Commit 8d61307c authored by Cedric Roux's avatar Cedric Roux

- Started to convert debug points to use glib log API

- Moved common stuff to common/

git-svn-id: http://svn.eurecom.fr/openair4G/trunk@4239 818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent f482a03e
AM_CFLAGS = \
@ADD_CFLAGS@ \
-I$(top_srcdir)/common \
-I$(top_srcdir)/libparser \
-I$(top_srcdir)/libresolver \
-I$(top_srcdir)/libbuffers \
......
......@@ -16,10 +16,76 @@
int debug_buffers = 1;
int debug_parser = 0;
static void
console_log_handler(const char *log_domain, GLogLevelFlags log_level,
const char *message, gpointer user_data)
{
time_t curr;
struct tm *today;
const char *level;
switch(log_level & G_LOG_LEVEL_MASK) {
case G_LOG_LEVEL_ERROR:
level = "Err ";
break;
case G_LOG_LEVEL_CRITICAL:
level = "Crit";
break;
case G_LOG_LEVEL_WARNING:
level = "Warn";
break;
case G_LOG_LEVEL_MESSAGE:
level = "Msg ";
break;
case G_LOG_LEVEL_INFO:
level = "Info";
break;
case G_LOG_LEVEL_DEBUG:
level = "Dbg ";
break;
default:
fprintf(stderr, "unknown log_level %u\n", log_level);
level = NULL;
g_assert_not_reached();
}
/* create a "timestamp" */
time(&curr);
today = localtime(&curr);
fprintf(stderr, "%02u:%02u:%02u %8s %s %s\n",
today->tm_hour, today->tm_min, today->tm_sec,
log_domain != NULL ? log_domain : "",
level, message);
}
int main(int argc, char *argv[])
{
int ret = 0;
GLogLevelFlags log_flags;
log_flags = (GLogLevelFlags)
(G_LOG_LEVEL_ERROR |
G_LOG_LEVEL_CRITICAL |
G_LOG_LEVEL_WARNING |
G_LOG_LEVEL_MESSAGE |
G_LOG_LEVEL_INFO |
G_LOG_LEVEL_DEBUG |
G_LOG_FLAG_FATAL |
G_LOG_FLAG_RECURSION);
if (!g_thread_supported())
g_thread_init(NULL);
/* Secure gtk */
gdk_threads_init();
/* Initialize the widget set */
gtk_init(&argc, &argv);
g_log_set_handler(NULL, log_flags, console_log_handler, NULL);
CHECK_FCT(ui_gtk_initialize(argc, argv));
return ret;
......
AM_CFLAGS = \
@ADD_CFLAGS@ \
-I$(top_srcdir) \
-I$(top_srcdir)/common \
-I$(top_srcdir)/libparser \
-I$(top_srcdir)/libui
......
......@@ -3,7 +3,9 @@
#include <stdio.h>
#include <string.h>
#include "../rc.h"
#include <glib.h>
#include "rc.h"
#include "buffers.h"
extern int debug_buffers;
......@@ -57,7 +59,7 @@ int buffer_fetch(buffer_t *buffer, uint32_t offset, int size, void *value)
return -1;
if (buffer->size_bytes < ((offset >> 3) + size)) {
printf("Not enough data to fetch\n");
g_debug("Not enough data to fetch");
return -1;
}
......@@ -190,7 +192,7 @@ int buffer_has_enouch_data(buffer_t *buffer, uint32_t offset, uint32_t to_get)
return -1;
underflow = (buffer->size_bytes >= ((offset + to_get) / 8)) ? 0 : -1;
if (underflow && debug_buffers)
printf("Detected Underflow offset %u, to_get %u, buffer size %u\n",
g_debug("Detected Underflow offset %u, to_get %u, buffer size %u\n",
offset, to_get, buffer->size_bytes);
return underflow;
}
......
......@@ -5,7 +5,9 @@
#include <sys/stat.h>
#include <fcntl.h>
#include "../rc.h"
#include <glib.h>
#include "rc.h"
#include "buffers.h"
#include "file.h"
......@@ -22,7 +24,7 @@ int file_read_dump(buffer_t **buffer, const char *filename)
return RC_BAD_PARAM;
if ((fd = open(filename, O_RDONLY)) == -1) {
fprintf(stderr, "Cannot open %s for reading, returned %d:%s\n",
g_debug("Cannot open %s for reading, returned %d:%s\n",
filename, errno, strerror(errno));
return RC_FAIL;
}
......@@ -33,7 +35,7 @@ int file_read_dump(buffer_t **buffer, const char *filename)
current_read = read(fd, data, READ_BUFFER_SIZE);
if (current_read == -1)
{
fprintf(stderr, "Failed to read data from file, returned %d:%s\n",
g_debug("Failed to read data from file, returned %d:%s\n",
errno, strerror(errno));
return RC_FAIL;
}
......
......@@ -8,7 +8,7 @@
#include <gtk/gtk.h>
#include "../rc.h"
#include "rc.h"
#include "ui_interface.h"
#include "ui_notifications.h"
......
AM_CFLAGS = \
@ADD_CFLAGS@ \
-I$(top_srcdir) \
-I$(top_srcdir)/common \
-I$(top_srcdir)/libbuffers \
-I$(top_srcdir)/libui
......
......@@ -3,7 +3,7 @@
#include <assert.h>
#include <string.h>
#include "../rc.h"
#include "rc.h"
#include "field_type.h"
#include "buffers.h"
......
#include "../rc.h"
#include "rc.h"
#include "types.h"
#ifndef XML_PARSE_H_
......
AM_CFLAGS = \
@ADD_CFLAGS@ \
-I$(top_srcdir) \
-I$(top_srcdir)/common \
-I$(top_srcdir)/libparser \
-I$(top_srcdir)/libbuffers
......
#include <stdio.h>
#include <string.h>
#include "../rc.h"
#include <glib.h>
#include "rc.h"
#include "types.h"
#include "locate_root.h"
......@@ -13,15 +15,15 @@ int locate_root(const char *root_name, types_t *head, types_t **root) {
* This element is the entry for other sub-types.
*/
if (!root_name || (strlen (root_name) == 0)) {
printf ("FATAL: no root element name provided\n");
g_warning("FATAL: no root element name provided");
return -1;
}
if (!head) {
printf ("Empty list detected\n");
g_warning("Empty list detected");
return -1;
}
if (!root) {
printf ("NULL root reference\n");
g_warning("NULL root reference");
return -1;
}
......@@ -44,11 +46,11 @@ int locate_type(const char *type_name, types_t *head, types_t **type) {
* This element is the entry for other sub-types.
*/
if (!type_name) {
printf ("FATAL: no root element name provided\n");
g_warning("FATAL: no root element name provided");
return RC_BAD_PARAM;
}
if (!head) {
printf ("Empty list detected\n");
g_warning("Empty list detected");
return RC_BAD_PARAM;
}
......
#include <stdio.h>
#include <string.h>
#include "types.h"
int resolve_typedefs(types_t **head)
{
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
return -1;
}
for (next_type = head; next_type; next_type = next_type->next)
{
/* Only resolve typedef */
if (next_type->type != TYPE_TYPEDEF)
continue;
printf("Trying to resolve typedef %s\n", next_type->name);
}
return 0;
}
......@@ -2,6 +2,8 @@
#include <stdlib.h>
#include <string.h>
#include <glib.h>
#include "types.h"
#include "resolvers.h"
......@@ -17,7 +19,7 @@ int search_id(types_t *head, types_t **found, int id)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -37,7 +39,7 @@ int search_file(types_t *head, types_t **found, int file_id)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -59,7 +61,7 @@ int resolve_typedefs(types_t **head)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -86,7 +88,7 @@ int resolve_struct(types_t **head)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -144,7 +146,7 @@ int resolve_union(types_t **head)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -194,7 +196,7 @@ int resolve_pointer_type(types_t **head)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -221,7 +223,7 @@ int resolve_reference(types_t **head)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -248,7 +250,7 @@ int resolve_field(types_t **head)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -275,7 +277,7 @@ int resolve_array(types_t **head)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......@@ -302,7 +304,7 @@ int resolve_file(types_t **head)
types_t *next_type;
if (!head) {
printf("Empty list detected\n");
g_warning("Empty list detected");
return RESOLV_LIST_EMPTY;
}
......
AM_CFLAGS = \
@ADD_CFLAGS@ \
-I$(top_srcdir)/common \
-I$(top_srcdir)/libbuffers \
-I$(top_srcdir)/libparser
......
......@@ -3,7 +3,7 @@
#include <gtk/gtk.h>
#include "../rc.h"
#include "rc.h"
#include "ui_main_screen.h"
#include "ui_callbacks.h"
......@@ -16,7 +16,7 @@ gboolean ui_callback_on_open(GtkWidget *widget,
GdkEvent *event,
gpointer data)
{
g_print ("Open event occurred\n");
g_debug("Open event occurred");
CHECK_FCT(ui_file_chooser());
return TRUE;
}
......@@ -61,7 +61,7 @@ ui_callback_on_select_signal(GtkTreeSelection *selection,
}
else
{
g_print ("%s is going to be unselected.\n", name);
g_debug("%s is going to be unselected", name);
}
g_free(name);
......@@ -77,7 +77,7 @@ gboolean ui_callback_on_connect(GtkWidget *widget,
uint16_t port;
const char *ip;
g_print ("Connect event occurred\n");
g_debug("Connect event occurred");
port = atoi(gtk_entry_get_text(GTK_ENTRY(ui_main_data.portentry)));
ip = gtk_entry_get_text(GTK_ENTRY(ui_main_data.ipentry));
......@@ -94,7 +94,7 @@ gboolean ui_callback_on_disconnect(GtkWidget *widget,
{
/* We have to retrieve the ip address and port of remote host */
g_print ("Disconnect event occurred\n");
g_debug("Disconnect event occurred");
ui_interface.socket_disconnect();
return TRUE;
}
......@@ -104,8 +104,7 @@ gboolean ui_callback_on_tree_view_select(GtkWidget *widget,
gpointer data)
{
/* We have to retrieve the ip address and port of remote host */
g_print ("List selection event occurred\n");
g_debug("List selection event occurred");
return TRUE;
}
......@@ -9,7 +9,7 @@
#include <gtk/gtk.h>
#include "../rc.h"
#include "rc.h"
#include "ui_interface.h"
#include "ui_main_screen.h"
......@@ -26,20 +26,8 @@ int ui_gtk_initialize(int argc, char *argv[])
memset(&ui_main_data, 0, sizeof(ui_main_data_t));
if (!g_thread_supported())
g_thread_init(NULL);
/* Secure gtk */
gdk_threads_init();
/* Obtain gtk's global lock */
gdk_threads_enter();
/* Initialize the widget set */
gtk_init(&argc, &argv);
/* Create the main window */
ui_main_data.window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
ui_main_data.window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_position(GTK_WINDOW(ui_main_data.window), GTK_WIN_POS_CENTER);
gtk_window_set_default_size(GTK_WINDOW(ui_main_data.window), 1024, 800);
......
#include <gtk/gtk.h>
#include "../rc.h"
#include "rc.h"
#include "ui_main_screen.h"
#include "ui_menu_bar.h"
#include "ui_callbacks.h"
......
......@@ -6,7 +6,7 @@
#include <stdint.h>
#include <gtk/gtk.h>
#include "../rc.h"
#include "rc.h"
#include "ui_notebook.h"
#include "ui_tree_view.h"
......
......@@ -4,7 +4,7 @@
#include <gtk/gtk.h>
#include "../rc.h"
#include "rc.h"
#include "ui_interface.h"
#include "ui_main_screen.h"
......
......@@ -2,7 +2,7 @@
#include <gtk/gtk.h>
#include "../rc.h"
#include "rc.h"
#include "ui_main_screen.h"
#include "ui_menu_bar.h"
......
......@@ -3,7 +3,7 @@
#include <gtk/gtk.h>
#include "../rc.h"
#include "rc.h"
#include "ui_main_screen.h"
#include "ui_tree_view.h"
......
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
*/
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
/*
* This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues, and circular queues.
*
* A singly-linked list is headed by a single forward pointer. The
* elements are singly linked for minimum space and pointer manipulation
* overhead at the expense of O(n) removal for arbitrary elements. New
* elements can be added to the list after an existing element or at the
* head of the list. Elements being removed from the head of the list
* should use the explicit macro for this purpose for optimum
* efficiency. A singly-linked list may only be traversed in the forward
* direction. Singly-linked lists are ideal for applications with large
* datasets and few or no removals or for implementing a LIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A simple queue is headed by a pair of pointers, one the head of the
* list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list after
* an existing element, at the head of the list, or at the end of the
* list. A simple queue may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* A circle queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the list.
* A circle queue may be traversed in either direction, but has a more
* complex end of list detection.
*
* For details on the use of these macros, see the queue(3) manual page.
* SLIST LIST STAILQ TAILQ CIRCLEQ
* _HEAD + + + + +
* _HEAD_INITIALIZER + + + + +
* _ENTRY + + + + +
* _INIT + + + + +
* _EMPTY + + + + +
* _FIRST + + + + +
* _NEXT + + + + +
* _PREV - - - + +
* _LAST - - + + +
* _FOREACH + + + + +
* _FOREACH_REVERSE - - - + +
* _INSERT_HEAD + + + + +
* _INSERT_BEFORE - + - + +
* _INSERT_AFTER + + + + +
* _INSERT_TAIL - - + + +
* _REMOVE_HEAD + - + - -
* _REMOVE + + + + +
*/
/*
* List definitions.
*/
#define LIST_HEAD(name, type) \
struct name { \
struct type *lh_first; /* first element */ \
}
#define LIST_HEAD_INITIALIZER(head) \
{ NULL }
#define LIST_ENTRY(type) \
struct { \
struct type *le_next; /* next element */ \
struct type **le_prev; /* address of previous next element */ \
}
/*
* List functions.
*/
#define LIST_INIT(head) do { \
(head)->lh_first = NULL; \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
(listelm)->field.le_next->field.le_prev = \
&(elm)->field.le_next; \
(listelm)->field.le_next = (elm); \
(elm)->field.le_prev = &(listelm)->field.le_next; \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.le_prev = (listelm)->field.le_prev; \
(elm)->field.le_next = (listelm); \
*(listelm)->field.le_prev = (elm); \
(listelm)->field.le_prev = &(elm)->field.le_next; \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.le_next = (head)->lh_first) != NULL) \
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
(head)->lh_first = (elm); \
(elm)->field.le_prev = &(head)->lh_first; \
} while (/*CONSTCOND*/0)
#define LIST_REMOVE(elm, field) do { \
if ((elm)->field.le_next != NULL) \
(elm)->field.le_next->field.le_prev = \
(elm)->field.le_prev; \
*(elm)->field.le_prev = (elm)->field.le_next; \
} while (/*CONSTCOND*/0)
#define LIST_FOREACH(var, head, field) \
for ((var) = ((head)->lh_first); \
(var); \
(var) = ((var)->field.le_next))
/*
* List access methods.
*/
#define LIST_EMPTY(head) ((head)->lh_first == NULL)
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
/*
* Singly-linked List definitions.
*/
#define SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
}
#define SLIST_HEAD_INITIALIZER(head) \
{ NULL }
#define SLIST_ENTRY(type) \
struct { \
struct type *sle_next; /* next element */ \
}
/*
* Singly-linked List functions.
*/
#define SLIST_INIT(head) do { \
(head)->slh_first = NULL; \
} while (/*CONSTCOND*/0)
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
(elm)->field.sle_next = (slistelm)->field.sle_next; \
(slistelm)->field.sle_next = (elm); \
} while (/*CONSTCOND*/0)
#define SLIST_INSERT_HEAD(head, elm, field) do { \
(elm)->field.sle_next = (head)->slh_first; \
(head)->slh_first = (elm); \
} while (/*CONSTCOND*/0)
#define SLIST_REMOVE_HEAD(head, field) do { \
(head)->slh_first = (head)->slh_first->field.sle_next; \
} while (/*CONSTCOND*/0)
#define SLIST_REMOVE(head, elm, type, field) do { \
if ((head)->slh_first == (elm)) { \
SLIST_REMOVE_HEAD((head), field); \
} \
else { \
struct type *curelm = (head)->slh_first; \
while(curelm->field.sle_next != (elm)) \
curelm = curelm->field.sle_next; \
curelm->field.sle_next = \
curelm->field.sle_next->field.sle_next; \
} \
} while (/*CONSTCOND*/0)
#define SLIST_FOREACH(var, head, field) \
for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
/*
* Singly-linked List access methods.
*/
#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
/*
* Singly-linked Tail queue declarations.
*/
#define STAILQ_HEAD(name, type) \
struct name { \
struct type *stqh_first; /* first element */ \
struct type **stqh_last; /* addr of last next element */ \
}
#define STAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).stqh_first }
#define STAILQ_ENTRY(type) \
struct { \
struct type *stqe_next; /* next element */ \
}
/*
* Singly-linked Tail queue functions.
*/
#define STAILQ_INIT(head) do { \
(head)->stqh_first = NULL; \
(head)->stqh_last = &(head)->stqh_first; \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
(head)->stqh_last = &(elm)->field.stqe_next; \
(head)->stqh_first = (elm); \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.stqe_next = NULL; \
*(head)->stqh_last = (elm); \
(head)->stqh_last = &(elm)->field.stqe_next; \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
(head)->stqh_last = &(elm)->field.stqe_next; \
(listelm)->field.stqe_next = (elm); \
} while (/*CONSTCOND*/0)
#define STAILQ_REMOVE_HEAD(head, field) do { \
if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
(head)->stqh_last = &(head)->stqh_first; \
} while (/*CONSTCOND*/0)
#define STAILQ_REMOVE(head, elm, type, field) do { \
if ((head)->stqh_first == (elm)) { \
STAILQ_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->stqh_first; \
while (curelm->field.stqe_next != (elm)) \
curelm = curelm->field.stqe_next; \
if ((curelm->field.stqe_next = \
curelm->field.stqe_next->field.stqe_next) == NULL) \
(head)->stqh_last = &(curelm)->field.stqe_next; \
} \
} while (/*CONSTCOND*/0)
#define STAILQ_FOREACH(var, head, field) \
for ((var) = ((head)->stqh_first); \
(var); \
(var) = ((var)->field.stqe_next))
#define STAILQ_CONCAT(head1, head2) do { \
if (!STAILQ_EMPTY((head2))) { \
*(head1)->stqh_last = (head2)->stqh_first; \
(head1)->stqh_last = (head2)->stqh_last; \
STAILQ_INIT((head2)); \
} \
} while (/*CONSTCOND*/0)
/*
* Singly-linked Tail queue access methods.
*/
#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head) ((head)->stqh_first)
#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
/*
* Simple queue definitions.
*/
#define SIMPLEQ_HEAD(name, type) \
struct name { \
struct type *sqh_first; /* first element */ \
struct type **sqh_last; /* addr of last next element */ \
}
#define SIMPLEQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).sqh_first }
#define SIMPLEQ_ENTRY(type) \
struct { \
struct type *sqe_next; /* next element */ \
}
/*
* Simple queue functions.
*/
#define SIMPLEQ_INIT(head) do { \
(head)->sqh_first = NULL; \
(head)->sqh_last = &(head)->sqh_first; \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
(head)->sqh_last = &(elm)->field.sqe_next; \
(head)->sqh_first = (elm); \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.sqe_next = NULL; \
*(head)->sqh_last = (elm); \
(head)->sqh_last = &(elm)->field.sqe_next; \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
(head)->sqh_last = &(elm)->field.sqe_next; \
(listelm)->field.sqe_next = (elm); \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
(head)->sqh_last = &(head)->sqh_first; \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_REMOVE(head, elm, type, field) do { \
if ((head)->sqh_first == (elm)) { \
SIMPLEQ_REMOVE_HEAD((head), field); \
} else { \
struct type *curelm = (head)->sqh_first; \
while (curelm->field.sqe_next != (elm)) \
curelm = curelm->field.sqe_next; \
if ((curelm->field.sqe_next = \
curelm->field.sqe_next->field.sqe_next) == NULL) \
(head)->sqh_last = &(curelm)->field.sqe_next; \
} \
} while (/*CONSTCOND*/0)
#define SIMPLEQ_FOREACH(var, head, field) \
for ((var) = ((head)->sqh_first); \
(var); \
(var) = ((var)->field.sqe_next))
/*
* Simple queue access methods.
*/
#define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
/*
* Tail queue definitions.
*/
#define _TAILQ_HEAD(name, type, qual) \
struct name { \
qual type *tqh_first; /* first element */ \
qual type *qual *tqh_last; /* addr of last next element */ \
}
#define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,)
#define TAILQ_HEAD_INITIALIZER(head) \
{ NULL, &(head).tqh_first }
#define _TAILQ_ENTRY(type, qual) \
struct { \
qual type *tqe_next; /* next element */ \
qual type *qual *tqe_prev; /* address of previous next element */\
}
#define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,)
/*
* Tail queue functions.
*/
#define TAILQ_INIT(head) do { \
(head)->tqh_first = NULL; \
(head)->tqh_last = &(head)->tqh_first; \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
(head)->tqh_first->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(head)->tqh_first = (elm); \
(elm)->field.tqe_prev = &(head)->tqh_first; \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.tqe_next = NULL; \
(elm)->field.tqe_prev = (head)->tqh_last; \
*(head)->tqh_last = (elm); \
(head)->tqh_last = &(elm)->field.tqe_next; \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
(elm)->field.tqe_next->field.tqe_prev = \
&(elm)->field.tqe_next; \
else \
(head)->tqh_last = &(elm)->field.tqe_next; \
(listelm)->field.tqe_next = (elm); \
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
(elm)->field.tqe_next = (listelm); \
*(listelm)->field.tqe_prev = (elm); \
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
} while (/*CONSTCOND*/0)
#define TAILQ_REMOVE(head, elm, field) do { \
if (((elm)->field.tqe_next) != NULL) \
(elm)->field.tqe_next->field.tqe_prev = \
(elm)->field.tqe_prev; \
else \
(head)->tqh_last = (elm)->field.tqe_prev; \
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \
} while (/*CONSTCOND*/0)
#define TAILQ_FOREACH(var, head, field) \
for ((var) = ((head)->tqh_first); \
(var); \
(var) = ((var)->field.tqe_next))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
(var); \
(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define TAILQ_CONCAT(head1, head2, field) do { \
if (!TAILQ_EMPTY(head2)) { \
*(head1)->tqh_last = (head2)->tqh_first; \
(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
(head1)->tqh_last = (head2)->tqh_last; \
TAILQ_INIT((head2)); \
} \
} while (/*CONSTCOND*/0)
/*
* Tail queue access methods.
*/
#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname) \
(*(((struct headname *)((head)->tqh_last))->tqh_last))
#define TAILQ_PREV(elm, headname, field) \
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
/*
* Circular queue definitions.
*/
#define CIRCLEQ_HEAD(name, type) \
struct name { \
struct type *cqh_first; /* first element */ \
struct type *cqh_last; /* last element */ \
}
#define CIRCLEQ_HEAD_INITIALIZER(head) \
{ (void *)&head, (void *)&head }
#define CIRCLEQ_ENTRY(type) \
struct { \
struct type *cqe_next; /* next element */ \
struct type *cqe_prev; /* previous element */ \
}
/*
* Circular queue functions.
*/
#define CIRCLEQ_INIT(head) do { \
(head)->cqh_first = (void *)(head); \
(head)->cqh_last = (void *)(head); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm)->field.cqe_next; \
(elm)->field.cqe_prev = (listelm); \
if ((listelm)->field.cqe_next == (void *)(head)) \
(head)->cqh_last = (elm); \
else \
(listelm)->field.cqe_next->field.cqe_prev = (elm); \
(listelm)->field.cqe_next = (elm); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
(elm)->field.cqe_next = (listelm); \
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
if ((listelm)->field.cqe_prev == (void *)(head)) \
(head)->cqh_first = (elm); \
else \
(listelm)->field.cqe_prev->field.cqe_next = (elm); \
(listelm)->field.cqe_prev = (elm); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
(elm)->field.cqe_next = (head)->cqh_first; \
(elm)->field.cqe_prev = (void *)(head); \
if ((head)->cqh_last == (void *)(head)) \
(head)->cqh_last = (elm); \
else \
(head)->cqh_first->field.cqe_prev = (elm); \
(head)->cqh_first = (elm); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
(elm)->field.cqe_next = (void *)(head); \
(elm)->field.cqe_prev = (head)->cqh_last; \
if ((head)->cqh_first == (void *)(head)) \
(head)->cqh_first = (elm); \
else \
(head)->cqh_last->field.cqe_next = (elm); \
(head)->cqh_last = (elm); \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_REMOVE(head, elm, field) do { \
if ((elm)->field.cqe_next == (void *)(head)) \
(head)->cqh_last = (elm)->field.cqe_prev; \
else \
(elm)->field.cqe_next->field.cqe_prev = \
(elm)->field.cqe_prev; \
if ((elm)->field.cqe_prev == (void *)(head)) \
(head)->cqh_first = (elm)->field.cqe_next; \
else \
(elm)->field.cqe_prev->field.cqe_next = \
(elm)->field.cqe_next; \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_FOREACH(var, head, field) \
for ((var) = ((head)->cqh_first); \
(var) != (const void *)(head); \
(var) = ((var)->field.cqe_next))
#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
for ((var) = ((head)->cqh_last); \
(var) != (const void *)(head); \
(var) = ((var)->field.cqe_prev))
/*
* Circular queue access methods.
*/
#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field) \
(((elm)->field.cqe_next == (void *)(head)) \
? ((head)->cqh_first) \
: (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field) \
(((elm)->field.cqe_prev == (void *)(head)) \
? ((head)->cqh_last) \
: (elm->field.cqe_prev))
#endif /* sys/queue.h */
#include <errno.h>
#include <string.h>
#ifndef RC_H_
#define RC_H_
#define RC_OK 0
#define RC_FAIL -1
#define RC_BAD_PARAM -2
#define RC_NULL_POINTER -3
#define CHECK_FCT(fCT) \
do { \
int rET; \
if ((rET = fCT) != RC_OK) { \
fprintf(stderr, #fCT" has failed (%s:%d)\n", __FILE__, __LINE__); \
return rET; \
} \
} while(0)
#define CHECK_FCT_POSIX(fCT) \
do { \
if (fCT == -1) { \
fprintf(stderr, #fCT" has failed (%d:%s) (%s:%d)\n", errno, \
strerror(errno), __FILE__, __LINE__); \
return RC_FAIL; \
} \
} while(0)
#define CHECK_FCT_DO(fCT, dO) \
do { \
int rET; \
if ((rET = fCT) != RC_OK) { \
fprintf(stderr, #fCT" has returned %d (%s:%d)\n", rET, __FILE__, __LINE__); \
dO; \
} \
} while(0)
#define CHECK_BUFFER(bUFFER) \
do { \
if ((bUFFER) == NULL) { \
fprintf(stderr, #bUFFER" is NULL (%s:%d)\n", __FILE__, __LINE__); \
return RC_NULL_POINTER; \
} \
} while(0)
#endif /* RC_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment