
->
frame_parms
.
nb_antennas_tx
];
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
dummy_tx
[
i
]
=
malloc16_clear
(
UE
->
frame_parms
.
samples_per_subframe
*
4
);
void
*
dummy_rx
[
UE
->
frame_parms
.
nb_antennas_rx
];
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_rx
;
i
++
)
dummy_rx
[
i
]
=
malloc16
(
UE
->
frame_parms
.
samples_per_subframe
*
4
);
for
(
int
sf
=
0
;
sf
<
NR_NUMBER_OF_SUBFRAMES_PER_FRAME
;
sf
++
)
{
// printf("Reading dummy sf %d\n",sf);
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
dummy_rx
,
UE
->
frame_parms
.
samples_per_subframe
,
UE
->
frame_parms
.
nb_antennas_rx
);
usleep
(
500
);
// this sleep improves in the case of simulated RF and doesn't harm with true radio
}
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
free
(
dummy_tx
[
i
]);
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_rx
;
i
++
)
free
(
dummy_rx
[
i
]);
}
}
UE
->
rx_offset_diff
=
computeSamplesShift
(
UE
);
readBlockSize
=
UE
->
frame_parms
.
samples_per_slot
-
UE
->
frame_parms
.
ofdm_symbol_size
-
UE
->
frame_parms
.
nb_prefix_samples0
-
UE
->
rx_offset_diff
;
writeBlockSize
=
UE
->
frame_parms
.
samples_per_slot
-
UE
->
rx_offset_diff
;
}
AssertFatal
(
readBlockSize
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
rxp
,
readBlockSize
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
AssertFatal
(
writeBlockSize
==
UE
->
rfdevice
.
trx_write_func
(
&
UE
->
rfdevice
,
timestamp
+
(
2
*
UE
->
frame_parms
.
samples_per_slot
)
-
UE
->
frame_parms
.
ofdm_symbol_size
-
UE
->
frame_parms
.
nb_prefix_samples0
-
openair0_cfg
[
0
].
tx_sample_advance
,
txp
,
writeBlockSize
,
UE
->
frame_parms
.
nb_antennas_tx
,
1
),
""
);
if
(
slot_nr
==
(
nb_slot_frame
-
1
))
{
// read in first symbol of next frame and adjust for timing drift
int
first_symbols
=
writeBlockSize
-
readBlockSize
;
if
(
first_symbols
>
0
)
AssertFatal
(
first_symbols
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
(
void
**
)
UE
->
common_vars
.
rxdata
,
first_symbols
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
else
LOG_E
(
PHY
,
"can't compensate: diff =%d
\n
"
,
first_symbols
);
}
pickTime
(
gotIQs
);
// operate on thread sf mod 2
AssertFatal
(
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
)
==
0
,
""
);
}
// UE->is_synchronized==0
else
{
if
(
start_rx_stream
==
0
)
{
start_rx_stream
=
1
;
if
(
UE
->
mode
!=
loop_through_memory
)
{
if
(
UE
->
no_timing_correction
==
0
)
{
LOG_I
(
PHY
,
"Resynchronizing RX by %d samples (mode = %d)
\n
"
,
UE
->
rx_offset
,
UE
->
mode
);
void
*
dummy_tx
[
UE
->
frame_parms
.
nb_antennas_tx
];
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
dummy_tx
[
i
]
=
malloc16_clear
(
UE
->
frame_parms
.
samples_per_subframe
*
4
);
for
(
int
size
=
UE
->
rx_offset
;
size
>
0
;
size
-=
UE
->
frame_parms
.
samples_per_subframe
)
{
int
unitTransfer
=
size
>
UE
->
frame_parms
.
samples_per_subframe
?
UE
->
frame_parms
.
samples_per_subframe
:
size
;
AssertFatal
(
unitTransfer
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
(
void
**
)
UE
->
common_vars
.
rxdata
,
unitTransfer
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
}
for
(
int
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
free
(
dummy_tx
[
i
]);
}
UE
->
rx_offset
=
0
;
UE
->
time_sync_cell
=
0
;
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
++
;
//UE->proc.proc_rxtx[1].frame_rx++;
for
(
th_id
=
1
;
th_id
<
RX_NB_TH
;
th_id
++
)
{
UE
->
proc
.
proc_rxtx
[
th_id
].
frame_rx
=
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
;
}
//printf("first stream frame rx %d\n",UE->proc.proc_rxtx[0].frame_rx);
// read in first symbol
AssertFatal
(
UE
->
frame_parms
.
ofdm_symbol_size
+
UE
->
frame_parms
.
nb_prefix_samples0
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
(
void
**
)
UE
->
common_vars
.
rxdata
,
UE
->
frame_parms
.
ofdm_symbol_size
+
UE
->
frame_parms
.
nb_prefix_samples0
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
//write_output("txdata_sym.m", "txdata_sym", UE->common_vars.rxdata[0], (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0), 1, 1);
//nr_slot_fep(UE,0, 0, 0, 1, 1, NR_PDCCH_EST);
}
//UE->mode != loop_through_memory
else
rt_sleep_ns
(
1000
*
1000
);
}
else
{
thread_idx
++
;
if
(
thread_idx
>=
RX_NB_TH
)
thread_idx
=
0
;
//printf("slot_nr %d nb slot frame %d\n",slot_nr, nb_slot_frame);
slot_nr
++
;
slot_nr
%=
nb_slot_frame
;
UE_nr_rxtx_proc_t
*
proc
=
&
UE
->
proc
.
proc_rxtx
[
thread_idx
];
// update thread index for received subframe
UE
->
current_thread_id
[
slot_nr
]
=
thread_idx
;
#if BASIC_SIMULATOR
{
int
t
;
for
(
t
=
0
;
t
<
RX_NB_TH
;
t
++
)
{
UE_rxtx_proc_t
*
proc
=
&
UE
->
proc
.
proc_rxtx
[
t
];
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
);
while
(
proc
->
instance_cnt_rxtx
>=
0
)
pthread_cond_wait
(
&
proc
->
cond_rxtx
,
&
proc
->
mutex_rxtx
);
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
);
}
}
#endif
LOG_D
(
PHY
,
"Process slot %d thread Idx %d
\n
"
,
slot_nr
,
UE
->
current_thread_id
[
slot_nr
]);
if
(
UE
->
mode
!=
loop_through_memory
)
{
for
(
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_rx
;
i
++
)
rxp
[
i
]
=
(
void
*
)
&
UE
->
common_vars
.
rxdata
[
i
][
UE
->
frame_parms
.
ofdm_symbol_size
+
UE
->
frame_parms
.
nb_prefix_samples0
+
slot_nr
*
UE
->
frame_parms
.
samples_per_slot
];
for
(
i
=
0
;
i
<
UE
->
frame_parms
.
nb_antennas_tx
;
i
++
)
txp
[
i
]
=
(
void
*
)
&
UE
->
common_vars
.
txdata
[
i
][((
slot_nr
+
2
)
%
NR_NUMBER_OF_SUBFRAMES_PER_FRAME
)
*
UE
->
frame_parms
.
samples_per_slot
];
int
readBlockSize
,
writeBlockSize
;
if
(
slot_nr
<
(
nb_slot_frame
-
1
))
{
readBlockSize
=
UE
->
frame_parms
.
samples_per_slot
;
writeBlockSize
=
UE
->
frame_parms
.
samples_per_slot
;
}
else
{
// set TO compensation to zero
UE
->
rx_offset_diff
=
0
;
// compute TO compensation that should be applied for this frame
if
(
UE
->
rx_offset
<
5
*
UE
->
frame_parms
.
samples_per_slot
&&
UE
->
rx_offset
>
0
)
UE
->
rx_offset_diff
=
-
1
;
if
(
UE
->
rx_offset
>
5
*
UE
->
frame_parms
.
samples_per_slot
&&
UE
->
rx_offset
<
10
*
UE
->
frame_parms
.
samples_per_slot
)
UE
->
rx_offset_diff
=
1
;
if
(
getenv
(
"RFSIMULATOR"
)
!=
0
)
{
LOG_E
(
PHY
,
"AbsSubframe %d.%d TTI SET rx_off_diff to %d rx_offset %d
\n
"
,
proc
->
frame_rx
,
slot_nr
,
UE
->
rx_offset_diff
,
UE
->
rx_offset
);
//UE->rx_offset_diff=0;
}
readBlockSize
=
UE
->
frame_parms
.
samples_per_slot
-
UE
->
frame_parms
.
ofdm_symbol_size
-
UE
->
frame_parms
.
nb_prefix_samples0
-
UE
->
rx_offset_diff
;
writeBlockSize
=
UE
->
frame_parms
.
samples_per_slot
-
UE
->
rx_offset_diff
;
}
AssertFatal
(
readBlockSize
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
rxp
,
readBlockSize
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
AssertFatal
(
writeBlockSize
==
UE
->
rfdevice
.
trx_write_func
(
&
UE
->
rfdevice
,
timestamp
+
(
2
*
UE
->
frame_parms
.
samples_per_slot
)
-
UE
->
frame_parms
.
ofdm_symbol_size
-
UE
->
frame_parms
.
nb_prefix_samples0
-
openair0_cfg
[
0
].
tx_sample_advance
,
txp
,
writeBlockSize
,
UE
->
frame_parms
.
nb_antennas_tx
,
1
),
""
);
if
(
slot_nr
==
(
nb_slot_frame
-
1
))
{
// read in first symbol of next frame and adjust for timing drift
int
first_symbols
=
writeBlockSize
-
readBlockSize
;
if
(
first_symbols
>
0
)
AssertFatal
(
first_symbols
==
UE
->
rfdevice
.
trx_read_func
(
&
UE
->
rfdevice
,
&
timestamp
,
(
void
**
)
UE
->
common_vars
.
rxdata
,
first_symbols
,
UE
->
frame_parms
.
nb_antennas_rx
),
""
);
if
(
first_symbols
<
0
)
LOG_E
(
PHY
,
"can't compensate: diff =%d
\n
"
,
first_symbols
);
}
pickTime
(
gotIQs
);
// operate on thread sf mod 2
AssertFatal
(
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
)
==
0
,
""
);
if
(
slot_nr
==
0
)
{
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
++
;
//UE->proc.proc_rxtx[1].frame_rx++;
for
(
th_id
=
1
;
th_id
<
RX_NB_TH
;
th_id
++
)
{
UE
->
proc
.
proc_rxtx
[
th_id
].
frame_rx
=
UE
->
proc
.
proc_rxtx
[
0
].
frame_rx
;
}
#ifdef SAIF_ENABLED
if
(
!
(
proc
->
frame_rx
%
4000
))
{
printf
(
"frame_rx=%d rx_thread_busy=%ld - rate %8.3f
\n
"
,
proc
->
frame_rx
,
g_ue_rx_thread_busy
,
(
float
)
g_ue_rx_thread_busy
/
(
proc
->
frame_rx
*
10
+
1
)
*
100
.
0
);
fflush
(
stdout
);
}
if
(
!
(
proc
->
frame_rx
%
4000
))
{
printf
(
"frame_rx=%d rx_thread_busy=%ld - rate %8.3f
\n
"
,
proc
->
frame_rx
,
g_ue_rx_thread_busy
,
(
float
)
g_ue_rx_thread_busy
/
(
proc
->
frame_rx
*
10
+
1
)
*
100
.
0
);
fflush
(
stdout
);
}
#endif
}
//UE->proc.proc_rxtx[0].gotIQs=readTime(gotIQs);
//UE->proc.proc_rxtx[1].gotIQs=readTime(gotIQs);
for
(
th_id
=
0
;
th_id
<
RX_NB_TH
;
th_id
++
)
{
UE
->
proc
.
proc_rxtx
[
th_id
].
gotIQs
=
readTime
(
gotIQs
);
}
proc
->
nr_tti_rx
=
slot_nr
;
proc
->
subframe_rx
=
table_sf_slot
[
slot_nr
];
proc
->
frame_tx
=
proc
->
frame_rx
;
proc
->
nr_tti_tx
=
slot_nr
+
DURATION_RX_TO_TX
;
if
(
proc
->
nr_tti_tx
>
nb_slot_frame
)
{
proc
->
frame_tx
=
(
proc
->
frame_tx
+
1
)
%
MAX_FRAME_NUMBER
;
proc
->
nr_tti_tx
%=
nb_slot_frame
;
}
proc
->
subframe_tx
=
proc
->
nr_tti_rx
;
proc
->
timestamp_tx
=
timestamp
+
(
DURATION_RX_TO_TX
*
UE
->
frame_parms
.
samples_per_slot
)
-
UE
->
frame_parms
.
ofdm_symbol_size
-
UE
->
frame_parms
.
nb_prefix_samples0
;
proc
->
instance_cnt_rxtx
++
;
LOG_D
(
PHY
,
"[SCHED][UE %d] UE RX instance_cnt_rxtx %d subframe %d !!
\n
"
,
UE
->
Mod_id
,
proc
->
instance_cnt_rxtx
,
proc
->
subframe_rx
);
if
(
proc
->
instance_cnt_rxtx
==
0
)
{
if
(
pthread_cond_signal
(
&
proc
->
cond_rxtx
)
!=
0
)
{
LOG_E
(
PHY
,
"[SCHED][UE %d] ERROR pthread_cond_signal for UE RX thread
\n
"
,
UE
->
Mod_id
);
exit_fun
(
"nothing to add"
);
}
}
else
{
//UE->proc.proc_rxtx[0].gotIQs=readTime(gotIQs);
//UE->proc.proc_rxtx[1].gotIQs=readTime(gotIQs);
for
(
th_id
=
0
;
th_id
<
RX_NB_TH
;
th_id
++
)
{
UE
->
proc
.
proc_rxtx
[
th_id
].
gotIQs
=
readTime
(
gotIQs
);
}
proc
->
subframe_tx
=
proc
->
nr_tti_rx
;
proc
->
timestamp_tx
=
timestamp
+
(
DURATION_RX_TO_TX
*
UE
->
frame_parms
.
samples_per_slot
)
-
UE
->
frame_parms
.
ofdm_symbol_size
-
UE
->
frame_parms
.
nb_prefix_samples0
;
proc
->
instance_cnt_rxtx
++
;
LOG_D
(
PHY
,
"[SCHED][UE %d] UE RX instance_cnt_rxtx %d subframe %d !!
\n
"
,
UE
->
Mod_id
,
proc
->
instance_cnt_rxtx
,
proc
->
subframe_rx
);
if
(
proc
->
instance_cnt_rxtx
!=
0
)
{
#ifdef SAIF_ENABLED
g_ue_rx_thread_busy
++
;
g_ue_rx_thread_busy
++
;
#endif
if
(
getenv
(
"RFSIMULATOR"
)
!=
NULL
)
{
do
{
AssertFatal
(
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
)
==
0
,
""
);
usleep
(
100
);
AssertFatal
(
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
)
==
0
,
""
);
}
while
(
proc
->
instance_cnt_rxtx
>=
0
);
}
else
LOG_E
(
PHY
,
"[SCHED][UE %d] !! UE RX thread busy (IC %d)!!
\n
"
,
UE
->
Mod_id
,
proc
->
instance_cnt_rxtx
);
if
(
proc
->
instance_cnt_rxtx
>
4
)
{
char
exit_fun_string
[
256
];
sprintf
(
exit_fun_string
,
"[SCHED][UE %d] !!! UE instance_cnt_rxtx > 2 (IC %d) (Proc %d)!!"
,
UE
->
Mod_id
,
proc
->
instance_cnt_rxtx
,
UE
->
current_thread_id
[
slot_nr
]);
printf
(
"%s
\n
"
,
exit_fun_string
);
fflush
(
stdout
);
sleep
(
1
);
exit_fun
(
exit_fun_string
);
}
}
AssertFatal
(
pthread_cond_signal
(
&
proc
->
cond_rxtx
)
==
0
,
""
);
AssertFatal
(
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
)
==
0
,
""
);
// initRefTimes(t1);
// initStaticTime(lastTime);
// updateTimes(lastTime, &t1, 20000, "Delay between two IQ acquisitions (case 1)");
// pickStaticTime(lastTime);
}
//UE->mode != loop_through_memory
else
{
proc
->
nr_tti_rx
=
slot_nr
;
proc
->
subframe_rx
=
table_sf_slot
[
slot_nr
];
if
(
slot_nr
==
0
)
{
for
(
th_id
=
0
;
th_id
<
RX_NB_TH
;
th_id
++
)
{
UE
->
proc
.
proc_rxtx
[
th_id
].
frame_rx
++
;
}
}
proc
->
frame_tx
=
proc
->
frame_rx
;
proc
->
nr_tti_tx
=
slot_nr
+
DURATION_RX_TO_TX
;
if
(
proc
->
nr_tti_tx
>
nb_slot_frame
)
{
proc
->
frame_tx
=
(
proc
->
frame_tx
+
1
)
%
MAX_FRAME_NUMBER
;
proc
->
nr_tti_tx
%=
nb_slot_frame
;
}
proc
->
subframe_tx
=
table_sf_slot
[
proc
->
nr_tti_tx
];
if
(
slot_select_nr
(
&
UE
->
frame_parms
,
proc
->
frame_tx
,
proc
->
nr_tti_tx
)
&
NR_DOWNLINK_SLOT
)
{
//clean previous FAPI MESSAGE
UE
->
rx_ind
.
number_pdus
=
0
;
UE
->
dci_ind
.
number_of_dcis
=
0
;
//clean previous FAPI MESSAGE
// call L2 for DL_CONFIG (DCI)
UE
->
dcireq
.
module_id
=
UE
->
Mod_id
;
UE
->
dcireq
.
gNB_index
=
0
;
UE
->
dcireq
.
cc_id
=
0
;
UE
->
dcireq
.
frame
=
proc
->
frame_rx
;
UE
->
dcireq
.
slot
=
proc
->
nr_tti_rx
;
nr_ue_dcireq
(
&
UE
->
dcireq
);
//to be replaced with function pointer later
NR_UE_MAC_INST_t
*
UE_mac
=
get_mac_inst
(
0
);
UE_mac
->
scheduled_response
.
dl_config
=
&
UE
->
dcireq
.
dl_config_req
;
UE_mac
->
scheduled_response
.
slot
=
proc
->
nr_tti_rx
;
nr_ue_scheduled_response
(
&
UE_mac
->
scheduled_response
);
//write_output("uerxdata_frame.m", "uerxdata_frame", UE->common_vars.rxdata[0], UE->frame_parms.samples_per_frame, 1, 1);
printf
(
"Processing slot %d
\n
"
,
proc
->
nr_tti_rx
);
phy_procedures_nrUE_RX
(
UE
,
proc
,
0
,
1
,
UE
->
mode
);
}
if
(
UE
->
if_inst
!=
NULL
&&
UE
->
if_inst
->
ul_indication
!=
NULL
){
UE
->
ul_indication
.
module_id
=
0
;
UE
->
ul_indication
.
gNB_index
=
0
;
UE
->
ul_indication
.
cc_id
=
0
;
UE
->
ul_indication
.
frame
=
proc
->
frame_rx
;
UE
->
ul_indication
.
slot
=
proc
->
nr_tti_rx
;
UE
->
if_inst
->
ul_indication
(
&
UE
->
ul_indication
);
}
getchar
();
}
// else loop_through_memory
}
// start_rx_stream==1
}
// UE->is_synchronized==1
}
// while !oai_exit
return
NULL
;
if
(
getenv
(
"RFSIMULATOR"
)
!=
NULL
)
{
do
{
AssertFatal
(
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
)
==
0
,
""
);
usleep
(
100
);
AssertFatal
(
pthread_mutex_lock
(
&
proc
->
mutex_rxtx
)
==
0
,
""
);
}
while
(
proc
->
instance_cnt_rxtx
>=
0
);
}
else
LOG_E
(
PHY
,
"[SCHED][UE %d] !! UE RX thread busy (IC %d)!!
\n
"
,
UE
->
Mod_id
,
proc
->
instance_cnt_rxtx
);
AssertFatal
(
proc
->
instance_cnt_rxtx
<=
4
,
"[SCHED][UE %d] !!! UE instance_cnt_rxtx > 2 (IC %d) (Proc %d)!!"
,
UE
->
Mod_id
,
proc
->
instance_cnt_rxtx
,
UE
->
current_thread_id
[
slot_nr
]);
}
AssertFatal
(
pthread_cond_signal
(
&
proc
->
cond_rxtx
)
==
0
,
""
);
AssertFatal
(
pthread_mutex_unlock
(
&
proc
->
mutex_rxtx
)
==
0
,
""
);
// initRefTimes(t1);
// initStaticTime(lastTime);
// updateTimes(lastTime, &t1, 20000, "Delay between two IQ acquisitions (case 1)");
// pickStaticTime(lastTime);
}
//UE->mode != loop_through_memory
else
{
processSubframeRX
(
UE
,
proc
);
getchar
();
}
// else loop_through_memory
}
// while !oai_exit
return
NULL
;
}
/*!
...
...
@@ -1175,84 +1136,78 @@ void *UE_thread(void *arg) {
* and the locking between them.
*/
void
init_UE_threads
(
PHY_VARS_NR_UE
*
UE
)
{
struct
nr_rxtx_thread_data
*
rtd
;
pthread_attr_init
(
&
UE
->
proc
.
attr_ue
);
pthread_attr_setstacksize
(
&
UE
->
proc
.
attr_ue
,
8192
);
//5*PTHREAD_STACK_MIN);
pthread_mutex_init
(
&
UE
->
proc
.
mutex_synch
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
cond_synch
,
NULL
);
UE
->
proc
.
instance_cnt_synch
=
-
1
;
// the threads are not yet active, therefore access is allowed without locking
int
nb_threads
=
RX_NB_TH
;
for
(
int
i
=
0
;
i
<
nb_threads
;
i
++
)
{
rtd
=
calloc
(
1
,
sizeof
(
struct
nr_rxtx_thread_data
));
if
(
rtd
==
NULL
)
abort
();
rtd
->
UE
=
UE
;
rtd
->
proc
=
&
UE
->
proc
.
proc_rxtx
[
i
];
pthread_mutex_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
mutex_rxtx
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
cond_rxtx
,
NULL
);
UE
->
proc
.
proc_rxtx
[
i
].
sub_frame_start
=
i
;
UE
->
proc
.
proc_rxtx
[
i
].
sub_frame_step
=
nb_threads
;
printf
(
"Init_UE_threads rtd %d proc %d nb_threads %d i %d
\n
"
,
rtd
->
proc
->
sub_frame_start
,
UE
->
proc
.
proc_rxtx
[
i
].
sub_frame_start
,
nb_threads
,
i
);
pthread_create
(
&
UE
->
proc
.
proc_rxtx
[
i
].
pthread_rxtx
,
NULL
,
UE_thread_rxn_txnp4
,
rtd
);
struct
nr_rxtx_thread_data
*
rtd
;
pthread_attr_init
(
&
UE
->
proc
.
attr_ue
);
pthread_attr_setstacksize
(
&
UE
->
proc
.
attr_ue
,
8192
);
//5*PTHREAD_STACK_MIN);
pthread_mutex_init
(
&
UE
->
proc
.
mutex_synch
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
cond_synch
,
NULL
);
UE
->
proc
.
instance_cnt_synch
=
-
1
;
// the threads are not yet active, therefore access is allowed without locking
for
(
int
i
=
0
;
i
<
RX_NB_TH
;
i
++
)
{
rtd
=
calloc
(
1
,
sizeof
(
struct
nr_rxtx_thread_data
));
if
(
rtd
==
NULL
)
abort
();
rtd
->
UE
=
UE
;
rtd
->
proc
=
&
UE
->
proc
.
proc_rxtx
[
i
];
pthread_mutex_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
mutex_rxtx
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
cond_rxtx
,
NULL
);
UE
->
proc
.
proc_rxtx
[
i
].
sub_frame_start
=
i
;
UE
->
proc
.
proc_rxtx
[
i
].
sub_frame_step
=
RX_NB_TH
;
printf
(
"Init_UE_threads rtd %d proc %d nb_threads %d i %d
\n
"
,
rtd
->
proc
->
sub_frame_start
,
UE
->
proc
.
proc_rxtx
[
i
].
sub_frame_start
,
RX_NB_TH
,
i
);
pthread_create
(
&
UE
->
proc
.
proc_rxtx
[
i
].
pthread_rxtx
,
NULL
,
UE_thread_rxn_txnp4
,
rtd
);
#ifdef UE_DLSCH_PARALLELISATION
pthread_mutex_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
mutex_dlsch_td
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
cond_dlsch_td
,
NULL
);
pthread_create
(
&
UE
->
proc
.
proc_rxtx
[
i
].
pthread_dlsch_td
,
NULL
,
nr_dlsch_decoding_2thread0
,
rtd
);
//thread 2
pthread_mutex_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
mutex_dlsch_td1
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
cond_dlsch_td1
,
NULL
);
pthread_create
(
&
UE
->
proc
.
proc_rxtx
[
i
].
pthread_dlsch_td1
,
NULL
,
nr_dlsch_decoding_2thread1
,
rtd
);
pthread_mutex_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
mutex_dlsch_td
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
cond_dlsch_td
,
NULL
);
pthread_create
(
&
UE
->
proc
.
proc_rxtx
[
i
].
pthread_dlsch_td
,
NULL
,
nr_dlsch_decoding_2thread0
,
rtd
);
//thread 2
pthread_mutex_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
mutex_dlsch_td1
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
cond_dlsch_td1
,
NULL
);
pthread_create
(
&
UE
->
proc
.
proc_rxtx
[
i
].
pthread_dlsch_td1
,
NULL
,
nr_dlsch_decoding_2thread1
,
rtd
);
#endif
#ifdef UE_SLOT_PARALLELISATION
//pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_slot0_dl_processing,NULL);
//pthread_cond_init(&UE->proc.proc_rxtx[i].cond_slot0_dl_processing,NULL);
//pthread_create(&UE->proc.proc_rxtx[i].pthread_slot0_dl_processing,NULL,UE_thread_slot0_dl_processing, rtd);
pthread_mutex_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
mutex_slot1_dl_processing
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
cond_slot1_dl_processing
,
NULL
);
pthread_create
(
&
UE
->
proc
.
proc_rxtx
[
i
].
pthread_slot1_dl_processing
,
NULL
,
UE_thread_slot1_dl_processing
,
rtd
);
//pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_slot0_dl_processing,NULL);
//pthread_cond_init(&UE->proc.proc_rxtx[i].cond_slot0_dl_processing,NULL);
//pthread_create(&UE->proc.proc_rxtx[i].pthread_slot0_dl_processing,NULL,UE_thread_slot0_dl_processing, rtd);
pthread_mutex_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
mutex_slot1_dl_processing
,
NULL
);
pthread_cond_init
(
&
UE
->
proc
.
proc_rxtx
[
i
].
cond_slot1_dl_processing
,
NULL
);
pthread_create
(
&
UE
->
proc
.
proc_rxtx
[
i
].
pthread_slot1_dl_processing
,
NULL
,
UE_thread_slot1_dl_processing
,
rtd
);
#endif
}
}
pthread_create
(
&
UE
->
proc
.
pthread_synch
,
NULL
,
UE_thread_synch
,(
void
*
)
UE
);
pthread_create
(
&
UE
->
proc
.
pthread_synch
,
NULL
,
UE_thread_synch
,(
void
*
)
UE
);
}
#ifdef OPENAIR2
/*
void fill_ue_band_info(void) {
UE_EUTRA_Capability_t *UE_EUTRA_Capability = UE_rrc_inst[0].UECap->UE_EUTRA_Capability;
int i,j;
bands_to_scan.nbands = UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.count;
for (i=0; i<bands_to_scan.nbands; i++) {
for (j=0; j<sizeof (eutra_bands) / sizeof (eutra_bands[0]); j++)
if (eutra_bands[j].band == UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA) {
memcpy(&bands_to_scan.band_info[i],
&eutra_bands[j],
sizeof(eutra_band_t));
printf("Band %d (%lu) : DL %u..%u Hz, UL %u..%u Hz, Duplex %s \n",
bands_to_scan.band_info[i].band,
UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA,
bands_to_scan.band_info[i].dl_min,
bands_to_scan.band_info[i].dl_max,
bands_to_scan.band_info[i].ul_min,
bands_to_scan.band_info[i].ul_max,
(bands_to_scan.band_info[i].frame_type==FDD) ? "FDD" : "TDD");
break;
}
}
}*/
/*
void fill_ue_band_info(void) {
UE_EUTRA_Capability_t *UE_EUTRA_Capability = UE_rrc_inst[0].UECap->UE_EUTRA_Capability;
int i,j;
bands_to_scan.nbands = UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.count;
for (i=0; i<bands_to_scan.nbands; i++) {
for (j=0; j<sizeof (eutra_bands) / sizeof (eutra_bands[0]); j++)
if (eutra_bands[j].band == UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA) {
memcpy(&bands_to_scan.band_info[i],
&eutra_bands[j],
sizeof(eutra_band_t));
printf("Band %d (%lu) : DL %u..%u Hz, UL %u..%u Hz, Duplex %s \n",
bands_to_scan.band_info[i].band,
UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA,
bands_to_scan.band_info[i].dl_min,
bands_to_scan.band_info[i].dl_max,
bands_to_scan.band_info[i].ul_min,
bands_to_scan.band_info[i].ul_max,
(bands_to_scan.band_info[i].frame_type==FDD) ? "FDD" : "TDD");
break;
}
}
}*/
#endif
/*
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment