Commit 7a50a276 authored by Cedric Roux's avatar Cedric Roux

Fix asn1c warnings.

The strategy is rather basic. Files with warnings are replaced
by an edited copy that triggers no warning.

We take care to check that the replaced file is the same as the
one that was analyzed at the time of warning removal (through
checking its SHA1).

There is a new bash script "fix_asn1" in cmake_targets/tools
and the files replacing the existing ones are in
cmake_targets/tools/fix_asn1.data.
parent 2fca59f2
......@@ -247,6 +247,7 @@ endif (${RTAI})
# New C code source file, cmake must be re-run (instead of re-running make only)
#############
set(asn1c_call "${OPENAIR_CMAKE}/tools/generate_asn1")
set(fix_asn1c_call "${OPENAIR_CMAKE}/tools/fix_asn1")
set(asn1_generated_dir ${OPENAIR_BIN_DIR})
set(protoc_call "${OPENAIR_CMAKE}/tools/generate_protobuf")
......@@ -269,6 +270,15 @@ if(NOT EXISTS ${asn1c_call})
message( FATAL_ERROR "The script ${asn1c_call} must be present" )
endif(NOT EXISTS ${asn1c_call})
execute_process(COMMAND ${asn1c_call} ${RRC_FULL_DIR} ${RRC_GRAMMAR})
if(NOT EXISTS ${fix_asn1c_call})
message( FATAL_ERROR "The script ${fix_asn1c_call} must be present" )
endif(NOT EXISTS ${fix_asn1c_call})
execute_process(
COMMAND ${fix_asn1c_call} ${RRC_FULL_DIR} RRC ${RRC_ASN1_VERSION}
RESULT_VARIABLE ret)
if (NOT ${ret} STREQUAL 0)
message(FATAL_ERROR "${fix_asn1c_call}: error")
endif (NOT ${ret} STREQUAL 0)
file(GLOB rrc_source ${RRC_FULL_DIR}/*.c)
set(rrc_source ${rrc_source} ${OPENAIR2_DIR}/RRC/LITE/MESSAGES/asn1_msg.c)
file(GLOB rrc_h ${RRC_FULL_DIR}/*.h)
......@@ -282,6 +292,7 @@ include_directories ("${RRC_FULL_DIR}")
add_custom_command (
OUTPUT ${RRC_FULL_DIR}/asn1_constants.h
COMMAND ${asn1c_call} ${RRC_FULL_DIR} ${RRC_GRAMMAR}
COMMAND ${fix_asn1c_call} ${RRC_FULL_DIR} RRC ${RRC_ASN1_VERSION}
DEPENDS ${RRC_GRAMMAR}
)
......@@ -311,6 +322,12 @@ set(S1AP_ASN_FILES
set(S1AP_C_DIR ${asn1_generated_dir}/${ASN1RELDIR})
#message("calling ${asn1c_call} ${S1AP_C_DIR} ${S1AP_ASN_FILES}")
execute_process(COMMAND ${asn1c_call} ${S1AP_C_DIR} ${S1AP_ASN_FILES})
execute_process(
COMMAND ${fix_asn1c_call} ${S1AP_C_DIR} S1AP ${S1AP_VERSION}
RESULT_VARIABLE ret)
if (NOT ${ret} STREQUAL 0)
message(FATAL_ERROR "${fix_asn1c_call}: error")
endif (NOT ${ret} STREQUAL 0)
file(GLOB S1AP_source ${S1AP_C_DIR}/*.c)
set(S1AP_OAI_generated
......@@ -326,6 +343,7 @@ add_custom_command (
OUTPUT ${S1AP_OAI_generated}
COMMAND ${asn1c_call} ${S1AP_C_DIR} ${S1AP_ASN_FILES}
COMMAND python ${S1AP_DIR}/MESSAGES/ASN1/asn1tostruct.py -f${S1AP_ASN_DIR}/S1AP-PDU-Contents.asn -o${S1AP_C_DIR}
COMMAND ${fix_asn1c_call} ${S1AP_C_DIR} S1AP ${S1AP_VERSION}
DEPENDS ${S1AP_ASN_FILES}
)
add_library(S1AP_LIB
......@@ -378,6 +396,12 @@ set(X2AP_ASN_FILES
set(X2AP_C_DIR ${asn1_generated_dir}/${ASN1RELDIR})
#message("calling ${asn1c_call} ${X2AP_C_DIR} ${X2AP_ASN_FILES}")
execute_process(COMMAND ${asn1c_call} ${X2AP_C_DIR} ${X2AP_ASN_FILES})
execute_process(
COMMAND ${fix_asn1c_call} ${X2AP_C_DIR} X2AP ${X2AP_VERSION}
RESULT_VARIABLE ret)
if (NOT ${ret} STREQUAL 0)
message(FATAL_ERROR "${fix_asn1c_call}: error")
endif (NOT ${ret} STREQUAL 0)
file(GLOB X2AP_source ${X2AP_C_DIR}/*.c)
set(X2AP_OAI_generated
......@@ -394,6 +418,7 @@ add_custom_command (
OUTPUT ${X2AP_OAI_generated}
COMMAND ${asn1c_call} ${X2AP_C_DIR} ${X2AP_ASN_FILES}
COMMAND python ${X2AP_DIR}/MESSAGES/ASN1/asn1tostruct.py -f ${X2AP_ASN_DIR}/X2AP-PDU-Contents.asn -o ${X2AP_C_DIR}
COMMAND ${fix_asn1c_call} ${X2AP_C_DIR} X2AP ${X2AP_VERSION}
DEPENDS ${X2AP_ASN_FILES}
)
......
#!/bin/bash
# in those arrays, each line is:
# <file> <sha1sum of file> <replacement file>
RRC_Rel10=(
"SystemInformation-r8-IEs.h" 819eda3db27516f7c6780d832fb3c462e2264ea7 "fix_asn1.data/RRC.rel10/SystemInformation-r8-IEs.h"
)
X2AP_Rel11_2=(
"X2ap-CriticalityDiagnostics-IE-List.h" f0e2414992bfacfbc4b9fd15c977241d6d7fabeb "fix_asn1.data/X2AP.rel11.2/X2ap-CriticalityDiagnostics-IE-List.h"
"NativeInteger.c" e23034083a0fb9d4a2e523e2a64286161e621f27 "fix_asn1.data/X2AP.rel11.2/NativeInteger.c"
"constr_SET_OF.c" 5fb65da648a57ea61f008fa226b707cf343c1c0c "fix_asn1.data/X2AP.rel11.2/constr_SET_OF.c"
)
S1AP_Rel10_5=(
"NativeInteger.c" e23034083a0fb9d4a2e523e2a64286161e621f27 "fix_asn1.data/S1AP.rel10.5/NativeInteger.c"
"constr_SET_OF.c" 5fb65da648a57ea61f008fa226b707cf343c1c0c "fix_asn1.data/S1AP.rel10.5/constr_SET_OF.c"
)
red_color="\x1b[31m"
green_color="\x1b[32m"
reset_color="\x1b[0m"
function error()
{
echo -e "$red_color"ERROR: "$@""$reset_color"
exit 1
}
function check_sha1()
{
local file="$1"
local target_sha1="$2"
if [ ! -f "$file" ]
then
error "$file: no such file"
fi
local computed_sha1=$(sha1sum "$file" | cut -f 1 -d ' ')
if [ "$target_sha1" != "$computed_sha1" ]
then
error "$file: wrong SHA1"
fi
}
function copy_file()
{
local file="$1"
local destination="$2"
echo -e "$green_color""copy file $OPENAIR_DIR/cmake_targets/tools/$file to $destination""$reset_color"
cp -f "$OPENAIR_DIR/cmake_targets/tools/$file" "$destination"
if [ $? -ne 0 ]
then
error "copy of $file to $destination failed"
fi
}
function patch()
{
local directory="$1"
local array=$2
local len=$3 # the length could be computed locally but the way to do it is not clear to me [CROUX]
local i
local file
local sha1
local replace
local item
for (( i = 0; i < $len; i += 3 ))
do
# special bash syntax to access the array
item=$array[$i]; file=${!item}
item=$array[$((i+1))]; sha1=${!item}
item=$array[$((i+2))]; replace=${!item}
check_sha1 "$directory/$file" "$sha1"
copy_file "$replace" "$directory"
done
}
function patch_rrc()
{
local directory="$1"
local version="$2"
case "$version" in
Rel10 )
echo "patching RRC files release 10"
patch "$directory" RRC_Rel10 ${#RRC_Rel10[*]}
;;
* )
error unknwon/unhandled RRC version \'"$version"\'
;;
esac
}
function patch_x2ap()
{
local directory="$1"
local version="$2"
case "$version" in
R11 )
echo "patching X2AP files release 11.2"
patch "$directory" X2AP_Rel11_2 ${#X2AP_Rel11_2[*]}
;;
* )
error unknwon/unhandled X2AP version \'"$version"\'
;;
esac
}
function patch_s1ap()
{
local directory="$1"
local version="$2"
case "$version" in
R10 )
echo "patching S1AP files release 10.5"
patch "$directory" S1AP_Rel10_5 ${#S1AP_Rel10_5[*]}
;;
* )
error unknwon/unhandled S1AP version \'"$version"\'
;;
esac
}
function main()
{
if [ $# -ne 3 ]
then
echo "ERROR: pass <output directory> <module> <version>"
exit 1
fi
if [ x"$OPENAIR_DIR" = x ]
then
error "the variable OPENAIR_DIR is not set"
fi
local directory="$1"
local module="$2"
local version="$3"
case "$module" in
RRC )
patch_rrc "$directory" "$version"
;;
X2AP )
patch_x2ap "$directory" "$version"
;;
S1AP )
patch_s1ap "$directory" "$version"
;;
* )
error unknown module "$module"
;;
esac
exit 0
}
main "$@"
/*
* Generated by asn1c-0.9.24 (http://lionet.info/asn1c)
* From ASN.1 module "EUTRA-RRC-Definitions"
* found in "fixed_grammar.asn"
* `asn1c -gen-PER`
*/
#ifndef _SystemInformation_r8_IEs_H_
#define _SystemInformation_r8_IEs_H_
#include <asn_application.h>
/* Including external dependencies */
#include <asn_SEQUENCE_OF.h>
#include "SystemInformationBlockType2.h"
#include "SystemInformationBlockType3.h"
#include "SystemInformationBlockType4.h"
#include "SystemInformationBlockType5.h"
#include "SystemInformationBlockType6.h"
#include "SystemInformationBlockType7.h"
#include "SystemInformationBlockType8.h"
#include "SystemInformationBlockType9.h"
#include "SystemInformationBlockType10.h"
#include "SystemInformationBlockType11.h"
#include "SystemInformationBlockType12-r9.h"
#include "SystemInformationBlockType13-r9.h"
#include <constr_CHOICE.h>
#include <constr_SEQUENCE_OF.h>
#include <constr_SEQUENCE.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Dependencies */
typedef enum SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR {
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_NOTHING, /* No components present */
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib2,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib3,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib4,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib5,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib6,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib7,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib8,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib9,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib10,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib11,
/* Extensions may appear below */
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib12_v920,
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR_sib13_v920
} SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR;
/* Forward declarations */
struct SystemInformation_v8a0_IEs;
union SystemInformation_r8_IEs__sib_TypeAndInfo__Member_u {
SystemInformationBlockType2_t sib2;
SystemInformationBlockType3_t sib3;
SystemInformationBlockType4_t sib4;
SystemInformationBlockType5_t sib5;
SystemInformationBlockType6_t sib6;
SystemInformationBlockType7_t sib7;
SystemInformationBlockType8_t sib8;
SystemInformationBlockType9_t sib9;
SystemInformationBlockType10_t sib10;
SystemInformationBlockType11_t sib11;
/*
* This type is extensible,
* possible extensions are below.
*/
SystemInformationBlockType12_r9_t sib12_v920;
SystemInformationBlockType13_r9_t sib13_v920;
};
struct SystemInformation_r8_IEs__sib_TypeAndInfo__Member {
SystemInformation_r8_IEs__sib_TypeAndInfo__Member_PR present;
union SystemInformation_r8_IEs__sib_TypeAndInfo__Member_u choice;
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
};
/* SystemInformation-r8-IEs */
typedef struct SystemInformation_r8_IEs {
struct SystemInformation_r8_IEs__sib_TypeAndInfo {
A_SEQUENCE_OF(struct SystemInformation_r8_IEs__sib_TypeAndInfo__Member) list;
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
} sib_TypeAndInfo;
struct SystemInformation_v8a0_IEs *nonCriticalExtension /* OPTIONAL */;
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
} SystemInformation_r8_IEs_t;
/* Implementation */
extern asn_TYPE_descriptor_t asn_DEF_SystemInformation_r8_IEs;
#ifdef __cplusplus
}
#endif
/* Referred external types */
#include "SystemInformation-v8a0-IEs.h"
#endif /* _SystemInformation_r8_IEs_H_ */
#include <asn_internal.h>
/*-
* Copyright (c) 2004, 2005, 2006 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
/*
* Read the NativeInteger.h for the explanation wrt. differences between
* INTEGER and NativeInteger.
* Basically, both are decoders and encoders of ASN.1 INTEGER type, but this
* implementation deals with the standard (machine-specific) representation
* of them instead of using the platform-independent buffer.
*/
#include <asn_internal.h>
#include <NativeInteger.h>
/*
* NativeInteger basic type description.
*/
static ber_tlv_tag_t asn_DEF_NativeInteger_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (2 << 2))
};
asn_TYPE_descriptor_t asn_DEF_NativeInteger = {
"INTEGER", /* The ASN.1 type is still INTEGER */
"INTEGER",
NativeInteger_free,
NativeInteger_print,
asn_generic_no_constraint,
NativeInteger_decode_ber,
NativeInteger_encode_der,
NativeInteger_decode_xer,
NativeInteger_encode_xer,
NativeInteger_decode_uper, /* Unaligned PER decoder */
NativeInteger_encode_uper, /* Unaligned PER encoder */
NativeInteger_decode_aper, /* Aligned PER decoder */
NativeInteger_encode_aper, /* Aligned PER encoder */
0, /* Use generic outmost tag fetcher */
asn_DEF_NativeInteger_tags,
sizeof(asn_DEF_NativeInteger_tags) / sizeof(asn_DEF_NativeInteger_tags[0]),
asn_DEF_NativeInteger_tags, /* Same as above */
sizeof(asn_DEF_NativeInteger_tags) / sizeof(asn_DEF_NativeInteger_tags[0]),
0, /* No PER visible constraints */
0, 0, /* No members */
0 /* No specifics */
};
/*
* Decode INTEGER type.
*/
asn_dec_rval_t
NativeInteger_decode_ber(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
void **nint_ptr, const void *buf_ptr, size_t size, int tag_mode) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
long *native = (long *)*nint_ptr;
asn_dec_rval_t rval;
ber_tlv_len_t length;
/*
* If the structure is not there, allocate it.
*/
if(native == NULL) {
native = (long *)(*nint_ptr = CALLOC(1, sizeof(*native)));
if(native == NULL) {
rval.code = RC_FAIL;
rval.consumed = 0;
return rval;
}
}
ASN_DEBUG("Decoding %s as INTEGER (tm=%d)",
td->name, tag_mode);
/*
* Check tags.
*/
rval = ber_check_tags(opt_codec_ctx, td, 0, buf_ptr, size,
tag_mode, 0, &length, 0);
if(rval.code != RC_OK)
return rval;
ASN_DEBUG("%s length is %d bytes", td->name, (int)length);
/*
* Make sure we have this length.
*/
buf_ptr = ((const char *)buf_ptr) + rval.consumed;
size -= rval.consumed;
if(length > (ber_tlv_len_t)size) {
rval.code = RC_WMORE;
rval.consumed = 0;
return rval;
}
/*
* ASN.1 encoded INTEGER: buf_ptr, length
* Fill the native, at the same time checking for overflow.
* If overflow occured, return with RC_FAIL.
*/
{
INTEGER_t tmp;
union {
const void *constbuf;
void *nonconstbuf;
} unconst_buf;
long l;
unconst_buf.constbuf = buf_ptr;
tmp.buf = (uint8_t *)unconst_buf.nonconstbuf;
tmp.size = length;
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmp, (unsigned long *)&l) /* sic */
: asn_INTEGER2long(&tmp, &l)) {
rval.code = RC_FAIL;
rval.consumed = 0;
return rval;
}
*native = l;
}
rval.code = RC_OK;
rval.consumed += length;
ASN_DEBUG("Took %ld/%ld bytes to encode %s (%ld)",
(long)rval.consumed, (long)length, td->name, (long)*native);
return rval;
}
/*
* Encode the NativeInteger using the standard INTEGER type DER encoder.
*/
asn_enc_rval_t
NativeInteger_encode_der(asn_TYPE_descriptor_t *sd, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
unsigned long native = *(unsigned long *)ptr; /* Disable sign ext. */
asn_enc_rval_t erval;
INTEGER_t tmp;
#ifdef WORDS_BIGENDIAN /* Opportunistic optimization */
tmp.buf = (uint8_t *)&native;
tmp.size = sizeof(native);
#else /* Works even if WORDS_BIGENDIAN is not set where should've been */
uint8_t buf[sizeof(native)];
uint8_t *p;
/* Prepare a fake INTEGER */
for(p = buf + sizeof(buf) - 1; p >= buf; p--, native >>= 8)
*p = (uint8_t)native;
tmp.buf = buf;
tmp.size = sizeof(buf);
#endif /* WORDS_BIGENDIAN */
/* Encode fake INTEGER */
erval = INTEGER_encode_der(sd, &tmp, tag_mode, tag, cb, app_key);
if(erval.encoded == -1) {
assert(erval.structure_ptr == &tmp);
erval.structure_ptr = ptr;
}
return erval;
}
/*
* Decode the chunk of XML text encoding INTEGER.
*/
asn_dec_rval_t
NativeInteger_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **sptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
INTEGER_t st;
void *st_ptr = (void *)&st;
long *native = (long *)*sptr;
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
if(!native) _ASN_DECODE_FAILED;
}
memset(&st, 0, sizeof(st));
rval = INTEGER_decode_xer(opt_codec_ctx, td, &st_ptr,
opt_mname, buf_ptr, size);
if(rval.code == RC_OK) {
long l;
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&st, (unsigned long *)&l) /* sic */
: asn_INTEGER2long(&st, &l)) {
rval.code = RC_FAIL;
rval.consumed = 0;
} else {
*native = l;
}
} else {
/*
* Cannot restart from the middle;
* there is no place to save state in the native type.
* Request a continuation from the very beginning.
*/
rval.consumed = 0;
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &st);
return rval;
}
asn_enc_rval_t
NativeInteger_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
char scratch[32]; /* Enough for 64-bit int */
asn_enc_rval_t er;
const long *native = (const long *)sptr;
(void)ilevel;
(void)flags;
if(!native) _ASN_ENCODE_FAILED;
er.encoded = snprintf(scratch, sizeof(scratch),
(specs && specs->field_unsigned)
? "%lu" : "%ld", *native);
if(er.encoded <= 0 || (size_t)er.encoded >= sizeof(scratch)
|| cb(scratch, er.encoded, app_key) < 0)
_ASN_ENCODE_FAILED;
_ASN_ENCODED_OK(er);
}
asn_dec_rval_t
NativeInteger_decode_uper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
long *native = (long *)*sptr;
INTEGER_t tmpint;
void *tmpintptr = &tmpint;
(void)opt_codec_ctx;
ASN_DEBUG("Decoding NativeInteger %s (UPER)", td->name);
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
if(!native) _ASN_DECODE_FAILED;
}
memset(&tmpint, 0, sizeof tmpint);
rval = INTEGER_decode_uper(opt_codec_ctx, td, constraints,
&tmpintptr, pd);
if(rval.code == RC_OK) {
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmpint, (unsigned long *)native)
: asn_INTEGER2long(&tmpint, native))
rval.code = RC_FAIL;
else
ASN_DEBUG("NativeInteger %s got value %ld",
td->name, *native);
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return rval;
}
asn_dec_rval_t
NativeInteger_decode_aper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
long *native = (long *)*sptr;
INTEGER_t tmpint;
void *tmpintptr = &tmpint;
//int dynamic = 0;
(void)opt_codec_ctx;
ASN_DEBUG("Decoding NativeInteger %s (APER)", td->name);
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
//dynamic = 1;
if(!native) _ASN_DECODE_FAILED;
}
memset(&tmpint, 0, sizeof tmpint);
rval = INTEGER_decode_aper(opt_codec_ctx, td, constraints,
&tmpintptr, pd);
if(rval.code == RC_OK) {
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmpint, (unsigned long *)native)
: asn_INTEGER2long(&tmpint, native))
rval.code = RC_FAIL;
else
ASN_DEBUG("NativeInteger %s got value %ld",
td->name, *native);
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
//if (dynamic)
// free(native);
return rval;
}
asn_enc_rval_t
NativeInteger_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
long native;
INTEGER_t tmpint;
if(!sptr) _ASN_ENCODE_FAILED;
native = *(long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %ld (UPER)", td->name, native);
memset(&tmpint, 0, sizeof(tmpint));
if((specs&&specs->field_unsigned)
? asn_ulong2INTEGER(&tmpint, native)
: asn_long2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
er = INTEGER_encode_uper(td, constraints, &tmpint, po);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return er;
}
asn_enc_rval_t
NativeInteger_encode_aper(
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
INTEGER_t tmpint;
if(!sptr) _ASN_ENCODE_FAILED;
memset(&tmpint, 0, sizeof(tmpint));
if(specs&&specs->field_unsigned) {
unsigned long native;
native = *(unsigned long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %lu (APER) (unsigned)", td->name, native);
if(asn_ulong2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
} else {
long native;
native = *(long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %ld (APER) (unsigned)", td->name, native);
if(asn_long2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
}
// if((specs&&specs->field_unsigned)
// ? asn_ulong2INTEGER(&tmpint, native)
// : asn_long2INTEGER(&tmpint, native))
// _ASN_ENCODE_FAILED;
er = INTEGER_encode_aper(td, constraints, &tmpint, po);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return er;
}
/*
* INTEGER specific human-readable output.
*/
int
NativeInteger_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
const long *native = (const long *)sptr;
char scratch[32]; /* Enough for 64-bit int */
int ret;
(void)td; /* Unused argument */
(void)ilevel; /* Unused argument */
if(native) {
ret = snprintf(scratch, sizeof(scratch),
(specs && specs->field_unsigned)
? "%lu" : "%ld", *native);
assert(ret > 0 && (size_t)ret < sizeof(scratch));
return (cb(scratch, ret, app_key) < 0) ? -1 : 0;
} else {
return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
}
}
void
NativeInteger_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(!td || !ptr)
return;
ASN_DEBUG("Freeing %s as INTEGER (%d, %p, Native)",
td->name, contents_only, ptr);
if(!contents_only) {
FREEMEM(ptr);
}
}
/*-
* Copyright (c) 2003, 2004, 2005 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <constr_SET_OF.h>
#include <asn_SET_OF.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#undef ADVANCE
#define ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
ptr = ((const char *)ptr) + num;\
size -= num; \
if(ctx->left >= 0) \
ctx->left -= num; \
consumed_myself += num; \
} while(0)
/*
* Switch to the next phase of parsing.
*/
#undef NEXT_PHASE
#undef PHASE_OUT
#define NEXT_PHASE(ctx) do { \
ctx->phase++; \
ctx->step = 0; \
} while(0)
#define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0)
/*
* Return a standardized complex structure.
*/
#undef RETURN
#define RETURN(_code) do { \
rval.code = _code; \
rval.consumed = consumed_myself;\
return rval; \
} while(0)
/*
* The decoder of the SET OF type.
*/
asn_dec_rval_t
SET_OF_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **struct_ptr, const void *ptr, size_t size, int tag_mode) {
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
asn_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
ASN_DEBUG("Decoding %s as SET OF", td->name);
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) {
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch(ctx->phase) {
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size,
tag_mode, 1, &ctx->left, 0);
if(rval.code != RC_OK) {
ASN_DEBUG("%s tagging check failed: %d",
td->name, rval.code);
return rval;
}
if(ctx->left >= 0)
ctx->left += rval.consumed; /* ?Substracted below! */
ADVANCE(rval.consumed);
ASN_DEBUG("Structure consumes %ld bytes, "
"buffer %ld", (long)ctx->left, (long)size);
NEXT_PHASE(ctx);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next item.
*/
for(;; ctx->step = 0) {
ssize_t tag_len; /* Length of TLV's T */
if(ctx->step & 1)
goto microphase2;
/*
* MICROPHASE 1: Synchronize decoding.
*/
if(ctx->left == 0) {
ASN_DEBUG("End of SET OF %s", td->name);
/*
* No more things to decode.
* Exit out of here.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tag_len) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((const uint8_t *)ptr)[1] == 0) {
/*
* Found the terminator of the
* indefinite length structure.
*/
break;
}
}
/* Outmost tag may be unknown and cannot be fetched/compared */
if(elm->tag != (ber_tlv_tag_t)-1) {
if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) {
/*
* The new list member of expected type has arrived.
*/
} else {
ASN_DEBUG("Unexpected tag %s fixed SET OF %s",
ber_tlv_tag_string(tlv_tag), td->name);
ASN_DEBUG("%s SET OF has tag %s",
td->name, ber_tlv_tag_string(elm->tag));
RETURN(RC_FAIL);
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
/*
* Invoke the member fetch routine according to member's type
*/
rval = elm->type->ber_decoder(opt_codec_ctx,
elm->type, &ctx->ptr, ptr, LEFT, 0);
ASN_DEBUG("In %s SET OF %s code %d consumed %d",
td->name, elm->type->name,
rval.code, (int)rval.consumed);
switch(rval.code) {
case RC_OK:
{
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
else
ctx->ptr = 0;
}
break;
case RC_WMORE: /* More data expected */
if(!SIZE_VIOLATION) {
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fall through */
case RC_FAIL: /* Fatal error */
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all list members) */
NEXT_PHASE(ctx);
case 2:
/*
* Read in all "end of content" TLVs.
*/
while(ctx->left < 0) {
if(LEFT < 2) {
if(LEFT > 0 && ((const char *)ptr)[0] != 0) {
/* Unexpected tag */
RETURN(RC_FAIL);
} else {
RETURN(RC_WMORE);
}
}
if(((const char *)ptr)[0] == 0
&& ((const char *)ptr)[1] == 0) {
ADVANCE(2);
ctx->left++;
} else {
RETURN(RC_FAIL);
}
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* Internally visible buffer holding a single encoded element.
*/
struct _el_buffer {
uint8_t *buf;
size_t length;
size_t size;
};
/* Append bytes to the above structure */
static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) {
struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr;
if(el_buf->length + size > el_buf->size)
return -1;
memcpy(el_buf->buf + el_buf->length, buffer, size);
el_buf->length += size;
return 0;
}
static int _el_buf_cmp(const void *ap, const void *bp) {
const struct _el_buffer *a = (const struct _el_buffer *)ap;
const struct _el_buffer *b = (const struct _el_buffer *)bp;
int ret;
size_t common_len;
if(a->length < b->length)
common_len = a->length;
else
common_len = b->length;
ret = memcmp(a->buf, b->buf, common_len);
if(ret == 0) {
if(a->length < b->length)
ret = -1;
else if(a->length > b->length)
ret = 1;
}
return ret;
}
/*
* The DER encoder of the SET OF type.
*/
asn_enc_rval_t
SET_OF_encode_der(asn_TYPE_descriptor_t *td, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
asn_TYPE_descriptor_t *elm_type = elm->type;
der_type_encoder_f *der_encoder = elm_type->der_encoder;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
size_t computed_size = 0;
ssize_t encoding_size = 0;
struct _el_buffer *encoded_els;
ssize_t eels_count = 0;
size_t max_encoded_len = 1;
asn_enc_rval_t erval;
int ret;
int edx;
ASN_DEBUG("Estimating size for SET OF %s", td->name);
/*
* Gather the length of the underlying members sequence.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
if(!memb_ptr) continue;
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0);
if(erval.encoded == -1)
return erval;
computed_size += erval.encoded;
/* Compute maximum encoding's size */
if(max_encoded_len < (size_t)erval.encoded)
max_encoded_len = erval.encoded;
}
/*
* Encode the TLV for the sequence itself.
*/
encoding_size = der_write_tags(td, computed_size, tag_mode, 1, tag,
cb, app_key);
if(encoding_size == -1) {
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
computed_size += encoding_size;
if(!cb || list->count == 0) {
erval.encoded = computed_size;
_ASN_ENCODED_OK(erval);
}
/*
* DER mandates dynamic sorting of the SET OF elements
* according to their encodings. Build an array of the
* encoded elements.
*/
encoded_els = (struct _el_buffer *)MALLOC(
list->count * sizeof(encoded_els[0]));
if(encoded_els == NULL) {
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
ASN_DEBUG("Encoding members of %s SET OF", td->name);
/*
* Encode all members.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
struct _el_buffer *encoded_el = &encoded_els[eels_count];
if(!memb_ptr) continue;
/*
* Prepare space for encoding.
*/
encoded_el->buf = (uint8_t *)MALLOC(max_encoded_len);
if(encoded_el->buf) {
encoded_el->length = 0;
encoded_el->size = max_encoded_len;
} else {
for(edx--; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
/*
* Encode the member into the prepared space.
*/
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag,
_el_addbytes, encoded_el);
if(erval.encoded == -1) {
for(; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
return erval;
}
encoding_size += erval.encoded;
eels_count++;
}
/*
* Sort the encoded elements according to their encoding.
*/
qsort(encoded_els, eels_count, sizeof(encoded_els[0]), _el_buf_cmp);
/*
* Report encoded elements to the application.
* Dispose of temporary sorted members table.
*/
ret = 0;
for(edx = 0; edx < eels_count; edx++) {
struct _el_buffer *encoded_el = &encoded_els[edx];
/* Report encoded chunks to the application */
if(ret == 0
&& cb(encoded_el->buf, encoded_el->length, app_key) < 0)
ret = -1;
FREEMEM(encoded_el->buf);
}
FREEMEM(encoded_els);
if(ret || computed_size != (size_t)encoding_size) {
/*
* Standard callback failed, or
* encoded size is not equal to the computed size.
*/
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
} else {
erval.encoded = computed_size;
}
_ASN_ENCODED_OK(erval);
}
#undef XER_ADVANCE
#define XER_ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
buf_ptr = ((const char *)buf_ptr) + num;\
size -= num; \
consumed_myself += num; \
} while(0)
/*
* Decode the XER (XML) data.
*/
asn_dec_rval_t
SET_OF_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **struct_ptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *element = td->elements;
const char *elm_tag;
const char *xml_tag = opt_mname ? opt_mname : td->xml_tag;
/*
* ... and parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
asn_dec_rval_t rval; /* Return value from a decoder */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) RETURN(RC_FAIL);
}
/* Which tag is expected for the downstream */
if(specs->as_XMLValueList) {
elm_tag = (specs->as_XMLValueList == 1) ? 0 : "";
} else {
elm_tag = (*element->name)
? element->name : element->type->xml_tag;
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Phases of XER/XML processing:
* Phase 0: Check that the opening tag matches our expectations.
* Phase 1: Processing body and reacting on closing tag.
* Phase 2: Processing inner type.
*/
for(; ctx->phase <= 2;) {
pxer_chunk_type_e ch_type; /* XER chunk type */
ssize_t ch_size; /* Chunk size */
xer_check_tag_e tcv; /* Tag check value */
/*
* Go inside the inner member of a set.
*/
if(ctx->phase == 2) {
asn_dec_rval_t tmprval;
/* Invoke the inner type decoder, m.b. multiple times */
ASN_DEBUG("XER/SET OF element [%s]", elm_tag);
tmprval = element->type->xer_decoder(opt_codec_ctx,
element->type, &ctx->ptr, elm_tag,
buf_ptr, size);
if(tmprval.code == RC_OK) {
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
ctx->ptr = 0;
XER_ADVANCE(tmprval.consumed);
} else {
XER_ADVANCE(tmprval.consumed);
RETURN(tmprval.code);
}
ctx->phase = 1; /* Back to body processing */
ASN_DEBUG("XER/SET OF phase => %d", ctx->phase);
/* Fall through */
}
/*
* Get the next part of the XML stream.
*/
ch_size = xer_next_token(&ctx->context,
buf_ptr, size, &ch_type);
switch(ch_size) {
case -1: RETURN(RC_FAIL);
case 0: RETURN(RC_WMORE);
default:
switch(ch_type) {
case PXER_COMMENT: /* Got XML comment */
case PXER_TEXT: /* Ignore free-standing text */
XER_ADVANCE(ch_size); /* Skip silently */
continue;
case PXER_TAG:
break; /* Check the rest down there */
}
}
tcv = xer_check_tag(buf_ptr, ch_size, xml_tag);
ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s",
tcv, ctx->phase, xml_tag);
switch(tcv) {
case XCT_CLOSING:
if(ctx->phase == 0) break;
ctx->phase = 0;
/* Fall through */
case XCT_BOTH:
if(ctx->phase == 0) {
/* No more things to decode */
XER_ADVANCE(ch_size);
ctx->phase = 3; /* Phase out */
RETURN(RC_OK);
}
/* Fall through */
case XCT_OPENING:
if(ctx->phase == 0) {
XER_ADVANCE(ch_size);
ctx->phase = 1; /* Processing body phase */
continue;
}
/* Fall through */
case XCT_UNKNOWN_OP:
case XCT_UNKNOWN_BO:
ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase);
if(ctx->phase == 1) {
/*
* Process a single possible member.
*/
ctx->phase = 2;
continue;
}
/* Fall through */
default:
break;
}
ASN_DEBUG("Unexpected XML tag in SET OF");
break;
}
ctx->phase = 3; /* "Phase out" on hard failure */
RETURN(RC_FAIL);
}
typedef struct xer_tmp_enc_s {
void *buffer;
size_t offset;
size_t size;
} xer_tmp_enc_t;
static int
SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) {
xer_tmp_enc_t *t = (xer_tmp_enc_t *)key;
if(t->offset + size >= t->size) {
size_t newsize = (t->size << 2) + size;
void *p = REALLOC(t->buffer, newsize);
if(!p) return -1;
t->buffer = p;
t->size = newsize;
}
memcpy((char *)t->buffer + t->offset, buffer, size);
t->offset += size;
return 0;
}
static int
SET_OF_xer_order(const void *aptr, const void *bptr) {
const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr;
const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr;
size_t minlen = a->offset;
int ret;
if(b->offset < minlen) minlen = b->offset;
/* Well-formed UTF-8 has this nice lexicographical property... */
ret = memcmp(a->buffer, b->buffer, minlen);
if(ret != 0) return ret;
if(a->offset == b->offset)
return 0;
if(a->offset == minlen)
return -1;
return 1;
}
asn_enc_rval_t
SET_OF_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_enc_rval_t er;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(sptr);
const char *mname = specs->as_XMLValueList
? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag);
size_t mlen = mname ? strlen(mname) : 0;
int xcan = (flags & XER_F_CANONICAL);
xer_tmp_enc_t *encs = 0;
size_t encs_count = 0;
void *original_app_key = app_key;
asn_app_consume_bytes_f *original_cb = cb;
int i;
if(!sptr) _ASN_ENCODE_FAILED;
if(xcan) {
encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0]));
if(!encs) _ASN_ENCODE_FAILED;
cb = SET_OF_encode_xer_callback;
}
er.encoded = 0;
for(i = 0; i < list->count; i++) {
asn_enc_rval_t tmper;
void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
if(encs) {
memset(&encs[encs_count], 0, sizeof(encs[0]));
app_key = &encs[encs_count];
encs_count++;
}
if(mname) {
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel);
_ASN_CALLBACK3("<", 1, mname, mlen, ">", 1);
}
if(!xcan && specs->as_XMLValueList == 1)
_i_ASN_TEXT_INDENT(1, ilevel + 1);
tmper = elm->type->xer_encoder(elm->type, memb_ptr,
ilevel + (specs->as_XMLValueList != 2),
flags, cb, app_key);
if(tmper.encoded == -1) {
td = tmper.failed_type;
sptr = tmper.structure_ptr;
goto cb_failed;
}
if(tmper.encoded == 0 && specs->as_XMLValueList) {
const char *name = elm->type->xml_tag;
size_t len = strlen(name);
_ASN_CALLBACK3("<", 1, name, len, "/>", 2);
}
if(mname) {
_ASN_CALLBACK3("</", 2, mname, mlen, ">", 1);
er.encoded += 5;
}
er.encoded += (2 * mlen) + tmper.encoded;
}
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel - 1);
if(encs) {
xer_tmp_enc_t *enc = encs;
xer_tmp_enc_t *end = encs + encs_count;
ssize_t control_size = 0;
cb = original_cb;
app_key = original_app_key;
qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order);
for(; enc < end; enc++) {
_ASN_CALLBACK(enc->buffer, enc->offset);
FREEMEM(enc->buffer);
enc->buffer = 0;
control_size += enc->offset;
}
assert(control_size == er.encoded);
}
goto cleanup;
cb_failed:
er.encoded = -1;
er.failed_type = td;
er.structure_ptr = sptr;
cleanup:
if(encs) {
while(encs_count-- > 0) {
if(encs[encs_count].buffer)
FREEMEM(encs[encs_count].buffer);
}
FREEMEM(encs);
}
_ASN_ENCODED_OK(er);
}
int
SET_OF_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int ret;
int i;
if(!sptr) return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
/* Dump preamble */
if(cb(td->name, strlen(td->name), app_key) < 0
|| cb(" ::= {", 6, app_key) < 0)
return -1;
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
_i_INDENT(1);
ret = elm->type->print_struct(elm->type, memb_ptr,
ilevel + 1, cb, app_key);
if(ret) return ret;
}
ilevel--;
_i_INDENT(1);
return (cb("}", 1, app_key) < 0) ? -1 : 0;
}
void
SET_OF_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(td && ptr) {
asn_SET_OF_specifics_t *specs;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
asn_struct_ctx_t *ctx; /* Decoder context */
int i;
/*
* Could not use set_of_empty() because of (*free)
* incompatibility.
*/
for(i = 0; i < list->count; i++) {
void *memb_ptr = list->array[i];
if(memb_ptr)
ASN_STRUCT_FREE(*elm->type, memb_ptr);
}
list->count = 0; /* No meaningful elements left */
asn_set_empty(list); /* Remove (list->array) */
specs = (asn_SET_OF_specifics_t *)td->specifics;
ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset);
if(ctx->ptr) {
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
}
if(!contents_only) {
FREEMEM(ptr);
}
}
}
int
SET_OF_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
asn_constr_check_f *constr;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int i;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
constr = elm->memb_constraints;
if(!constr) constr = elm->type->check_constraints;
/*
* Iterate over the members of an array.
* Validate each in turn, until one fails.
*/
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
int ret;
if(!memb_ptr) continue;
ret = constr(elm->type, memb_ptr, ctfailcb, app_key);
if(ret) return ret;
}
/*
* Cannot inherit it eralier:
* need to make sure we get the updated version.
*/
if(!elm->memb_constraints)
elm->memb_constraints = elm->type->check_constraints;
return 0;
}
asn_dec_rval_t
SET_OF_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
_ASN_DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) _ASN_DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->per_constraints) ct = &td->per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) _ASN_DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
nelems = per_get_few_bits(pd, ct->effective_bits);
ASN_DEBUG("Preparing to fetch %ld+%"PRIdMAX" elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) _ASN_DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = uper_get_length(pd,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, (int)(ct ? ct->effective_bits : -1));
if(nelems < 0) _ASN_DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->uper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
asn_dec_rval_t
SET_OF_decode_aper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
_ASN_DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) _ASN_DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->per_constraints) ct = &td->per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) _ASN_DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
// nelems = per_get_few_bits(pd, ct->effective_bits);
nelems = aper_get_nsnnwn(pd, ct->upper_bound - ct->lower_bound);
ASN_DEBUG("Preparing to fetch %ld+%"PRIdMAX" elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) _ASN_DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = aper_get_length(pd, ct ? ct->upper_bound - ct->lower_bound + 1 : -1,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, ct ? ct->effective_bits : -1);
if(nelems < 0) _ASN_DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->aper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
/*-
* Copyright (c) 2004, 2005, 2006 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
/*
* Read the NativeInteger.h for the explanation wrt. differences between
* INTEGER and NativeInteger.
* Basically, both are decoders and encoders of ASN.1 INTEGER type, but this
* implementation deals with the standard (machine-specific) representation
* of them instead of using the platform-independent buffer.
*/
#include <asn_internal.h>
#include <NativeInteger.h>
/*
* NativeInteger basic type description.
*/
static ber_tlv_tag_t asn_DEF_NativeInteger_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (2 << 2))
};
asn_TYPE_descriptor_t asn_DEF_NativeInteger = {
"INTEGER", /* The ASN.1 type is still INTEGER */
"INTEGER",
NativeInteger_free,
NativeInteger_print,
asn_generic_no_constraint,
NativeInteger_decode_ber,
NativeInteger_encode_der,
NativeInteger_decode_xer,
NativeInteger_encode_xer,
NativeInteger_decode_uper, /* Unaligned PER decoder */
NativeInteger_encode_uper, /* Unaligned PER encoder */
NativeInteger_decode_aper, /* Aligned PER decoder */
NativeInteger_encode_aper, /* Aligned PER encoder */
0, /* Use generic outmost tag fetcher */
asn_DEF_NativeInteger_tags,
sizeof(asn_DEF_NativeInteger_tags) / sizeof(asn_DEF_NativeInteger_tags[0]),
asn_DEF_NativeInteger_tags, /* Same as above */
sizeof(asn_DEF_NativeInteger_tags) / sizeof(asn_DEF_NativeInteger_tags[0]),
0, /* No PER visible constraints */
0, 0, /* No members */
0 /* No specifics */
};
/*
* Decode INTEGER type.
*/
asn_dec_rval_t
NativeInteger_decode_ber(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
void **nint_ptr, const void *buf_ptr, size_t size, int tag_mode) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
long *native = (long *)*nint_ptr;
asn_dec_rval_t rval;
ber_tlv_len_t length;
/*
* If the structure is not there, allocate it.
*/
if(native == NULL) {
native = (long *)(*nint_ptr = CALLOC(1, sizeof(*native)));
if(native == NULL) {
rval.code = RC_FAIL;
rval.consumed = 0;
return rval;
}
}
ASN_DEBUG("Decoding %s as INTEGER (tm=%d)",
td->name, tag_mode);
/*
* Check tags.
*/
rval = ber_check_tags(opt_codec_ctx, td, 0, buf_ptr, size,
tag_mode, 0, &length, 0);
if(rval.code != RC_OK)
return rval;
ASN_DEBUG("%s length is %d bytes", td->name, (int)length);
/*
* Make sure we have this length.
*/
buf_ptr = ((const char *)buf_ptr) + rval.consumed;
size -= rval.consumed;
if(length > (ber_tlv_len_t)size) {
rval.code = RC_WMORE;
rval.consumed = 0;
return rval;
}
/*
* ASN.1 encoded INTEGER: buf_ptr, length
* Fill the native, at the same time checking for overflow.
* If overflow occured, return with RC_FAIL.
*/
{
INTEGER_t tmp;
union {
const void *constbuf;
void *nonconstbuf;
} unconst_buf;
long l;
unconst_buf.constbuf = buf_ptr;
tmp.buf = (uint8_t *)unconst_buf.nonconstbuf;
tmp.size = length;
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmp, (unsigned long *)&l) /* sic */
: asn_INTEGER2long(&tmp, &l)) {
rval.code = RC_FAIL;
rval.consumed = 0;
return rval;
}
*native = l;
}
rval.code = RC_OK;
rval.consumed += length;
ASN_DEBUG("Took %ld/%ld bytes to encode %s (%ld)",
(long)rval.consumed, (long)length, td->name, (long)*native);
return rval;
}
/*
* Encode the NativeInteger using the standard INTEGER type DER encoder.
*/
asn_enc_rval_t
NativeInteger_encode_der(asn_TYPE_descriptor_t *sd, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
unsigned long native = *(unsigned long *)ptr; /* Disable sign ext. */
asn_enc_rval_t erval;
INTEGER_t tmp;
#ifdef WORDS_BIGENDIAN /* Opportunistic optimization */
tmp.buf = (uint8_t *)&native;
tmp.size = sizeof(native);
#else /* Works even if WORDS_BIGENDIAN is not set where should've been */
uint8_t buf[sizeof(native)];
uint8_t *p;
/* Prepare a fake INTEGER */
for(p = buf + sizeof(buf) - 1; p >= buf; p--, native >>= 8)
*p = (uint8_t)native;
tmp.buf = buf;
tmp.size = sizeof(buf);
#endif /* WORDS_BIGENDIAN */
/* Encode fake INTEGER */
erval = INTEGER_encode_der(sd, &tmp, tag_mode, tag, cb, app_key);
if(erval.encoded == -1) {
assert(erval.structure_ptr == &tmp);
erval.structure_ptr = ptr;
}
return erval;
}
/*
* Decode the chunk of XML text encoding INTEGER.
*/
asn_dec_rval_t
NativeInteger_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **sptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
INTEGER_t st;
void *st_ptr = (void *)&st;
long *native = (long *)*sptr;
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
if(!native) _ASN_DECODE_FAILED;
}
memset(&st, 0, sizeof(st));
rval = INTEGER_decode_xer(opt_codec_ctx, td, &st_ptr,
opt_mname, buf_ptr, size);
if(rval.code == RC_OK) {
long l;
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&st, (unsigned long *)&l) /* sic */
: asn_INTEGER2long(&st, &l)) {
rval.code = RC_FAIL;
rval.consumed = 0;
} else {
*native = l;
}
} else {
/*
* Cannot restart from the middle;
* there is no place to save state in the native type.
* Request a continuation from the very beginning.
*/
rval.consumed = 0;
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &st);
return rval;
}
asn_enc_rval_t
NativeInteger_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
char scratch[32]; /* Enough for 64-bit int */
asn_enc_rval_t er;
const long *native = (const long *)sptr;
(void)ilevel;
(void)flags;
if(!native) _ASN_ENCODE_FAILED;
er.encoded = snprintf(scratch, sizeof(scratch),
(specs && specs->field_unsigned)
? "%lu" : "%ld", *native);
if(er.encoded <= 0 || (size_t)er.encoded >= sizeof(scratch)
|| cb(scratch, er.encoded, app_key) < 0)
_ASN_ENCODE_FAILED;
_ASN_ENCODED_OK(er);
}
asn_dec_rval_t
NativeInteger_decode_uper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
long *native = (long *)*sptr;
INTEGER_t tmpint;
void *tmpintptr = &tmpint;
(void)opt_codec_ctx;
ASN_DEBUG("Decoding NativeInteger %s (UPER)", td->name);
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
if(!native) _ASN_DECODE_FAILED;
}
memset(&tmpint, 0, sizeof tmpint);
rval = INTEGER_decode_uper(opt_codec_ctx, td, constraints,
&tmpintptr, pd);
if(rval.code == RC_OK) {
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmpint, (unsigned long *)native)
: asn_INTEGER2long(&tmpint, native))
rval.code = RC_FAIL;
else
ASN_DEBUG("NativeInteger %s got value %ld",
td->name, *native);
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return rval;
}
asn_dec_rval_t
NativeInteger_decode_aper(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval;
long *native = (long *)*sptr;
INTEGER_t tmpint;
void *tmpintptr = &tmpint;
//int dynamic = 0;
(void)opt_codec_ctx;
ASN_DEBUG("Decoding NativeInteger %s (APER)", td->name);
if(!native) {
native = (long *)(*sptr = CALLOC(1, sizeof(*native)));
//dynamic = 1;
if(!native) _ASN_DECODE_FAILED;
}
memset(&tmpint, 0, sizeof tmpint);
rval = INTEGER_decode_aper(opt_codec_ctx, td, constraints,
&tmpintptr, pd);
if(rval.code == RC_OK) {
if((specs&&specs->field_unsigned)
? asn_INTEGER2ulong(&tmpint, (unsigned long *)native)
: asn_INTEGER2long(&tmpint, native))
rval.code = RC_FAIL;
else
ASN_DEBUG("NativeInteger %s got value %ld",
td->name, *native);
}
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
//if (dynamic)
// free(native);
return rval;
}
asn_enc_rval_t
NativeInteger_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
long native;
INTEGER_t tmpint;
if(!sptr) _ASN_ENCODE_FAILED;
native = *(long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %ld (UPER)", td->name, native);
memset(&tmpint, 0, sizeof(tmpint));
if((specs&&specs->field_unsigned)
? asn_ulong2INTEGER(&tmpint, native)
: asn_long2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
er = INTEGER_encode_uper(td, constraints, &tmpint, po);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return er;
}
asn_enc_rval_t
NativeInteger_encode_aper(
asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
INTEGER_t tmpint;
if(!sptr) _ASN_ENCODE_FAILED;
memset(&tmpint, 0, sizeof(tmpint));
if(specs&&specs->field_unsigned) {
unsigned long native;
native = *(unsigned long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %lu (APER) (unsigned)", td->name, native);
if(asn_ulong2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
} else {
long native;
native = *(long *)sptr;
ASN_DEBUG("Encoding NativeInteger %s %ld (APER) (unsigned)", td->name, native);
if(asn_long2INTEGER(&tmpint, native))
_ASN_ENCODE_FAILED;
}
// if((specs&&specs->field_unsigned)
// ? asn_ulong2INTEGER(&tmpint, native)
// : asn_long2INTEGER(&tmpint, native))
// _ASN_ENCODE_FAILED;
er = INTEGER_encode_aper(td, constraints, &tmpint, po);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_INTEGER, &tmpint);
return er;
}
/*
* INTEGER specific human-readable output.
*/
int
NativeInteger_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
const long *native = (const long *)sptr;
char scratch[32]; /* Enough for 64-bit int */
int ret;
(void)td; /* Unused argument */
(void)ilevel; /* Unused argument */
if(native) {
ret = snprintf(scratch, sizeof(scratch),
(specs && specs->field_unsigned)
? "%lu" : "%ld", *native);
assert(ret > 0 && (size_t)ret < sizeof(scratch));
return (cb(scratch, ret, app_key) < 0) ? -1 : 0;
} else {
return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
}
}
void
NativeInteger_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(!td || !ptr)
return;
ASN_DEBUG("Freeing %s as INTEGER (%d, %p, Native)",
td->name, contents_only, ptr);
if(!contents_only) {
FREEMEM(ptr);
}
}
/*
* Generated by asn1c-0.9.24 (http://lionet.info/asn1c)
* From ASN.1 module "X2AP-IEs"
* found in "/roux/comments/openairinterface5g/openair2/X2AP/MESSAGES/ASN1/R11.2/X2AP-IEs.asn"
* `asn1c -gen-PER`
*/
#ifndef _X2ap_CriticalityDiagnostics_IE_List_H_
#define _X2ap_CriticalityDiagnostics_IE_List_H_
#include <asn_application.h>
/* Including external dependencies */
#include <asn_SEQUENCE_OF.h>
#include "X2ap-Criticality.h"
#include "X2ap-ProtocolIE-ID.h"
#include "X2ap-TypeOfError.h"
#include <constr_SEQUENCE.h>
#include <constr_SEQUENCE_OF.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Forward declarations */
struct X2ap_IE_Extensions;
struct X2ap_CriticalityDiagnostics_IE_List__Member {
X2ap_Criticality_t iECriticality;
X2ap_ProtocolIE_ID_t iE_ID;
X2ap_TypeOfError_t typeOfError;
struct X2ap_IE_Extensions *iE_Extensions /* OPTIONAL */;
/*
* This type is extensible,
* possible extensions are below.
*/
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
};
/* X2ap-CriticalityDiagnostics-IE-List */
typedef struct X2ap_CriticalityDiagnostics_IE_List {
A_SEQUENCE_OF(struct X2ap_CriticalityDiagnostics_IE_List__Member
) list;
/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;
} X2ap_CriticalityDiagnostics_IE_List_t;
/* Implementation */
extern asn_TYPE_descriptor_t asn_DEF_X2ap_CriticalityDiagnostics_IE_List;
#ifdef __cplusplus
}
#endif
/* Referred external types */
#include "X2ap-IE-Extensions.h"
#endif /* _X2ap_CriticalityDiagnostics_IE_List_H_ */
#include <asn_internal.h>
/*-
* Copyright (c) 2003, 2004, 2005 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <constr_SET_OF.h>
#include <asn_SET_OF.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#undef ADVANCE
#define ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
ptr = ((const char *)ptr) + num;\
size -= num; \
if(ctx->left >= 0) \
ctx->left -= num; \
consumed_myself += num; \
} while(0)
/*
* Switch to the next phase of parsing.
*/
#undef NEXT_PHASE
#undef PHASE_OUT
#define NEXT_PHASE(ctx) do { \
ctx->phase++; \
ctx->step = 0; \
} while(0)
#define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0)
/*
* Return a standardized complex structure.
*/
#undef RETURN
#define RETURN(_code) do { \
rval.code = _code; \
rval.consumed = consumed_myself;\
return rval; \
} while(0)
/*
* The decoder of the SET OF type.
*/
asn_dec_rval_t
SET_OF_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **struct_ptr, const void *ptr, size_t size, int tag_mode) {
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
asn_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
ASN_DEBUG("Decoding %s as SET OF", td->name);
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) {
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch(ctx->phase) {
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size,
tag_mode, 1, &ctx->left, 0);
if(rval.code != RC_OK) {
ASN_DEBUG("%s tagging check failed: %d",
td->name, rval.code);
return rval;
}
if(ctx->left >= 0)
ctx->left += rval.consumed; /* ?Substracted below! */
ADVANCE(rval.consumed);
ASN_DEBUG("Structure consumes %ld bytes, "
"buffer %ld", (long)ctx->left, (long)size);
NEXT_PHASE(ctx);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next item.
*/
for(;; ctx->step = 0) {
ssize_t tag_len; /* Length of TLV's T */
if(ctx->step & 1)
goto microphase2;
/*
* MICROPHASE 1: Synchronize decoding.
*/
if(ctx->left == 0) {
ASN_DEBUG("End of SET OF %s", td->name);
/*
* No more things to decode.
* Exit out of here.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tag_len) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((const uint8_t *)ptr)[1] == 0) {
/*
* Found the terminator of the
* indefinite length structure.
*/
break;
}
}
/* Outmost tag may be unknown and cannot be fetched/compared */
if(elm->tag != (ber_tlv_tag_t)-1) {
if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) {
/*
* The new list member of expected type has arrived.
*/
} else {
ASN_DEBUG("Unexpected tag %s fixed SET OF %s",
ber_tlv_tag_string(tlv_tag), td->name);
ASN_DEBUG("%s SET OF has tag %s",
td->name, ber_tlv_tag_string(elm->tag));
RETURN(RC_FAIL);
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
/*
* Invoke the member fetch routine according to member's type
*/
rval = elm->type->ber_decoder(opt_codec_ctx,
elm->type, &ctx->ptr, ptr, LEFT, 0);
ASN_DEBUG("In %s SET OF %s code %d consumed %d",
td->name, elm->type->name,
rval.code, (int)rval.consumed);
switch(rval.code) {
case RC_OK:
{
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
else
ctx->ptr = 0;
}
break;
case RC_WMORE: /* More data expected */
if(!SIZE_VIOLATION) {
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fall through */
case RC_FAIL: /* Fatal error */
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all list members) */
NEXT_PHASE(ctx);
case 2:
/*
* Read in all "end of content" TLVs.
*/
while(ctx->left < 0) {
if(LEFT < 2) {
if(LEFT > 0 && ((const char *)ptr)[0] != 0) {
/* Unexpected tag */
RETURN(RC_FAIL);
} else {
RETURN(RC_WMORE);
}
}
if(((const char *)ptr)[0] == 0
&& ((const char *)ptr)[1] == 0) {
ADVANCE(2);
ctx->left++;
} else {
RETURN(RC_FAIL);
}
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* Internally visible buffer holding a single encoded element.
*/
struct _el_buffer {
uint8_t *buf;
size_t length;
size_t size;
};
/* Append bytes to the above structure */
static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) {
struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr;
if(el_buf->length + size > el_buf->size)
return -1;
memcpy(el_buf->buf + el_buf->length, buffer, size);
el_buf->length += size;
return 0;
}
static int _el_buf_cmp(const void *ap, const void *bp) {
const struct _el_buffer *a = (const struct _el_buffer *)ap;
const struct _el_buffer *b = (const struct _el_buffer *)bp;
int ret;
size_t common_len;
if(a->length < b->length)
common_len = a->length;
else
common_len = b->length;
ret = memcmp(a->buf, b->buf, common_len);
if(ret == 0) {
if(a->length < b->length)
ret = -1;
else if(a->length > b->length)
ret = 1;
}
return ret;
}
/*
* The DER encoder of the SET OF type.
*/
asn_enc_rval_t
SET_OF_encode_der(asn_TYPE_descriptor_t *td, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
asn_TYPE_descriptor_t *elm_type = elm->type;
der_type_encoder_f *der_encoder = elm_type->der_encoder;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
size_t computed_size = 0;
ssize_t encoding_size = 0;
struct _el_buffer *encoded_els;
ssize_t eels_count = 0;
size_t max_encoded_len = 1;
asn_enc_rval_t erval;
int ret;
int edx;
ASN_DEBUG("Estimating size for SET OF %s", td->name);
/*
* Gather the length of the underlying members sequence.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
if(!memb_ptr) continue;
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0);
if(erval.encoded == -1)
return erval;
computed_size += erval.encoded;
/* Compute maximum encoding's size */
if(max_encoded_len < (size_t)erval.encoded)
max_encoded_len = erval.encoded;
}
/*
* Encode the TLV for the sequence itself.
*/
encoding_size = der_write_tags(td, computed_size, tag_mode, 1, tag,
cb, app_key);
if(encoding_size == -1) {
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
computed_size += encoding_size;
if(!cb || list->count == 0) {
erval.encoded = computed_size;
_ASN_ENCODED_OK(erval);
}
/*
* DER mandates dynamic sorting of the SET OF elements
* according to their encodings. Build an array of the
* encoded elements.
*/
encoded_els = (struct _el_buffer *)MALLOC(
list->count * sizeof(encoded_els[0]));
if(encoded_els == NULL) {
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
ASN_DEBUG("Encoding members of %s SET OF", td->name);
/*
* Encode all members.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
struct _el_buffer *encoded_el = &encoded_els[eels_count];
if(!memb_ptr) continue;
/*
* Prepare space for encoding.
*/
encoded_el->buf = (uint8_t *)MALLOC(max_encoded_len);
if(encoded_el->buf) {
encoded_el->length = 0;
encoded_el->size = max_encoded_len;
} else {
for(edx--; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
return erval;
}
/*
* Encode the member into the prepared space.
*/
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag,
_el_addbytes, encoded_el);
if(erval.encoded == -1) {
for(; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
return erval;
}
encoding_size += erval.encoded;
eels_count++;
}
/*
* Sort the encoded elements according to their encoding.
*/
qsort(encoded_els, eels_count, sizeof(encoded_els[0]), _el_buf_cmp);
/*
* Report encoded elements to the application.
* Dispose of temporary sorted members table.
*/
ret = 0;
for(edx = 0; edx < eels_count; edx++) {
struct _el_buffer *encoded_el = &encoded_els[edx];
/* Report encoded chunks to the application */
if(ret == 0
&& cb(encoded_el->buf, encoded_el->length, app_key) < 0)
ret = -1;
FREEMEM(encoded_el->buf);
}
FREEMEM(encoded_els);
if(ret || computed_size != (size_t)encoding_size) {
/*
* Standard callback failed, or
* encoded size is not equal to the computed size.
*/
erval.encoded = -1;
erval.failed_type = td;
erval.structure_ptr = ptr;
} else {
erval.encoded = computed_size;
}
_ASN_ENCODED_OK(erval);
}
#undef XER_ADVANCE
#define XER_ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
buf_ptr = ((const char *)buf_ptr) + num;\
size -= num; \
consumed_myself += num; \
} while(0)
/*
* Decode the XER (XML) data.
*/
asn_dec_rval_t
SET_OF_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
void **struct_ptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
/*
* Bring closer parts of structure description.
*/
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *element = td->elements;
const char *elm_tag;
const char *xml_tag = opt_mname ? opt_mname : td->xml_tag;
/*
* ... and parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
asn_dec_rval_t rval; /* Return value from a decoder */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) RETURN(RC_FAIL);
}
/* Which tag is expected for the downstream */
if(specs->as_XMLValueList) {
elm_tag = (specs->as_XMLValueList == 1) ? 0 : "";
} else {
elm_tag = (*element->name)
? element->name : element->type->xml_tag;
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Phases of XER/XML processing:
* Phase 0: Check that the opening tag matches our expectations.
* Phase 1: Processing body and reacting on closing tag.
* Phase 2: Processing inner type.
*/
for(; ctx->phase <= 2;) {
pxer_chunk_type_e ch_type; /* XER chunk type */
ssize_t ch_size; /* Chunk size */
xer_check_tag_e tcv; /* Tag check value */
/*
* Go inside the inner member of a set.
*/
if(ctx->phase == 2) {
asn_dec_rval_t tmprval;
/* Invoke the inner type decoder, m.b. multiple times */
ASN_DEBUG("XER/SET OF element [%s]", elm_tag);
tmprval = element->type->xer_decoder(opt_codec_ctx,
element->type, &ctx->ptr, elm_tag,
buf_ptr, size);
if(tmprval.code == RC_OK) {
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
ctx->ptr = 0;
XER_ADVANCE(tmprval.consumed);
} else {
XER_ADVANCE(tmprval.consumed);
RETURN(tmprval.code);
}
ctx->phase = 1; /* Back to body processing */
ASN_DEBUG("XER/SET OF phase => %d", ctx->phase);
/* Fall through */
}
/*
* Get the next part of the XML stream.
*/
ch_size = xer_next_token(&ctx->context,
buf_ptr, size, &ch_type);
switch(ch_size) {
case -1: RETURN(RC_FAIL);
case 0: RETURN(RC_WMORE);
default:
switch(ch_type) {
case PXER_COMMENT: /* Got XML comment */
case PXER_TEXT: /* Ignore free-standing text */
XER_ADVANCE(ch_size); /* Skip silently */
continue;
case PXER_TAG:
break; /* Check the rest down there */
}
}
tcv = xer_check_tag(buf_ptr, ch_size, xml_tag);
ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s",
tcv, ctx->phase, xml_tag);
switch(tcv) {
case XCT_CLOSING:
if(ctx->phase == 0) break;
ctx->phase = 0;
/* Fall through */
case XCT_BOTH:
if(ctx->phase == 0) {
/* No more things to decode */
XER_ADVANCE(ch_size);
ctx->phase = 3; /* Phase out */
RETURN(RC_OK);
}
/* Fall through */
case XCT_OPENING:
if(ctx->phase == 0) {
XER_ADVANCE(ch_size);
ctx->phase = 1; /* Processing body phase */
continue;
}
/* Fall through */
case XCT_UNKNOWN_OP:
case XCT_UNKNOWN_BO:
ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase);
if(ctx->phase == 1) {
/*
* Process a single possible member.
*/
ctx->phase = 2;
continue;
}
/* Fall through */
default:
break;
}
ASN_DEBUG("Unexpected XML tag in SET OF");
break;
}
ctx->phase = 3; /* "Phase out" on hard failure */
RETURN(RC_FAIL);
}
typedef struct xer_tmp_enc_s {
void *buffer;
size_t offset;
size_t size;
} xer_tmp_enc_t;
static int
SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) {
xer_tmp_enc_t *t = (xer_tmp_enc_t *)key;
if(t->offset + size >= t->size) {
size_t newsize = (t->size << 2) + size;
void *p = REALLOC(t->buffer, newsize);
if(!p) return -1;
t->buffer = p;
t->size = newsize;
}
memcpy((char *)t->buffer + t->offset, buffer, size);
t->offset += size;
return 0;
}
static int
SET_OF_xer_order(const void *aptr, const void *bptr) {
const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr;
const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr;
size_t minlen = a->offset;
int ret;
if(b->offset < minlen) minlen = b->offset;
/* Well-formed UTF-8 has this nice lexicographical property... */
ret = memcmp(a->buffer, b->buffer, minlen);
if(ret != 0) return ret;
if(a->offset == b->offset)
return 0;
if(a->offset == minlen)
return -1;
return 1;
}
asn_enc_rval_t
SET_OF_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_enc_rval_t er;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(sptr);
const char *mname = specs->as_XMLValueList
? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag);
size_t mlen = mname ? strlen(mname) : 0;
int xcan = (flags & XER_F_CANONICAL);
xer_tmp_enc_t *encs = 0;
size_t encs_count = 0;
void *original_app_key = app_key;
asn_app_consume_bytes_f *original_cb = cb;
int i;
if(!sptr) _ASN_ENCODE_FAILED;
if(xcan) {
encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0]));
if(!encs) _ASN_ENCODE_FAILED;
cb = SET_OF_encode_xer_callback;
}
er.encoded = 0;
for(i = 0; i < list->count; i++) {
asn_enc_rval_t tmper;
void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
if(encs) {
memset(&encs[encs_count], 0, sizeof(encs[0]));
app_key = &encs[encs_count];
encs_count++;
}
if(mname) {
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel);
_ASN_CALLBACK3("<", 1, mname, mlen, ">", 1);
}
if(!xcan && specs->as_XMLValueList == 1)
_i_ASN_TEXT_INDENT(1, ilevel + 1);
tmper = elm->type->xer_encoder(elm->type, memb_ptr,
ilevel + (specs->as_XMLValueList != 2),
flags, cb, app_key);
if(tmper.encoded == -1) {
td = tmper.failed_type;
sptr = tmper.structure_ptr;
goto cb_failed;
}
if(tmper.encoded == 0 && specs->as_XMLValueList) {
const char *name = elm->type->xml_tag;
size_t len = strlen(name);
_ASN_CALLBACK3("<", 1, name, len, "/>", 2);
}
if(mname) {
_ASN_CALLBACK3("</", 2, mname, mlen, ">", 1);
er.encoded += 5;
}
er.encoded += (2 * mlen) + tmper.encoded;
}
if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel - 1);
if(encs) {
xer_tmp_enc_t *enc = encs;
xer_tmp_enc_t *end = encs + encs_count;
ssize_t control_size = 0;
cb = original_cb;
app_key = original_app_key;
qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order);
for(; enc < end; enc++) {
_ASN_CALLBACK(enc->buffer, enc->offset);
FREEMEM(enc->buffer);
enc->buffer = 0;
control_size += enc->offset;
}
assert(control_size == er.encoded);
}
goto cleanup;
cb_failed:
er.encoded = -1;
er.failed_type = td;
er.structure_ptr = sptr;
cleanup:
if(encs) {
while(encs_count-- > 0) {
if(encs[encs_count].buffer)
FREEMEM(encs[encs_count].buffer);
}
FREEMEM(encs);
}
_ASN_ENCODED_OK(er);
}
int
SET_OF_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int ret;
int i;
if(!sptr) return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
/* Dump preamble */
if(cb(td->name, strlen(td->name), app_key) < 0
|| cb(" ::= {", 6, app_key) < 0)
return -1;
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
_i_INDENT(1);
ret = elm->type->print_struct(elm->type, memb_ptr,
ilevel + 1, cb, app_key);
if(ret) return ret;
}
ilevel--;
_i_INDENT(1);
return (cb("}", 1, app_key) < 0) ? -1 : 0;
}
void
SET_OF_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(td && ptr) {
asn_SET_OF_specifics_t *specs;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
asn_struct_ctx_t *ctx; /* Decoder context */
int i;
/*
* Could not use set_of_empty() because of (*free)
* incompatibility.
*/
for(i = 0; i < list->count; i++) {
void *memb_ptr = list->array[i];
if(memb_ptr)
ASN_STRUCT_FREE(*elm->type, memb_ptr);
}
list->count = 0; /* No meaningful elements left */
asn_set_empty(list); /* Remove (list->array) */
specs = (asn_SET_OF_specifics_t *)td->specifics;
ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset);
if(ctx->ptr) {
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
}
if(!contents_only) {
FREEMEM(ptr);
}
}
}
int
SET_OF_constraint(asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
asn_constr_check_f *constr;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int i;
if(!sptr) {
_ASN_CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
constr = elm->memb_constraints;
if(!constr) constr = elm->type->check_constraints;
/*
* Iterate over the members of an array.
* Validate each in turn, until one fails.
*/
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
int ret;
if(!memb_ptr) continue;
ret = constr(elm->type, memb_ptr, ctfailcb, app_key);
if(ret) return ret;
}
/*
* Cannot inherit it eralier:
* need to make sure we get the updated version.
*/
if(!elm->memb_constraints)
elm->memb_constraints = elm->type->check_constraints;
return 0;
}
asn_dec_rval_t
SET_OF_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
_ASN_DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) _ASN_DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->per_constraints) ct = &td->per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) _ASN_DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
nelems = per_get_few_bits(pd, ct->effective_bits);
ASN_DEBUG("Preparing to fetch %ld+%"PRIdMAX" elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) _ASN_DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = uper_get_length(pd,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, (int)(ct ? ct->effective_bits : -1));
if(nelems < 0) _ASN_DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->uper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
asn_dec_rval_t
SET_OF_decode_aper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv;
asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics;
asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx))
_ASN_DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) _ASN_DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->per_constraints) ct = &td->per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) _ASN_DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
// nelems = per_get_few_bits(pd, ct->effective_bits);
nelems = aper_get_nsnnwn(pd, ct->upper_bound - ct->lower_bound);
ASN_DEBUG("Preparing to fetch %ld+%"PRIdMAX" elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) _ASN_DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = aper_get_length(pd, ct ? ct->upper_bound - ct->lower_bound + 1 : -1,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, ct ? ct->effective_bits : -1);
if(nelems < 0) _ASN_DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->aper_decoder(opt_codec_ctx, elm->type,
elm->per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment