Commit f804214c authored by Byiringi's avatar Byiringi

git-svn-id: http://svn.eurecom.fr/openair4G/trunk@5626 818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent 19805966
top_dir = 'E:\EMOS\corridor\trials2 train'; clear all
close all
top_dir = 'P:\florian\CORRIDOR\trials2 train'; % needs to be updated according to your computer
d1 = dir(fullfile(top_dir,'UHF','*.log')); d1 = dir(fullfile(top_dir,'UHF','*.log'));
d2 = dir(fullfile(top_dir,'2.6GHz','*.log')); d2 = dir(fullfile(top_dir,'2.6GHz','*.log'));
start_time = [1.400489088000000e+09 1.400493112000000e+09 1.400499696000000e+09 1.400506864000000e+09]; start_time = [1.400489088000000e+09 1.400493112000000e+09 1.400499696000000e+09 1.400506864000000e+09];
for idx=1:length(d1) for idx=1:length(d1)
...@@ -29,18 +34,7 @@ for idx=1:length(d1) ...@@ -29,18 +34,7 @@ for idx=1:length(d1)
xlabel('lat [deg]'); xlabel('lat [deg]');
ylabel('lon [deg]') ylabel('lon [deg]')
legend('UHF','2.6GHz') legend('UHF','2.6GHz')
title(sprintf('Run %d',idx));
%% compute distance
distances1=zeros(1,size(data1{idx},1));
distances2=zeros(1,size(data2{idx},1));
for i=1:size(data1{idx},1)
distances1(i)=Dist_Calc_from_GPS(data1{idx}(i,7),data1{idx}(i,8),48.25073056,1.55481944);
end
for i=1:size(data2{idx},1)
distances2(i)=Dist_Calc_from_GPS(data2{idx}(i,7),data2{idx}(i,8),48.25073056,1.55481944);
end
%% plot RSSI %% plot RSSI
% TODO: convert time (in unix epoch) into something more meaninful % TODO: convert time (in unix epoch) into something more meaninful
...@@ -56,26 +50,232 @@ for idx=1:length(d1) ...@@ -56,26 +50,232 @@ for idx=1:length(d1)
ylabel('RSSI [dBm]') ylabel('RSSI [dBm]')
title(sprintf('Run %d',idx)); title(sprintf('Run %d',idx));
%%
%% measured distance (km)
% We can get the distance between the base station and the RX antenna from the GPS coordinates
distances1=zeros(size(data1{idx},1),1);
distances2=zeros(size(data2{idx},1),1);
for i=1:size(data1{idx},1)
distances1(i)=Dist_Calc_from_GPS(data1{idx}(i,7),data1{idx}(i,8),48.25073056,1.55481944);
end
for i=1:size(data2{idx},1)
distances2(i)=Dist_Calc_from_GPS(data2{idx}(i,7),data2{idx}(i,8),48.25073056,1.55481944);
end
figure (100+idx)
subplot(1,2,1)
plot(rtime1,distances1,'r',rtime1,smooth(data1{idx}(:,13),100),'b')
title(sprintf('Run %d with the measured distance : UHF',idx));
xlabel('time [s]');
legend('distance [km]','RSSI [dBm]');
subplot(1,2,2)
plot(rtime2,distances2,'r',rtime2,smooth(data2{idx}(:,13),100),'b')
title(sprintf('Run %d with the measured distance : 2.6GHz ',idx));
xlabel('time [s]');
legend('distance [km]','RSSI [dBm]');
%% estimated distance under the assumption of a constant speed
% We assume that the TGV speed is constant and then we find the distances to the base station with the time vector
TGV_speed=82.5;%constant TGV speed in m/s
[RSSI_max1,I_RSSI_max1]=max(data1{idx}(:,13));%we find the index corresponding to the maximum of RSSI
time01=rtime1(I_RSSI_max1)*ones(length(rtime1),1);%time corresponding to the maximim of RSSI
new_distances1=(TGV_speed*abs(rtime1-time01))/1000+min(distances1)*ones(length(rtime1),1);% new distance in km. is is minimum when the RSSI is maximum
[RSSI_max2,I_RSSI_max2]=max(data2{idx}(:,13));
time02=rtime2(I_RSSI_max2)*ones(length(rtime2),1);
new_distances2=(TGV_speed*abs(rtime2-time02))/1000+min(distances2)*ones(length(rtime2),1);% distance in km
if (idx==2)%For Run 2, there is an anomalous peak for the RSSI at the end. Here we ignore it
[RSSI_max2,I_RSSI_max2]=max(data2{idx}(1:32900,13));
time02=rtime2(I_RSSI_max2)*ones(length(rtime2),1);
new_distances2=(TGV_speed*abs(rtime2-time02))/1000+min(distances2)*ones(length(rtime2),1);% distance in km
end
figure (200+idx)
subplot(1,2,1)
plot(rtime1,new_distances1,'r',rtime1,smooth(data1{idx}(:,13),100),'b')
title(sprintf('Run %d with the estimated distance : UHF',idx));
xlabel('time [s]');
legend('distance [km]','RSSI [dBm]');
subplot(1,2,2)
plot(rtime2,new_distances2,'r',rtime2,smooth(data2{idx}(:,13),100),'b')
title(sprintf('Run %d with the estimated distance : 2.6GHz ',idx));
xlabel('time [s]');
legend('distance [km]','RSSI [dBm]');
%% rssi(dBm) versus distance (log scale)
% We will plot the rssi versus the distance with the data before the passing of the train, and with the data after the passingof the train
% we heuristically determine a starting point and a ending point for the linear fitting
if idx==1
distance_before_break1_start=0.3913;%in km
distance_before_break1_end=27.71;
distance_before_break2_start=0.3282;
distance_before_break2_end=15.24;
distance_after_break1_start=0.85;%in km
distance_after_break1_end=9;
distance_after_break2_start=0.2911;
distance_after_break2_end=9;
end
if idx==2
distance_before_break1_start=0.8468;%in km
distance_before_break1_end=9;
distance_before_break2_start=0.4822;
distance_before_break2_end=7.099;
distance_after_break1_start=0.5812;%in km
distance_after_break1_end=18.76;
distance_after_break2_start=0.4402;
distance_after_break2_end=10;
end
if idx==3
distance_before_break1_start=4.258;%in km
distance_before_break1_end=29.46;
distance_before_break2_start=8.375;
distance_before_break2_end=29.66;
distance_after_break1_start=2.274;%in km
distance_after_break1_end=5.376;
distance_after_break2_start=5.996;
distance_after_break2_end=7.613;
end
if idx==4
distance_before_break1_start=0.1176;%in km
distance_before_break1_end=3.489;
distance_before_break2_start=0.1344;
distance_before_break2_end=3.78;
distance_after_break1_start=0.3793;%in km
distance_after_break1_end=9;
distance_after_break2_start=0.5443;
distance_after_break2_end=9;
end
% indexes of the starting and ending points with the data before the passing of the
% train
index_break1_before_start=1;
index_break2_before_start=1;
index_break1_before_end=1;
index_break2_before_end=1;
% indexes of the starting and ending points with the data after the passing of the
% train
index_break1_after_start=I_RSSI_max1;
index_break2_after_start=I_RSSI_max2;
index_break1_after_end=I_RSSI_max1;
index_break2_after_end=I_RSSI_max2;
%starting points
while (index_break1_before_start<length(new_distances1)) && (new_distances1(index_break1_before_start)>distance_before_break1_start)
index_break1_before_start=index_break1_before_start+1;
end
while (index_break2_before_start<length(new_distances2)) && (new_distances2(index_break2_before_start)>distance_before_break2_start)
index_break2_before_start=index_break2_before_start+1;
end
%ending points
while (index_break1_before_end<length(new_distances1)) && (new_distances1(index_break1_before_end)>distance_before_break1_end)
index_break1_before_end=index_break1_before_end+1;
end
while (index_break2_before_end<length(new_distances2)) && (new_distances2(index_break2_before_end)>distance_before_break2_end)
index_break2_before_end=index_break2_before_end+1;
end
%starting points
while (index_break1_after_start<length(new_distances1)) && (new_distances1(index_break1_after_start)<distance_after_break1_start)
index_break1_after_start=index_break1_after_start+1;
end
while (index_break2_after_start<length(new_distances2)) && (new_distances2(index_break2_after_start)<distance_after_break2_start)
index_break2_after_start=index_break2_after_start+1;
end
%ending points
while (index_break1_after_end<length(new_distances1)) && (new_distances1(index_break1_after_end)<distance_after_break1_end)
index_break1_after_end=index_break1_after_end+1;
end
while (index_break2_after_end<length(new_distances2)) && (new_distances2(index_break2_after_end)<distance_after_break2_end)
index_break2_after_end=index_break2_after_end+1;
end
figure(idx*10+3) figure(idx*10+3)
subplot(2,1,1)
hold off hold off
plot(rtime1,distances1,'r') linearCoef1_before = polyfit(10*log10(new_distances1(index_break1_before_end:index_break1_before_start)),data1{idx}(index_break1_before_end:index_break1_before_start,13),1);
linearFit1_before = polyval(linearCoef1_before,10*log10(new_distances1(index_break1_before_end:index_break1_before_start)));
semilogx(new_distances1(1:I_RSSI_max1),data1{idx}(1:I_RSSI_max1,13),'rx',new_distances1(index_break1_before_end:index_break1_before_start),linearFit1_before,'r-')
display(sprintf('Run %d :slope UHF before: %f',idx,linearCoef1_before(1)))
hold on hold on
plot(rtime2,distances2,'b') linearCoef2_before = polyfit(10*log10(new_distances2(index_break2_before_end:index_break2_before_start)),data2{idx}(index_break2_before_end:index_break2_before_start,13),1);
xlabel('time [seconds]') linearFit2_before = polyval(linearCoef2_before,10*log10(new_distances2(index_break2_before_end:index_break2_before_start)));
ylabel('dist [km]') semilogx(new_distances2(1:I_RSSI_max2),data2{idx}(1:I_RSSI_max2,13),'bx',new_distances2(index_break2_before_end:index_break2_before_start),linearFit2_before,'b-')
legend('UHF','2.6GHz') display(sprintf('Run %d :slope 2.6GHz before: %f',idx,linearCoef2_before(1)))
title(sprintf('Run %d: With the data before the passing of the train',idx))
legend('UHF','UHF:linear fitting','2.6GHz card 1','2.6GHz card 1:linear fitting');
xlabel('distance [km]')
ylabel('RSSI [dBm]')
subplot(2,1,2)
%%
figure(idx*10+4)
hold off hold off
plot(distances1,data1{idx}(:,13),'rx') linearCoef1_after = polyfit(10*log10(new_distances1(index_break1_after_start:index_break1_after_end)),data1{idx}(index_break1_after_start:index_break1_after_end,13),1);
linearFit1_after = polyval(linearCoef1_after,10*log10(new_distances1(index_break1_after_start:index_break1_after_end)));
semilogx(new_distances1(I_RSSI_max1:end),data1{idx}(I_RSSI_max1:end,13),'rx',new_distances1(index_break1_after_start:index_break1_after_end),linearFit1_after,'r-')
display(sprintf('Run %d :slope UHF after: %f',idx,linearCoef1_after(1)))
hold on hold on
plot(distances2,data2{idx}(:,13),'bx') linearCoef2_after = polyfit(10*log10(new_distances2(index_break2_after_start:index_break2_after_end)),data2{idx}(index_break2_after_start:index_break2_after_end,13),1);
plot(distances2,data2{idx}(:,19),'cx') linearFit2_after = polyval(linearCoef2_after,10*log10(new_distances2(index_break2_after_start:index_break2_after_end)));
plot(distances2,data2{idx}(:,25),'mx') semilogx(new_distances2(I_RSSI_max2:end),data2{idx}(I_RSSI_max2:end,13),'bx',new_distances2(index_break2_after_start:index_break2_after_end),linearFit2_after,'b-')
xlabel('dist [km]') display(sprintf('Run %d :slope 2.6GHz after: %f',idx,linearCoef2_after(1)))
title(sprintf('Run %d: With the data after the passing of the train',idx))
legend('UHF','UHF:linear fitting','2.6GHz card 1','2.6GHz card 1:linear fitting');
xlabel('distance [km]')
ylabel('RSSI [dBm]') ylabel('RSSI [dBm]')
legend('UHF','2.6GHz card 1','2.6GHz card 2','2.6GHz card 3');
end end
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment