Merge remote-tracking branch 'origin/develop' into NCTU_OpinConnect_LDPC

parent 7e20805d
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* \file config_ue.c
* \brief common utility functions for NR (gNB and UE)
* \author R. Knopp,
* \date 2019
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#include <stdint.h>
#include "assertions.h"
int NRRIV2BW(int locationAndBandwidth,int N_RB) {
int tmp = locationAndBandwidth/N_RB;
int tmp2 = locationAndBandwidth%N_RB;
if (tmp <= ((N_RB>>1)+1) && (tmp+tmp2)<N_RB) return(tmp+1);
else return(N_RB+1-tmp);
}
int NRRIV2PRBOFFSET(int locationAndBandwidth,int N_RB) {
int tmp = locationAndBandwidth/N_RB;
int tmp2 = locationAndBandwidth%N_RB;
if (tmp <= ((N_RB>>1)+1) && (tmp+tmp2)<N_RB) return(tmp2);
else return(N_RB-1-tmp2);
}
int PRBalloc_to_locationandbandwidth0(int NPRB,int RBstart,int BWPsize) {
AssertFatal(NPRB>0 && (NPRB + RBstart <= BWPsize),"Illegal NPRB/RBstart Configuration (%d,%d) for BWPsize %d\n",NPRB,RBstart,BWPsize);
if (NPRB <= 1+(BWPsize>>1)) return(BWPsize*(NPRB-1)+RBstart);
else return(BWPsize*(BWPsize+1-NPRB) + (BWPsize-1-RBstart));
}
int PRBalloc_to_locationandbandwidth(int NPRB,int RBstart) {
return(PRBalloc_to_locationandbandwidth0(NPRB,RBstart,275));
}
/// Target code rate tables indexed by Imcs
uint16_t nr_target_code_rate_table1[29] = {120, 157, 193, 251, 308, 379, 449, 526, 602, 679, 340, 378, 434, 490, 553, \
616, 658, 438, 466, 517, 567, 616, 666, 719, 772, 822, 873, 910, 948};
// Imcs values 20 and 26 have been multiplied by 2 to avoid the floating point
uint16_t nr_target_code_rate_table2[28] = {120, 193, 308, 449, 602, 378, 434, 490, 553, 616, 658, 466, 517, 567, \
616, 666, 719, 772, 822, 873, 1365, 711, 754, 797, 841, 885, 1833, 948};
uint16_t nr_target_code_rate_table3[29] = {30, 40, 50, 64, 78, 99, 120, 157, 193, 251, 308, 379, 449, 526, 602, 340, \
378, 434, 490, 553, 616, 438, 466, 517, 567, 616, 666, 719, 772};
uint16_t nr_tbs_table[93] = {24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 208, 224, 240, 256, 272, 288, 304, 320, \
336, 352, 368, 384, 408, 432, 456, 480, 504, 528, 552, 576, 608, 640, 672, 704, 736, 768, 808, 848, 888, 928, 984, 1032, 1064, 1128, 1160, 1192, 1224, 1256, \
1288, 1320, 1352, 1416, 1480, 1544, 1608, 1672, 1736, 1800, 1864, 1928, 2024, 2088, 2152, 2216, 2280, 2408, 2472, 2536, 2600, 2664, 2728, 2792, 2856, 2976, \
3104, 3240, 3368, 3496, 3624, 3752, 3824};
uint8_t nr_get_Qm(uint8_t Imcs, uint8_t table_idx) {
switch(table_idx) {
case 1:
return (((Imcs<10)||(Imcs==29))?2:((Imcs<17)||(Imcs==30))?4:((Imcs<29)||(Imcs==31))?6:-1);
break;
case 2:
return (((Imcs<5)||(Imcs==28))?2:((Imcs<11)||(Imcs==29))?4:((Imcs<20)||(Imcs==30))?6:((Imcs<28)||(Imcs==31))?8:-1);
break;
case 3:
return (((Imcs<15)||(Imcs==29))?2:((Imcs<21)||(Imcs==30))?4:((Imcs<29)||(Imcs==31))?6:-1);
break;
default:
AssertFatal(0, "Invalid MCS table index %d (expected in range [1,3])\n", table_idx);
return(0);
break;
}
}
uint32_t nr_get_code_rate(uint8_t Imcs, uint8_t table_idx) {
switch(table_idx) {
case 1:
return (nr_target_code_rate_table1[Imcs]);
break;
case 2:
return (nr_target_code_rate_table2[Imcs]);
break;
case 3:
return (nr_target_code_rate_table3[Imcs]);
break;
default:
AssertFatal(0, "Invalid MCS table index %d (expected in range [1,3])\n", table_idx);
return(0);
break;
}
}
int get_subband_size(int NPRB,int size) {
// implements table 5.2.1.4-2 from 36.214
//
//Bandwidth part (PRBs) Subband size (PRBs)
// < 24 N/A
//24 – 72 4, 8
//73 – 144 8, 16
//145 – 275 16, 32
if (NPRB<24) return(1);
if (NPRB<72) return (size==0 ? 4 : 8);
if (NPRB<144) return (size==0 ? 8 : 16);
if (NPRB<275) return (size==0 ? 16 : 32);
AssertFatal(1==0,"Shouldn't get here, NPRB %d\n",NPRB);
}
void SLIV2SL(int SLIV,int *S,int *L) {
int SLIVdiv14 = SLIV/14;
int SLIVmod14 = SLIV%14;
// Either SLIV = 14*(L-1) + S, or SLIV = 14*(14-L+1) + (14-1-S). Condition is 0 <= L <= 14-S
if ((SLIVdiv14 + 1) >= 0 && (SLIVdiv14 <= 13-SLIVmod14)) {
*L=SLIVdiv14+1;
*S=SLIVmod14;
} else {
*L=15-SLIVdiv14;
*S=13-SLIVmod14;
}
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* \file config_ue.c
* \brief common utility functions for NR (gNB and UE)
* \author R. Knopp,
* \date 2019
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#include <stdint.h>
#include "assertions.h"
int NRRIV2BW(int locationAndBandwidth,int N_RB);
int NRRIV2PRBOFFSET(int locationAndBandwidth,int N_RB);
int PRBalloc_to_locationandbandwidth0(int NPRB,int RBstart,int BWPsize);
int PRBalloc_to_locationandbandwidth(int NPRB,int RBstart);
extern uint16_t nr_target_code_rate_table1[29];
extern uint16_t nr_target_code_rate_table2[28];
extern uint16_t nr_target_code_rate_table3[29];
extern uint16_t nr_tbs_table[93];
uint8_t nr_get_Qm(uint8_t Imcs, uint8_t table_idx);
uint32_t nr_get_code_rate(uint8_t Imcs, uint8_t table_idx);
int get_subband_size(int NPRB,int size);
void SLIV2SL(int SLIV,int *S,int *L);
#define CEILIDIV(a,b) ((a+b-1)/b)
#define ROUNDIDIV(a,b) (((a<<1)+b)/(b<<1))
#define cmax(a,b) ((a>b) ? (a) : (b))
#define cmax3(a,b,c) ((cmax(a,b)>c) ? (cmax(a,b)) : (c))
#define cmin(a,b) ((a<b) ? (a) : (b))
#ifdef __cplusplus
#ifdef min
#undef min
#undef max
#endif
#else
#define max(a,b) cmax(a,b)
#define min(a,b) cmin(a,b)
#endif
#LDPC coder/decoder implementation
The LDPC coder and decoder are implemented in a shared library, dynamically loaded at run-time using the [oai shared library loader](file://../../../../common/utils/DOC/loader.md). The code loading the LDPC library is in [nrLDPC_load.c](file://../nrLDPC_load.c), in function `load_nrLDPClib`, which must be called at init time.
## Selecting the LDPC library at run time
By default the function `int load_nrLDPClib(void)` looks for `libldpc.so`, this default behavior can be changed using the oai loader configuration options in the configuration file or from the command line as shown below:
>loading `libldpc_optim8seg.so` instead of `libldpc.so`
```
./nr-softmodem -O libconfig:gnb.band78.tm1.106PRB.usrpx300.conf:dbgl5 --loader.ldpc.shlibversion _optim8seg
.......................
[CONFIG] loader.ldpc.shlibversion set to default value ""
[LIBCONFIG] loader.ldpc: 2/2 parameters successfully set, (1 to default value)
[CONFIG] shlibversion set to _optim8seg from command line
[CONFIG] loader.ldpc 1 options set from command line
[LOADER] library libldpc_optim8seg.so successfully loaded
........................
```
Today, this mechanism is not available in the `ldpctest` phy simulator which doesn't initialize the [configuration module](file://../../../../common/config/DOC/config.md). loads `libldpc.so` and `libldpc_orig.so` to compare the performance of the two implementations.
###LDPC libraries
Libraries implementing the LDPC algorithms must be named `libldpc<_version>.so`, they must implement two functions: `nrLDPC_decod` and `nrLDPC_encod`. The prototypes for these functions is defined in [nrLDPC_defs.h](file://nrLDPC_defs.h).
[oai Wikis home](https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/home)
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*!\file nrLDPCdecoder_defs.h
* \brief Defines all constants and buffers for the LDPC decoder
* \author Sebastian Wagner (TCL Communications) Email: <mailto:sebastian.wagner@tcl.com>
* \date 27-03-2018
* \version 1.0
* \note
* \warning
*/
#ifndef __NR_LDPC_DEFS__H__
#define __NR_LDPC_DEFS__H__
// ==============================================================================
// DEFINES
/** Maximum lifting size */
#define NR_LDPC_ZMAX 384
/** Number of columns in BG1 */
#define NR_LDPC_NCOL_BG1 68
/** Number of rows in BG1 */
#define NR_LDPC_NROW_BG1 46
/** Number of edges/entries in BG1 */
#define NR_LDPC_NUM_EDGE_BG1 316
/** Number of check node (CN) groups in BG1
A CN group is defined by its number of connected bit nodes. */
#define NR_LDPC_NUM_CN_GROUPS_BG1 9
/** First column in BG1 that is connected to only a single CN */
#define NR_LDPC_START_COL_PARITY_BG1 26
/** Number of columns in BG1 for rate 1/3 = 22/(68-2) */
#define NR_LDPC_NCOL_BG1_R13 NR_LDPC_NCOL_BG1
/** Number of columns in BG1 for rate 2/3 = 22/(35-2) */
#define NR_LDPC_NCOL_BG1_R23 35
/** Number of columns in BG1 for rate 8/9 ~ 22/(27-2) */
#define NR_LDPC_NCOL_BG1_R89 27
/** Number of bit node (BN) groups in BG1 for rate 1/3
A BN group is defined by its number of connected CNs. */
#define NR_LDPC_NUM_BN_GROUPS_BG1_R13 30
/** Number of bit node (BN) groups in BG1 for rate 2/3 */
#define NR_LDPC_NUM_BN_GROUPS_BG1_R23 8
/** Number of bit node (BN) groups in BG1 for rate 8/9 */
#define NR_LDPC_NUM_BN_GROUPS_BG1_R89 5
/** Number of columns in BG2 */
#define NR_LDPC_NCOL_BG2 52
/** Number of rows in BG2 */
#define NR_LDPC_NROW_BG2 42
/** Number of edges/entries in BG2 */
#define NR_LDPC_NUM_EDGE_BG2 197
/** Number of check node (CN) groups in BG2
A CN group is defined by its number of connected bit nodes. */
#define NR_LDPC_NUM_CN_GROUPS_BG2 6
/** First column in BG2 that is connected to only a single CN */
#define NR_LDPC_START_COL_PARITY_BG2 14
/** Number of columns in BG2 for rate 1/5 = 10/(52-2) */
#define NR_LDPC_NCOL_BG2_R15 NR_LDPC_NCOL_BG2
/** Number of columns in BG2 for rate 1/3 = 10/(32-2) */
#define NR_LDPC_NCOL_BG2_R13 32
/** Number of columns in BG2 for rate 2/3 = 10/(17-2) */
#define NR_LDPC_NCOL_BG2_R23 17
/** Number of bit node (BN) groups in BG2 for rate 1/5
A BN group is defined by its number of connected CNs. */
#define NR_LDPC_NUM_BN_GROUPS_BG2_R15 23
/** Number of bit node (BN) groups in BG2 for rate 1/3 */
#define NR_LDPC_NUM_BN_GROUPS_BG2_R13 10
/** Number of bit node (BN) groups in BG2 for rate 2/3 */
#define NR_LDPC_NUM_BN_GROUPS_BG2_R23 6
/** Worst case size of the CN processing buffer */
#define NR_LDPC_SIZE_CN_PROC_BUF NR_LDPC_NUM_EDGE_BG1*NR_LDPC_ZMAX
/** Worst case size of the BN processing buffer */
#define NR_LDPC_SIZE_BN_PROC_BUF NR_LDPC_NUM_EDGE_BG1*NR_LDPC_ZMAX
/** Maximum number of possible input LLR = NR_LDPC_NCOL_BG1*NR_LDPC_ZMAX */
#define NR_LDPC_MAX_NUM_LLR 27000
// ==============================================================================
// GLOBAL CONSTANT VARIABLES
/** Start addresses for the cnProcBuf for each CN group in BG1*/
static const uint32_t lut_startAddrCnGroups_BG1[NR_LDPC_NUM_CN_GROUPS_BG1] = {0, 1152, 8832, 43392, 61824, 75264, 81408, 88320, 92160};
/** Start addresses for the cnProcBuf for each CN group in BG2*/
static const uint32_t lut_startAddrCnGroups_BG2[NR_LDPC_NUM_CN_GROUPS_BG2] = {0, 6912, 37632, 54912, 61824, 67968};
/** Number of BNs of CN group for BG1.
E.g. 10 means that there is a CN group where every CN is connected to 10 BNs */
static const uint8_t lut_numBnInCnGroups_BG1_R13[NR_LDPC_NUM_CN_GROUPS_BG1] = {3, 4, 5, 6, 7, 8, 9, 10, 19};
/** Number of rows/CNs in every CN group for rate = 1/3 BG1, e.g. 5 rows of CNs connected to 4 BNs */
static const uint8_t lut_numCnInCnGroups_BG1_R13[NR_LDPC_NUM_CN_GROUPS_BG1] = {1, 5, 18, 8, 5, 2, 2, 1, 4};
/** Number of rows/CNs in every CN group for rate = 2/3 BG1, e.g. 3 rows of CNs connected to 7 BNs */
static const uint8_t lut_numCnInCnGroups_BG1_R23[NR_LDPC_NUM_CN_GROUPS_BG1] = {1, 0, 0, 0, 3, 2, 2, 1, 4};
/** Number of rows/CNs in every CN group for rate = 8/9 BG1, e.g. 4 rows of CNs connected to 19 BNs */
static const uint8_t lut_numCnInCnGroups_BG1_R89[NR_LDPC_NUM_CN_GROUPS_BG1] = {1, 0, 0, 0, 0, 0, 0, 0, 4};
/** Number of connected BNs for every column in BG1 rate = 1/3, e.g. in first column all BNs are connected to 30 CNs */
static const uint8_t lut_numEdgesPerBn_BG1_R13[NR_LDPC_START_COL_PARITY_BG1] = {30, 28, 7, 11, 9, 4, 8, 12, 8, 7, 12, 10, 12, 11, 10, 7, 10, 10, 13, 7, 8, 11, 12, 5, 6, 6};
/** Number of connected BNs for every column in BG1 rate = 2/3, e.g. in first column all BNs are connected to 12 CNs */
static const uint8_t lut_numEdgesPerBn_BG1_R23[NR_LDPC_START_COL_PARITY_BG1] = {12, 11, 4, 5, 5, 3, 4, 5, 5, 3, 6, 6, 6, 6, 5, 3, 6, 5, 6, 4, 5, 6, 6, 3, 3, 2};
/** Number of connected BNs for every column in BG1 rate = 8/9, e.g. in first column all BNs are connected to 5 CNs */
static const uint8_t lut_numEdgesPerBn_BG1_R89[NR_LDPC_START_COL_PARITY_BG1] = {5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2};
/** Number of BNs of CN group for BG2.
E.g. 3 means that there is a CN group where every CN is connected to 3 BNs */
static const uint8_t lut_numBnInCnGroups_BG2_R15[NR_LDPC_NUM_CN_GROUPS_BG2] = {3, 4, 5, 6, 8, 10};
/** Number of rows/CNs in every CN group for rate = 1/5 BG2, e.g. 6 rows of CNs connected to 3 BNs */
static const uint8_t lut_numCnInCnGroups_BG2_R15[NR_LDPC_NUM_CN_GROUPS_BG2] = {6, 20, 9, 3, 2, 2};
/** Number of rows/CNs in every CN group for rate = 1/3 BG2, e.g. 8 rows of CNs connected to 4 BNs */
static const uint8_t lut_numCnInCnGroups_BG2_R13[NR_LDPC_NUM_CN_GROUPS_BG2] = {0, 8, 7, 3, 2, 2};
/** Number of rows/CNs in every CN group for rate = 2/3 BG2, e.g. 1 row of CNs connected to 4 BNs */
static const uint8_t lut_numCnInCnGroups_BG2_R23[NR_LDPC_NUM_CN_GROUPS_BG2] = {0, 1, 0, 2, 2, 2};
/** Number of connected BNs for every column in BG2 rate = 1/5, e.g. in first column all BNs are connected to 22 CNs */
static const uint8_t lut_numEdgesPerBn_BG2_R15[NR_LDPC_START_COL_PARITY_BG2] = {22, 23, 10, 5, 5, 14, 7, 13, 6, 8, 9, 16, 9, 12};
/** Number of connected BNs for every column in BG2 rate = 1/3, e.g. in first column all BNs are connected to 14 CNs */
static const uint8_t lut_numEdgesPerBn_BG2_R13[NR_LDPC_START_COL_PARITY_BG2] = {14, 16, 2, 4, 4, 6, 6, 8, 6, 6, 6, 13, 5, 7};
/** Number of connected BNs for every column in BG2 rate = 2/3, e.g. in first column all BNs are connected to 6 CNs */
static const uint8_t lut_numEdgesPerBn_BG2_R23[NR_LDPC_START_COL_PARITY_BG2] = { 6, 5, 2, 3, 3, 4, 3, 4, 3, 4, 3, 5, 2, 2};
// Number of groups for bit node processing
/** Number of connected CNs for every column/BN in BG1 for rate = 1/3, Worst case is BG1 with up to 30 CNs connected to one BN
E.g. 42 parity BNs connected to single CN */
// BG1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
static const uint8_t lut_numBnInBnGroups_BG1_R13[NR_LDPC_NUM_BN_GROUPS_BG1_R13] = {42, 0, 0, 1, 1, 2, 4, 3, 1, 4, 3, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1};
/** Number of connected CNs for every column/BN in BG1 for rate = 2/3 */
static const uint8_t lut_numBnInBnGroups_BG1_R23[NR_LDPC_NUM_BN_GROUPS_BG1_R13] = { 9, 1, 5, 3, 7, 8, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/** Number of connected CNs for every column/BN in BG1 for rate = 8/9 */
static const uint8_t lut_numBnInBnGroups_BG1_R89[NR_LDPC_NUM_BN_GROUPS_BG1_R13] = { 1, 3,21, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/** Number of connected CNs for every column/BN in BG2 for rate = 1/5, Worst case is BG1 with up to 30 CNs connected to one BN
E.g. 38 parity BNs connected to single CN */
// BG2: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
static const uint8_t lut_numBnInBnGroups_BG2_R15[NR_LDPC_NUM_BN_GROUPS_BG1_R13] = {38, 0, 0, 0, 2, 1, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0};
/** Number of connected CNs for every column/BN in BG2 for rate = 1/3 */
static const uint8_t lut_numBnInBnGroups_BG2_R13[NR_LDPC_NUM_BN_GROUPS_BG1_R13] = {18, 1, 0, 2, 1, 5, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/** Number of connected CNs for every column/BN in BG2 for rate = 2/3 */
static const uint8_t lut_numBnInBnGroups_BG2_R23[NR_LDPC_NUM_BN_GROUPS_BG1_R13] = { 3, 3, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Start addresses for the bnProcBuf for each BN group
// BG1
/** Start address for every BN group within the BN processing buffer for BG1 rate = 1/3 */
static const uint32_t lut_startAddrBnGroups_BG1_R13[NR_LDPC_NUM_BN_GROUPS_BG1_R13] = {0, 16128, 17664, 19584, 24192, 34944, 44160, 47616, 62976, 75648, 94080, 99072, 109824};
/** Start address for every BN group within the BN processing buffer for BG1 rate = 2/3 */
static const uint32_t lut_startAddrBnGroups_BG1_R23[NR_LDPC_NUM_BN_GROUPS_BG1_R23] = {0, 3456, 4224, 9984, 14592, 28032, 46464, 50688};
/** Start address for every BN group within the BN processing buffer for BG1 rate = 8/9 */
static const uint32_t lut_startAddrBnGroups_BG1_R89[NR_LDPC_NUM_BN_GROUPS_BG1_R89] = {0, 384, 2688, 26880, 28416};
/** Start address for every BN group within the LLR processing buffer for BG1 rate = 1/3 */
static const uint16_t lut_startAddrBnGroupsLlr_BG1_R13[NR_LDPC_NUM_BN_GROUPS_BG1_R13] = {0, 16128, 16512, 16896, 17664, 19200, 20352, 20736, 22272, 23424, 24960, 25344, 25728};
/** Start address for every BN group within the LLR processing buffer for BG1 rate = 2/3 */
static const uint16_t lut_startAddrBnGroupsLlr_BG1_R23[NR_LDPC_NUM_BN_GROUPS_BG1_R23] = {0, 3456, 3840, 5760, 6912, 9600, 12672, 13056};
/** Start address for every BN group within the LLR processing buffer for BG1 rate = 8/9 */
static const uint16_t lut_startAddrBnGroupsLlr_BG1_R89[NR_LDPC_NUM_BN_GROUPS_BG1_R89] = {0, 384, 1536, 9600, 9984};
// BG2
/** Start address for every BN group within the BN processing buffer for BG2 rate = 1/5 */
static const uint32_t lut_startAddrBnGroups_BG2_R15[NR_LDPC_NUM_BN_GROUPS_BG2_R15] = {0, 14592, 18432, 20736, 23424, 26496, 33408, 37248, 41856, 46848, 52224, 58368, 66816};
/** Start address for every BN group within the BN processing buffer for BG2 rate = 1/3 */
static const uint32_t lut_startAddrBnGroups_BG2_R13[NR_LDPC_NUM_BN_GROUPS_BG2_R13] = {0, 6912, 7680, 10752, 12672, 24192, 26880, 29952, 34944, 40320};
/** Start address for every BN group within the BN processing buffer for BG2 rate = 2/3 */
static const uint32_t lut_startAddrBnGroups_BG2_R23[NR_LDPC_NUM_BN_GROUPS_BG2_R23] = {0, 1152, 3456, 9216, 13824, 17664};
/** Start address for every BN group within the LLR processing buffer for BG2 rate = 1/5 */
static const uint16_t lut_startAddrBnGroupsLlr_BG2_R15[NR_LDPC_NUM_BN_GROUPS_BG2_R15] = {0, 14592, 15360, 15744, 16128, 16512, 17280, 17664, 18048, 18432, 18816, 19200, 19584};
/** Start address for every BN group within the LLR processing buffer for BG2 rate = 1/3 */
static const uint16_t lut_startAddrBnGroupsLlr_BG2_R13[NR_LDPC_NUM_BN_GROUPS_BG2_R13] = {0, 6912, 7296, 8064, 8448, 10368, 10752, 11136, 11520, 11904};
/** Start address for every BN group within the LLR processing buffer for BG2 rate = 2/3 */
static const uint16_t lut_startAddrBnGroupsLlr_BG2_R23[NR_LDPC_NUM_BN_GROUPS_BG2_R23] = {0, 1152, 2304, 4224, 5376, 6144};
/** Vector of 32 '1' in int8 for application with AVX2 */
static const int8_t ones256_epi8[32] __attribute__ ((aligned(32))) = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
/** Vector of 32 '0' in int8 for application with AVX2 */
static const int8_t zeros256_epi8[32] __attribute__ ((aligned(32))) = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/** Vector of 32 '127' in int8 for application with AVX2 */
static const int8_t maxLLR256_epi8[32] __attribute__ ((aligned(32))) = {127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127};
#endif
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
//============================================================================================================================
// encoder interface
#ifndef __NRLDPC_DEFS__H__
#define __NRLDPC_DEFS__H__
#include "openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_types.h"
/**
\brief LDPC encoder
\param 1 input
\param 2 channel_input
\param 3 int Zc
\param 4 int Kb
\param 5 short block_length
\param 6 short BG
\param 7 int n_segment
\param 8 unsigned int macro_num
\param 9-12 time_stats_t *tinput,*tprep, *tparity,*toutput
*/
typedef struct {
int n_segments; // optim8seg
unsigned int macro_num; // optim8segmulti
unsigned char gen_code; //orig
time_stats_t *tinput;
time_stats_t *tprep;
time_stats_t *tparity;
time_stats_t *toutput;
}encoder_implemparams_t;
#define INIT0_LDPCIMPLEMPARAMS {0,0,0,NULL,NULL,NULL,NULL}
typedef int(*nrLDPC_encoderfunc_t)(unsigned char **,unsigned char **,int,int,short, short, encoder_implemparams_t*);
//============================================================================================================================
// decoder interface
/**
\brief LDPC decoder API type definition
\param p_decParams LDPC decoder parameters
\param p_llr Input LLRs
\param p_llrOut Output vector
\param p_profiler LDPC profiler statistics
*/
typedef int32_t(*nrLDPC_decoderfunc_t)(t_nrLDPC_dec_params* , int8_t*, int8_t* , t_nrLDPC_procBuf* , t_nrLDPC_time_stats* );
#endif
\ No newline at end of file
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*!\file ldpc_encode_parity_check.c
* \brief Parity check function used by ldpc encoders
* \author Florian Kaltenberger, Raymond Knopp, Kien le Trung (Eurecom)
* \email openair_tech@eurecom.fr
* \date 27-03-2018
* \version 1.0
* \note
* \warning
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <types.h>
#include "assertions.h"
#include "common/utils/LOG/log.h"
//#define DEBUG_LDPC
#include "ldpc384_byte.c"
#include "ldpc352_byte.c"
#include "ldpc320_byte.c"
#include "ldpc288_byte.c"
#include "ldpc256_byte.c"
#include "ldpc240_byte.c"
#include "ldpc224_byte.c"
#include "ldpc208_byte.c"
#include "ldpc192_byte.c"
#include "ldpc176_byte.c"
#include "ldpc_BG2_Zc384_byte.c"
#include "ldpc_BG2_Zc352_byte.c"
#include "ldpc_BG2_Zc320_byte.c"
#include "ldpc_BG2_Zc288_byte.c"
#include "ldpc_BG2_Zc256_byte.c"
#include "ldpc_BG2_Zc240_byte.c"
#include "ldpc_BG2_Zc224_byte.c"
#include "ldpc_BG2_Zc208_byte.c"
#include "ldpc_BG2_Zc192_byte.c"
#include "ldpc_BG2_Zc176_byte.c"
#include "ldpc_BG2_Zc160_byte.c"
#include "ldpc_BG2_Zc144_byte.c"
#include "ldpc_BG2_Zc128_byte.c"
#include "ldpc_BG2_Zc120_byte.c"
#include "ldpc_BG2_Zc112_byte.c"
#include "ldpc_BG2_Zc104_byte.c"
#include "ldpc_BG2_Zc96_byte.c"
#include "ldpc_BG2_Zc88_byte.c"
#include "ldpc_BG2_Zc80_byte.c"
#include "ldpc_BG2_Zc72_byte.c"
static inline void encode_parity_check_part_optim(uint8_t *c,uint8_t *d, short BG,short Zc,short Kb)
{
if (BG==1)
{
switch (Zc)
{
case 2: break;
case 3: break;
case 4: break;
case 5: break;
case 6: break;
case 7: break;
case 8: break;
case 9: break;
case 10: break;
case 11: break;
case 12: break;
case 13: break;
case 14: break;
case 15: break;
case 16: break;
case 18: break;
case 20: break;
case 22: break;
case 24: break;
case 26: break;
case 28: break;
case 30: break;
case 32: break;
case 36: break;
case 40: break;
case 44: break;
case 48: break;
case 52: break;
case 56: break;
case 60: break;
case 64: break;
case 72: break;
case 80: break;
case 88: break;
case 96: break;
case 104: break;
case 112: break;
case 120: break;
case 128: break;
case 144: break;
case 160: break;
case 176: ldpc176_byte(c,d); break;
case 192: ldpc192_byte(c,d); break;
case 208: ldpc208_byte(c,d); break;
case 224: ldpc224_byte(c,d); break;
case 240: ldpc240_byte(c,d); break;
case 256: ldpc256_byte(c,d); break;
case 288: ldpc288_byte(c,d); break;
case 320: ldpc320_byte(c,d); break;
case 352: ldpc352_byte(c,d); break;
case 384: ldpc384_byte(c,d); break;
default: AssertFatal(0,"BG %d Zc %d is not supported yet\n",BG,Zc); break;
}
}
else if (BG==2) {
switch (Zc)
{
case 2: break;
case 3: break;
case 4: break;
case 5: break;
case 6: break;
case 7: break;
case 8: break;
case 9: break;
case 10: break;
case 11: break;
case 12: break;
case 13: break;
case 14: break;
case 15: break;
case 16: break;
case 18: break;
case 20: break;
case 22: break;
case 24: break;
case 26: break;
case 28: break;
case 30: break;
case 32: break;
case 36: break;
case 40: break;
case 44: break;
case 48: break;
case 52: break;
case 56: break;
case 60: break;
case 64: break;
case 72: ldpc_BG2_Zc72_byte(c,d); break;
case 80: ldpc_BG2_Zc80_byte(c,d); break;
case 88: ldpc_BG2_Zc88_byte(c,d); break;
case 96: ldpc_BG2_Zc96_byte(c,d); break;
case 104: ldpc_BG2_Zc104_byte(c,d); break;
case 112: ldpc_BG2_Zc112_byte(c,d); break;
case 120: ldpc_BG2_Zc120_byte(c,d); break;
case 128: ldpc_BG2_Zc128_byte(c,d); break;
case 144: ldpc_BG2_Zc144_byte(c,d); break;
case 160: ldpc_BG2_Zc160_byte(c,d); break;
case 176: ldpc_BG2_Zc176_byte(c,d); break;
case 192: ldpc_BG2_Zc192_byte(c,d); break;
case 208: ldpc_BG2_Zc208_byte(c,d); break;
case 224: ldpc_BG2_Zc224_byte(c,d); break;
case 240: ldpc_BG2_Zc240_byte(c,d); break;
case 256: ldpc_BG2_Zc256_byte(c,d); break;
case 288: ldpc_BG2_Zc288_byte(c,d); break;
case 320: ldpc_BG2_Zc320_byte(c,d); break;
case 352: ldpc_BG2_Zc352_byte(c,d); break;
case 384: ldpc_BG2_Zc384_byte(c,d); break;
default: AssertFatal(0,"BG %d Zc %d is not supported yet\n",BG,Zc); break;
}
}
else {
AssertFatal(0,"BG %d is not supported yet\n",BG);
}
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*!\file ldpc_encoder2.c
* \brief Defines the optimized LDPC encoder
* \author Florian Kaltenberger, Raymond Knopp, Kien le Trung (Eurecom)
* \email openair_tech@eurecom.fr
* \date 27-03-2018
* \version 1.0
* \note
* \warning
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <types.h>
#include "assertions.h"
#include "common/utils/LOG/log.h"
#include "PHY/TOOLS/time_meas.h"
#include "openair1/PHY/CODING/nrLDPC_defs.h"
#include "ldpc_encode_parity_check.c"
#include "ldpc_generate_coefficient.c"
//#define DEBUG_LDPC
int nrLDPC_encod(unsigned char **test_input,unsigned char **channel_input,int Zc,int Kb,short block_length, short BG, encoder_implemparams_t *impp)
{
short nrows=0,ncols=0;
int i,i1,rate=3;
int no_punctured_columns,removed_bit;
int simd_size;
//determine number of bits in codeword
//if (block_length>3840)
if (BG==1)
{
//BG=1;
nrows=46; //parity check bits
ncols=22; //info bits
rate=3;
}
//else if (block_length<=3840)
else if (BG==2)
{
//BG=2;
nrows=42; //parity check bits
ncols=10; // info bits
rate=5;
}
#ifdef DEBUG_LDPC
LOG_D(PHY,"ldpc_encoder_optim_8seg: BG %d, Zc %d, Kb %d, block_length %d\n",BG,Zc,Kb,block_length);
LOG_D(PHY,"ldpc_encoder_optim_8seg: PDU %x %x %x %x\n",test_input[0][0],test_input[0][1],test_input[0][2],test_input[0][3]);
#endif
if ((Zc&31) > 0) simd_size = 16;
else simd_size = 32;
unsigned char c[22*Zc] __attribute__((aligned(32))); //padded input, unpacked, max size
unsigned char d[46*Zc] __attribute__((aligned(32))); //coded parity part output, unpacked, max size
unsigned char c_extension[2*22*Zc*simd_size] __attribute__((aligned(32))); //double size matrix of c
// calculate number of punctured bits
no_punctured_columns=(int)((nrows-2)*Zc+block_length-block_length*rate)/Zc;
removed_bit=(nrows-no_punctured_columns-2) * Zc+block_length-(int)(block_length*rate);
// printf("%d\n",no_punctured_columns);
// printf("%d\n",removed_bit);
// unpack input
memset(c,0,sizeof(unsigned char) * ncols * Zc);
memset(d,0,sizeof(unsigned char) * nrows * Zc);
if(impp->tinput != NULL) start_meas(impp->tinput);
for (i=0; i<block_length; i++) {
c[i] = (test_input[0][i/8]&(128>>(i&7)))>>(7-(i&7));
//printf("c(%d,%d)=%d\n",j,i,temp);
}
if(impp->tinput != NULL) stop_meas(impp->tinput);
if ((BG==1 && Zc>176) || (BG==2 && Zc>64)) {
// extend matrix
if(impp->tprep != NULL) start_meas(impp->tprep);
for (i1=0; i1 < ncols; i1++)
{
memcpy(&c_extension[2*i1*Zc], &c[i1*Zc], Zc*sizeof(unsigned char));
memcpy(&c_extension[(2*i1+1)*Zc], &c[i1*Zc], Zc*sizeof(unsigned char));
}
for (i1=1;i1<simd_size;i1++) {
memcpy(&c_extension[(2*ncols*Zc*i1)], &c_extension[i1], (2*ncols*Zc*sizeof(unsigned char))-i1);
// memset(&c_extension[(2*ncols*Zc*i1)],0,i1);
/*
printf("shift %d: ",i1);
for (int j=0;j<64;j++) printf("%d ",c_extension[(2*ncols*Zc*i1)+j]);
printf("\n");
*/
}
if(impp->tprep != NULL) stop_meas(impp->tprep);
//parity check part
if(impp->tparity != NULL) start_meas(impp->tparity);
encode_parity_check_part_optim(c_extension, d, BG, Zc, Kb);
if(impp->tparity != NULL) stop_meas(impp->tparity);
}
else {
if (encode_parity_check_part_orig(c, d, BG, Zc, Kb, block_length)!=0) {
printf("Problem with encoder\n");
return(-1);
}
}
if(impp->toutput != NULL) start_meas(impp->toutput);
// information part and puncture columns
memcpy(&channel_input[0][0], &c[2*Zc], (block_length-2*Zc)*sizeof(unsigned char));
memcpy(&channel_input[0][block_length-2*Zc], &d[0], ((nrows-no_punctured_columns) * Zc-removed_bit)*sizeof(unsigned char));
if(impp->toutput != NULL) stop_meas(impp->toutput);
return 0;
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*!\file ldpc_encoder2.c
* \brief Defines the optimized LDPC encoder
* \author Florian Kaltenberger, Raymond Knopp, Kien le Trung (Eurecom)
* \email openair_tech@eurecom.fr
* \date 27-03-2018
* \version 1.0
* \note
* \warning
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <types.h>
#include "assertions.h"
#include "common/utils/LOG/log.h"
#include "PHY/TOOLS/time_meas.h"
#include "openair1/PHY/CODING/nrLDPC_defs.h"
//#define DEBUG_LDPC
#include "ldpc_encode_parity_check.c"
#include "ldpc_generate_coefficient.c"
int nrLDPC_encod(unsigned char **test_input,unsigned char **channel_input,int Zc,int Kb,short block_length, short BG, encoder_implemparams_t *impp)
{
short nrows=0,ncols=0;
int i,i1,j,rate=3;
int no_punctured_columns,removed_bit;
char temp;
int simd_size;
#ifdef __AVX2__
__m256i shufmask = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202,0x0101010101010101, 0x0000000000000000);
__m256i andmask = _mm256_set1_epi64x(0x0102040810204080); // every 8 bits -> 8 bytes, pattern repeats.
__m256i zero256 = _mm256_setzero_si256();
__m256i masks[8];
register __m256i c256;
masks[0] = _mm256_set1_epi8(0x1);
masks[1] = _mm256_set1_epi8(0x2);
masks[2] = _mm256_set1_epi8(0x4);
masks[3] = _mm256_set1_epi8(0x8);
masks[4] = _mm256_set1_epi8(0x10);
masks[5] = _mm256_set1_epi8(0x20);
masks[6] = _mm256_set1_epi8(0x40);
masks[7] = _mm256_set1_epi8(0x80);
#endif
AssertFatal((impp->n_segments>0&&impp->n_segments<=8),"0 < n_segments %d <= 8\n",impp->n_segments);
//determine number of bits in codeword
//if (block_length>3840)
if (BG==1)
{
nrows=46; //parity check bits
ncols=22; //info bits
rate=3;
}
//else if (block_length<=3840)
else if (BG==2)
{
//BG=2;
nrows=42; //parity check bits
ncols=10; // info bits
rate=5;
}
#ifdef DEBUG_LDPC
LOG_D(PHY,"ldpc_encoder_optim_8seg: BG %d, Zc %d, Kb %d, block_length %d, segments %d\n",BG,Zc,Kb,block_length,n_segments);
LOG_D(PHY,"ldpc_encoder_optim_8seg: PDU (seg 0) %x %x %x %x\n",test_input[0][0],test_input[0][1],test_input[0][2],test_input[0][3]);
#endif
AssertFatal(Zc>0,"no valid Zc found for block length %d\n",block_length);
if ((Zc&31) > 0) simd_size = 16;
else simd_size = 32;
unsigned char c[22*Zc] __attribute__((aligned(32))); //padded input, unpacked, max size
unsigned char d[46*Zc] __attribute__((aligned(32))); //coded parity part output, unpacked, max size
unsigned char c_extension[2*22*Zc*simd_size] __attribute__((aligned(32))); //double size matrix of c
// calculate number of punctured bits
no_punctured_columns=(int)((nrows-2)*Zc+block_length-block_length*rate)/Zc;
removed_bit=(nrows-no_punctured_columns-2) * Zc+block_length-(int)(block_length*rate);
// printf("%d\n",no_punctured_columns);
// printf("%d\n",removed_bit);
// unpack input
memset(c,0,sizeof(unsigned char) * ncols * Zc);
memset(d,0,sizeof(unsigned char) * nrows * Zc);
if(impp->tinput != NULL) start_meas(impp->tinput);
#if 0
for (i=0; i<block_length; i++) {
for (j=0; j<n_segments; j++) {
temp = (test_input[j][i/8]&(128>>(i&7)))>>(7-(i&7));
//printf("c(%d,%d)=%d\n",j,i,temp);
c[i] |= (temp << j);
}
}
#else
#ifdef __AVX2__
for (i=0; i<block_length>>5; i++) {
c256 = _mm256_and_si256(_mm256_cmpeq_epi8(_mm256_andnot_si256(_mm256_shuffle_epi8(_mm256_set1_epi32(((uint32_t*)test_input[0])[i]), shufmask),andmask),zero256),masks[0]);
for (j=1; j<impp->n_segments; j++) {
c256 = _mm256_or_si256(_mm256_and_si256(_mm256_cmpeq_epi8(_mm256_andnot_si256(_mm256_shuffle_epi8(_mm256_set1_epi32(((uint32_t*)test_input[j])[i]), shufmask),andmask),zero256),masks[j]),c256);
}
((__m256i *)c)[i] = c256;
}
for (i=(block_length>>5)<<5;i<block_length;i++) {
for (j=0; j<impp->n_segments; j++) {
temp = (test_input[j][i/8]&(128>>(i&7)))>>(7-(i&7));
//printf("c(%d,%d)=%d\n",j,i,temp);
c[i] |= (temp << j);
}
}
#else
AssertFatal(1==0,"Need AVX2 for this\n");
#endif
#endif
if(impp->tinput != NULL) stop_meas(impp->tinput);
if ((BG==1 && Zc>176) || (BG==2 && Zc>64)) {
// extend matrix
if(impp->tprep != NULL) start_meas(impp->tprep);
for (i1=0; i1 < ncols; i1++)
{
memcpy(&c_extension[2*i1*Zc], &c[i1*Zc], Zc*sizeof(unsigned char));
memcpy(&c_extension[(2*i1+1)*Zc], &c[i1*Zc], Zc*sizeof(unsigned char));
}
for (i1=1;i1<simd_size;i1++) {
memcpy(&c_extension[(2*ncols*Zc*i1)], &c_extension[i1], (2*ncols*Zc*sizeof(unsigned char))-i1);
// memset(&c_extension[(2*ncols*Zc*i1)],0,i1);
/*
printf("shift %d: ",i1);
for (int j=0;j<64;j++) printf("%d ",c_extension[(2*ncols*Zc*i1)+j]);
printf("\n");
*/
}
if(impp->tprep != NULL) stop_meas(impp->tprep);
//parity check part
if(impp->tparity != NULL) start_meas(impp->tparity);
encode_parity_check_part_optim(c_extension, d, BG, Zc, Kb);
if(impp->tparity != NULL) stop_meas(impp->tparity);
}
else {
if (encode_parity_check_part_orig(c, d, BG, Zc, Kb, block_length)!=0) {
printf("Problem with encoder\n");
return(-1);
}
}
if(impp->toutput != NULL) start_meas(impp->toutput);
// information part and puncture columns
/*
memcpy(&channel_input[0], &c[2*Zc], (block_length-2*Zc)*sizeof(unsigned char));
memcpy(&channel_input[block_length-2*Zc], &d[0], ((nrows-no_punctured_columns) * Zc-removed_bit)*sizeof(unsigned char));
*/
#ifdef __AVX2__
if ((((2*Zc)&31) == 0) && (((block_length-(2*Zc))&31) == 0)) {
//AssertFatal(((2*Zc)&31) == 0,"2*Zc needs to be a multiple of 32 for now\n");
//AssertFatal(((block_length-(2*Zc))&31) == 0,"block_length-(2*Zc) needs to be a multiple of 32 for now\n");
uint32_t l1 = (block_length-(2*Zc))>>5;
uint32_t l2 = ((nrows-no_punctured_columns) * Zc-removed_bit)>>5;
__m256i *c256p = (__m256i *)&c[2*Zc];
__m256i *d256p = (__m256i *)&d[0];
// if (((block_length-(2*Zc))&31)>0) l1++;
for (i=0;i<l1;i++)
for (j=0;j<impp->n_segments;j++) ((__m256i *)channel_input[j])[i] = _mm256_and_si256(_mm256_srai_epi16(c256p[i],j),masks[0]);
// if ((((nrows-no_punctured_columns) * Zc-removed_bit)&31)>0) l2++;
for (i1=0;i1<l2;i1++,i++)
for (j=0;j<impp->n_segments;j++) ((__m256i *)channel_input[j])[i] = _mm256_and_si256(_mm256_srai_epi16(d256p[i1],j),masks[0]);
}
else {
#ifdef DEBUG_LDPC
LOG_W(PHY,"using non-optimized version\n");
#endif
// do non-SIMD version
for (i=0;i<(block_length-2*Zc);i++)
for (j=0; j<impp->n_segments; j++)
channel_input[j][i] = (c[2*Zc+i]>>j)&1;
for (i=0;i<((nrows-no_punctured_columns) * Zc-removed_bit);i++)
for (j=0; j<impp->n_segments; j++)
channel_input[j][block_length-2*Zc+i] = (d[i]>>j)&1;
}
#else
AssertFatal(1==0,"Need AVX2 for now\n");
#endif
if(impp->toutput != NULL) stop_meas(impp->toutput);
return 0;
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*!\file ldpc_encoder2.c
* \brief Defines the optimized LDPC encoder
* \author Florian Kaltenberger, Raymond Knopp, Kien le Trung (Eurecom)
* \email openair_tech@eurecom.fr
* \date 27-03-2018
* \version 1.0
* \note
* \warning
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <types.h>
#include "assertions.h"
#include "common/utils/LOG/log.h"
#include "PHY/TOOLS/time_meas.h"
#include "openair1/PHY/CODING/nrLDPC_defs.h"
//#define DEBUG_LDPC
#include "ldpc_encode_parity_check.c"
#include "ldpc_generate_coefficient.c"
int nrLDPC_encod(unsigned char **test_input,unsigned char **channel_input,int Zc,int Kb,short block_length, short BG, encoder_implemparams_t *impp)
{
short nrows=0,ncols=0;
int i,i1,j,rate=3;
int no_punctured_columns,removed_bit;
//Table of possible lifting sizes
char temp;
int simd_size;
unsigned int macro_segment, macro_segment_end;
macro_segment = 8*impp->macro_num;
macro_segment_end = (impp->n_segments > 8*(impp->macro_num+1)) ? 8*(impp->macro_num+1) : impp->n_segments;
///printf("macro_segment: %d\n", macro_segment);
///printf("macro_segment_end: %d\n", macro_segment_end );
#ifdef __AVX2__
__m256i shufmask = _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202,0x0101010101010101, 0x0000000000000000);
__m256i andmask = _mm256_set1_epi64x(0x0102040810204080); // every 8 bits -> 8 bytes, pattern repeats.
__m256i zero256 = _mm256_setzero_si256();
__m256i masks[8];
register __m256i c256;
masks[0] = _mm256_set1_epi8(0x1);
masks[1] = _mm256_set1_epi8(0x2);
masks[2] = _mm256_set1_epi8(0x4);
masks[3] = _mm256_set1_epi8(0x8);
masks[4] = _mm256_set1_epi8(0x10);
masks[5] = _mm256_set1_epi8(0x20);
masks[6] = _mm256_set1_epi8(0x40);
masks[7] = _mm256_set1_epi8(0x80);
#endif
//determine number of bits in codeword
if (BG==1)
{
nrows=46; //parity check bits
ncols=22; //info bits
rate=3;
}
else if (BG==2)
{
nrows=42; //parity check bits
ncols=10; // info bits
rate=5;
}
#ifdef DEBUG_LDPC
LOG_D(PHY,"ldpc_encoder_optim_8seg: BG %d, Zc %d, Kb %d, block_length %d, segments %d\n",BG,Zc,Kb,block_length,n_segments);
LOG_D(PHY,"ldpc_encoder_optim_8seg: PDU (seg 0) %x %x %x %x\n",test_input[0][0],test_input[0][1],test_input[0][2],test_input[0][3]);
#endif
AssertFatal(Zc>0,"no valid Zc found for block length %d\n",block_length);
if ((Zc&31) > 0) simd_size = 16;
else simd_size = 32;
unsigned char c[22*Zc] __attribute__((aligned(32))); //padded input, unpacked, max size
unsigned char d[46*Zc] __attribute__((aligned(32))); //coded parity part output, unpacked, max size
unsigned char c_extension[2*22*Zc*simd_size] __attribute__((aligned(32))); //double size matrix of c
// calculate number of punctured bits
no_punctured_columns=(int)((nrows-2)*Zc+block_length-block_length*rate)/Zc;
removed_bit=(nrows-no_punctured_columns-2) * Zc+block_length-(int)(block_length*rate);
//printf("%d\n",no_punctured_columns);
//printf("%d\n",removed_bit);
// unpack input
memset(c,0,sizeof(unsigned char) * ncols * Zc);
memset(d,0,sizeof(unsigned char) * nrows * Zc);
if(impp->tinput != NULL) start_meas(impp->tinput);
#if 0
for (i=0; i<block_length; i++) {
//for (j=0; j<n_segments; j++) {
for (j=macro_segment; j < macro_segment_end; j++) {
temp = (test_input[j][i/8]&(1<<(i&7)))>>(i&7);
//printf("c(%d,%d)=%d\n",j,i,temp);
c[i] |= (temp << (j-macro_segment));
}
}
#else
#ifdef __AVX2__
for (i=0; i<block_length>>5; i++) {
c256 = _mm256_and_si256(_mm256_cmpeq_epi8(_mm256_andnot_si256(_mm256_shuffle_epi8(_mm256_set1_epi32(((uint32_t*)test_input[macro_segment])[i]), shufmask),andmask),zero256),masks[0]);
//for (j=1; j<n_segments; j++) {
for (j=macro_segment+1; j < macro_segment_end; j++) {
c256 = _mm256_or_si256(_mm256_and_si256(_mm256_cmpeq_epi8(_mm256_andnot_si256(_mm256_shuffle_epi8(_mm256_set1_epi32(((uint32_t*)test_input[j])[i]), shufmask),andmask),zero256),masks[j-macro_segment]),c256);
}
((__m256i *)c)[i] = c256;
}
for (i=(block_length>>5)<<5;i<block_length;i++) {
//for (j=0; j<n_segments; j++) {
for (j=macro_segment; j < macro_segment_end; j++) {
temp = (test_input[j][i/8]&(128>>(i&7)))>>(7-(i&7));
//printf("c(%d,%d)=%d\n",j,i,temp);
c[i] |= (temp << (j-macro_segment));
}
}
#else
AssertFatal(1==0,"Need AVX2 for this\n");
#endif
#endif
if(impp->tinput != NULL) stop_meas(impp->tinput);
if ((BG==1 && Zc>176) || (BG==2 && Zc>64)) {
// extend matrix
if(impp->tprep != NULL) start_meas(impp->tprep);
for (i1=0; i1 < ncols; i1++)
{
memcpy(&c_extension[2*i1*Zc], &c[i1*Zc], Zc*sizeof(unsigned char));
memcpy(&c_extension[(2*i1+1)*Zc], &c[i1*Zc], Zc*sizeof(unsigned char));
}
for (i1=1;i1<simd_size;i1++) {
memcpy(&c_extension[(2*ncols*Zc*i1)], &c_extension[i1], (2*ncols*Zc*sizeof(unsigned char))-i1);
// memset(&c_extension[(2*ncols*Zc*i1)],0,i1);
/*
printf("shift %d: ",i1);
for (int j=0;j<64;j++) printf("%d ",c_extension[(2*ncols*Zc*i1)+j]);
printf("\n");
*/
}
if(impp->tprep != NULL) stop_meas(impp->tprep);
//parity check part
if(impp->tparity != NULL) start_meas(impp->tparity);
encode_parity_check_part_optim(c_extension, d, BG, Zc, Kb);
if(impp->tparity != NULL) stop_meas(impp->tparity);
}
else {
if (encode_parity_check_part_orig(c, d, BG, Zc, Kb, block_length)!=0) {
printf("Problem with encoder\n");
return(-1);
}
}
if(impp->toutput != NULL) start_meas(impp->toutput);
// information part and puncture columns
/*
memcpy(&channel_input[0], &c[2*Zc], (block_length-2*Zc)*sizeof(unsigned char));
memcpy(&channel_input[block_length-2*Zc], &d[0], ((nrows-no_punctured_columns) * Zc-removed_bit)*sizeof(unsigned char));
*/
#ifdef __AVX2__
if ((((2*Zc)&31) == 0) && (((block_length-(2*Zc))&31) == 0)) {
//AssertFatal(((2*Zc)&31) == 0,"2*Zc needs to be a multiple of 32 for now\n");
//AssertFatal(((block_length-(2*Zc))&31) == 0,"block_length-(2*Zc) needs to be a multiple of 32 for now\n");
uint32_t l1 = (block_length-(2*Zc))>>5;
uint32_t l2 = ((nrows-no_punctured_columns) * Zc-removed_bit)>>5;
__m256i *c256p = (__m256i *)&c[2*Zc];
__m256i *d256p = (__m256i *)&d[0];
// if (((block_length-(2*Zc))&31)>0) l1++;
for (i=0;i<l1;i++)
//for (j=0;j<n_segments;j++) ((__m256i *)channel_input[j])[i] = _mm256_and_si256(_mm256_srai_epi16(c256p[i],j),masks[0]);
for (j=macro_segment; j < macro_segment_end; j++) ((__m256i *)channel_input[j])[i] = _mm256_and_si256(_mm256_srai_epi16(c256p[i],j-macro_segment),masks[0]);
// if ((((nrows-no_punctured_columns) * Zc-removed_bit)&31)>0) l2++;
for (i1=0;i1<l2;i1++,i++)
//for (j=0;j<n_segments;j++) ((__m256i *)channel_input[j])[i] = _mm256_and_si256(_mm256_srai_epi16(d256p[i1],j),masks[0]);
for (j=macro_segment; j < macro_segment_end; j++) ((__m256i *)channel_input[j])[i] = _mm256_and_si256(_mm256_srai_epi16(d256p[i1],j-macro_segment),masks[0]);
}
else {
#ifdef DEBUG_LDPC
LOG_W(PHY,"using non-optimized version\n");
#endif
// do non-SIMD version
for (i=0;i<(block_length-2*Zc);i++)
//for (j=0; j<n_segments; j++)
for (j=macro_segment; j < macro_segment_end; j++)
channel_input[j][i] = (c[2*Zc+i]>>(j-macro_segment))&1;
for (i=0;i<((nrows-no_punctured_columns) * Zc-removed_bit);i++)
//for (j=0; j<n_segments; j++)
for (j=macro_segment; j < macro_segment_end; j++)
channel_input[j][block_length-2*Zc+i] = (d[i]>>(j-macro_segment))&1;
}
#else
AssertFatal(1==0,"Need AVX2 for now\n");
#endif
if(impp->toutput != NULL) stop_meas(impp->toutput);
return 0;
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#include "openair1/PHY/CODING/nrLDPC_defs.h"
#ifdef LDPC_LOADER
nrLDPC_decoderfunc_t nrLDPC_decoder;
nrLDPC_encoderfunc_t nrLDPC_encoder;
#else
/* functions to load the LDPC shared lib, implemented in openair1/PHY/CODING/nrLDPC_load.c */
extern int load_nrLDPClib(void) ;
extern int load_nrLDPClib_ref(char *libversion, nrLDPC_encoderfunc_t * nrLDPC_encoder_ptr); // for ldpctest
/* ldpc coder/decoder functions, as loaded by load_nrLDPClib(). */
extern nrLDPC_decoderfunc_t nrLDPC_decoder;
extern nrLDPC_encoderfunc_t nrLDPC_encoder;
// inline functions:
#include "openair1/PHY/CODING/nrLDPC_decoder/nrLDPC_init_mem.h"
#endif
\ No newline at end of file
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file openair1/PHY/CODING/coding_nr_load.c
* \brief: load library implementing coding/decoding algorithms
* \author Francois TABURET
* \date 2020
* \version 0.1
* \company NOKIA BellLabs France
* \email: francois.taburet@nokia-bell-labs.com
* \note
* \warning
*/
#define _GNU_SOURCE
#include <sys/types.h>
#include <stdlib.h>
#include <malloc.h>
#include "assertions.h"
#include "common/utils/LOG/log.h"
#define LDPC_LOADER
#include "PHY/CODING/nrLDPC_extern.h"
#include "common/config/config_userapi.h"
#include "common/utils/load_module_shlib.h"
/* function description array, to be used when loading the encoding/decoding shared lib */
static loader_shlibfunc_t shlib_fdesc[2];
char *arg[64]={"ldpctest","-O","cmdlineonly::dbgl0"};
int load_nrLDPClib(void) {
char *ptr = (char*)config_get_if();
if ( ptr==NULL ) {// phy simulators, config module possibly not loaded
load_configmodule(3,(char **)arg,CONFIG_ENABLECMDLINEONLY) ;
logInit();
}
shlib_fdesc[0].fname = "nrLDPC_decod";
shlib_fdesc[1].fname = "nrLDPC_encod";
int ret=load_module_shlib("ldpc",shlib_fdesc,sizeof(shlib_fdesc)/sizeof(loader_shlibfunc_t),NULL);
AssertFatal( (ret >= 0),"Error loading ldpc decoder");
nrLDPC_decoder = (nrLDPC_decoderfunc_t)shlib_fdesc[0].fptr;
nrLDPC_encoder = (nrLDPC_encoderfunc_t)shlib_fdesc[1].fptr;
return 0;
}
int load_nrLDPClib_ref(char *libversion, nrLDPC_encoderfunc_t * nrLDPC_encoder_ptr) {
loader_shlibfunc_t shlib_encoder_fdesc;
shlib_encoder_fdesc.fname = "nrLDPC_encod";
char libpath[64];
sprintf(libpath,"ldpc%s",libversion);
int ret=load_module_shlib(libpath,&shlib_encoder_fdesc,1,NULL);
AssertFatal( (ret >= 0),"Error loading ldpc encoder %s\n",libpath);
*nrLDPC_encoder_ptr = (nrLDPC_encoderfunc_t)shlib_encoder_fdesc.fptr;
return 0;
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/**********************************************************************
*
* FILENAME : ptrs_nr.c
*
* MODULE : phase tracking reference signals
*
* DESCRIPTION : resource element mapping of ptrs sequences
* 3GPP TS 38.211 and 3GPP TS 38.214
*
************************************************************************/
#include <stdint.h>
#include <stdio.h>
#include "dmrs_nr.h"
#include "PHY/NR_REFSIG/ptrs_nr.h"
/***********************************************************************/
//#define max(a,b) (((a) > (b)) ? (a) : (b))
// TS 38.211 Table 6.4.1.2.2.1-1: The parameter kRE_ref.
// The first 4 colomns are DM-RS Configuration type 1 and the last 4 colomns are DM-RS Configuration type 2.
int16_t table_6_4_1_2_2_1_1_pusch_ptrs_kRE_ref [6][8] = {
{ 0, 2, 6, 8, 0, 1, 6, 7},
{ 2, 4, 8, 10, 1, 6, 7, 0},
{ 1, 3, 7, 9, 2, 3, 8, 9},
{ 3, 5, 9, 11, 3, 8, 9, 2},
{-1, -1, -1, -1, 4, 5, 10, 11},
{-1, -1, -1, -1, 5, 10, 11, 4},
};
/*******************************************************************
*
* NAME : get_kRE_ref
*
* PARAMETERS : dmrs_antenna_port DMRS antenna port
* pusch_dmrs_type PUSCH DMRS type
* resourceElementOffset the parameter resourceElementOffset
*
* RETURN : the parameter k_RE_ref
*
* DESCRIPTION : 3GPP TS 38.211 Table 6.4.1.2.2.1-1
*
*********************************************************************/
int16_t get_kRE_ref(uint8_t dmrs_antenna_port, uint8_t pusch_dmrs_type, uint8_t resourceElementOffset) {
uint8_t colomn;
int16_t k_RE_ref;
colomn = resourceElementOffset;
if (pusch_dmrs_type == 2)
colomn += 4;
k_RE_ref = table_6_4_1_2_2_1_1_pusch_ptrs_kRE_ref[dmrs_antenna_port][colomn];
AssertFatal(k_RE_ref>=0,"invalid k_RE_ref < 0. Check PTRS Configuration\n");
return k_RE_ref;
}
/*******************************************************************
*
* NAME : get_K_ptrs
*
* PARAMETERS : ptrs_UplinkConfig PTRS uplink configuration
* N_RB number of RBs scheduled for PUSCH
*
* RETURN : the parameter K_ptrs
*
* DESCRIPTION : 3GPP TS 38.214 6.2.3 Table 6.2.3.1-2
*
*********************************************************************/
uint8_t get_K_ptrs(ptrs_UplinkConfig_t *ptrs_UplinkConfig, uint16_t N_RB){
uint16_t nrb0, nrb1;
nrb0 = ptrs_UplinkConfig->frequencyDensity.n_rb0;
nrb1 = ptrs_UplinkConfig->frequencyDensity.n_rb1;
if (nrb0 == 0 || nrb0 == 0)
return 2;
if (N_RB < nrb0){
LOG_I(PHY,"PUSH PT-RS is not present.\n");
return 0;
}
else if (N_RB >= nrb0 && N_RB < nrb1)
return 2;
else
return 4;
}
/*******************************************************************
*
* NAME : set_ptrs_symb_idx
*
* PARAMETERS : ptrs_symbols PTRS OFDM symbol indicies bit mask
* duration_in_symbols number of scheduled PUSCH ofdm symbols
* start_symbol first ofdm symbol of PUSCH within slot
* L_ptrs the parameter L_ptrs
* ofdm_symbol_size FFT size
*
* RETURN : sets the bit map of PTRS ofdm symbol indicies
*
* DESCRIPTION : 3GPP TS 38.211 6.4.1.2.2.1
*
*********************************************************************/
void set_ptrs_symb_idx(uint16_t *ptrs_symbols,
uint8_t duration_in_symbols,
uint8_t start_symbol,
uint8_t dmrs_type,
uint8_t L_ptrs,
uint8_t pusch_maxLength,
uint16_t ofdm_symbol_size) {
uint8_t i, last_symbol, is_dmrs_symbol1, is_dmrs_symbol2;
int16_t l_ref;
*ptrs_symbols = 0;
i = 0;
is_dmrs_symbol1 = 0;
is_dmrs_symbol2 = 0;
l_ref = start_symbol;
last_symbol = start_symbol + duration_in_symbols - 1;
while ( (l_ref + i*L_ptrs) <= last_symbol) {
is_dmrs_symbol1 = is_dmrs_symbol(max((l_ref + (i-1)*L_ptrs + 1), l_ref),
0,
0,
0,
0,
0,
duration_in_symbols,
dmrs_type,
ofdm_symbol_size);
is_dmrs_symbol2 = is_dmrs_symbol(l_ref + i*L_ptrs,
0,
0,
0,
0,
0,
duration_in_symbols,
dmrs_type,
ofdm_symbol_size);
if ( is_dmrs_symbol1 + is_dmrs_symbol2 > 0 ) {
if (pusch_maxLength == 2)
l_ref = l_ref + i*L_ptrs + 1;
else
l_ref = l_ref + i*L_ptrs;
i = 1;
continue;
}
*ptrs_symbols = *ptrs_symbols | (1<<(l_ref + i*L_ptrs));
i++;
}
}
/*******************************************************************
*
* NAME : get_L_ptrs
*
* PARAMETERS : ptrs_UplinkConfig PTRS uplink configuration
* I_mcs MCS index used for PUSCH
*
* RETURN : the parameter L_ptrs
*
* DESCRIPTION : 3GPP TS 38.214 6.2.3 Table 6.2.3.1-1
*
*********************************************************************/
uint8_t get_L_ptrs(ptrs_UplinkConfig_t *ptrs_UplinkConfig, uint8_t I_mcs) {
uint8_t mcs1, mcs2, mcs3;
mcs1 = ptrs_UplinkConfig->timeDensity.ptrs_mcs1;
mcs2 = ptrs_UplinkConfig->timeDensity.ptrs_mcs2;
mcs3 = ptrs_UplinkConfig->timeDensity.ptrs_mcs3;
if (mcs1 == 0 || mcs2 == 0 || mcs3 == 0)
return 1;
if (I_mcs < mcs1){
LOG_I(PHY,"PUSH PT-RS is not present.\n");
return 0;
}
else if (I_mcs >= mcs1 && I_mcs < mcs2)
return 4;
else if (I_mcs >= mcs2 && I_mcs < mcs3)
return 2;
else
return 1;
}
/*******************************************************************
*
* NAME : is_ptrs_subcarrier
*
* PARAMETERS : k subcarrier index
* K_ptrs the parameter K_ptrs
* n_rnti UE CRNTI
* N_RB number of RBs scheduled for PUSCH
* k_RE_ref the parameter k_RE_ref
* start_sc first subcarrier index
* ofdm_symbol_size FFT size
*
* RETURN : 1 if subcarrier k is PTRS, or 0 otherwise
*
* DESCRIPTION : 3GPP TS 38.211 6.4.1.2 Phase-tracking reference signal for PUSCH
*
*********************************************************************/
uint8_t is_ptrs_subcarrier(uint16_t k, uint8_t K_ptrs, uint16_t n_rnti, uint16_t N_RB, int16_t k_RE_ref, uint16_t start_sc, uint16_t ofdm_symbol_size) {
uint16_t k_RB_ref, i, sc;
i = 0;
sc = 0;
k_RB_ref = 0;
if (N_RB % K_ptrs == 0)
k_RB_ref = n_rnti % K_ptrs;
else
k_RB_ref = n_rnti % (N_RB % K_ptrs);
while (k > sc){
sc = (start_sc + k_RE_ref + (i*K_ptrs + k_RB_ref)*NR_NB_SC_PER_RB)%ofdm_symbol_size;
i++;
}
if (k == sc)
return 1;
else
return 0;
}
/*******************************************************************
*
* NAME : is_ptrs_symbol
*
* PARAMETERS : l ofdm symbol index within slot
* k subcarrier index
* n_rnti UE CRNTI
* N_RB number of RBs scheduled for PUSCH
* duration_in_symbols number of scheduled PUSCH ofdm symbols
* dmrs_antenna_port DMRS antenna port
* K_ptrs the parameter K_ptrs
* ptrs_symbols bit mask of ptrs
* start_sc first subcarrier index
* ofdm_symbol_size FFT size
* pusch_dmrs_type PUSCH DMRS type (1 or 2)
* ptrs_UplinkConfig PTRS uplink configuration
*
* RETURN : 0 if symbol(k,l) is data, or 1 if symbol(k,l) is ptrs
*
* DESCRIPTION : 3GPP TS 38.211 6.4.1.2 Phase-tracking reference signal for PUSCH
*
*********************************************************************/
uint8_t is_ptrs_symbol(uint8_t l,
uint16_t k,
uint16_t n_rnti,
uint16_t N_RB,
uint8_t duration_in_symbols,
uint8_t dmrs_antenna_port,
uint8_t K_ptrs,
uint16_t ptrs_symbols,
uint16_t start_sc,
uint16_t ofdm_symbol_size,
pusch_dmrs_type_t pusch_dmrs_type,
uint8_t resourceElementOffset) {
uint8_t is_ptrs_freq, is_ptrs_time;
int16_t k_RE_ref;
is_ptrs_freq = 0;
is_ptrs_time = 0;
k_RE_ref = get_kRE_ref(dmrs_antenna_port, pusch_dmrs_type, resourceElementOffset);
is_ptrs_freq = is_ptrs_subcarrier(k, K_ptrs, n_rnti, N_RB, k_RE_ref, start_sc, ofdm_symbol_size);
if (is_ptrs_freq == 0)
return 0;
if (((ptrs_symbols>>l)&1) == 1)
is_ptrs_time = 1;
if (is_ptrs_time && is_ptrs_freq)
return 1;
else
return 0;
}
/*
int main(int argc, char const *argv[])
{
dmrs_UplinkConfig_t dmrs_Uplink_Config;
ptrs_UplinkConfig_t ptrs_Uplink_Config;
uint8_t resourceElementOffset;
uint8_t dmrs_antenna_port;
uint8_t L_ptrs, K_ptrs;
int16_t k_RE_ref;
uint16_t N_RB, ptrs_symbols, ofdm_symbol_size, k;
uint8_t duration_in_symbols, I_mcs;
uint8_t start_symbol, l;
uint8_t ptrs_symbol_flag;
uint16_t n_rnti;
dmrs_Uplink_Config.pusch_dmrs_type = pusch_dmrs_type1;
dmrs_Uplink_Config.pusch_dmrs_AdditionalPosition = pusch_dmrs_pos1;
dmrs_Uplink_Config.pusch_maxLength = pusch_len2;
ptrs_Uplink_Config.timeDensity.ptrs_mcs1 = 0; // setting MCS values to 0 indicate abscence of time_density field in the configuration
ptrs_Uplink_Config.timeDensity.ptrs_mcs2 = 0;
ptrs_Uplink_Config.timeDensity.ptrs_mcs3 = 0;
ptrs_Uplink_Config.frequencyDensity.n_rb0 = 0; // setting N_RB values to 0 indicate abscence of frequency_density field in the configuration
ptrs_Uplink_Config.frequencyDensity.n_rb1 = 0;
ptrs_Uplink_Config.resourceElementOffset = 0;
n_rnti = 0x1234;
resourceElementOffset = 0;
ptrs_symbols = 0;
dmrs_antenna_port = 0;
N_RB = 50;
duration_in_symbols = 14;
ofdm_symbol_size = 2048;
I_mcs = 9;
start_symbol = 0;
ptrs_symbol_flag = 0;
k_RE_ref = get_kRE_ref(dmrs_antenna_port, dmrs_Uplink_Config.pusch_dmrs_type, resourceElementOffset);
K_ptrs = get_K_ptrs(&ptrs_Uplink_Config, N_RB);
L_ptrs = get_L_ptrs(&ptrs_Uplink_Config, I_mcs);
set_ptrs_symb_idx(&ptrs_symbols,
&ptrs_Uplink_Config,
&dmrs_Uplink_Config,
1,
duration_in_symbols,
start_symbol,
L_ptrs,
ofdm_symbol_size);
printf("PTRS OFDM symbol indicies: ");
for (l = start_symbol; l < start_symbol + duration_in_symbols; l++){
ptrs_symbol_flag = is_ptrs_symbol(l,
0,
n_rnti,
N_RB,
duration_in_symbols,
dmrs_antenna_port,
K_ptrs,
ptrs_symbols,
dmrs_Uplink_Config.pusch_dmrs_type,
&ptrs_Uplink_Config);
if (ptrs_symbol_flag == 1)
printf(" %d ", l);
}
printf("\n");
printf("PTRS subcarrier indicies: ");
for (k = 0; k < N_RB*12; k++){
if (is_ptrs_subcarrier(k, K_ptrs, n_rnti, N_RB, k_RE_ref) == 1)
printf(" %d ", k);
}
printf("\n");
return 0;
}
*/
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/**********************************************************************
*
* FILENAME : dmrs.h
*
* MODULE : demodulation reference signals
*
* DESCRIPTION : generation of dmrs sequences for NR 5G
* 3GPP TS 38.211
*
************************************************************************/
#ifndef PTRS_NR_H
#define PTRS_NR_H
#include "PHY/defs_nr_UE.h"
/************** CODE GENERATION ***********************************/
/************** DEFINE ********************************************/
/************* STRUCTURES *****************************************/
/************** VARIABLES *****************************************/
/************** FUNCTION ******************************************/
int16_t get_kRE_ref(uint8_t dmrs_antenna_port, uint8_t pusch_dmrs_type, uint8_t resourceElementOffset);
uint8_t get_K_ptrs(ptrs_UplinkConfig_t *ptrs_UplinkConfig, uint16_t N_RB);
void set_ptrs_symb_idx(uint16_t *ptrs_symbols,
uint8_t duration_in_symbols,
uint8_t start_symbol,
uint8_t dmrs_type,
uint8_t L_ptrs,
uint8_t pusch_maxLength,
uint16_t ofdm_symbol_size);
uint8_t get_L_ptrs(ptrs_UplinkConfig_t *ptrs_UplinkConfig, uint8_t I_mcs);
uint8_t is_ptrs_subcarrier(uint16_t k, uint8_t K_ptrs, uint16_t n_rnti, uint16_t N_RB, int16_t k_RE_ref, uint16_t start_sc, uint16_t ofdm_symbol_size);
uint8_t is_ptrs_symbol(uint8_t l,
uint16_t k,
uint16_t n_rnti,
uint16_t N_RB,
uint8_t duration_in_symbols,
uint8_t dmrs_antenna_port,
uint8_t K_ptrs,
uint16_t ptrs_symbols,
uint16_t start_sc,
uint16_t ofdm_symbol_size,
pusch_dmrs_type_t pusch_dmrs_type,
uint8_t resourceElementOffset);
#endif /* PTRS_NR_H */
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/NR_TRANSPORT/nr_dci_tools_common.c
* \brief
* \author
* \date 2018
* \version 0.1
* \company Eurecom
* \email:
* \note
* \warning
*/
#include "nr_dci.h"
//#define DEBUG_FILL_DCI
#include "nr_dlsch.h"
void get_coreset_rballoc(uint8_t *FreqDomainResource,int *n_rb,int *rb_offset) {
uint8_t count=0, start=0, start_set=0;
uint64_t bitmap = (((uint64_t)FreqDomainResource[0])<<37)|
(((uint64_t)FreqDomainResource[1])<<29)|
(((uint64_t)FreqDomainResource[2])<<21)|
(((uint64_t)FreqDomainResource[3])<<13)|
(((uint64_t)FreqDomainResource[4])<<5)|
(((uint64_t)FreqDomainResource[5])>>3);
for (int i=0; i<45; i++)
if ((bitmap>>(44-i))&1) {
count++;
if (!start_set) {
start = i;
start_set = 1;
}
}
*rb_offset = 6*start;
*n_rb = 6*count;
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/NR_TRANSPORT/nr_prach.c
* \brief Top-level routines for generating and decoding the PRACH physical channel V15.4 2018-12
* \author R. Knopp
* \date 2019
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#include "PHY/defs_gNB.h"
#include "PHY/NR_TRANSPORT/nr_transport.h"
#include "PHY/NR_TRANSPORT/nr_transport_proto_common.h"
extern uint16_t NCS_unrestricted_delta_f_RA_125[16];
extern uint16_t NCS_restricted_TypeA_delta_f_RA_125[15];
extern uint16_t NCS_restricted_TypeB_delta_f_RA_125[13];
extern uint16_t NCS_unrestricted_delta_f_RA_5[16];
extern uint16_t NCS_restricted_TypeA_delta_f_RA_5[16];
extern uint16_t NCS_restricted_TypeB_delta_f_RA_5[14];
extern uint16_t NCS_unrestricted_delta_f_RA_15[16];
extern uint16_t prach_root_sequence_map_0_3[838];
extern uint16_t prach_root_sequence_map_abc[138];
extern int64_t table_6_3_3_2_2_prachConfig_Index [256][9];
extern int64_t table_6_3_3_2_3_prachConfig_Index [256][9];
extern int64_t table_6_3_3_2_4_prachConfig_Index [256][10];
extern uint16_t nr_du[838];
extern int16_t nr_ru[2*839];
void rx_nr_prach_ru(RU_t *ru,
int frame,
int subframe) {
AssertFatal(ru!=NULL,"ru is null\n");
int16_t **rxsigF=NULL;
NR_DL_FRAME_PARMS *fp=ru->nr_frame_parms;
int16_t prach_ConfigIndex = fp->prach_config_common.prach_ConfigInfo.prach_ConfigIndex;
int16_t *prach[ru->nb_rx];
uint8_t prach_fmt = get_nr_prach_fmt(prach_ConfigIndex,fp->frame_type,fp->freq_range);
rxsigF = ru->prach_rxsigF;
AssertFatal(ru->if_south == LOCAL_RF,"we shouldn't call this if if_south != LOCAL_RF\n");
for (int aa=0; aa<ru->nb_rx; aa++)
prach[aa] = (int16_t*)&ru->common.rxdata[aa][(subframe*fp->samples_per_subframe)-ru->N_TA_offset];
int mu = fp->numerology_index;
int Ncp;
int16_t *prach2;
switch (prach_fmt) {
case 0:
Ncp = 3168;
break;
case 1:
Ncp = 21024;
break;
case 2:
Ncp = 4688;
break;
case 3:
Ncp = 3168;
break;
case 0xa1:
Ncp = 288/(1<<mu);
break;
case 0xa2:
Ncp = 576/(1<<mu);
break;
case 0xa3:
Ncp = 864/(1<<mu);
break;
case 0xb1:
Ncp = 216/(1<<mu);
break;
case 0xb2:
Ncp = 360/(1<<mu);
break;
case 0xb3:
Ncp = 504/(1<<mu);
break;
case 0xb4:
Ncp = 936/(1<<mu);
break;
case 0xc0:
Ncp = 1240/(1<<mu);
break;
case 0xc2:
Ncp = 2048/(1<<mu);
break;
default:
AssertFatal(1==0,"unknown prach format %x\n",prach_fmt);
break;
}
// Do forward transform
if (LOG_DEBUGFLAG(PRACH)) {
LOG_D(PHY,"rx_prach: Doing FFT for N_RB_UL %d nb_rx:%d Ncp:%d\n",fp->N_RB_UL, ru->nb_rx, Ncp);
}
AssertFatal(mu==1,"only 30 kHz SCS handled for now\n");
// Note: Assumes PUSCH SCS @ 30 kHz, take values for formats 0-2 and adjust for others below
int kbar = 1;
int K = 24;
if (prach_fmt == 3) {
K=4;
kbar=10;
}
else if (prach_fmt > 3) {
// Note: Assumes that PRACH SCS is same as PUSCH SCS
K=1;
kbar=2;
}
int n_ra_prb = fp->prach_config_common.prach_ConfigInfo.msg1_frequencystart;
int k = (12*n_ra_prb) - 6*fp->N_RB_UL;
int N_ZC = (prach_fmt<4)?839:139;
if (k<0) k+=(fp->ofdm_symbol_size);
k*=K;
k+=kbar;
int reps=1;
int dftlen=0;
for (int aa=0; aa<ru->nb_rx; aa++) {
AssertFatal(prach[aa]!=NULL,"prach[%d] is null\n",aa);
// do DFT
if (fp->N_RB_UL <= 100)
AssertFatal(1==0,"N_RB_UL %d not support for NR PRACH yet\n",fp->N_RB_UL);
else if (fp->N_RB_UL < 137) {
if (fp->threequarter_fs==0) {
//40 MHz @ 61.44 Ms/s
//50 MHz @ 61.44 Ms/s
prach2 = prach[aa] + (Ncp<<2);
if (prach_fmt == 0 || prach_fmt == 1 || prach_fmt == 2)
dft49152(prach2,rxsigF[aa],1);
if (prach_fmt == 1 || prach_fmt == 2) {
dft49152(prach2+98304,rxsigF[aa]+98304,1);
reps++;
}
if (prach_fmt == 2) {
dft49152(prach2+(98304*2),rxsigF[aa]+(98304*2),1);
dft49152(prach2+(98304*3),rxsigF[aa]+(98304*3),1);
reps+=2;
}
if (prach_fmt == 3) {
for (int i=0;i<4;i++) dft12288(prach2+(i*12288*2),rxsigF[aa]+(i*12288*2),1);
reps=4;
}
if (prach_fmt >3) {
dft2048(prach2,rxsigF[aa],1);
if (prach_fmt != 0xc0) {
dft2048(prach2+4096,rxsigF[aa]+4096,1);
reps++;
}
}
if (prach_fmt == 0xa2 || prach_fmt == 0xa3 || prach_fmt == 0xb2 || prach_fmt == 0xb3 || prach_fmt == 0xb4 || prach_fmt == 0xc2) {
dft2048(prach2+4096*2,rxsigF[aa]+4096*2,1);
dft2048(prach2+4096*3,rxsigF[aa]+4096*3,1);
reps+=2;
}
if (prach_fmt == 0xa3 || prach_fmt == 0xb3 || prach_fmt == 0xc2) {
dft2048(prach2+4096*4,rxsigF[aa]+4096*4,1);
dft2048(prach2+4096*5,rxsigF[aa]+4096*5,1);
reps+=2;
}
if (prach_fmt == 0xc2) {
for (int i=6;i<11;i++) dft2048(prach2+(3072*i),rxsigF[aa]+(3072*i),1);
reps+=6;
}
} else {
// 40 MHz @ 46.08 Ms/s
prach2 = prach[aa] + (3*Ncp);
AssertFatal(fp->N_RB_UL <= 107,"cannot do 108..136 PRBs with 3/4 sampling\n");
if (prach_fmt == 0 || prach_fmt == 1 || prach_fmt == 2) {
dft36864(prach2,rxsigF[aa],1);
reps++;
}
if (prach_fmt == 1 || prach_fmt == 2) {
dft36864(prach2+73728,rxsigF[aa]+73728,1);
reps++;
}
if (prach_fmt == 2) {
dft36864(prach2+(98304*2),rxsigF[aa]+(98304*2),1);
dft36864(prach2+(98304*3),rxsigF[aa]+(98304*3),1);
reps+=2;
}
if (prach_fmt == 3) {
for (int i=0;i<4;i++) dft9216(prach2+(i*9216*2),rxsigF[aa]+(i*9216*2),1);
reps=4;
}
if (prach_fmt >3) {
dft1536(prach2,rxsigF[aa],1);
if (prach_fmt != 0xc0) {
dft1536(prach2+3072,rxsigF[aa]+3072,1);
reps++;
}
}
if (prach_fmt == 0xa2 || prach_fmt == 0xa3 || prach_fmt == 0xb2 || prach_fmt == 0xb3 || prach_fmt == 0xb4 || prach_fmt == 0xc2) {
dft1536(prach2+3072*2,rxsigF[aa]+3072*2,1);
dft1536(prach2+3072*3,rxsigF[aa]+3072*3,1);
reps+=2;
}
if (prach_fmt == 0xa3 || prach_fmt == 0xb3 || prach_fmt == 0xc2) {
dft1536(prach2+3072*4,rxsigF[aa]+3072*4,1);
dft1536(prach2+3072*5,rxsigF[aa]+3072*5,1);
reps+=2;
}
if (prach_fmt == 0xc2) {
for (int i=6;i<11;i++) dft1536(prach2+(3072*i),rxsigF[aa]+(3072*i),1);
reps+=6;
}
}
}
else if (fp->N_RB_UL <= 273) {
if (fp->threequarter_fs==0) {
prach2 = prach[aa] + (Ncp<<3);
dftlen=98304;
//80,90,100 MHz @ 61.44 Ms/s
if (prach_fmt == 0 || prach_fmt == 1 || prach_fmt == 2)
dft98304(prach2,rxsigF[aa],1);
if (prach_fmt == 1 || prach_fmt == 2) {
dft98304(prach2+196608,rxsigF[aa]+196608,1);
reps++;
}
if (prach_fmt == 1 || prach_fmt == 2) {
dft98304(prach2+196608,rxsigF[aa]+196608,1);
dft98304(prach2+(196608*2),rxsigF[aa]+(196608*2),1);
reps+=2;
}
if (prach_fmt == 3) {
dft24576(prach2+(2*49152),rxsigF[aa]+(2*49152),1);
reps=4;
dftlen=24576;
}
if (prach_fmt >3) {
dftlen=4096;
dft4096(prach2,rxsigF[aa],1);
if (prach_fmt != 0xc0) {
dft4096(prach2+8192,rxsigF[aa]+8192,1);
reps++;
}
}
if (prach_fmt == 0xa2 || prach_fmt == 0xa3 || prach_fmt == 0xb2 || prach_fmt == 0xb3 || prach_fmt == 0xb4 || prach_fmt == 0xc2) {
dft4096(prach2+8192*2,rxsigF[aa]+8192*2,1);
dft4096(prach2+8192*3,rxsigF[aa]+8192*3,1);
reps+=2;
}
if (prach_fmt == 0xa3 || prach_fmt == 0xb3 || prach_fmt == 0xc2) {
dft4096(prach2+8192*4,rxsigF[aa]+8192*4,1);
dft4096(prach2+8192*5,rxsigF[aa]+8192*5,1);
reps+=2;
}
if (prach_fmt == 0xc2) {
for (int i=6;i<11;i++) dft4096(prach2+(8192*i),rxsigF[aa]+(8192*i),1);
reps+=6;
}
} else {
AssertFatal(fp->N_RB_UL <= 217,"cannot do more than 217 PRBs with 3/4 sampling\n");
prach2 = prach[aa] + (6*Ncp);
// 80 MHz @ 46.08 Ms/s
dftlen=73728;
if (prach_fmt == 0 || prach_fmt == 1 || prach_fmt == 2) {
dft73728(prach2,rxsigF[aa],1);
reps++;
}
if (prach_fmt == 1 || prach_fmt == 2) {
dft73728(prach2+(2*73728),rxsigF[aa]+(2*73728),1);
reps++;
}
if (prach_fmt == 3) {
dft73728(prach2+(4*73728),rxsigF[aa]+(4*73728),1);
reps=4;
dftlen=18432;
}
if (prach_fmt >3) {
dftlen=3072;
dft3072(prach2,rxsigF[aa],1);
if (prach_fmt != 0xc0) {
dft3072(prach2+6144,rxsigF[aa]+6144,1);
reps++;
}
}
if (prach_fmt == 0xa2 || prach_fmt == 0xa3 || prach_fmt == 0xb2 || prach_fmt == 0xb3 || prach_fmt == 0xb4 || prach_fmt == 0xc2) {
dft3072(prach2+6144*2,rxsigF[aa]+6144*2,1);
dft3072(prach2+6144*3,rxsigF[aa]+6144*3,1);
reps+=2;
}
if (prach_fmt == 0xa3 || prach_fmt == 0xb3 || prach_fmt == 0xc2) {
dft3072(prach2+6144*4,rxsigF[aa]+6144*4,1);
dft3072(prach2+6144*5,rxsigF[aa]+6144*5,1);
reps+=2;
}
if (prach_fmt == 0xc2) {
for (int i=6;i<11;i++) dft3072(prach2+(6144*i),rxsigF[aa]+(6144*i),1);
reps+=6;
}
}
}
//Coherent combining of PRACH repetitions (assumes channel does not change, to be revisted for "long" PRACH)
int16_t rxsigF_tmp[N_ZC<<1];
// if (k+N_ZC > dftlen) { // PRACH signal is split around DC
int16_t *rxsigF2=rxsigF[aa];
int k2=k<<1;
for (int j=0;j<N_ZC<<1;j++,k2++) {
if (k2==(dftlen<<1)) k2=0;
rxsigF_tmp[j] = rxsigF2[k2];
for (int i=1;i<reps;i++) rxsigF_tmp[j] += rxsigF2[k2+(i*N_ZC<<1)];
}
memcpy((void*)rxsigF2,(void *)rxsigF_tmp,N_ZC<<2);
}
}
void rx_nr_prach(PHY_VARS_gNB *gNB,
int frame,
int subframe,
uint16_t *max_preamble,
uint16_t *max_preamble_energy,
uint16_t *max_preamble_delay
)
{
int i;
NR_DL_FRAME_PARMS *fp;
lte_frame_type_t frame_type;
uint16_t rootSequenceIndex;
uint8_t prach_ConfigIndex;
uint8_t Ncs_config;
uint8_t restricted_set;
uint8_t n_ra_prb;
int16_t *prachF=NULL;
int nb_rx;
int16_t **rxsigF = gNB->prach_vars.rxsigF;
uint8_t preamble_index;
uint16_t NCS=99,NCS2;
uint16_t preamble_offset=0,preamble_offset_old;
int16_t preamble_shift=0;
uint32_t preamble_shift2;
uint16_t preamble_index0=0,n_shift_ra=0,n_shift_ra_bar;
uint16_t d_start=0;
uint16_t numshift=0;
uint16_t *prach_root_sequence_map;
uint8_t not_found;
uint16_t u;
int16_t *Xu=0;
uint16_t offset;
uint16_t first_nonzero_root_idx=0;
uint8_t new_dft=0;
uint8_t aa;
int32_t lev;
int16_t levdB;
int log2_ifft_size=10;
int16_t prach_ifft_tmp[2048*2] __attribute__((aligned(32)));
int32_t *prach_ifft=(int32_t*)NULL;
nr_frequency_range_e freq_range;
AssertFatal(gNB!=NULL,"Can only be called from gNB\n");
fp = &gNB->frame_parms;
nb_rx = fp->nb_antennas_rx;
frame_type = fp->frame_type;
freq_range = fp->freq_range;
rootSequenceIndex = fp->prach_config_common.rootSequenceIndex;
prach_ConfigIndex = fp->prach_config_common.prach_ConfigInfo.prach_ConfigIndex;
Ncs_config = fp->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig;
restricted_set = fp->prach_config_common.prach_ConfigInfo.highSpeedFlag;
uint8_t prach_fmt = get_nr_prach_fmt(prach_ConfigIndex,frame_type,freq_range);
uint16_t N_ZC = (prach_fmt <4)?839:139;
AssertFatal(gNB!=NULL,"gNB is null\n");
prach_ifft = gNB->prach_vars.prach_ifft;
prachF = gNB->prach_vars.prachF;
if (LOG_DEBUGFLAG(PRACH)){
if ((frame&1023) < 20) LOG_D(PHY,"PRACH (gNB) : running rx_prach for subframe %d, msg1_frequencystart %d, prach_ConfigIndex %d , rootSequenceIndex %d\n", subframe,fp->prach_config_common.prach_ConfigInfo.msg1_frequencystart,prach_ConfigIndex,rootSequenceIndex);
}
int restricted_Type = 0; //this is hardcoded ('0' for restricted_TypeA; and '1' for restricted_TypeB). FIXME
if (prach_fmt<3){
if (restricted_set == 0) {
NCS = NCS_unrestricted_delta_f_RA_125[Ncs_config];
} else {
if (restricted_Type == 0) NCS = NCS_restricted_TypeA_delta_f_RA_125[Ncs_config]; // for TypeA, this is hardcoded. FIXME
if (restricted_Type == 1) NCS = NCS_restricted_TypeB_delta_f_RA_125[Ncs_config]; // for TypeB, this is hardcoded. FIXME
}
}
if (prach_fmt==3){
if (restricted_set == 0) {
NCS = NCS_unrestricted_delta_f_RA_5[Ncs_config];
} else {
if (restricted_Type == 0) NCS = NCS_restricted_TypeA_delta_f_RA_5[Ncs_config]; // for TypeA, this is hardcoded. FIXME
if (restricted_Type == 1) NCS = NCS_restricted_TypeB_delta_f_RA_5[Ncs_config]; // for TypeB, this is hardcoded. FIXME
}
}
if (prach_fmt>3){
NCS = NCS_unrestricted_delta_f_RA_15[Ncs_config];
}
AssertFatal(NCS!=99,"NCS has not been set\n");
if (gNB) start_meas(&gNB->rx_prach);
prach_root_sequence_map = (prach_fmt<4) ? prach_root_sequence_map_0_3 : prach_root_sequence_map_abc;
// PDP is oversampled, e.g. 1024 sample instead of 839
// Adapt the NCS (zero-correlation zones) with oversampling factor e.g. 1024/839
NCS2 = (N_ZC==839) ? ((NCS<<10)/839) : ((NCS<<8)/139);
if (NCS2==0) NCS2 = N_ZC;
preamble_offset_old = 99;
*max_preamble_energy=0;
for (preamble_index=0 ; preamble_index<64 ; preamble_index++) {
if (LOG_DEBUGFLAG(PRACH)){
int en = dB_fixed(signal_energy((int32_t*)&rxsigF[0][0],(N_ZC==839) ? 840: 140));
if (en>60) LOG_I(PHY,"frame %d, subframe %d : Trying preamble %d \n",frame,subframe,preamble_index);
}
if (restricted_set == 0) {
// This is the relative offset in the root sequence table (5.7.2-4 from 36.211) for the given preamble index
preamble_offset = ((NCS==0)? preamble_index : (preamble_index/(N_ZC/NCS)));
if (preamble_offset != preamble_offset_old) {
preamble_offset_old = preamble_offset;
new_dft = 1;
// This is the \nu corresponding to the preamble index
preamble_shift = 0;
}
else {
preamble_shift -= NCS;
if (preamble_shift < 0)
preamble_shift+=N_ZC;
}
} else { // This is the high-speed case
new_dft = 0;
// set preamble_offset to initial rootSequenceIndex and look if we need more root sequences for this
// preamble index and find the corresponding cyclic shift
// Check if all shifts for that root have been processed
if (preamble_index0 == numshift) {
not_found = 1;
new_dft = 1;
preamble_index0 -= numshift;
(preamble_offset==0 && numshift==0) ? (preamble_offset) : (preamble_offset++);
while (not_found == 1) {
// current root depending on rootSequenceIndex
int index = (rootSequenceIndex + preamble_offset) % N_ZC;
if (prach_fmt<4) {
// prach_root_sequence_map points to prach_root_sequence_map0_3
DevAssert( index < sizeof(prach_root_sequence_map_0_3) / sizeof(prach_root_sequence_map_0_3[0]) );
} else {
// prach_root_sequence_map points to prach_root_sequence_map4
DevAssert( index < sizeof(prach_root_sequence_map_abc) / sizeof(prach_root_sequence_map_abc[0]) );
}
u = prach_root_sequence_map[index];
uint16_t n_group_ra = 0;
if ( (nr_du[u]<(N_ZC/3)) && (nr_du[u]>=NCS) ) {
n_shift_ra = nr_du[u]/NCS;
d_start = (nr_du[u]<<1) + (n_shift_ra * NCS);
n_group_ra = N_ZC/d_start;
n_shift_ra_bar = max(0,(N_ZC-(nr_du[u]<<1)-(n_group_ra*d_start))/N_ZC);
} else if ( (nr_du[u]>=(N_ZC/3)) && (nr_du[u]<=((N_ZC - NCS)>>1)) ) {
n_shift_ra = (N_ZC - (nr_du[u]<<1))/NCS;
d_start = N_ZC - (nr_du[u]<<1) + (n_shift_ra * NCS);
n_group_ra = nr_du[u]/d_start;
n_shift_ra_bar = min(n_shift_ra,max(0,(nr_du[u]- (n_group_ra*d_start))/NCS));
} else {
n_shift_ra = 0;
n_shift_ra_bar = 0;
}
// This is the number of cyclic shifts for the current root u
numshift = (n_shift_ra*n_group_ra) + n_shift_ra_bar;
// skip to next root and recompute parameters if numshift==0
(numshift>0) ? (not_found = 0) : (preamble_offset++);
}
}
if (n_shift_ra>0)
preamble_shift = -((d_start * (preamble_index0/n_shift_ra)) + ((preamble_index0%n_shift_ra)*NCS)); // minus because the channel is h(t -\tau + Cv)
else
preamble_shift = 0;
if (preamble_shift < 0)
preamble_shift+=N_ZC;
preamble_index0++;
if (preamble_index == 0)
first_nonzero_root_idx = preamble_offset;
}
// Compute DFT of RX signal (conjugate input, results in conjugate output) for each new rootSequenceIndex
if (LOG_DEBUGFLAG(PRACH)) {
int en = dB_fixed(signal_energy((int32_t*)&rxsigF[0][0],840));
if (en>60) LOG_I(PHY,"frame %d, subframe %d : preamble index %d, NCS %d, NCS_config %d, N_ZC/NCS %d: offset %d, preamble shift %d , en %d)\n",
frame,subframe,preamble_index,NCS,Ncs_config,N_ZC/NCS,preamble_offset,preamble_shift,en);
}
if (new_dft == 1) {
new_dft = 0;
Xu=(int16_t*)gNB->X_u[preamble_offset-first_nonzero_root_idx];
memset(prach_ifft,0,((N_ZC==839) ? 2048 : 256)*sizeof(int32_t));
memset(prachF, 0, sizeof(int16_t)*2*1024 );
if (LOG_DUMPFLAG(PRACH)) {
LOG_M("prach_rxF0.m","prach_rxF0",rxsigF[0],N_ZC,1,1);
LOG_M("prach_rxF1.m","prach_rxF1",rxsigF[1],6144,1,1);
}
for (aa=0;aa<nb_rx; aa++) {
// Do componentwise product with Xu* on each antenna
for (offset=0; offset<(N_ZC<<1); offset+=2) {
prachF[offset] = (int16_t)(((int32_t)Xu[offset]*rxsigF[aa][offset] + (int32_t)Xu[offset+1]*rxsigF[aa][offset+1])>>15);
prachF[offset+1] = (int16_t)(((int32_t)Xu[offset]*rxsigF[aa][offset+1] - (int32_t)Xu[offset+1]*rxsigF[aa][offset])>>15);
}
// Now do IFFT of size 1024 (N_ZC=839) or 256 (N_ZC=139)
if (N_ZC == 839) {
log2_ifft_size = 10;
idft1024(prachF,prach_ifft_tmp,1);
// compute energy and accumulate over receive antennas
for (i=0;i<2048;i++)
prach_ifft[i] += (prach_ifft_tmp[i<<1]*prach_ifft_tmp[i<<1] + prach_ifft_tmp[1+(i<<1)]*prach_ifft_tmp[1+(i<<1)])>>10;
} else {
idft256(prachF,prach_ifft_tmp,1);
log2_ifft_size = 8;
// compute energy and accumulate over receive antennas and repetitions for BR
for (i=0;i<256;i++)
prach_ifft[i] += (prach_ifft_tmp[i<<1]*prach_ifft_tmp[(i<<1)] + prach_ifft_tmp[1+(i<<1)]*prach_ifft_tmp[1+(i<<1)])>>10;
}
if (LOG_DUMPFLAG(PRACH)) {
if (aa==0) LOG_M("prach_rxF_comp0.m","prach_rxF_comp0",prachF,1024,1,1);
if (aa==1) LOG_M("prach_rxF_comp1.m","prach_rxF_comp1",prachF,1024,1,1);
}
}// antennas_rx
} // new dft
// check energy in nth time shift, for
preamble_shift2 = ((preamble_shift==0) ? 0 : ((preamble_shift<<log2_ifft_size)/N_ZC));
for (i=0; i<NCS2; i++) {
lev = (int32_t)prach_ifft[(preamble_shift2+i)];
levdB = dB_fixed_times10(lev);
if (levdB>*max_preamble_energy) {
*max_preamble_energy = levdB;
*max_preamble_delay = i; // Note: This has to be normalized to the 30.72 Ms/s sampling rate
*max_preamble = preamble_index;
}
}
}// preamble_index
if (LOG_DUMPFLAG(PRACH)) {
int en = dB_fixed(signal_energy((int32_t*)&rxsigF[0][0],840));
if (en>60) {
int k = (12*n_ra_prb) - 6*fp->N_RB_UL;
if (k<0) k+=fp->ofdm_symbol_size;
k*=12;
k+=13;
k*=2;
LOG_M("rxsigF.m","prach_rxF",&rxsigF[0][0],12288,1,1);
LOG_M("prach_rxF_comp0.m","prach_rxF_comp0",prachF,1024,1,1);
LOG_M("Xu.m","xu",Xu,N_ZC,1,1);
LOG_M("prach_ifft0.m","prach_t0",prach_ifft,1024,1,1);
}
} /* LOG_DUMPFLAG(PRACH) */
if (gNB) stop_meas(&gNB->rx_prach);
}
This source diff could not be displayed because it is too large. You can view the blob instead.
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/LTE_TRANSPORT/prach_common.c
* \brief Common routines for NR UE/gNB PRACH physical channel V15.4 2019-03
* \author R. Knopp
* \date 2019
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#include "PHY/sse_intrin.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
#include "PHY/impl_defs_nr.h"
#include "PHY/defs_nr_UE.h"
#include "PHY/NR_TRANSPORT/nr_prach.h"
#include "PHY/NR_TRANSPORT/nr_transport_proto_common.h"
#include "common/utils/LOG/log.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
#include "T.h"
void init_nr_prach_tables(int N_ZC);
void dump_nr_prach_config(NR_DL_FRAME_PARMS *frame_parms,uint8_t subframe) {
FILE *fd;
fd = fopen("prach_config.txt","w");
fprintf(fd,"prach_config: subframe = %d\n",subframe);
fprintf(fd,"prach_config: N_RB_UL = %d\n",frame_parms->N_RB_UL);
fprintf(fd,"prach_config: frame_type = %s\n",(frame_parms->frame_type==1) ? "TDD":"FDD");
if (frame_parms->frame_type==TDD) {
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.referenceSCS = %d\n",frame_parms->p_tdd_UL_DL_Configuration->referenceSubcarrierSpacing);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.dl_UL_TransmissionPeriodicity = %d\n",frame_parms->p_tdd_UL_DL_Configuration->dl_UL_TransmissionPeriodicity);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.nrofDownlinkSlots = %d\n",frame_parms->p_tdd_UL_DL_Configuration->nrofDownlinkSlots);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.nrofDownlinkSymbols = %d\n",frame_parms->p_tdd_UL_DL_Configuration->nrofDownlinkSymbols);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.nrofUownlinkSlots = %d\n",frame_parms->p_tdd_UL_DL_Configuration->nrofDownlinkSlots);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.nrofUownlinkSymbols = %d\n",frame_parms->p_tdd_UL_DL_Configuration->nrofDownlinkSymbols);
if (frame_parms->p_tdd_UL_DL_Configuration->p_next) {
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.referenceSCS2 = %d\n",frame_parms->p_tdd_UL_DL_Configuration->p_next->referenceSubcarrierSpacing);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.dl_UL_TransmissionPeriodicity2 = %d\n",frame_parms->p_tdd_UL_DL_Configuration->p_next->dl_UL_TransmissionPeriodicity);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.nrofDownlinkSlots2 = %d\n",frame_parms->p_tdd_UL_DL_Configuration->p_next->nrofDownlinkSlots);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.nrofDownlinkSymbols2 = %d\n",frame_parms->p_tdd_UL_DL_Configuration->p_next->nrofDownlinkSymbols);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.nrofUownlinkSlots2 = %d\n",frame_parms->p_tdd_UL_DL_Configuration->p_next->nrofDownlinkSlots);
fprintf(fd,"prach_config: p_tdd_UL_DL_Configuration.nrofUownlinkSymbols2 = %d\n",frame_parms->p_tdd_UL_DL_Configuration->p_next->nrofDownlinkSymbols);
}
}
fprintf(fd,"prach_config: rootSequenceIndex = %d\n",frame_parms->prach_config_common.rootSequenceIndex);
fprintf(fd,"prach_config: prach_ConfigIndex = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex);
fprintf(fd,"prach_config: Ncs_config = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig);
fprintf(fd,"prach_config: highSpeedFlag = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.highSpeedFlag);
fprintf(fd,"prach_config: n_ra_prboffset = %d\n",frame_parms->prach_config_common.prach_ConfigInfo.msg1_frequencystart);
fclose(fd);
}
// This function computes the du
void nr_fill_du(uint8_t prach_fmt)
{
uint16_t iu,u,p;
uint16_t N_ZC;
uint16_t *prach_root_sequence_map;
if (prach_fmt<4) {
N_ZC = 839;
prach_root_sequence_map = prach_root_sequence_map_0_3;
} else {
N_ZC = 139;
prach_root_sequence_map = prach_root_sequence_map_abc;
}
for (iu=0; iu<(N_ZC-1); iu++) {
u=prach_root_sequence_map[iu];
p=1;
while (((u*p)%N_ZC)!=1)
p++;
nr_du[u] = ((p<(N_ZC>>1)) ? p : (N_ZC-p));
}
}
int is_nr_prach_subframe(NR_DL_FRAME_PARMS *frame_parms,uint32_t frame, uint8_t subframe) {
uint8_t prach_ConfigIndex = frame_parms->prach_config_common.prach_ConfigInfo.prach_ConfigIndex;
/*
// For FR1 paired
if (((frame%table_6_3_3_2_2_prachConfig_Index[prach_ConfigIndex][2]) == table_6_3_3_2_2_prachConfig_Index[prach_ConfigIndex][3]) &&
((table_6_3_3_2_2_prachConfig_Index[prach_ConfigIndex][4]&(1<<subframe)) == 1)) {
// using table 6.3.3.2-2: Random access configurations for FR1 and paired spectrum/supplementary uplink
return(1);
} else {
return(0);
}
*/
// For FR1 unpaired
if (((frame%table_6_3_3_2_3_prachConfig_Index[prach_ConfigIndex][2]) == table_6_3_3_2_3_prachConfig_Index[prach_ConfigIndex][3]) &&
((table_6_3_3_2_3_prachConfig_Index[prach_ConfigIndex][4]&(1<<subframe)) == 1)) {
// using table 6.3.3.2-2: Random access configurations for FR1 and unpaired
return(1);
} else {
return(0);
}
/*
// For FR2: FIXME
if ((((frame%table_6_3_3_2_4_prachConfig_Index[prach_ConfigIndex][2]) == table_6_3_3_2_4_prachConfig_Index[prach_ConfigIndex][3]) ||
((frame%table_6_3_3_2_4_prachConfig_Index[prach_ConfigIndex][2]) == table_6_3_3_2_4_prachConfig_Index[prach_ConfigIndex][4]))
&&
((table_6_3_3_2_4_prachConfig_Index[prach_ConfigIndex][5]&(1<<subframe)) == 1)) {
// using table 6.3.3.2-2: Random access configurations for FR1 and unpaired
return(1);
} else {
return(0);
}
*/
}
int do_prach_rx(NR_DL_FRAME_PARMS *fp,int frame,int slot) {
int subframe = slot / fp->slots_per_subframe;
// when were in the last slot of the subframe and this is a PRACH subframe ,return 1
if (((slot%fp->slots_per_subframe) == fp->slots_per_subframe-1)&&
(is_nr_prach_subframe(fp,frame,subframe))) return (1);
else return(0);
}
uint16_t get_nr_prach_fmt(int prach_ConfigIndex,lte_frame_type_t frame_type, nr_frequency_range_e fr)
{
if (frame_type==FDD) return (table_6_3_3_2_2_prachConfig_Index[prach_ConfigIndex][0]); // if using table 6.3.3.2-2: Random access configurations for FR1 and paired spectrum/supplementary uplink
else if (fr==nr_FR1) return (table_6_3_3_2_3_prachConfig_Index[prach_ConfigIndex][0]); // if using table 6.3.3.2-3: Random access configurations for FR1 and unpaired spectrum
else AssertFatal(1==0,"FR2 prach configuration not supported yet\n");
// For FR2 not implemented. FIXME
}
void compute_nr_prach_seq(uint16_t rootSequenceIndex,
uint8_t prach_ConfigIndex,
uint8_t zeroCorrelationZoneConfig,
uint8_t highSpeedFlag,
lte_frame_type_t frame_type,
nr_frequency_range_e fr,
uint32_t X_u[64][839])
{
// Compute DFT of x_u => X_u[k] = x_u(inv(u)*k)^* X_u[k] = exp(j\pi u*inv(u)*k*(inv(u)*k+1)/N_ZC)
unsigned int k,inv_u,i,NCS=0,num_preambles;
int N_ZC;
uint8_t prach_fmt = get_nr_prach_fmt(prach_ConfigIndex,frame_type,fr);
uint16_t *prach_root_sequence_map;
uint16_t u, preamble_offset;
uint16_t n_shift_ra,n_shift_ra_bar, d_start,numshift;
uint8_t not_found;
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_UE_COMPUTE_PRACH, VCD_FUNCTION_IN);
#ifdef NR_PRACH_DEBUG
LOG_I(PHY,"compute_prach_seq: NCS_config %d, prach_fmt %x\n",zeroCorrelationZoneConfig, prach_fmt);
#endif
N_ZC = (prach_fmt < 4) ? 839 : 139;
//init_prach_tables(N_ZC); //moved to phy_init_lte_ue/eNB, since it takes to long in real-time
init_nr_prach_tables(N_ZC);
if (prach_fmt < 4) {
prach_root_sequence_map = prach_root_sequence_map_0_3;
} else {
// FIXME cannot be reached
prach_root_sequence_map = prach_root_sequence_map_abc;
}
#ifdef PRACH_DEBUG
LOG_I( PHY, "compute_prach_seq: done init prach_tables\n" );
#endif
int restricted_Type = 0; //this is hardcoded ('0' for restricted_TypeA; and '1' for restricted_TypeB). FIXME
if (highSpeedFlag== 0) {
#ifdef PRACH_DEBUG
LOG_I(PHY,"Low speed prach : NCS_config %d\n",zeroCorrelationZoneConfig);
#endif
AssertFatal(zeroCorrelationZoneConfig<=15,
"FATAL, Illegal Ncs_config for unrestricted format %"PRIu8"\n", zeroCorrelationZoneConfig );
if (prach_fmt<3) NCS = NCS_unrestricted_delta_f_RA_125[zeroCorrelationZoneConfig];
if (prach_fmt==3) NCS = NCS_unrestricted_delta_f_RA_5[zeroCorrelationZoneConfig];
if (prach_fmt>3) NCS = NCS_unrestricted_delta_f_RA_15[zeroCorrelationZoneConfig];
num_preambles = (NCS==0) ? 64 : ((64*NCS)/N_ZC);
if (NCS>0) num_preambles++;
preamble_offset = 0;
} else {
#ifdef PRACH_DEBUG
LOG_I( PHY, "high speed prach : NCS_config %"PRIu8"\n", zeroCorrelationZoneConfig );
#endif
AssertFatal(zeroCorrelationZoneConfig<=14,
"FATAL, Illegal Ncs_config for restricted format %"PRIu8"\n", zeroCorrelationZoneConfig );
if (prach_fmt<3){
if (restricted_Type == 0) NCS = NCS_restricted_TypeA_delta_f_RA_125[zeroCorrelationZoneConfig]; // for TypeA, this is hardcoded. FIXME
if (restricted_Type == 1) NCS = NCS_restricted_TypeB_delta_f_RA_125[zeroCorrelationZoneConfig]; // for TypeB, this is hardcoded. FIXME
}
if (prach_fmt==3){
if (restricted_Type == 0) NCS = NCS_restricted_TypeA_delta_f_RA_5[zeroCorrelationZoneConfig]; // for TypeA, this is hardcoded. FIXME
if (restricted_Type == 1) NCS = NCS_restricted_TypeB_delta_f_RA_5[zeroCorrelationZoneConfig]; // for TypeB, this is hardcoded. FIXME
}
if (prach_fmt>3){
}
nr_fill_du(prach_fmt);
num_preambles = 64; // compute ZC sequence for 64 possible roots
// find first non-zero shift root (stored in preamble_offset)
not_found = 1;
preamble_offset = 0;
while (not_found == 1) {
// current root depending on rootSequenceIndex
int index = (rootSequenceIndex + preamble_offset) % N_ZC;
if (prach_fmt<4) {
// prach_root_sequence_map points to prach_root_sequence_map0_3
DevAssert( index < sizeof(prach_root_sequence_map_0_3) / sizeof(prach_root_sequence_map_0_3[0]) );
} else {
// prach_root_sequence_map points to prach_root_sequence_map4
DevAssert( index < sizeof(prach_root_sequence_map_abc) / sizeof(prach_root_sequence_map_abc[0]) );
}
u = prach_root_sequence_map[index];
uint16_t n_group_ra = 0;
if ( (nr_du[u]<(N_ZC/3)) && (nr_du[u]>=NCS) ) {
n_shift_ra = nr_du[u]/NCS;
d_start = (nr_du[u]<<1) + (n_shift_ra * NCS);
n_group_ra = N_ZC/d_start;
n_shift_ra_bar = max(0,(N_ZC-(nr_du[u]<<1)-(n_group_ra*d_start))/N_ZC);
} else if ( (nr_du[u]>=(N_ZC/3)) && (nr_du[u]<=((N_ZC - NCS)>>1)) ) {
n_shift_ra = (N_ZC - (nr_du[u]<<1))/NCS;
d_start = N_ZC - (nr_du[u]<<1) + (n_shift_ra * NCS);
n_group_ra = nr_du[u]/d_start;
n_shift_ra_bar = min(n_shift_ra,max(0,(nr_du[u]- (n_group_ra*d_start))/NCS));
} else {
n_shift_ra = 0;
n_shift_ra_bar = 0;
}
// This is the number of cyclic shifts for the current root u
numshift = (n_shift_ra*n_group_ra) + n_shift_ra_bar;
// skip to next root and recompute parameters if numshift==0
if (numshift>0)
not_found = 0;
else
preamble_offset++;
}
}
#ifdef PRACH_DEBUG
if (NCS>0)
LOG_I( PHY, "Initializing %u preambles for PRACH (NCS_config %"PRIu8", NCS %u, N_ZC/NCS %u)\n",
num_preambles, zeroCorrelationZoneConfig, NCS, N_ZC/NCS );
#endif
for (i=0; i<num_preambles; i++) {
int index = (rootSequenceIndex+i+preamble_offset) % N_ZC;
if (prach_fmt<4) {
// prach_root_sequence_map points to prach_root_sequence_map0_3
DevAssert( index < sizeof(prach_root_sequence_map_0_3) / sizeof(prach_root_sequence_map_0_3[0]) );
} else {
// prach_root_sequence_map points to prach_root_sequence_map4
DevAssert( index < sizeof(prach_root_sequence_map_abc) / sizeof(prach_root_sequence_map_abc[0]) );
}
u = prach_root_sequence_map[index];
inv_u = nr_ZC_inv[u]; // multiplicative inverse of u
// X_u[0] stores the first ZC sequence where the root u has a non-zero number of shifts
// for the unrestricted case X_u[0] is the first root indicated by the rootSequenceIndex
for (k=0; k<N_ZC; k++) {
// 420 is the multiplicative inverse of 2 (required since ru is exp[j 2\pi n])
X_u[i][k] = ((uint32_t*)nr_ru)[(((k*(1+(inv_u*k)))%N_ZC)*420)%N_ZC];
}
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_UE_COMPUTE_PRACH, VCD_FUNCTION_OUT);
}
void init_nr_prach_tables(int N_ZC)
{
int i,m;
// Compute the modular multiplicative inverse 'iu' of u s.t. iu*u = 1 mod N_ZC
nr_ZC_inv[0] = 0;
nr_ZC_inv[1] = 1;
for (i=2; i<N_ZC; i++) {
for (m=2; m<N_ZC; m++)
if (((i*m)%N_ZC) == 1) {
nr_ZC_inv[i] = m;
break;
}
#ifdef PRACH_DEBUG
if (i<16)
printf("i %d : inv %d\n",i,nr_ZC_inv[i]);
#endif
}
// Compute quantized roots of unity
for (i=0; i<N_ZC; i++) {
nr_ru[i<<1] = (int16_t)(floor(32767.0*cos(2*M_PI*(double)i/N_ZC)));
nr_ru[1+(i<<1)] = (int16_t)(floor(32767.0*sin(2*M_PI*(double)i/N_ZC)));
#ifdef PRACH_DEBUG
if (i<16)
printf("i %d : runity %d,%d\n",i,nr_ru[i<<1],nr_ru[1+(i<<1)]);
#endif
}
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file PHY/NR_UE_TRANSPORT/transport_proto_ue.h
* \brief Function prototypes for PHY physical/transport channel processing and generation V8.6 2009-03
* \author R. Knopp, F. Kaltenberger
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#ifndef __NR_TRANSPORT_PROTO_UE__H__
#define __NR_TRANSPORT_PROTO_UE__H__
#include "PHY/defs_nr_UE.h"
#include "SCHED_NR_UE/defs.h"
//#include "PHY/LTE_TRANSPORT/transport_common_proto.h"
#include <math.h>
#include "nfapi_interface.h"
// Functions below implement 36-211 and 36-212
/** @addtogroup _PHY_TRANSPORT_
* @{
*/
/** \fn free_ue_dlsch(NR_UE_DLSCH_t *dlsch)
\brief This function frees memory allocated for a particular DLSCH at UE
@param dlsch Pointer to DLSCH to be removed
*/
void free_nr_ue_dlsch(NR_UE_DLSCH_t *dlsch);
/** \fn new_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t abstraction_flag)
\brief This function allocates structures for a particular DLSCH at UE
@returns Pointer to DLSCH to be removed
@param Kmimo Kmimo factor from 36-212/36-213
@param Mdlharq Maximum number of HARQ rounds (36-212/36-213)
@param Nsoft Soft-LLR buffer size from UE-Category
@params N_RB_DL total number of resource blocks (determine the operating BW)
@param abstraction_flag Flag to indicate abstracted interface
*/
NR_UE_DLSCH_t *new_nr_ue_dlsch(uint8_t Kmimo,uint8_t Mdlharq,uint32_t Nsoft,uint8_t max_turbo_iterations,uint8_t N_RB_DL, uint8_t abstraction_flag);
void free_nr_ue_ulsch(NR_UE_ULSCH_t *ulsch);
NR_UE_ULSCH_t *new_nr_ue_ulsch(unsigned char N_RB_UL, int number_of_harq_pids, uint8_t abstraction_flag);
void fill_UE_dlsch_MCH(PHY_VARS_NR_UE *ue,int mcs,int ndi,int rvidx,int eNB_id);
int rx_pmch(PHY_VARS_NR_UE *phy_vars_ue,
unsigned char eNB_id,
uint8_t subframe,
unsigned char symbol);
/** \brief Dump OCTAVE/MATLAB files for PMCH debugging
@param phy_vars_ue Pointer to UE variables
@param eNB_id index of eNB in ue variables
@param coded_bits_per_codeword G from 36.211
@param subframe Index of subframe
@returns 0 on success
*/
void dump_mch(PHY_VARS_NR_UE *phy_vars_ue,uint8_t eNB_id,uint16_t coded_bits_per_codeword,int subframe);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/QPSK reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qpsk_qpsk(int16_t *stream0_in,
int16_t *stream1_in,
int16_t *stream0_out,
int16_t *rho01,
int32_t length);
/** \brief This function perform LLR computation for dual-stream (QPSK/QPSK) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr128p pointer to pointer to symbol in dlsch_llr*/
int32_t nr_dlsch_qpsk_qpsk_llr(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int32_t **rho_i,
int16_t *dlsch_llr,
uint8_t symbol,
uint32_t len,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adj,
int16_t **llr128p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/16QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qpsk_qam16(int16_t *stream0_in,
int16_t *stream1_in,
short *ch_mag_i,
int16_t *stream0_out,
int16_t *rho01,
int32_t length);
/** \brief This function perform LLR computation for dual-stream (QPSK/16QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr128p pointer to pointer to symbol in dlsch_llr*/
int32_t nr_dlsch_qpsk_16qam_llr(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
int32_t **rho_i,
int16_t *dlsch_llr,
uint8_t symbol,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adj,
int16_t **llr128p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream QPSK/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qpsk_qam64(int16_t *stream0_in,
int16_t *stream1_in,
short *ch_mag_i,
int16_t *stream0_out,
int16_t *rho01,
int32_t length);
/** \brief This function perform LLR computation for dual-stream (QPSK/64QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr128p pointer to pointer to symbol in dlsch_llr*/
int32_t nr_dlsch_qpsk_64qam_llr(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
int32_t **rho_i,
int16_t *dlsch_llr,
uint8_t symbol,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint16_t pbch_pss_sss_adj,
int16_t **llr128p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/QPSK reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam16_qpsk(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (16QAM/QPSK) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int nr_dlsch_16qam_qpsk_llr(NR_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag, //|h_0|^2*(2/sqrt{10})
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/16QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam16_qam16(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (16QAM/16QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int nr_dlsch_16qam_16qam_llr(NR_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag, //|h_0|^2*(2/sqrt{10})
int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
uint32_t len,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 16QAM/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam16_qam64(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (16QAM/64QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int nr_dlsch_16qam_64qam_llr(NR_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag, //|h_0|^2*(2/sqrt{10})
int **dl_ch_mag_i, //|h_1|^2*(2/sqrt{10})
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam64_qpsk(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int nr_dlsch_64qam_qpsk_llr(NR_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag,
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam64_qam16(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/16QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam64_qam16_avx2(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (64QAM/16QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int nr_dlsch_64qam_16qam_llr(NR_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag,
int **dl_ch_mag_i,
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
short **llr16p);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam64_qam64(short *stream0_in,
short *stream1_in,
short *ch_mag,
short *ch_mag_i,
short *stream0_out,
short *rho01,
int length);
/** \brief This function computes the LLRs for ML (max-logsum approximation) dual-stream 64QAM/64QAM reception.
@param stream0_in Input from channel compensated (MR combined) stream 0
@param stream1_in Input from channel compensated (MR combined) stream 1
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param stream0_out Output from LLR unit for stream0
@param rho01 Cross-correlation between channels (MR combined)
@param length in complex channel outputs*/
void qam64_qam64_avx2(int32_t *stream0_in,
int32_t *stream1_in,
int32_t *ch_mag,
int32_t *ch_mag_i,
int16_t *stream0_out,
int32_t *rho01,
int length);
/** \brief This function perform LLR computation for dual-stream (64QAM/64QAM) transmission.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param ch_mag Input from scaled channel magnitude square of h0'*g0
@param ch_mag_i Input from scaled channel magnitude square of h0'*g1
@param rho_i Correlation between channel of signal and inteference
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag flag to indicate this is the first symbol of the dlsch
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr16p pointer to pointer to symbol in dlsch_llr*/
int nr_dlsch_64qam_64qam_llr(NR_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int **rxdataF_comp_i,
int **dl_ch_mag,
int **dl_ch_mag_i,
int **rho_i,
short *dlsch_llr,
unsigned char symbol,
uint32_t len,
unsigned char first_symbol_flag,
unsigned short nb_rb,
uint16_t pbch_pss_sss_adjust,
//short **llr16p,
uint32_t llr_offset);
/** \brief This function generates log-likelihood ratios (decoder input) for single-stream QPSK received waveforms.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dlsch_llr llr output
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adj Number of channel bits taken by PBCH/PSS/SSS
@param llr128p pointer to pointer to symbol in dlsch_llr
@param beamforming_mode beamforming mode
*/
int32_t nr_dlsch_qpsk_llr(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int16_t *dlsch_llr,
uint8_t symbol,
uint32_t len,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint8_t beamforming_mode);
/**
\brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dlsch_llr llr output
@param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation and weighted for mid-point in 16QAM constellation
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adjust Adjustment factor in RE for PBCH/PSS/SSS allocations
@param llr128p pointer to pointer to symbol in dlsch_llr
@param beamforming_mode beamforming mode
*/
int32_t nr_dlsch_qpsk_llr_SIC(NR_DL_FRAME_PARMS *frame_parms,
int **rxdataF_comp,
int32_t **sic_buffer,
int **rho_i,
short *dlsch_llr,
uint8_t num_pdcch_symbols,
uint16_t nb_rb,
uint8_t subframe,
uint16_t mod_order_0,
uint32_t rb_alloc);
void nr_dlsch_16qam_llr(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int16_t *dlsch_llr,
int32_t **dl_ch_mag,
uint8_t symbol,
uint32_t len,
uint8_t first_symbol_flag,
uint16_t nb_rb,
int16_t **llr32p,
uint8_t beamforming_mode);
/**
\brief This function generates log-likelihood ratios (decoder input) for single-stream 16QAM received waveforms
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dlsch_llr llr output
@param dl_ch_mag Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by first mid-point of 64-QAM constellation
@param dl_ch_magb Squared-magnitude of channel in each resource element position corresponding to allocation, weighted by second mid-point of 64-QAM constellation
@param symbol OFDM symbol index in sub-frame
@param first_symbol_flag
@param nb_rb number of RBs for this allocation
@param pbch_pss_sss_adjust PBCH/PSS/SSS RE adjustment (in REs)
@param beamforming_mode beamforming mode
*/
void nr_dlsch_16qam_llr_SIC (NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **sic_buffer, //Q15
int32_t **rho_i,
int16_t *dlsch_llr,
uint8_t num_pdcch_symbols,
int32_t **dl_ch_mag,
uint16_t nb_rb,
uint8_t subframe,
uint16_t mod_order_0,
uint32_t rb_alloc);
void dlsch_64qam_llr_SIC(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **sic_buffer, //Q15
int32_t **rho_i,
int16_t *dlsch_llr,
uint8_t num_pdcch_symbols,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint16_t nb_rb,
uint8_t subframe,
uint16_t mod_order_0,
uint32_t rb_alloc);
void nr_dlsch_64qam_llr(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int16_t *dlsch_llr,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint32_t len,
uint8_t first_symbol_flag,
uint16_t nb_rb,
uint32_t llr_offset,
uint8_t beamforming_mode);
/** \fn dlsch_siso(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
uint8_t l,
uint16_t nb_rb)
\brief This function does the first stage of llr computation for SISO, by just extracting the pilots, PBCH and primary/secondary synchronization sequences.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param l symbol in sub-frame
@param nb_rb Number of RBs in this allocation
*/
void dlsch_siso(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
uint8_t l,
uint16_t nb_rb);
/** \fn dlsch_alamouti(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb)
\brief This function does Alamouti combining on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param symbol Symbol in sub-frame
@param nb_rb Number of RBs in this allocation
*/
void dlsch_alamouti(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb);
/** \fn dlsch_antcyc(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb)
\brief This function does antenna selection (based on antenna cycling pattern) on RX and prepares LLR inputs by skipping pilots, PBCH and primary/secondary synchronization signals. Note that this is not LTE, it is just included for comparison purposes.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param symbol Symbol in sub-frame
@param nb_rb Number of RBs in this allocation
*/
void dlsch_antcyc(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb);
/** \fn dlsch_detection_mrc(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int32_t **rho,
int32_t **rho_i,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
uint8_t symbol,
uint16_t nb_rb,
uint8_t dual_stream_UE)
\brief This function does maximal-ratio combining for dual-antenna receivers.
@param frame_parms Frame descriptor structure
@param rxdataF_comp Compensated channel output
@param rxdataF_comp_i Compensated channel output for interference
@param rho Cross correlation between spatial channels
@param rho_i Cross correlation between signal and inteference channels
@param dl_ch_mag First squared-magnitude of channel (16QAM and 64QAM) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param dl_ch_magb Second squared-magnitude of channel (64QAM only) for LLR computation. Alamouti combining should be performed on this as well. Result is stored in first antenna position
@param symbol Symbol in sub-frame
@param nb_rb Number of RBs in this allocation
@param dual_stream_UE Flag to indicate dual-stream detection
*/
void dlsch_detection_mrc(NR_DL_FRAME_PARMS *frame_parms,
int32_t **rxdataF_comp,
int32_t **rxdataF_comp_i,
int32_t **rho,
int32_t **rho_i,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
int32_t **dl_ch_mag_i,
int32_t **dl_ch_magb_i,
uint8_t symbol,
uint16_t nb_rb,
uint8_t dual_stream_UE);
void dlsch_detection_mrc_TM34(NR_DL_FRAME_PARMS *frame_parms,
NR_UE_PDSCH *lte_ue_pdsch_vars,
int harq_pid,
int round,
unsigned char symbol,
unsigned short nb_rb,
unsigned char dual_stream_UE);
/** \fn dlsch_extract_rbs_single(int32_t **rxdataF,
int32_t **dl_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
uint16_t pmi,
uint8_t *pmi_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
NR_DL_FRAME_PARMS *frame_parms)
\brief This function extracts the received resource blocks, both channel estimates and data symbols,
for the current allocation and for single antenna eNB transmission.
@param rxdataF Raw FFT output of received signal
@param dl_ch_estimates Channel estimates of current slot
@param rxdataF_ext FFT output for RBs in this allocation
@param dl_ch_estimates_ext Channel estimates for RBs in this allocation
@param pmi subband Precoding matrix indicator
@param pmi_ext Extracted PMI for chosen RBs
@param rb_alloc RB allocation vector
@param symbol Symbol to extract
@param subframe Subframe number
@param vrb_type Flag to indicate distributed VRB type
@param high_speed_flag
@param frame_parms Pointer to frame descriptor
*/
/*uint16_t nr_dlsch_extract_rbs_single(int32_t **rxdataF,
int32_t **dl_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
uint16_t pmi,
uint8_t *pmi_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
uint32_t high_speed_flag,
NR_DL_FRAME_PARMS *frame_parms);*/
unsigned short nr_dlsch_extract_rbs_single(int **rxdataF,
int **dl_ch_estimates,
int **rxdataF_ext,
int **dl_ch_estimates_ext,
unsigned short pmi,
unsigned char *pmi_ext,
unsigned char symbol,
uint8_t pilots,
unsigned short start_rb,
unsigned short nb_pdsch_rb,
unsigned char nr_tti_rx,
uint32_t high_speed_flag,
NR_DL_FRAME_PARMS *frame_parms);
/** \fn dlsch_extract_rbs_dual(int32_t **rxdataF,
int32_t **dl_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
uint16_t pmi,
uint8_t *pmi_ext,
uint32_t *rb_alloc,
uint8_t symbol,
NR_DL_FRAME_PARMS *frame_parms)
\brief This function extracts the received resource blocks, both channel estimates and data symbols,
for the current allocation and for dual antenna eNB transmission.
@param rxdataF Raw FFT output of received signal
@param dl_ch_estimates Channel estimates of current slot
@param rxdataF_ext FFT output for RBs in this allocation
@param dl_ch_estimates_ext Channel estimates for RBs in this allocation
@param pmi subband Precoding matrix indicator
@param pmi_ext Extracted PMI for chosen RBs
@param rb_alloc RB allocation vector
@param symbol Symbol to extract
@param subframe Subframe index
@param high_speed_flag
@param frame_parms Pointer to frame descriptor
*/
unsigned short nr_dlsch_extract_rbs_dual(int **rxdataF,
int **dl_ch_estimates,
int **rxdataF_ext,
int **dl_ch_estimates_ext,
unsigned short pmi,
unsigned char *pmi_ext,
unsigned char symbol,
uint8_t pilots,
unsigned short start_rb,
unsigned short nb_rb_pdsch,
unsigned char nr_tti_rx,
uint32_t high_speed_flag,
NR_DL_FRAME_PARMS *frame_parms,
MIMO_mode_t mimo_mode);
/** \fn dlsch_extract_rbs_TM7(int32_t **rxdataF,
int32_t **dl_bf_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_bf_ch_estimates_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
uint32_t high_speed_flag,
NR_DL_FRAME_PARMS *frame_parms)
\brief This function extracts the received resource blocks, both channel estimates and data symbols,
for the current allocation and for single antenna eNB transmission.
@param rxdataF Raw FFT output of received signal
@param dl_bf_ch_estimates Beamforming channel estimates of current slot
@param rxdataF_ext FFT output for RBs in this allocation
@param dl_bf_ch_estimates_ext Beamforming channel estimates for RBs in this allocation
@param rb_alloc RB allocation vector
@param symbol Symbol to extract
@param subframe Subframe number
@param high_speed_flag
@param frame_parms Pointer to frame descriptor
*/
uint16_t dlsch_extract_rbs_TM7(int32_t **rxdataF,
int32_t **dl_bf_ch_estimates,
int32_t **rxdataF_ext,
int32_t **dl_bf_ch_estimates_ext,
uint32_t *rb_alloc,
uint8_t symbol,
uint8_t subframe,
uint32_t high_speed_flag,
NR_DL_FRAME_PARMS *frame_parms);
/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation. In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
@param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
@param dl_ch_estimates_ext Frequency-domain channel estimates in RBs to be demodulated
@param dl_ch_mag First Channel magnitudes (16QAM/64QAM)
@param dl_ch_magb Second weighted Channel magnitudes (64QAM)
@param rxdataF_comp Compensated received waveform
@param rho Cross-correlation between two spatial channels on each RX antenna
@param frame_parms Pointer to frame descriptor
@param symbol Symbol on which to operate
@param first_symbol_flag set to 1 on first DLSCH symbol
@param mod_order Modulation order of allocation
@param nb_rb Number of RBs in allocation
@param output_shift Rescaling for compensated output (should be energy-normalizing)
@param phy_measurements Pointer to UE PHY measurements
*/
void nr_dlsch_channel_compensation(int32_t **rxdataF_ext,
int32_t **dl_ch_estimates_ext,
int32_t **dl_ch_mag,
int32_t **dl_ch_magb,
int32_t **rxdataF_comp,
int32_t **rho,
NR_DL_FRAME_PARMS *frame_parms,
uint8_t symbol,
uint8_t start_symbol,
uint8_t first_symbol_flag,
uint8_t mod_order,
uint16_t nb_rb,
uint8_t output_shift,
PHY_NR_MEASUREMENTS *phy_measurements);
void nr_dlsch_channel_compensation_core(int **rxdataF_ext,
int **dl_ch_estimates_ext,
int **dl_ch_mag,
int **dl_ch_magb,
int **rxdataF_comp,
int **rho,
unsigned char n_tx,
unsigned char n_rx,
unsigned char mod_order,
unsigned char output_shift,
int length,
int start_point);
void nr_dlsch_deinterleaving(uint8_t symbol,
uint8_t start_symbol,
uint16_t L,
uint16_t *llr,
uint16_t *llr_deint,
uint16_t nb_rb_pdsch);
void dlsch_dual_stream_correlation(NR_DL_FRAME_PARMS *frame_parms,
unsigned char symbol,
unsigned short nb_rb,
int **dl_ch_estimates_ext,
int **dl_ch_estimates_ext_i,
int **dl_ch_rho_ext,
unsigned char output_shift);
void dlsch_dual_stream_correlationTM34(NR_DL_FRAME_PARMS *frame_parms,
unsigned char symbol,
unsigned short nb_rb,
int **dl_ch_estimates_ext,
int **dl_ch_estimates_ext_i,
int **dl_ch_rho_ext,
unsigned char output_shift0,
unsigned char output_shift1);
//This function is used to compute multiplications in Hhermitian * H matrix
void conjch0_mult_ch1(int *ch0,
int *ch1,
int32_t *ch0conj_ch1,
unsigned short nb_rb,
unsigned char output_shift0);
void construct_HhH_elements(int *ch0conj_ch0,
int *ch1conj_ch1,
int *ch2conj_ch2,
int *ch3conj_ch3,
int *ch0conj_ch1,
int *ch1conj_ch0,
int *ch2conj_ch3,
int *ch3conj_ch2,
int32_t *after_mf_00,
int32_t *after_mf_01,
int32_t *after_mf_10,
int32_t *after_mf_11,
unsigned short nb_rb);
void squared_matrix_element(int32_t *Hh_h_00,
int32_t *Hh_h_00_sq,
unsigned short nb_rb);
void dlsch_channel_level_TM34_meas(int *ch00,
int *ch01,
int *ch10,
int *ch11,
int *avg_0,
int *avg_1,
unsigned short nb_rb);
void nr_dlsch_channel_level_median(int **dl_ch_estimates_ext,
int32_t *median,
int n_tx,
int n_rx,
int length,
int start_point);
void nr_dlsch_detection_mrc_core(int **rxdataF_comp,
int **rxdataF_comp_i,
int **rho,
int **rho_i,
int **dl_ch_mag,
int **dl_ch_magb,
int **dl_ch_mag_i,
int **dl_ch_magb_i,
unsigned char n_tx,
unsigned char n_rx,
int length,
int start_point);
void det_HhH(int32_t *after_mf_00,
int32_t *after_mf_01,
int32_t *after_mf_10,
int32_t *after_mf_11,
int32_t *det_fin_128,
unsigned short nb_rb);
void numer(int32_t *Hh_h_00_sq,
int32_t *Hh_h_01_sq,
int32_t *Hh_h_10_sq,
int32_t *Hh_h_11_sq,
int32_t *num_fin,
unsigned short nb_rb);
uint8_t rank_estimation_tm3_tm4(int *dl_ch_estimates_00,
int *dl_ch_estimates_01,
int *dl_ch_estimates_10,
int *dl_ch_estimates_11,
unsigned short nb_rb);
void dlsch_channel_compensation_TM56(int **rxdataF_ext,
int **dl_ch_estimates_ext,
int **dl_ch_mag,
int **dl_ch_magb,
int **rxdataF_comp,
unsigned char *pmi_ext,
NR_DL_FRAME_PARMS *frame_parms,
PHY_NR_MEASUREMENTS *phy_measurements,
int eNB_id,
unsigned char symbol,
unsigned char mod_order,
unsigned short nb_rb,
unsigned char output_shift,
unsigned char dl_power_off);
void dlsch_channel_compensation_TM34(NR_DL_FRAME_PARMS *frame_parms,
NR_UE_PDSCH *lte_ue_pdsch_vars,
PHY_NR_MEASUREMENTS *phy_measurements,
int eNB_id,
unsigned char symbol,
unsigned char mod_order0,
unsigned char mod_order1,
int harq_pid,
int round,
MIMO_mode_t mimo_mode,
unsigned short nb_rb,
unsigned char output_shift0,
unsigned char output_shift1);
/** \brief This function computes the average channel level over all allocated RBs and antennas (TX/RX) in order to compute output shift for compensated signal
@param dl_ch_estimates_ext Channel estimates in allocated RBs
@param frame_parms Pointer to frame descriptor
@param avg Pointer to average signal strength
@param pilots_flag Flag to indicate pilots in symbol
@param nb_rb Number of allocated RBs
*/
void nr_dlsch_channel_level(int **dl_ch_estimates_ext,
NR_DL_FRAME_PARMS *frame_parms,
int32_t *avg,
uint8_t symbol,
uint32_t len,
unsigned short nb_rb);
void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
NR_DL_FRAME_PARMS *frame_parms,
unsigned char *pmi_ext,
int *avg_0,
int *avg_1,
uint8_t symbol,
unsigned short nb_rb,
MIMO_mode_t mimo_mode);
void dlsch_channel_level_TM56(int32_t **dl_ch_estimates_ext,
NR_DL_FRAME_PARMS *frame_parms,
unsigned char *pmi_ext,
int32_t *avg,
uint8_t symbol_mod,
uint16_t nb_rb);
void dlsch_channel_level_TM7(int32_t **dl_bf_ch_estimates_ext,
NR_DL_FRAME_PARMS *frame_parms,
int32_t *avg,
uint8_t pilots_flag,
uint16_t nb_rb);
void nr_dlsch_scale_channel(int32_t **dl_ch_estimates_ext,
NR_DL_FRAME_PARMS *frame_parms,
NR_UE_DLSCH_t **dlsch_ue,
uint8_t symbol,
uint8_t start_symbol,
uint16_t nb_rb);
/** \brief This is the top-level entry point for DLSCH decoding in UE. It should be replicated on several
threads (on multi-core machines) corresponding to different HARQ processes. The routine first
computes the segmentation information, followed by rate dematching and sub-block deinterleaving the of the
received LLRs computed by dlsch_demodulation for each transport block segment. It then calls the
turbo-decoding algorithm for each segment and stops after either after unsuccesful decoding of at least
one segment or correct decoding of all segments. Only the segment CRCs are check for the moment, the
overall CRC is ignored. Finally transport block reassembly is performed.
@param phy_vars_ue Pointer to ue variables
@param dlsch_llr Pointer to LLR values computed by dlsch_demodulation
@param lte_frame_parms Pointer to frame descriptor
@param dlsch Pointer to DLSCH descriptor
@param frame Frame number
@param subframe Subframe number
@param num_pdcch_symbols Number of PDCCH symbols
@param is_crnti indicates if PDSCH belongs to a CRNTI (necessary for parallelizing decoding threads)
@param llr8_flag If 1, indicate that the 8-bit turbo decoder should be used
@returns 0 on success, 1 on unsuccessful decoding
*/
uint32_t nr_dlsch_decoding(PHY_VARS_NR_UE *phy_vars_ue,
short *dlsch_llr,
NR_DL_FRAME_PARMS *frame_parms,
NR_UE_DLSCH_t *dlsch,
NR_DL_UE_HARQ_t *harq_process,
uint32_t frame,
uint16_t nb_symb_sch,
uint8_t nr_tti_rx,
uint8_t harq_pid,
uint8_t is_crnti,
uint8_t llr8_flag);
int nr_ulsch_encoding(NR_UE_ULSCH_t *ulsch,
NR_DL_FRAME_PARMS* frame_parms,
uint8_t harq_pid);
/*! \brief Perform PUSCH scrambling. TS 38.211 V15.4.0 subclause 6.3.1.1
@param[in] in Pointer to input bits
@param[in] size of input bits
@param[in] Nid cell id
@param[in] n_RNTI CRNTI
@param[out] out the scrambled bits
*/
void nr_pusch_codeword_scrambling(uint8_t *in,
uint16_t size,
uint32_t Nid,
uint32_t n_RNTI,
uint32_t* out);
uint32_t nr_dlsch_decoding_mthread(PHY_VARS_NR_UE *phy_vars_ue,
UE_nr_rxtx_proc_t *proc,
int eNB_id,
short *dlsch_llr,
NR_DL_FRAME_PARMS *frame_parms,
NR_UE_DLSCH_t *dlsch,
NR_DL_UE_HARQ_t *harq_process,
uint32_t frame,
uint16_t nb_symb_sch,
uint8_t nr_tti_rx,
uint8_t harq_pid,
uint8_t is_crnti,
uint8_t llr8_flag);
void *nr_dlsch_decoding_2thread0(void *arg);
void *nr_dlsch_decoding_2thread1(void *arg);
void nr_dlsch_unscrambling(int16_t* llr,
uint32_t size,
uint8_t q,
uint32_t Nid,
uint32_t n_RNTI);
uint32_t dlsch_decoding_emul(PHY_VARS_NR_UE *phy_vars_ue,
uint8_t subframe,
PDSCH_t dlsch_id,
uint8_t eNB_id);
/** \brief This function is the top-level entry point to PDSCH demodulation, after frequency-domain transformation and channel estimation. It performs
- RB extraction (signal and channel estimates)
- channel compensation (matched filtering)
- RE extraction (pilot, PBCH, synch. signals)
- antenna combining (MRC, Alamouti, cycling)
- LLR computation
This function supports TM1, 2, 3, 5, and 6.
@param PHY_VARS_NR_UE Pointer to PHY variables
@param type Type of PDSCH (SI_PDSCH,RA_PDSCH,PDSCH,PMCH)
@param eNB_id eNb index (Nid1) 0,1,2
@param eNB_id_i Interfering eNB index (Nid1) 0,1,2, or 3 in case of MU-MIMO IC receiver
@param subframe Subframe number
@param symbol Symbol on which to act (within sub-frame)
@param first_symbol_flag set to 1 on first DLSCH symbol
@param rx_type. rx_type=RX_IC_single_stream will enable interference cancellation of a second stream when decoding the first stream. In case of TM1, 2, 5, and this can cancel interference from a neighbouring cell given by eNB_id_i. In case of TM5, eNB_id_i should be set to n_connected_eNB to perform multi-user interference cancellation. In case of TM3, eNB_id_i should be set to eNB_id to perform co-channel interference cancellation; this option should be used together with an interference cancellation step [...]. In case of TM3, if rx_type=RX_IC_dual_stream, both streams will be decoded by applying the IC single stream receiver twice.
@param i_mod Modulation order of the interfering stream
*/
int32_t nr_rx_pdsch(PHY_VARS_NR_UE *phy_vars_ue,
PDSCH_t type,
uint8_t eNB_id,
uint8_t eNB_id_i,
uint32_t frame,
uint8_t subframe,
uint8_t symbol,
uint8_t first_symbol_flag,
RX_type_t rx_type,
uint8_t i_mod,
uint8_t harq_pid);
int32_t nr_rx_pdcch(PHY_VARS_NR_UE *ue,
uint32_t frame,
uint8_t nr_tti_rx,
uint8_t eNB_id,
MIMO_mode_t mimo_mode,
uint32_t high_speed_flag,
uint8_t is_secondary_ue,
int nb_coreset_active,
uint16_t symbol_mon,
NR_SEARCHSPACE_TYPE_t searchSpaceType);
/*! \brief Extract PSS and SSS resource elements
@param phy_vars_ue Pointer to UE variables
@param[out] pss_ext contain the PSS signals after the extraction
@param[out] sss_ext contain the SSS signals after the extraction
@returns 0 on success
*/
int pss_sss_extract(PHY_VARS_NR_UE *phy_vars_ue,
int32_t pss_ext[4][72],
int32_t sss_ext[4][72],
uint8_t subframe);
/*! \brief Extract only PSS resource elements
@param phy_vars_ue Pointer to UE variables
@param[out] pss_ext contain the PSS signals after the extraction
@returns 0 on success
*/
int pss_only_extract(PHY_VARS_NR_UE *phy_vars_ue,
int32_t pss_ext[4][72],
uint8_t subframe);
/*! \brief Extract only SSS resource elements
@param phy_vars_ue Pointer to UE variables
@param[out] sss_ext contain the SSS signals after the extraction
@returns 0 on success
*/
int sss_only_extract(PHY_VARS_NR_UE *phy_vars_ue,
int32_t sss_ext[4][72],
uint8_t subframe);
/*! \brief Performs detection of SSS to find cell ID and other framing parameters (FDD/TDD, normal/extended prefix)
@param phy_vars_ue Pointer to UE variables
@param tot_metric Pointer to variable containing maximum metric under framing hypothesis (to be compared to other hypotheses
@param flip_max Pointer to variable indicating if start of frame is in second have of RX buffer (i.e. PSS/SSS is flipped)
@param phase_max Pointer to variable (0 ... 6) containing rought phase offset between PSS and SSS (can be used for carrier
frequency adjustment. 0 means -pi/3, 6 means pi/3.
@returns 0 on success
*/
int rx_sss(PHY_VARS_NR_UE *phy_vars_ue,int32_t *tot_metric,uint8_t *flip_max,uint8_t *phase_max);
/*! \brief receiver for the PBCH
\returns number of tx antennas or -1 if error
*/
int nr_rx_pbch( PHY_VARS_NR_UE *ue,
UE_nr_rxtx_proc_t *proc,
NR_UE_PBCH *nr_ue_pbch_vars,
NR_DL_FRAME_PARMS *frame_parms,
uint8_t eNB_id,
uint8_t i_ssb,
MIMO_mode_t mimo_mode,
uint32_t high_speed_flag);
int nr_pbch_detection(UE_nr_rxtx_proc_t *proc,
PHY_VARS_NR_UE *ue,
int pbch_initial_symbol,
runmode_t mode);
uint16_t rx_pbch_emul(PHY_VARS_NR_UE *phy_vars_ue,
uint8_t eNB_id,
uint8_t pbch_phase);
/*! \brief PBCH unscrambling
This is similar to pbch_scrabling with the difference that inputs are signed s16s (llr values) and instead of flipping bits we change signs.
\param frame_parms Pointer to frame descriptor
\param llr Output of the demodulator
\param length Length of the sequence
\param frame_mod4 Frame number modulo 4*/
void pbch_unscrambling(NR_DL_FRAME_PARMS *frame_parms,
int8_t* llr,
uint32_t length,
uint8_t frame_mod4);
void generate_64qam_table(void);
void generate_16qam_table(void);
void generate_qpsk_table(void);
uint16_t extract_crc(uint8_t *dci,uint8_t DCI_LENGTH);
/*! \brief LLR from two streams. This function takes two streams (qpsk modulated) and calculates the LLR, considering one stream as interference.
\param stream0_in pointer to first stream0
\param stream1_in pointer to first stream1
\param stream0_out pointer to output stream
\param rho01 pointer to correlation matrix
\param length*/
void qpsk_qpsk_TM3456(short *stream0_in,
short *stream1_in,
short *stream0_out,
short *rho01,
int length
);
/** \brief Attempt decoding of a particular DCI with given length and format.
@param DCI_LENGTH length of DCI in bits
@param DCI_FMT Format of DCI
@param e e-sequence (soft bits)
@param decoded_output Output of Viterbi decoder
*/
void dci_decoding(uint8_t DCI_LENGTH,
uint8_t DCI_FMT,
int8_t *e,
uint8_t *decoded_output);
/** \brief Do 36.213 DCI decoding procedure by searching different RNTI options and aggregation levels. Currently does
not employ the complexity reducing procedure based on RNTI.
@param phy_vars_ue UE variables
@param dci_alloc Pointer to DCI_ALLOC_t array to store results for DLSCH/ULSCH programming
@param do_common If 1 perform search in common search-space else ue-specific search-space
@param eNB_id eNB Index on which to act
@param subframe Index of subframe
@returns bitmap of occupied CCE positions (i.e. those detected)
*/
uint16_t dci_decoding_procedure(PHY_VARS_NR_UE *phy_vars_ue,
DCI_ALLOC_t *dci_alloc,
int do_common,
int16_t eNB_id,
uint8_t subframe);
uint16_t dci_CRNTI_decoding_procedure(PHY_VARS_NR_UE *ue,
DCI_ALLOC_t *dci_alloc,
uint8_t DCIFormat,
uint8_t agregationLevel,
int16_t eNB_id,
uint8_t subframe);
uint16_t dci_decoding_procedure_emul(NR_UE_PDCCH **lte_ue_pdcch_vars,
uint8_t num_ue_spec_dci,
uint8_t num_common_dci,
DCI_ALLOC_t *dci_alloc_tx,
DCI_ALLOC_t *dci_alloc_rx,
int16_t eNB_id);
/** \brief Compute Q (modulation order) based on I_MCS PDSCH. Implements table 7.1.7.1-1 from 36.213.
@param I_MCS */
uint8_t get_Qm(uint8_t I_MCS);
/** \brief Compute Q (modulation order) based on I_MCS for PUSCH. Implements table 8.6.1-1 from 36.213.
@param I_MCS */
uint8_t get_Qm_ul(uint8_t I_MCS);
/** \brief Compute I_TBS (transport-block size) based on I_MCS for PDSCH. Implements table 7.1.7.1-1 from 36.213.
@param I_MCS */
uint8_t get_I_TBS(uint8_t I_MCS);
/** \brief Compute I_TBS (transport-block size) based on I_MCS for PUSCH. Implements table 8.6.1-1 from 36.213.
@param I_MCS */
unsigned char get_I_TBS_UL(unsigned char I_MCS);
/** \brief Compute Q (modulation order) based on downlink I_MCS. Implements table 7.1.7.1-1 from 36.213.
@param I_MCS
@param nb_rb
@return Transport block size */
uint32_t get_TBS_DL(uint8_t mcs, uint16_t nb_rb);
/** \brief Compute Q (modulation order) based on uplink I_MCS. Implements table 7.1.7.1-1 from 36.213.
@param I_MCS
@param nb_rb
@return Transport block size */
uint32_t get_TBS_UL(uint8_t mcs, uint16_t nb_rb);
/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
@param N_RB_DL number of PRB on DL
@param indicator for even/odd slot
@param vrb vrb index
@param Ngap Gap indicator
*/
uint32_t get_prb(int N_RB_DL,int odd_slot,int vrb,int Ngap);
/* \brief Return prb for a given vrb index
@param vrb_type VRB type (0=localized,1=distributed)
@param rb_alloc_dci rballoc field from DCI
*/
uint32_t get_rballoc(vrb_t vrb_type,uint16_t rb_alloc_dci);
/* \brief Return bit-map of resource allocation for a given DCI rballoc (RIV format) and vrb type
@returns Transmission mode (1-7)
*/
uint8_t get_transmission_mode(module_id_t Mod_id, uint8_t CC_id, rnti_t rnti);
/* \brief
@param ra_header Header of resource allocation (0,1) (See sections 7.1.6.1/7.1.6.2 of 36.213 Rel8.6)
@param rb_alloc Bitmap allocation from DCI (format 1,2)
@returns number of physical resource blocks
*/
uint32_t conv_nprb(uint8_t ra_header,uint32_t rb_alloc,int N_RB_DL);
int get_G(NR_DL_FRAME_PARMS *frame_parms,uint16_t nb_rb,uint32_t *rb_alloc,uint8_t mod_order,uint8_t Nl,uint8_t num_pdcch_symbols,int frame,uint8_t subframe, uint8_t beamforming_mode);
int adjust_G(NR_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe);
int adjust_G2(NR_DL_FRAME_PARMS *frame_parms,uint32_t *rb_alloc,uint8_t mod_order,uint8_t subframe,uint8_t symbol);
#ifndef modOrder
#define modOrder(I_MCS,I_TBS) ((I_MCS-I_TBS)*2+2) // Find modulation order from I_TBS and I_MCS
#endif
/** \fn uint8_t I_TBS2I_MCS(uint8_t I_TBS);
\brief This function maps I_tbs to I_mcs according to Table 7.1.7.1-1 in 3GPP TS 36.213 V8.6.0. Where there is two supported modulation orders for the same I_TBS then either high or low modulation is chosen by changing the equality of the two first comparisons in the if-else statement.
\param I_TBS Index of Transport Block Size
\return I_MCS given I_TBS
*/
uint8_t I_TBS2I_MCS(uint8_t I_TBS);
/** \fn uint8_t SE2I_TBS(float SE,
uint8_t N_PRB,
uint8_t symbPerRB);
\brief This function maps a requested throughput in number of bits to I_tbs. The throughput is calculated as a function of modulation order, RB allocation and number of symbols per RB. The mapping orginates in the "Transport block size table" (Table 7.1.7.2.1-1 in 3GPP TS 36.213 V8.6.0)
\param SE Spectral Efficiency (before casting to integer, multiply by 1024, remember to divide result by 1024!)
\param N_PRB Number of PhysicalResourceBlocks allocated \sa lte_frame_parms->N_RB_DL
\param symbPerRB Number of symbols per resource block allocated to this channel
\return I_TBS given an SE and an N_PRB
*/
uint8_t SE2I_TBS(float SE,
uint8_t N_PRB,
uint8_t symbPerRB);
/** \brief This function generates the sounding reference symbol (SRS) for the uplink according to 36.211 v8.6.0. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
@param frame_parms LTE DL Frame Parameters
@param soundingrs_ul_config_dedicated Dynamic configuration from RRC during Connection Establishment
@param txdataF pointer to the frequency domain TX signal
@returns 0 on success*/
int generate_srs(NR_DL_FRAME_PARMS *frame_parms,
SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
int *txdataF,
int16_t amp,
uint32_t subframe);
/*!
\brief This function is similar to generate_srs_tx but generates a conjugate sequence for channel estimation. If IFFT_FPGA is defined, the SRS is quantized to a QPSK sequence.
@param phy_vars_ue Pointer to PHY_VARS structure
@param eNB_id Index of destination eNB for this SRS
@param amp Linear amplitude of SRS
@param subframe Index of subframe on which to act
@returns 0 on success, -1 on error with message
*/
int32_t generate_srs_tx(PHY_VARS_NR_UE *phy_vars_ue,
uint8_t eNB_id,
int16_t amp,
uint32_t subframe);
/*!
\brief This function generates the downlink reference signal for the PUSCH according to 36.211 v8.6.0. The DRS occuies the RS defined by rb_alloc and the symbols 2 and 8 for extended CP and 3 and 10 for normal CP.
*/
int32_t generate_drs_pusch(PHY_VARS_NR_UE *phy_vars_ue,
UE_nr_rxtx_proc_t *proc,
uint8_t eNB_id,
int16_t amp,
uint32_t subframe,
uint32_t first_rb,
uint32_t nb_rb,
uint8_t ant);
/*!
\brief This function initializes the Group Hopping, Sequence Hopping and nPRS sequences for PUCCH/PUSCH according to 36.211 v8.6.0. It should be called after configuration of UE (reception of SIB2/3) and initial configuration of eNB (or after reconfiguration of cell-specific parameters).
@param frame_parms Pointer to a NR_DL_FRAME_PARMS structure (eNB or UE)*/
void init_ul_hopping(NR_DL_FRAME_PARMS *frame_parms);
/*!
\brief This function implements the initialization of paging parameters for UE (See Section 7, 36.304).It must be called after setting IMSImod1024 during UE startup and after receiving SIB2
@param ue Pointer to UE context
@param defaultPagingCycle T from 36.304 (0=32,1=64,2=128,3=256)
@param nB nB from 36.304 (0=4T,1=2T,2=T,3=T/2,4=T/4,5=T/8,6=T/16,7=T/32*/
int init_ue_paging_info(PHY_VARS_NR_UE *ue, long defaultPagingCycle, long nB);
int32_t compareints (const void * a, const void * b);
void ulsch_modulation(int32_t **txdataF,
int16_t amp,
frame_t frame,
uint32_t subframe,
NR_DL_FRAME_PARMS *frame_parms,
NR_UE_ULSCH_t *ulsch);
int generate_ue_dlsch_params_from_dci(int frame,
uint8_t subframe,
void *dci_pdu,
rnti_t rnti,
DCI_format_t dci_format,
NR_UE_PDCCH *pdcch_vars,
NR_UE_PDSCH *pdsch_vars,
NR_UE_DLSCH_t **dlsch,
NR_DL_FRAME_PARMS *frame_parms,
PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
uint16_t si_rnti,
uint16_t ra_rnti,
uint16_t p_rnti,
uint8_t beamforming_mode,
uint16_t tc_rnti);
int generate_ue_ulsch_params_from_dci(void *dci_pdu,
rnti_t rnti,
uint8_t subframe,
DCI_format_t dci_format,
PHY_VARS_NR_UE *phy_vars_ue,
UE_nr_rxtx_proc_t *proc,
uint16_t si_rnti,
uint16_t ra_rnti,
uint16_t p_rnti,
uint16_t cba_rnti,
uint8_t eNB_id,
uint8_t use_srs);
int32_t generate_ue_ulsch_params_from_rar(PHY_VARS_NR_UE *phy_vars_ue,
UE_nr_rxtx_proc_t *proc,
uint8_t eNB_id);
double sinr_eff_cqi_calc(PHY_VARS_NR_UE *phy_vars_ue,
uint8_t eNB_id,
uint8_t subframe);
uint8_t sinr2cqi(double sinr,uint8_t trans_mode);
int dump_dci(NR_DL_FRAME_PARMS *frame_parms, DCI_ALLOC_t *dci);
int dump_ue_stats(PHY_VARS_NR_UE *phy_vars_ue, UE_nr_rxtx_proc_t *proc, char* buffer, int length, runmode_t mode, int input_level_dBm);
void init_transport_channels(uint8_t);
void generate_RIV_tables(void);
/*!
\brief This function performs the initial cell search procedure - PSS detection, SSS detection and PBCH detection. At the
end, the basic frame parameters are known (Frame configuration - TDD/FDD and cyclic prefix length,
N_RB_DL, PHICH_CONFIG and Nid_cell) and the UE can begin decoding PDCCH and DLSCH SI to retrieve the rest. Once these
parameters are know, the routine calls some basic initialization routines (cell-specific reference signals, etc.)
@param phy_vars_ue Pointer to UE variables
@param mode current running mode
*/
int nr_initial_sync(UE_nr_rxtx_proc_t *proc,
PHY_VARS_NR_UE *phy_vars_ue, runmode_t mode);
/*!
\brief Encoding of PUSCH/ACK/RI/ACK from 36-212.
@param a Pointer to ulsch SDU
@param frame_parms Pointer to Frame parameters
@param ulsch Pointer to ulsch descriptor
@param harq_pid HARQ process ID
@param tmode Transmission mode (1-7)
@param control_only_flag Generate PUSCH with control information only
@param Nbundled Parameter for ACK/NAK bundling (36.213 Section 7.3)
*/
uint32_t ulsch_encoding(uint8_t *a,
PHY_VARS_NR_UE *phy_vars_ue,
uint8_t harq_pid,
uint8_t eNB_id,
uint8_t subframe_rx,
uint8_t tmode,
uint8_t control_only_flag,
uint8_t Nbundled);
void print_CQI(void *o,UCI_format_t uci_format,uint8_t eNB_id,int N_RB_DL);
void fill_CQI(NR_UE_ULSCH_t *ulsch,PHY_NR_MEASUREMENTS *meas,uint8_t eNB_id, uint8_t harq_pid,int N_RB_DL, rnti_t rnti, uint8_t trans_mode,double sinr_eff);
void reset_cba_uci(void *o);
/** \brief This routine computes the subband PMI bitmap based on measurements (0,1,2,3 for rank 0 and 0,1 for rank 1) in the format needed for UCI
@param meas pointer to measurements
@param eNB_id eNB_id
@param nb_subbands number of subbands
@returns subband PMI bitmap
*/
uint16_t quantize_subband_pmi(PHY_NR_MEASUREMENTS *meas,uint8_t eNB_id,int nb_subbands);
int32_t pmi_convert_rank1_from_rank2(uint16_t pmi_alloc, int tpmi, int nb_rb);
uint16_t quantize_subband_pmi2(PHY_NR_MEASUREMENTS *meas,uint8_t eNB_id,uint8_t a_id,int nb_subbands);
uint64_t cqi2hex(uint32_t cqi);
uint16_t computeRIV(uint16_t N_RB_DL,uint16_t RBstart,uint16_t Lcrbs);
/** \brief This routine extracts a single subband PMI from a bitmap coming from UCI or the pmi_extend function
@param N_RB_DL number of resource blocks
@param mimo_mode
@param pmi_alloc subband PMI bitmap
@param rb resource block for which to extract PMI
@returns subband PMI
*/
uint8_t get_pmi(uint8_t N_RB_DL,MIMO_mode_t mode, uint32_t pmi_alloc,uint16_t rb);
int get_nCCE_offset_l1(int *CCE_table,
const unsigned char L,
const int nCCE,
const int common_dci,
const unsigned short rnti,
const unsigned char subframe);
uint16_t get_nCCE(uint8_t num_pdcch_symbols,NR_DL_FRAME_PARMS *frame_parms,uint8_t mi);
uint16_t get_nquad(uint8_t num_pdcch_symbols,NR_DL_FRAME_PARMS *frame_parms,uint8_t mi);
uint8_t get_mi(NR_DL_FRAME_PARMS *frame,uint8_t subframe);
uint16_t get_nCCE_mac(uint8_t Mod_id,uint8_t CC_id,int num_pdcch_symbols,int subframe);
uint8_t get_num_pdcch_symbols(uint8_t num_dci,DCI_ALLOC_t *dci_alloc,NR_DL_FRAME_PARMS *frame_parms,uint8_t subframe);
void pdcch_interleaving(NR_DL_FRAME_PARMS *frame_parms,int32_t **z, int32_t **wbar,uint8_t n_symbols_pdcch,uint8_t mi);
void pdcch_unscrambling(NR_DL_FRAME_PARMS *frame_parms,
uint8_t subframe,
int8_t* llr,
uint32_t length);
void dlsch_unscrambling(NR_DL_FRAME_PARMS *frame_parms,
int mbsfn_flag,
NR_UE_DLSCH_t *dlsch,
int G,
int16_t* llr,
uint8_t q,
uint8_t Ns);
void init_ncs_cell(NR_DL_FRAME_PARMS *frame_parms,uint8_t ncs_cell[20][7]);
void generate_pucch1x(int32_t **txdataF,
NR_DL_FRAME_PARMS *frame_parms,
uint8_t ncs_cell[20][7],
PUCCH_FMT_t fmt,
PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
uint16_t n1_pucch,
uint8_t shortened_format,
uint8_t *payload,
int16_t amp,
uint8_t subframe);
void generate_pucch2x(int32_t **txdataF,
NR_DL_FRAME_PARMS *fp,
uint8_t ncs_cell[20][7],
PUCCH_FMT_t fmt,
PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
uint16_t n2_pucch,
uint8_t *payload,
int A,
int B2,
int16_t amp,
uint8_t subframe,
uint16_t rnti);
void generate_pucch3x(int32_t **txdataF,
NR_DL_FRAME_PARMS *frame_parms,
uint8_t ncs_cell[20][7],
PUCCH_FMT_t fmt,
PUCCH_CONFIG_DEDICATED *pucch_config_dedicated,
uint16_t n3_pucch,
uint8_t shortened_format,
uint8_t *payload,
int16_t amp,
uint8_t subframe,
uint16_t rnti);
void init_ulsch_power_LUT(void);
/*!
\brief Check for PRACH TXop in subframe
@param frame_parms Pointer to NR_DL_FRAME_PARMS
@param frame frame index to check
@param subframe subframe index to check
@returns 0 on success
*/
int is_prach_subframe(NR_DL_FRAME_PARMS *frame_parms,frame_t frame, uint8_t subframe);
/*!
\brief Generate PRACH waveform
@param phy_vars_ue Pointer to ue top-level descriptor
@param eNB_id Index of destination eNB
@param subframe subframe index to operate on
@param index of preamble (0-63)
@param Nf System frame number
@returns 0 on success
*/
int32_t generate_prach(PHY_VARS_NR_UE *phy_vars_ue,uint8_t eNB_id,uint8_t subframe,uint16_t Nf);
/*!
\brief Helper for MAC, returns number of available PRACH in TDD for a particular configuration index
@param frame_parms Pointer to NR_DL_FRAME_PARMS structure
@returns 0-5 depending on number of available prach
*/
uint8_t get_num_prach_tdd(module_id_t Mod_id);
/*!
\brief Return the PRACH format as a function of the Configuration Index and Frame type.
@param prach_ConfigIndex PRACH Configuration Index
@param frame_type 0-FDD, 1-TDD
@returns 0-1 accordingly
*/
uint8_t get_prach_fmt(uint8_t prach_ConfigIndex,lte_frame_type_t frame_type);
uint16_t get_nr_prach_fmt(int prach_ConfigIndex,lte_frame_type_t frame_type, nr_frequency_range_e fr);
/*!
\brief Helper for MAC, returns frequency index of PRACH resource in TDD for a particular configuration index
@param frame_parms Pointer to NR_DL_FRAME_PARMS structure
@returns 0-5 depending on number of available prach
*/
uint8_t get_fid_prach_tdd(module_id_t Mod_id,uint8_t tdd_map_index);
/*!
\brief Comp ute DFT of PRACH ZC sequences. Used for generation of prach in UE and reception of PRACH in eNB.
@param rootSequenceIndex PRACH root sequence
#param prach_ConfigIndex PRACH Configuration Index
@param zeroCorrelationZoneConfig PRACH ncs_config
@param highSpeedFlat PRACH High-Speed Flag
@param frame_type TDD/FDD flag
@param Xu DFT output
*/
void compute_prach_seq(uint16_t rootSequenceIndex,
uint8_t prach_ConfigIndex,
uint8_t zeroCorrelationZoneConfig,
uint8_t highSpeedFlag,
lte_frame_type_t frame_type,
uint32_t X_u[64][839]);
void init_prach_tables(int N_ZC);
void init_unscrambling_lut(void);
void init_scrambling_lut(void);
/*!
\brief Return the status of MBSFN in this frame/subframe
@param frame Frame index
@param subframe Subframe index
@param frame_parms Pointer to frame parameters
@returns 1 if subframe is for MBSFN
*/
int is_pmch_subframe(frame_t frame, int subframe, NR_DL_FRAME_PARMS *frame_parms);
uint8_t is_not_pilot(uint8_t pilots, uint8_t re, uint8_t nushift, uint8_t use2ndpilots);
uint8_t is_not_UEspecRS(int8_t lprime, uint8_t re, uint8_t nushift, uint8_t Ncp, uint8_t beamforming_mode);
uint32_t dlsch_decoding_abstraction(double *dlsch_MIPB,
NR_DL_FRAME_PARMS *lte_frame_parms,
NR_UE_DLSCH_t *dlsch,
uint8_t subframe,
uint8_t num_pdcch_symbols);
// DL power control functions
double get_pa_dB(uint8_t pa);
double computeRhoA_UE(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
NR_UE_DLSCH_t *dlsch_ue,
uint8_t dl_power_off,
uint8_t n_antenna_port);
double computeRhoB_UE(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
PDSCH_CONFIG_COMMON *pdsch_config_common,
uint8_t n_antenna_port,
NR_UE_DLSCH_t *dlsch_ue,
uint8_t dl_power_off);
/*void compute_sqrt_RhoAoRhoB(PDSCH_CONFIG_DEDICATED *pdsch_config_dedicated,
PDSCH_CONFIG_COMMON *pdsch_config_common,
uint8_t n_antenna_port,
NR_UE_DLSCH_t *dlsch_ue);
*/
uint8_t get_prach_prb_offset(NR_DL_FRAME_PARMS *frame_parms,
uint8_t prach_ConfigIndex,
uint8_t n_ra_prboffset,
uint8_t tdd_mapindex, uint16_t Nf);
void nr_pdcch_unscrambling(uint16_t crnti, NR_DL_FRAME_PARMS *frame_parms, uint8_t nr_tti_rx,
int16_t *z, uint32_t length, uint16_t pdcch_DMRS_scrambling_id, int do_common);
uint32_t lte_gold_generic(uint32_t *x1, uint32_t *x2, uint8_t reset);
int nr_rx_pdsch(PHY_VARS_NR_UE *ue,
PDSCH_t type,
unsigned char eNB_id,
unsigned char eNB_id_i, //if this == ue->n_connected_eNB, we assume MU interference
uint32_t frame,
uint8_t nr_tti_rx,
unsigned char symbol,
unsigned char first_symbol_flag,
RX_type_t rx_type,
unsigned char i_mod,
unsigned char harq_pid);
uint32_t nr_get_G(uint16_t nb_rb, uint16_t nb_symb_sch,uint8_t nb_re_dmrs,uint16_t length_dmrs, uint8_t Qm, uint8_t Nl) ;
uint32_t nr_dlsch_decoding(PHY_VARS_NR_UE *phy_vars_ue,
short *dlsch_llr,
NR_DL_FRAME_PARMS *frame_parms,
NR_UE_DLSCH_t *dlsch,
NR_DL_UE_HARQ_t *harq_process,
uint32_t frame,
uint16_t nb_symb_sch,
uint8_t nr_tti_rx,
uint8_t harq_pid,
uint8_t is_crnti,
uint8_t llr8_flag);
/**@}*/
#endif
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file nr_prach_procedures.c
* \brief Implementation of gNB prach procedures from 38.213 LTE specifications
* \author R. Knopp,
* \date 2019
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#include "PHY/defs_gNB.h"
#include "PHY/phy_extern.h"
#include "PHY/NR_TRANSPORT/nr_transport_proto.h"
#include "nfapi_nr_interface_scf.h"
#include "fapi_nr_l1.h"
#include "nfapi_pnf.h"
#include "common/utils/LOG/log.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
#include "assertions.h"
#include "msc.h"
#include <time.h>
#include "intertask_interface.h"
extern uint32_t nfapi_mode;
extern int oai_nfapi_nr_rach_ind(nfapi_rach_indication_t *rach_ind);
void L1_nr_prach_procedures(PHY_VARS_gNB *gNB,int frame,int subframe) {
uint16_t max_preamble[4],max_preamble_energy[4],max_preamble_delay[4];
uint16_t i;
gNB->UL_INFO.rach_ind.rach_indication_body.number_of_preambles=0;
RU_t *ru;
int aa=0;
int ru_aa;
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_PRACH_RX,1);
for (i=0;i<gNB->num_RU;i++) {
ru=gNB->RU_list[i];
for (ru_aa=0,aa=0;ru_aa<ru->nb_rx;ru_aa++,aa++) {
gNB->prach_vars.rxsigF[aa] = gNB->RU_list[i]->prach_rxsigF[ru_aa];
}
}
rx_nr_prach(gNB,
frame,
subframe,
&max_preamble[0],
&max_preamble_energy[0],
&max_preamble_delay[0]
);
LOG_D(PHY,"[RAPROC] Frame %d, subframe %d : Most likely preamble %d, energy %d dB delay %d (prach_energy counter %d)\n",
frame,subframe,
max_preamble[0],
max_preamble_energy[0]/10,
max_preamble_delay[0],
gNB->prach_energy_counter);
if ((gNB->prach_energy_counter == 100) &&
(max_preamble_energy[0] > gNB->measurements.prach_I0+100)) {
LOG_I(PHY,"[gNB %d][RAPROC] Frame %d, subframe %d Initiating RA procedure with preamble %d, energy %d.%d dB, delay %d\n",
gNB->Mod_id,
frame,
subframe,
max_preamble[0],
max_preamble_energy[0]/10,
max_preamble_energy[0]%10,
max_preamble_delay[0]);
T(T_ENB_PHY_INITIATE_RA_PROCEDURE, T_INT(gNB->Mod_id), T_INT(frame), T_INT(subframe),
T_INT(max_preamble[0]), T_INT(max_preamble_energy[0]), T_INT(max_preamble_delay[0]));
gNB->UL_INFO.rach_ind.rach_indication_body.number_of_preambles = 1;
gNB->UL_INFO.rach_ind.rach_indication_body.preamble_list = &gNB->preamble_list[0];
gNB->UL_INFO.rach_ind.rach_indication_body.tl.tag = NFAPI_RACH_INDICATION_BODY_TAG;
gNB->UL_INFO.rach_ind.header.message_id = NFAPI_RACH_INDICATION;
gNB->UL_INFO.rach_ind.sfn_sf = frame<<4 | subframe;
gNB->preamble_list[0].preamble_rel8.tl.tag = NFAPI_PREAMBLE_REL8_TAG;
gNB->preamble_list[0].preamble_rel8.timing_advance = max_preamble_delay[0];
gNB->preamble_list[0].preamble_rel8.preamble = max_preamble[0];
gNB->preamble_list[0].preamble_rel8.rnti = 1+subframe; // note: fid is implicitly 0 here
gNB->preamble_list[0].instance_length = 0; //don't know exactly what this is
if (nfapi_mode == 1) { // If NFAPI PNF then we need to send the message to the VNF
LOG_D(PHY,"Filling NFAPI indication for NR RACH : SFN_SF:%d TA %d, Preamble %d, rnti %x\n",
NFAPI_SFNSF2DEC(gNB->UL_INFO.rach_ind.sfn_sf),
gNB->preamble_list[0].preamble_rel8.timing_advance,
gNB->preamble_list[0].preamble_rel8.preamble,
gNB->preamble_list[0].preamble_rel8.rnti);
AssertFatal(1==0,"shouldn't be here yet..\n");
//oai_nfapi_nr_rach_ind(&gNB->UL_INFO.rach_ind);
gNB->UL_INFO.rach_ind.rach_indication_body.number_of_preambles = 0;
}
} // max_preamble_energy > prach_I0 + 100
else {
gNB->measurements.prach_I0 = ((gNB->measurements.prach_I0*900)>>10) + ((max_preamble_energy[0]*124)>>10);
if (frame==0) LOG_I(PHY,"prach_I0 = %d.%d dB\n",gNB->measurements.prach_I0/10,gNB->measurements.prach_I0%10);
if (gNB->prach_energy_counter < 100) gNB->prach_energy_counter++;
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_PRACH_RX,0);
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/***********************************************************************
*
* FILENAME : phy_frame_configuration_nr.c
*
* DESCRIPTION : functions related to FDD/TDD configuration for NR
* see TS 38.213 11.1 Slot configuration
* and TS 38.331 for RRC configuration
*
************************************************************************/
#include "SCHED_NR_UE/defs.h"
#include "PHY/defs_nr_UE.h"
#include "SCHED_NR_UE/phy_frame_config_nr.h"
#include "PHY/impl_defs_nr.h"
#include "PHY/impl_defs_top.h"
/*******************************************************************
*
* NAME : set_tdd_configuration
*
* PARAMETERS : pointer to frame configuration
*
* OUTPUT: table of uplink symbol for each slot for 2 frames
*
* RETURN : 0 if tdd has been properly configurated
* -1 tdd configuration can not be done
*
* DESCRIPTION : generate bit map for uplink symbol for each slot for several frames
* see TS 38.213 11.1 Slot configuration
*
*********************************************************************/
int set_tdd_config_nr( nfapi_nr_config_request_scf_t *cfg,
int mu,
int nrofDownlinkSlots, int nrofDownlinkSymbols,
int nrofUplinkSlots, int nrofUplinkSymbols) {
int slot_number = 0;
int nb_periods_per_frame;
int nb_slots_to_set = TDD_CONFIG_NB_FRAMES*(1<<mu)*NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
switch(cfg->tdd_table.tdd_period.value) {
case 0:
nb_periods_per_frame = 20; // 10ms/0p5ms
break;
case 1:
nb_periods_per_frame = 16; // 10ms/0p625ms
break;
case 2:
nb_periods_per_frame = 10; // 10ms/1ms
break;
case 3:
nb_periods_per_frame = 8; // 10ms/1p25ms
break;
case 4:
nb_periods_per_frame = 5; // 10ms/2ms
break;
case 5:
nb_periods_per_frame = 4; // 10ms/2p5ms
break;
case 6:
nb_periods_per_frame = 2; // 10ms/5ms
break;
case 7:
nb_periods_per_frame = 1; // 10ms/10ms
break;
default:
AssertFatal(1==0,"Undefined tdd period %d\n", cfg->tdd_table.tdd_period.value);
}
int nb_slots_per_period = ((1<<mu) * NR_NUMBER_OF_SUBFRAMES_PER_FRAME)/nb_periods_per_frame;
if ( (nrofDownlinkSymbols + nrofUplinkSymbols) == 0 )
AssertFatal(nb_slots_per_period == (nrofDownlinkSlots + nrofUplinkSlots),
"set_tdd_configuration_nr: given period is inconsistent with current tdd configuration, nrofDownlinkSlots %d, nrofUplinkSlots %d, nb_slots_per_period %d \n",
nrofDownlinkSlots,nrofUplinkSlots,nb_slots_per_period);
else {
AssertFatal(nrofDownlinkSymbols + nrofUplinkSymbols < 14,"illegal symbol configuration DL %d, UL %d\n",nrofDownlinkSymbols,nrofUplinkSymbols);
AssertFatal(nb_slots_per_period == (nrofDownlinkSlots + nrofUplinkSlots + 1),
"set_tdd_configuration_nr: given period is inconsistent with current tdd configuration, nrofDownlinkSlots %d, nrofUplinkSlots %d, nrofMixed slots 1, nb_slots_per_period %d \n",
nrofDownlinkSlots,nrofUplinkSlots,nb_slots_per_period);
}
cfg->tdd_table.max_tdd_periodicity_list = (nfapi_nr_max_tdd_periodicity_t *) malloc(nb_slots_to_set*sizeof(nfapi_nr_max_tdd_periodicity_t));
for(int memory_alloc =0 ; memory_alloc<nb_slots_to_set; memory_alloc++)
cfg->tdd_table.max_tdd_periodicity_list[memory_alloc].max_num_of_symbol_per_slot_list = (nfapi_nr_max_num_of_symbol_per_slot_t *) malloc(NR_NUMBER_OF_SYMBOLS_PER_SLOT*sizeof(
nfapi_nr_max_num_of_symbol_per_slot_t));
while(slot_number != nb_slots_to_set) {
if(nrofDownlinkSlots != 0) {
for (int number_of_symbol = 0; number_of_symbol < nrofDownlinkSlots*NR_NUMBER_OF_SYMBOLS_PER_SLOT; number_of_symbol++) {
cfg->tdd_table.max_tdd_periodicity_list[slot_number].max_num_of_symbol_per_slot_list[number_of_symbol%NR_NUMBER_OF_SYMBOLS_PER_SLOT].slot_config.value= 0;
if((number_of_symbol+1)%NR_NUMBER_OF_SYMBOLS_PER_SLOT == 0)
slot_number++;
}
}
if (nrofDownlinkSymbols != 0 || nrofUplinkSymbols != 0) {
for(int number_of_symbol =0; number_of_symbol < nrofDownlinkSymbols; number_of_symbol++) {
cfg->tdd_table.max_tdd_periodicity_list[slot_number].max_num_of_symbol_per_slot_list[number_of_symbol].slot_config.value= 0;
}
for(int number_of_symbol = nrofDownlinkSymbols; number_of_symbol < NR_NUMBER_OF_SYMBOLS_PER_SLOT-nrofUplinkSymbols; number_of_symbol++) {
cfg->tdd_table.max_tdd_periodicity_list[slot_number].max_num_of_symbol_per_slot_list[number_of_symbol].slot_config.value= 2;
}
for(int number_of_symbol = NR_NUMBER_OF_SYMBOLS_PER_SLOT-nrofUplinkSymbols; number_of_symbol < NR_NUMBER_OF_SYMBOLS_PER_SLOT; number_of_symbol++) {
cfg->tdd_table.max_tdd_periodicity_list[slot_number].max_num_of_symbol_per_slot_list[number_of_symbol].slot_config.value= 1;
}
slot_number++;
}
if(nrofUplinkSlots != 0) {
for (int number_of_symbol = 0; number_of_symbol < nrofUplinkSlots*NR_NUMBER_OF_SYMBOLS_PER_SLOT; number_of_symbol++) {
cfg->tdd_table.max_tdd_periodicity_list[slot_number].max_num_of_symbol_per_slot_list[number_of_symbol%NR_NUMBER_OF_SYMBOLS_PER_SLOT].slot_config.value= 1;
if((number_of_symbol+1)%NR_NUMBER_OF_SYMBOLS_PER_SLOT == 0)
slot_number++;
}
}
}
/*
while(slot_number != nb_slots_to_set) {
for (int number_of_slot = 0; number_of_slot < nrofDownlinkSlots; number_of_slot++) {
frame_parms->tdd_uplink_nr[slot_number] = NR_TDD_DOWNLINK_SLOT;
printf("slot %d set as downlink\n",slot_number);
slot_number++;
}
if (nrofDownlinkSymbols != 0 || nrofUplinkSymbols != 0) {
frame_parms->tdd_uplink_nr[slot_number] = (1<<nrofUplinkSymbols) - 1;
printf("slot %d set as SL\n",slot_number);
slot_number++;
}
for (int number_of_slot = 0; number_of_slot < nrofUplinkSlots; number_of_slot++) {
frame_parms->tdd_uplink_nr[slot_number] = NR_TDD_UPLINK_SLOT;
printf("slot %d set as uplink\n",slot_number);
slot_number++;
}
if (p_tdd_ul_dl_configuration->nrofUplinkSymbols != 0) {
LOG_E(PHY,"set_tdd_configuration_nr: uplink symbol for slot is not supported for tdd configuration \n");
return (-1);
}
}
if (frame_parms->p_tdd_UL_DL_ConfigurationCommon2 != NULL) {
LOG_E(PHY,"set_tdd_configuration_nr: additionnal tdd configuration 2 is not supported for tdd configuration \n");
return (-1);
}*/
return (0);
}
/*******************************************************************
*
* NAME : add_tdd_dedicated_configuration_nr
*
* PARAMETERS : pointer to frame configuration
*
* OUTPUT: table of uplink symbol for each slot for several frames
*
* RETURN : 0 if tdd has been properly configurated
* -1 tdd configuration can not be done
*
* DESCRIPTION : generate bit map for uplink symbol for each slot for several frames
* see TS 38.213 11.1 Slot configuration
*
*********************************************************************/
void add_tdd_dedicated_configuration_nr(NR_DL_FRAME_PARMS *frame_parms, int slotIndex, int nrofDownlinkSymbols, int nrofUplinkSymbols) {
TDD_UL_DL_SlotConfig_t *p_TDD_UL_DL_ConfigDedicated = frame_parms->p_TDD_UL_DL_ConfigDedicated;
TDD_UL_DL_SlotConfig_t *p_previous_TDD_UL_DL_ConfigDedicated;
int next = 0;
while (p_TDD_UL_DL_ConfigDedicated != NULL) {
p_previous_TDD_UL_DL_ConfigDedicated = p_TDD_UL_DL_ConfigDedicated;
p_TDD_UL_DL_ConfigDedicated = (TDD_UL_DL_SlotConfig_t *)(p_TDD_UL_DL_ConfigDedicated->p_next_TDD_UL_DL_SlotConfig);
next = 1;
}
p_TDD_UL_DL_ConfigDedicated = calloc( 1, sizeof(TDD_UL_DL_SlotConfig_t));
//printf("allocate pt %p \n", p_TDD_UL_DL_ConfigDedicated);
if (p_TDD_UL_DL_ConfigDedicated == NULL) {
printf("Error test_frame_configuration: memory allocation problem \n");
assert(0);
}
if (next == 0) {
frame_parms->p_TDD_UL_DL_ConfigDedicated = p_TDD_UL_DL_ConfigDedicated;
} else {
p_previous_TDD_UL_DL_ConfigDedicated->p_next_TDD_UL_DL_SlotConfig = (struct TDD_UL_DL_SlotConfig_t *)p_TDD_UL_DL_ConfigDedicated;
}
p_TDD_UL_DL_ConfigDedicated->slotIndex = slotIndex;
p_TDD_UL_DL_ConfigDedicated->nrofDownlinkSymbols = nrofDownlinkSymbols;
p_TDD_UL_DL_ConfigDedicated->nrofUplinkSymbols = nrofUplinkSymbols;
}
/*******************************************************************
*
* NAME : set_tdd_configuration_dedicated_nr
*
* PARAMETERS : pointer to frame configuration
*
* OUTPUT: table of uplink symbol for each slot for several frames
*
* RETURN : 0 if tdd has been properly configurated
* -1 tdd configuration can not be done
*
* DESCRIPTION : generate bit map for uplink symbol for each slot for several frames
* see TS 38.213 11.1 Slot configuration
*
*********************************************************************/
int set_tdd_configuration_dedicated_nr(NR_DL_FRAME_PARMS *frame_parms) {
TDD_UL_DL_SlotConfig_t *p_current_TDD_UL_DL_SlotConfig;
p_current_TDD_UL_DL_SlotConfig = frame_parms->p_TDD_UL_DL_ConfigDedicated;
NR_TST_PHY_PRINTF("\nSet tdd dedicated configuration\n ");
while(p_current_TDD_UL_DL_SlotConfig != NULL) {
int slot_index = p_current_TDD_UL_DL_SlotConfig->slotIndex;
if (slot_index < TDD_CONFIG_NB_FRAMES*(frame_parms->ttis_per_subframe * NR_NUMBER_OF_SUBFRAMES_PER_FRAME)) {
if (p_current_TDD_UL_DL_SlotConfig->nrofDownlinkSymbols != 0) {
if (p_current_TDD_UL_DL_SlotConfig->nrofDownlinkSymbols == NR_TDD_SET_ALL_SYMBOLS) {
if (p_current_TDD_UL_DL_SlotConfig->nrofUplinkSymbols == 0) {
frame_parms->tdd_uplink_nr[slot_index] = NR_TDD_DOWNLINK_SLOT;
NR_TST_PHY_PRINTF(" DL[%d] ", slot_index);
} else {
LOG_E(PHY,"set_tdd_configuration_dedicated_nr: tdd downlink & uplink symbol configuration is not supported \n");
return (-1);
}
} else {
LOG_E(PHY,"set_tdd_configuration_dedicated_nr: tdd downlink symbol configuration is not supported \n");
return (-1);
}
} else if (p_current_TDD_UL_DL_SlotConfig->nrofUplinkSymbols != 0) {
if (p_current_TDD_UL_DL_SlotConfig->nrofUplinkSymbols == NR_TDD_SET_ALL_SYMBOLS) {
frame_parms->tdd_uplink_nr[slot_index] = NR_TDD_UPLINK_SLOT;
NR_TST_PHY_PRINTF(" UL[%d] ", slot_index);
} else {
LOG_E(PHY,"set_tdd_configuration_dedicated_nr: tdd uplink symbol configuration is not supported \n");
return (-1);
}
} else {
LOG_E(PHY,"set_tdd_configuration_dedicated_nr: no tdd symbol configuration is specified \n");
return (-1);
}
} else {
LOG_E(PHY,"set_tdd_configuration_dedicated_nr: tdd slot index exceeds maximum value \n");
return (-1);
}
p_current_TDD_UL_DL_SlotConfig = (TDD_UL_DL_SlotConfig_t *)(p_current_TDD_UL_DL_SlotConfig->p_next_TDD_UL_DL_SlotConfig);
}
NR_TST_PHY_PRINTF("\n");
return (0);
}
/*******************************************************************
*
* NAME : set_tdd_configuration
*
* PARAMETERS : pointer to tdd common configuration
* pointer to tdd common configuration2
* pointer to tdd dedicated configuration
*
* OUTPUT: table of uplink symbol for each slot for 2 frames
*
* RETURN : 0 if srs sequence has been successfully generated
* -1 if sequence can not be properly generated
*
* DESCRIPTION : generate bit map for uplink symbol for each slot for 2 frames
* see TS 38.213 11.1 Slot configuration
*
*********************************************************************/
int nr_slot_select(nfapi_nr_config_request_scf_t *cfg, int nr_frame, int nr_tti) {
/* for FFD all slot can be considered as an uplink */
int mu = cfg->ssb_config.scs_common.value,check_slot=0;
if (cfg->cell_config.frame_duplex_type.value == FDD) {
return (NR_UPLINK_SLOT | NR_DOWNLINK_SLOT );
}
if (nr_frame%2 == 0) {
for(int symbol_count=0; symbol_count<NR_NUMBER_OF_SYMBOLS_PER_SLOT; symbol_count++) {
if (cfg->tdd_table.max_tdd_periodicity_list[nr_tti].max_num_of_symbol_per_slot_list[symbol_count].slot_config.value==1) {
check_slot++;
}
}
if(check_slot == NR_NUMBER_OF_SYMBOLS_PER_SLOT) {
return (NR_UPLINK_SLOT);
}
check_slot = 0;
for(int symbol_count=0; symbol_count<NR_NUMBER_OF_SYMBOLS_PER_SLOT; symbol_count++) {
if (cfg->tdd_table.max_tdd_periodicity_list[nr_tti].max_num_of_symbol_per_slot_list[symbol_count].slot_config.value==0) {
check_slot++;
}
}
if(check_slot == NR_NUMBER_OF_SYMBOLS_PER_SLOT) {
return (NR_DOWNLINK_SLOT);
} else {
return (NR_MIXED_SLOT);
}
} else {
for(int symbol_count=0; symbol_count<NR_NUMBER_OF_SYMBOLS_PER_SLOT; symbol_count++) {
if (cfg->tdd_table.max_tdd_periodicity_list[((1<<mu) * NR_NUMBER_OF_SUBFRAMES_PER_FRAME) + nr_tti].max_num_of_symbol_per_slot_list[symbol_count].slot_config.value==1) {
check_slot++;
}
}
if(check_slot == NR_NUMBER_OF_SYMBOLS_PER_SLOT) {
return (NR_UPLINK_SLOT);
}
check_slot = 0;
for(int symbol_count=0; symbol_count<NR_NUMBER_OF_SYMBOLS_PER_SLOT; symbol_count++) {
if (cfg->tdd_table.max_tdd_periodicity_list[((1<<mu) * NR_NUMBER_OF_SUBFRAMES_PER_FRAME) + nr_tti].max_num_of_symbol_per_slot_list[symbol_count].slot_config.value==0) {
check_slot++;
}
}
if(check_slot == NR_NUMBER_OF_SYMBOLS_PER_SLOT) {
return (NR_DOWNLINK_SLOT);
} else {
return (NR_MIXED_SLOT);
}
}
}
/*******************************************************************
*
* NAME : free_tdd_configuration_nr
*
* PARAMETERS : pointer to frame configuration
*
* RETURN : none
*
* DESCRIPTION : free structure related to tdd configuration
*
*********************************************************************/
void free_tdd_configuration_nr(NR_DL_FRAME_PARMS *frame_parms) {
TDD_UL_DL_configCommon_t *p_tdd_UL_DL_Configuration = frame_parms->p_tdd_UL_DL_Configuration;
free_tdd_configuration_dedicated_nr(frame_parms);
if (p_tdd_UL_DL_Configuration != NULL) {
frame_parms->p_tdd_UL_DL_Configuration = NULL;
free(p_tdd_UL_DL_Configuration);
}
for (int number_of_slot = 0; number_of_slot < NR_MAX_SLOTS_PER_FRAME; number_of_slot++) {
frame_parms->tdd_uplink_nr[number_of_slot] = NR_TDD_DOWNLINK_SLOT;
}
}
/*******************************************************************
*
* NAME : free_tdd_configuration_dedicated_nr
*
* PARAMETERS : pointer to frame configuration
*
* RETURN : none
*
* DESCRIPTION : free structure related to tdd dedicated configuration
*
*********************************************************************/
void free_tdd_configuration_dedicated_nr(NR_DL_FRAME_PARMS *frame_parms) {
TDD_UL_DL_SlotConfig_t *p_current_TDD_UL_DL_ConfigDedicated = frame_parms->p_TDD_UL_DL_ConfigDedicated;
TDD_UL_DL_SlotConfig_t *p_next_TDD_UL_DL_ConfigDedicated;
int next = 0;
if (p_current_TDD_UL_DL_ConfigDedicated != NULL) {
do {
if (p_current_TDD_UL_DL_ConfigDedicated->p_next_TDD_UL_DL_SlotConfig != NULL) {
next = 1;
p_next_TDD_UL_DL_ConfigDedicated = (TDD_UL_DL_SlotConfig_t *)(p_current_TDD_UL_DL_ConfigDedicated->p_next_TDD_UL_DL_SlotConfig);
p_current_TDD_UL_DL_ConfigDedicated->p_next_TDD_UL_DL_SlotConfig = NULL;
//printf("free pt %p \n", p_current_TDD_UL_DL_ConfigDedicated);
free(p_current_TDD_UL_DL_ConfigDedicated);
p_current_TDD_UL_DL_ConfigDedicated = p_next_TDD_UL_DL_ConfigDedicated;
} else {
if (p_current_TDD_UL_DL_ConfigDedicated != NULL) {
frame_parms->p_TDD_UL_DL_ConfigDedicated = NULL;
//printf("free pt %p \n", p_current_TDD_UL_DL_ConfigDedicated);
free(p_current_TDD_UL_DL_ConfigDedicated);
next = 0;
}
}
} while (next);
}
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#include <string.h>
#include <math.h>
#include <unistd.h>
#include "common/config/config_userapi.h"
#include "common/utils/LOG/log.h"
#include "common/ran_context.h"
#include "SIMULATION/TOOLS/sim.h"
#include "SIMULATION/RF/rf.h"
#include "PHY/types.h"
#include "PHY/defs_gNB.h"
#include "PHY/defs_nr_UE.h"
#include "SCHED_NR/sched_nr.h"
#include "SCHED_NR_UE/phy_frame_config_nr.h"
#include "PHY/phy_vars_nr_ue.h"
#include "PHY/NR_REFSIG/refsig_defs_ue.h"
#include "PHY/NR_REFSIG/nr_mod_table.h"
#include "PHY/MODULATION/modulation_eNB.h"
#include "PHY/MODULATION/modulation_UE.h"
#include "PHY/INIT/phy_init.h"
#include "PHY/NR_TRANSPORT/nr_transport.h"
#include "PHY/NR_UE_TRANSPORT/nr_transport_proto_ue.h"
#include "OCG_vars.h"
#include <pthread.h>
PHY_VARS_gNB *gNB;
PHY_VARS_NR_UE *UE;
RAN_CONTEXT_t RC;
RU_t *ru;
double cpuf;
extern uint16_t prach_root_sequence_map0_3[838];
void dump_nr_prach_config(NR_DL_FRAME_PARMS *frame_parms,uint8_t subframe);
uint16_t NB_UE_INST=1;
volatile int oai_exit=0;
void exit_function(const char* file, const char* function, const int line,const char *s) {
const char * msg= s==NULL ? "no comment": s;
printf("Exiting at: %s:%d %s(), %s\n", file, line, function, msg);
exit(-1);
}
int8_t nr_ue_get_SR(module_id_t module_idP, int CC_id, frame_t frameP, uint8_t eNB_id, uint16_t rnti, sub_frame_t subframe) {
AssertFatal(1==0,"Shouldn't be here ...\n");
return 0;
}
uint8_t nr_ue_get_sdu(module_id_t module_idP, int CC_id, frame_t frameP,
sub_frame_t subframe, uint8_t eNB_index,
uint8_t *ulsch_buffer, uint16_t buflen, uint8_t *access_mode) {return(0);}
int oai_nfapi_rach_ind(nfapi_rach_indication_t *rach_ind) {return(0);}
openair0_config_t openair0_cfg[MAX_CARDS];
uint8_t nfapi_mode=0;
NR_IF_Module_t *NR_IF_Module_init(int Mod_id){return(NULL);}
int oai_nfapi_ul_config_req(nfapi_ul_config_request_t *ul_config_req) { return(0); }
uint64_t get_softmodem_optmask(void) {
return 0;
}
int main(int argc, char **argv)
{
char c;
int i,aa,aarx;
double sigma2, sigma2_dB=0,SNR,snr0=-2.0,snr1=0.0,ue_speed0=0.0,ue_speed1=0.0;
uint8_t snr1set=0;
uint8_t ue_speed1set=0;
int **txdata;
double **s_re,**s_im,**r_re,**r_im;
double iqim=0.0;
int trial; //, ntrials=1;
uint8_t transmission_mode = 1,n_tx=1,n_rx=1;
uint16_t Nid_cell=0;
uint8_t awgn_flag=0;
uint8_t hs_flag=0;
int n_frames=1;
channel_desc_t *UE2gNB;
uint32_t nsymb,tx_lev; //,tx_lev_dB;
// int8_t interf1=-19,interf2=-19;
NR_DL_FRAME_PARMS *frame_parms;
SCM_t channel_model=Rayleigh1;
// uint8_t abstraction_flag=0,calibration_flag=0;
// double prach_sinr;
int N_RB_UL=273;
uint32_t prach_errors=0;
uint8_t subframe=9;
uint16_t preamble_energy_list[64],preamble_tx=50,preamble_delay_list[64];
uint16_t preamble_max,preamble_energy_max;
PRACH_RESOURCES_t prach_resources;
//uint8_t prach_fmt;
//int N_ZC;
int delay = 0;
double delay_avg=0;
double ue_speed = 0;
int NCS_config = 13,rootSequenceIndex=0;
int threequarter_fs = 0;
int mu=1;
uint64_t SSB_positions=0x01;
int loglvl=OAILOG_INFO;
cpuf = get_cpu_freq_GHz();
if ( load_configmodule(argc,argv,CONFIG_ENABLECMDLINEONLY) == 0) {
exit_fun("[SOFTMODEM] Error, configuration module init failed\n");
}
randominit(0);
while ((c = getopt (argc, argv, "hHaA:Cr:p:g:n:s:S:t:x:y:v:V:z:N:F:d:Z:L:R:E")) != -1) {
switch (c) {
case 'a':
printf("Running AWGN simulation\n");
awgn_flag = 1;
/* ntrials not used later, no need to set */
//ntrials=1;
break;
case 'd':
delay = atoi(optarg);
break;
case 'g':
switch((char)*optarg) {
case 'A':
channel_model=SCM_A;
break;
case 'B':
channel_model=SCM_B;
break;
case 'C':
channel_model=SCM_C;
break;
case 'D':
channel_model=SCM_D;
break;
case 'E':
channel_model=EPA;
break;
case 'F':
channel_model=EVA;
break;
case 'G':
channel_model=ETU;
break;
case 'H':
channel_model=Rayleigh8;
case 'I':
channel_model=Rayleigh1;
case 'J':
channel_model=Rayleigh1_corr;
case 'K':
channel_model=Rayleigh1_anticorr;
case 'L':
channel_model=Rice8;
case 'M':
channel_model=Rice1;
case 'N':
channel_model=Rayleigh1_800;
break;
default:
msg("Unsupported channel model!\n");
exit(-1);
}
break;
case 'E':
threequarter_fs=1;
break;
case 'n':
n_frames = atoi(optarg);
break;
case 's':
snr0 = atof(optarg);
msg("Setting SNR0 to %f\n",snr0);
break;
case 'S':
snr1 = atof(optarg);
snr1set=1;
msg("Setting SNR1 to %f\n",snr1);
break;
case 'p':
preamble_tx=atoi(optarg);
break;
case 'v':
ue_speed0 = atoi(optarg);
break;
case 'V':
ue_speed1 = atoi(optarg);
ue_speed1set = 1;
break;
case 'Z':
NCS_config = atoi(optarg);
if ((NCS_config > 15) || (NCS_config < 0))
printf("Illegal NCS_config %d, (should be 0-15)\n",NCS_config);
break;
case 'H':
printf("High-Speed Flag enabled\n");
hs_flag = 1;
break;
case 'L':
rootSequenceIndex = atoi(optarg);
if ((rootSequenceIndex < 0) || (rootSequenceIndex > 837))
printf("Illegal rootSequenceNumber %d, (should be 0-837)\n",rootSequenceIndex);
break;
case 'x':
transmission_mode=atoi(optarg);
if ((transmission_mode!=1) &&
(transmission_mode!=2) &&
(transmission_mode!=6)) {
msg("Unsupported transmission mode %d\n",transmission_mode);
exit(-1);
}
break;
case 'y':
n_tx=atoi(optarg);
if ((n_tx==0) || (n_tx>2)) {
msg("Unsupported number of tx antennas %d\n",n_tx);
exit(-1);
}
break;
case 'z':
n_rx=atoi(optarg);
if ((n_rx==0) || (n_rx>2)) {
msg("Unsupported number of rx antennas %d\n",n_rx);
exit(-1);
}
break;
case 'N':
Nid_cell = atoi(optarg);
break;
case 'R':
N_RB_UL = atoi(optarg);
break;
case 'F':
break;
default:
case 'h':
printf("%s -h(elp) -a(wgn on) -p(extended_prefix) -N cell_id -f output_filename -F input_filename -g channel_model -n n_frames -s snr0 -S snr1 -x transmission_mode -y TXant -z RXant -i Intefrence0 -j Interference1 -A interpolation_file -C(alibration offset dB) -N CellId\n",
argv[0]);
printf("-h This message\n");
printf("-a Use AWGN channel and not multipath\n");
printf("-n Number of frames to simulate\n");
printf("-s Starting SNR, runs from SNR0 to SNR0 + 5 dB. If n_frames is 1 then just SNR is simulated\n");
printf("-S Ending SNR, runs from SNR0 to SNR1\n");
printf("-g [A,B,C,D,E,F,G,I,N] Use 3GPP SCM (A,B,C,D) or 36-101 (E-EPA,F-EVA,G-ETU) or Rayleigh1 (I) or Rayleigh1_800 (N) models (ignores delay spread and Ricean factor)\n");
printf("-z Number of RX antennas used in gNB\n");
printf("-N Nid_cell\n");
printf("-O oversampling factor (1,2,4,8,16)\n");
// printf("-f PRACH format (0=1,1=2,2=3,3=4)\n");
printf("-d Channel delay \n");
printf("-v Starting UE velocity in km/h, runs from 'v' to 'v+50km/h'. If n_frames is 1 just 'v' is simulated \n");
printf("-V Ending UE velocity in km/h, runs from 'v' to 'V'");
printf("-L rootSequenceIndex (0-837)\n");
printf("-Z NCS_config (ZeroCorrelationZone) (0-15)\n");
printf("-H Run with High-Speed Flag enabled \n");
printf("-R Number of PRB (6,15,25,50,75,100)\n");
printf("-F Input filename (.txt format) for RX conformance testing\n");
exit (-1);
break;
}
}
logInit();
set_glog(loglvl);
T_stdout = 1;
SET_LOG_DEBUG(PRACH);
if (snr1set==0) {
if (n_frames==1)
snr1 = snr0+.1;
else
snr1 = snr0+5.0;
}
RC.gNB = (PHY_VARS_gNB**) malloc(2*sizeof(PHY_VARS_gNB *));
RC.gNB[0] = malloc(sizeof(PHY_VARS_gNB));
memset(RC.gNB[0],0,sizeof(PHY_VARS_gNB));
RC.ru = (RU_t**) malloc(2*sizeof(RU_t *));
RC.ru[0] = (RU_t*) malloc(sizeof(RU_t ));
memset(RC.ru[0],0,sizeof(RU_t));
RC.nb_RU = 1;
gNB = RC.gNB[0];
ru = RC.ru[0];
if (ue_speed1set==0) {
if (n_frames==1)
ue_speed1 = ue_speed0+10;
else
ue_speed1 = ue_speed0+50;
}
printf("SNR0 %f, SNR1 %f\n",snr0,snr1);
frame_parms = &gNB->frame_parms;
s_re = malloc(2*sizeof(double*));
s_im = malloc(2*sizeof(double*));
r_re = malloc(2*sizeof(double*));
r_im = malloc(2*sizeof(double*));
frame_parms = &gNB->frame_parms; //to be initialized I suppose (maybe not necessary for PBCH)
frame_parms->nb_antennas_tx = n_tx;
frame_parms->nb_antennas_rx = n_rx;
frame_parms->N_RB_DL = N_RB_UL;
frame_parms->N_RB_UL = N_RB_UL;
frame_parms->threequarter_fs = threequarter_fs;
nr_phy_config_request_sim(gNB,N_RB_UL,N_RB_UL,mu,Nid_cell,SSB_positions);
frame_parms->frame_type = TDD;
frame_parms->freq_range = nr_FR1;
nsymb = (frame_parms->Ncp == 0) ? 14 : 12;
printf("FFT Size %d, Extended Prefix %d, Samples per subframe %d,Frame type %s, Frequency Range %s\n",NUMBER_OF_OFDM_CARRIERS,
frame_parms->Ncp,frame_parms->samples_per_subframe,frame_parms->frame_type == FDD ? "FDD" : "TDD", frame_parms->freq_range == nr_FR1 ? "FR1" : "FR2");
ru->nr_frame_parms=frame_parms;
ru->if_south = LOCAL_RF;
ru->nb_tx = n_tx;
ru->nb_rx = n_rx;
RC.nb_nr_L1_inst=1;
phy_init_nr_gNB(gNB,0,0);
nr_phy_init_RU(ru);
set_tdd_config_nr(&gNB->gNB_config, 5000,
7, 6,
2, 4);
//configure UE
UE = malloc(sizeof(PHY_VARS_NR_UE));
memset((void*)UE,0,sizeof(PHY_VARS_NR_UE));
PHY_vars_UE_g = malloc(2*sizeof(PHY_VARS_NR_UE**));
PHY_vars_UE_g[0] = malloc(2*sizeof(PHY_VARS_NR_UE*));
PHY_vars_UE_g[0][0] = UE;
memcpy(&UE->frame_parms,frame_parms,sizeof(NR_DL_FRAME_PARMS));
if (init_nr_ue_signal(UE, 1, 0) != 0)
{
printf("Error at UE NR initialisation\n");
exit(-1);
}
txdata = UE->common_vars.txdata;
printf("txdata %p\n",&txdata[0][subframe*frame_parms->samples_per_subframe]);
double fs,bw;
bw = N_RB_UL*(180e3)*(1<<gNB->frame_parms.numerology_index);
AssertFatal(bw<=122.88e6,"Illegal channel bandwidth %f (mu %d,N_RB_UL %d)\n",gNB->frame_parms.numerology_index,N_RB_UL);
if (bw <= 30.72e6) fs = 30.72e6;
else if (bw <= 61.44e6) fs = 61.44e6;
else if (bw <= 122.88e6) fs = 122.88e6;
LOG_I(PHY,"Running with bandwidth %f Hz, fs %f samp/s, FRAME_LENGTH_COMPLEX_SAMPLES %d\n",bw,fs,FRAME_LENGTH_COMPLEX_SAMPLES);
UE2gNB = new_channel_desc_scm(UE->frame_parms.nb_antennas_tx,
gNB->frame_parms.nb_antennas_rx,
channel_model,
fs,
bw,
0.0,
delay,
0);
if (UE2gNB==NULL) {
printf("Problem generating channel model. Exiting.\n");
exit(-1);
}
for (i=0; i<2; i++) {
s_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
bzero(s_re[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
s_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
bzero(s_im[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_re[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
bzero(r_re[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
r_im[i] = malloc(FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
bzero(r_im[i],FRAME_LENGTH_COMPLEX_SAMPLES*sizeof(double));
}
UE->frame_parms.prach_config_common.rootSequenceIndex=rootSequenceIndex;
UE->frame_parms.prach_config_common.prach_ConfigInfo.prach_ConfigIndex=98;
UE->frame_parms.prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig=NCS_config;
UE->frame_parms.prach_config_common.prach_ConfigInfo.highSpeedFlag=hs_flag;
UE->frame_parms.prach_config_common.prach_ConfigInfo.restrictedSetConfig=0;
UE->frame_parms.prach_config_common.prach_ConfigInfo.msg1_frequencystart=0;
gNB->frame_parms.prach_config_common.rootSequenceIndex=rootSequenceIndex;
gNB->frame_parms.prach_config_common.prach_ConfigInfo.prach_ConfigIndex=98;
gNB->frame_parms.prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig=NCS_config;
gNB->frame_parms.prach_config_common.prach_ConfigInfo.highSpeedFlag=hs_flag;
gNB->frame_parms.prach_config_common.prach_ConfigInfo.restrictedSetConfig=0;
gNB->frame_parms.prach_config_common.prach_ConfigInfo.msg1_frequencystart=0;
gNB->proc.slot_rx = subframe<<1;
gNB->common_vars.rxdata = ru->common.rxdata;
compute_nr_prach_seq(gNB->frame_parms.prach_config_common.rootSequenceIndex,
gNB->frame_parms.prach_config_common.prach_ConfigInfo.prach_ConfigIndex,
gNB->frame_parms.prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig,
gNB->frame_parms.prach_config_common.prach_ConfigInfo.highSpeedFlag,
gNB->frame_parms.frame_type,
gNB->frame_parms.freq_range,
gNB->X_u);
compute_nr_prach_seq(UE->frame_parms.prach_config_common.rootSequenceIndex,
UE->frame_parms.prach_config_common.prach_ConfigInfo.prach_ConfigIndex,
UE->frame_parms.prach_config_common.prach_ConfigInfo.zeroCorrelationZoneConfig,
UE->frame_parms.prach_config_common.prach_ConfigInfo.highSpeedFlag,
UE->frame_parms.frame_type,
UE->frame_parms.freq_range,
UE->X_u);
UE->prach_vars[0]->amp = AMP;
UE->prach_resources[0] = &prach_resources;
if (preamble_tx == 99)
preamble_tx = (uint16_t)(taus()&0x3f);
if (n_frames == 1)
printf("raPreamble %d\n",preamble_tx);
UE->prach_resources[0]->ra_PreambleIndex = preamble_tx;
UE->prach_resources[0]->ra_TDD_map_index = 0;
/*tx_lev = generate_nr_prach(UE,
0, //gNB_id,
subframe,
0); //Nf */ //commented for testing purpose
UE_nr_rxtx_proc_t proc={0};
nr_ue_prach_procedures(UE,&proc,0,0,0);
/* tx_lev_dB not used later, no need to set */
//tx_lev_dB = (unsigned int) dB_fixed(tx_lev);
LOG_M("txsig0.m","txs0", &txdata[0][subframe*frame_parms->samples_per_subframe],frame_parms->samples_per_subframe,1,1);
//LOG_M("txsig1.m","txs1", txdata[1],FRAME_LENGTH_COMPLEX_SAMPLES,1,1);
// multipath channel
dump_nr_prach_config(&gNB->frame_parms,subframe);
for (i=0; i<2*frame_parms->samples_per_subframe; i++) {
for (aa=0; aa<1; aa++) {
if (awgn_flag == 0) {
s_re[aa][i] = ((double)(((short *)&txdata[aa][subframe*frame_parms->samples_per_subframe]))[(i<<1)]);
s_im[aa][i] = ((double)(((short *)&txdata[aa][subframe*frame_parms->samples_per_subframe]))[(i<<1)+1]);
} else {
for (aarx=0; aarx<gNB->frame_parms.nb_antennas_rx; aarx++) {
if (aa==0) {
r_re[aarx][i] = ((double)(((short *)&txdata[aa][subframe*frame_parms->samples_per_subframe]))[(i<<1)]);
r_im[aarx][i] = ((double)(((short *)&txdata[aa][subframe*frame_parms->samples_per_subframe]))[(i<<1)+1]);
} else {
r_re[aarx][i] += ((double)(((short *)&txdata[aa][subframe*frame_parms->samples_per_subframe]))[(i<<1)]);
r_im[aarx][i] += ((double)(((short *)&txdata[aa][subframe*frame_parms->samples_per_subframe]))[(i<<1)+1]);
}
}
}
}
}
for (SNR=snr0; SNR<snr1; SNR+=.2) {
for (ue_speed=ue_speed0; ue_speed<ue_speed1; ue_speed+=10) {
delay_avg = 0.0;
// max Doppler shift
UE2gNB->max_Doppler = 1.9076e9*(ue_speed/3.6)/3e8;
printf("n_frames %d SNR %f\n",n_frames,SNR);
prach_errors=0;
for (trial=0; trial<n_frames; trial++) {
sigma2_dB = 10*log10((double)tx_lev) - SNR;
if (n_frames==1)
printf("sigma2_dB %f (SNR %f dB) tx_lev_dB %f\n",sigma2_dB,SNR,10*log10((double)tx_lev));
//AWGN
sigma2 = pow(10,sigma2_dB/10);
// printf("Sigma2 %f (sigma2_dB %f)\n",sigma2,sigma2_dB);
if (awgn_flag == 0) {
multipath_tv_channel(UE2gNB,s_re,s_im,r_re,r_im,
2*frame_parms->samples_per_subframe,0);
}
if (n_frames==1) {
printf("rx_level data symbol %f, tx_lev %f\n",
10*log10(signal_energy_fp(r_re,r_im,1,OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES,0)),
10*log10(tx_lev));
}
for (i=0; i<frame_parms->samples_per_subframe; i++) {
for (aa=0; aa<gNB->frame_parms.nb_antennas_rx; aa++) {
((short*) &gNB->common_vars.rxdata[aa][subframe*(frame_parms->samples_per_subframe)])[2*i] = (short) (.167*(r_re[aa][i] +sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
((short*) &gNB->common_vars.rxdata[aa][subframe*(frame_parms->samples_per_subframe)])[2*i+1] = (short) (.167*(r_im[aa][i] + (iqim*r_re[aa][i]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0)));
}
}
uint16_t preamble_rx;
rx_nr_prach_ru(ru,
0,
subframe);
gNB->prach_vars.rxsigF = ru->prach_rxsigF;
rx_nr_prach(gNB,
0,
subframe,
&preamble_rx,
preamble_energy_list,
preamble_delay_list);
if (preamble_rx!=preamble_tx)
prach_errors++;
else {
delay_avg += (double)preamble_delay_list[preamble_tx];
}
if (n_frames==1) {
printf("preamble %d (tx %d) : energy %d, delay %d\n",preamble_rx,preamble_tx,preamble_energy_list[0],preamble_delay_list[0]);
LOG_M("prach0.m","prach0", &txdata[0][subframe*frame_parms->samples_per_subframe],frame_parms->samples_per_subframe,1,1);
LOG_M("prachF0.m","prachF0", &gNB->prach_vars.prachF[0],24576,1,1);
LOG_M("rxsig0.m","rxs0",
&gNB->common_vars.rxdata[0][subframe*frame_parms->samples_per_subframe],
frame_parms->samples_per_subframe,1,1);
LOG_M("rxsigF0.m","rxsF0", gNB->prach_vars.rxsigF[0],839*4,1,1);
LOG_M("prach_preamble.m","prachp",&gNB->X_u[0],839,1,1);
}
}
printf("SNR %f dB, UE Speed %f km/h: errors %d/%d (delay %f)\n",SNR,ue_speed,prach_errors,n_frames,delay_avg/(double)(n_frames-prach_errors));
//printf("(%f,%f)\n",ue_speed,(double)prach_errors/(double)n_frames);
} // UE Speed loop
//printf("SNR %f dB, UE Speed %f km/h: errors %d/%d (delay %f)\n",SNR,ue_speed,prach_errors,n_frames,delay_avg/(double)(n_frames-prach_errors));
// printf("(%f,%f)\n",SNR,(double)prach_errors/(double)n_frames);
} //SNR loop
for (i=0; i<2; i++) {
free(s_re[i]);
free(s_im[i]);
free(r_re[i]);
free(r_im[i]);
}
free(s_re);
free(s_im);
free(r_re);
free(r_im);
return(0);
}
/*
for (i=1;i<4;i++)
memcpy((void *)&PHY_vars->tx_vars[0].TX_DMA_BUFFER[i*12*OFDM_SYMBOL_SIZE_COMPLEX_SAMPLES_NO_PREFIX*2],
(void *)&PHY_vars->tx_vars[0].TX_DMA_BUFFER[0],
12*OFDM_SYMBOL_SIZE_SAMPLES_NO_PREFIX*2);
*/
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* \file nr_ue_dci_configuration.c
* \brief functions for generating dci search procedures based on RRC Serving Cell Group Configuration
* \author R. Knopp
* \date 2020
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr
* \note
* \warning
*/
#include "mac_proto.h"
#include "mac_defs.h"
#include "assertions.h"
#include "LAYER2/NR_MAC_UE/mac_extern.h"
#include "mac_defs.h"
#include <stdio.h>
#ifdef NR_PDCCH_DCI_TOOLS_DEBUG
#define LOG_DCI_D(a...) printf("\t\t<-NR_PDCCH_DCI_TOOLS_DEBUG (nr_extract_dci_info) ->" a)
#else
#define LOG_DCI_D(a...)
#endif
#define LOG_DCI_PARM(a...) LOG_D(PHY,"\t<-NR_PDCCH_DCI_TOOLS_DEBUG (nr_generate_ue_ul_dlsch_params_from_dci)" a)
void fill_dci_search_candidates(NR_SearchSpace_t *ss,fapi_nr_dl_config_dci_dl_pdu_rel15_t *rel15) {
LOG_D(MAC,"Filling search candidates for DCI\n");
rel15->number_of_candidates=3;
rel15->CCE[0]=0;
rel15->L[0]=4;
rel15->CCE[1]=4;
rel15->L[1]=4;
rel15->CCE[2]=8;
rel15->L[2]=4;
}
void ue_dci_configuration(NR_UE_MAC_INST_t *mac,fapi_nr_dl_config_request_t *dl_config,int frame,int slot) {
// check if DL slot
if (is_nr_DL_slot(mac->scc,slot)==1) {
// get BWP 1, Coreset 0, SearchSpace 0
if (mac->DLbwp[0]==NULL) {
AssertFatal(mac->scd->downlinkBWP_ToAddModList!=NULL,"downlinkBWP_ToAddModList is null\n");
AssertFatal(mac->scd->downlinkBWP_ToAddModList->list.count==1,"downlinkBWP_ToAddModList->list->count is %d\n",
mac->scd->downlinkBWP_ToAddModList->list.count);
mac->DLbwp[0] = mac->scd->downlinkBWP_ToAddModList->list.array[0];
AssertFatal(mac->DLbwp[0]->bwp_Dedicated!=NULL,"bwp_Dedicated is null\n");
AssertFatal(mac->DLbwp[0]->bwp_Dedicated->pdcch_Config!=NULL,"pdcch_Config is null\n");
AssertFatal(mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->controlResourceSetToAddModList!=NULL,"controlResourceSetToAddModList is null\n");
AssertFatal(mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->controlResourceSetToAddModList->list.count==1,"controlResourceSetToAddModList->list.count=%d\n",
mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->controlResourceSetToAddModList->list.count);
mac->coreset[0][0] = mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->controlResourceSetToAddModList->list.array[0];
AssertFatal(mac->coreset[0][0]!=NULL,"coreset[0][0] is null\n");
AssertFatal(mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->searchSpacesToAddModList!=NULL,"searchPsacesToAddModList is null\n");
AssertFatal(mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->searchSpacesToAddModList->list.count>0,
"searchPsacesToAddModList is empty\n");
NR_SearchSpace_t *ss;
int ss_id=0;
AssertFatal(mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->searchSpacesToAddModList->list.count<FAPI_NR_MAX_SS_PER_CORESET,
"too many searchpaces per coreset %d\n",
mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->searchSpacesToAddModList->list.count);
for (int i=0;i<mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->searchSpacesToAddModList->list.count;i++) {
ss=mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->searchSpacesToAddModList->list.array[i];
AssertFatal(ss->controlResourceSetId != NULL,"ss->controlResourceSetId is null\n");
AssertFatal(ss->searchSpaceType != NULL,"ss->searchSpaceType is null\n");
AssertFatal(*ss->controlResourceSetId == mac->coreset[0][0]->controlResourceSetId,"ss->controlResourceSetId is unknown\n");
mac->SSpace[0][0][ss_id] = ss;
ss_id++;
}
}
if (mac->ULbwp[0]==NULL) {
AssertFatal(mac->scd->uplinkConfig->uplinkBWP_ToAddModList!=NULL,"uplinkBWP_ToAddModList is null\n");
AssertFatal(mac->scd->uplinkConfig->uplinkBWP_ToAddModList->list.count==1,"uplinkBWP_ToAddModList->list->count is %d\n",
mac->scd->uplinkConfig->uplinkBWP_ToAddModList->list.count);
mac->ULbwp[0] = mac->scd->uplinkConfig->uplinkBWP_ToAddModList->list.array[0];
AssertFatal(mac->ULbwp[0]->bwp_Dedicated!=NULL,"bwp_Dedicated is null\n");
}
// check search spaces
int ss_id=0;
fapi_nr_dl_config_dci_dl_pdu_rel15_t *rel15;
int sps =mac->DLbwp[0]->bwp_Common->genericParameters.cyclicPrefix == NULL ? 14 : 12;
while(mac->SSpace[0][0][ss_id]!=NULL &&
ss_id < mac->DLbwp[0]->bwp_Dedicated->pdcch_Config->choice.setup->searchSpacesToAddModList->list.count) {
AssertFatal(mac->SSpace[0][0][ss_id]->monitoringSymbolsWithinSlot!=NULL,"ss->monitoringSymbolsWithinSlot is null\n");
AssertFatal(mac->SSpace[0][0][ss_id]->monitoringSymbolsWithinSlot->buf!=NULL,"ss->monitoringSymbolsWithinSlot->buf is null\n");
ss_id++;
}
if (mac->ra_state == WAIT_RAR) {
// check for RAR
rel15 = &dl_config->dl_config_list[dl_config->number_pdus].dci_config_pdu.dci_config_rel15;
rel15->rnti = 2;//get_RA_RNTI(mac,frame,slot);
dl_config->number_pdus = dl_config->number_pdus + 1;
}
else if (mac->ra_state == WAIT_CONTENTION_RESOLUTION) {
rel15 = &dl_config->dl_config_list[dl_config->number_pdus].dci_config_pdu.dci_config_rel15;
rel15->rnti = mac->t_crnti;
dl_config->number_pdus = dl_config->number_pdus + 1;
}
if (mac->crnti>0) {
rel15 = &dl_config->dl_config_list[dl_config->number_pdus].dci_config_pdu.dci_config_rel15;
rel15->rnti = mac->crnti;
rel15->BWPSize = NRRIV2BW(mac->DLbwp[0]->bwp_Common->genericParameters.locationAndBandwidth,275);
rel15->BWPStart = NRRIV2PRBOFFSET(mac->DLbwp[0]->bwp_Common->genericParameters.locationAndBandwidth,275);
rel15->SubcarrierSpacing = mac->DLbwp[0]->bwp_Common->genericParameters.subcarrierSpacing;
// get UE-specific search space
for (ss_id=0;ss_id<FAPI_NR_MAX_SS_PER_CORESET && mac->SSpace[0][0][ss_id]!=NULL;ss_id++)
if (mac->SSpace[0][0][ss_id]->searchSpaceType->present == NR_SearchSpace__searchSpaceType_PR_ue_Specific) break;
AssertFatal(ss_id<FAPI_NR_MAX_SS_PER_CORESET,"couldn't find a UE-specific SS\n");
// for SPS=14 8 MSBs in positions 13 downto 6,
uint16_t monitoringSymbolsWithinSlot = (mac->SSpace[0][0][ss_id]->monitoringSymbolsWithinSlot->buf[0]<<(sps-8)) |
(mac->SSpace[0][0][ss_id]->monitoringSymbolsWithinSlot->buf[1]>>(16-sps));
for (int i=0; i<sps; i++)
if ((monitoringSymbolsWithinSlot>>(sps-1-i))&1) {
rel15->coreset.StartSymbolIndex=i;
break;
}
rel15->coreset.duration = mac->coreset[0][0]->duration;
for (int i=0;i<6;i++)
rel15->coreset.frequency_domain_resource[i] = mac->coreset[0][0]->frequencyDomainResources.buf[i];
rel15->coreset.CceRegMappingType = mac->coreset[0][0]->cce_REG_MappingType.present == NR_ControlResourceSet__cce_REG_MappingType_PR_interleaved?
FAPI_NR_CCE_REG_MAPPING_TYPE_INTERLEAVED : FAPI_NR_CCE_REG_MAPPING_TYPE_NON_INTERLEAVED;
if (rel15->coreset.CceRegMappingType == FAPI_NR_CCE_REG_MAPPING_TYPE_INTERLEAVED) {
rel15->coreset.RegBundleSize = (mac->coreset[0][0]->cce_REG_MappingType.choice.interleaved->reg_BundleSize == NR_ControlResourceSet__cce_REG_MappingType__interleaved__reg_BundleSize_n6) ? 6 : (2+mac->coreset[0][0]->cce_REG_MappingType.choice.interleaved->reg_BundleSize);
rel15->coreset.InterleaverSize = (mac->coreset[0][0]->cce_REG_MappingType.choice.interleaved->interleaverSize==NR_ControlResourceSet__cce_REG_MappingType__interleaved__interleaverSize_n6) ? 6 : (2+mac->coreset[0][0]->cce_REG_MappingType.choice.interleaved->interleaverSize);
AssertFatal(mac->scc->physCellId != NULL,"mac->scc->physCellId is null\n");
rel15->coreset.ShiftIndex = mac->coreset[0][0]->cce_REG_MappingType.choice.interleaved->shiftIndex != NULL ? *mac->coreset[0][0]->cce_REG_MappingType.choice.interleaved->shiftIndex : *mac->scc->physCellId;
}
else {
rel15->coreset.RegBundleSize = 0;
rel15->coreset.InterleaverSize = 0;
rel15->coreset.ShiftIndex = 0;
}
rel15->coreset.CoreSetType = 1;
rel15->coreset.precoder_granularity = mac->coreset[0][0]->precoderGranularity;
if (mac->coreset[0][0]->pdcch_DMRS_ScramblingID)
rel15->coreset.pdcch_dmrs_scrambling_id = *mac->coreset[0][0]->pdcch_DMRS_ScramblingID;
else
rel15->coreset.pdcch_dmrs_scrambling_id = *mac->scc->physCellId;
fill_dci_search_candidates(mac->SSpace[0][0][ss_id],rel15);
rel15->dci_format = NR_DL_DCI_FORMAT_1_0;
rel15->dci_length = nr_dci_size(rel15->dci_format,NR_RNTI_C,rel15->BWPSize);
dl_config->dl_config_list[dl_config->number_pdus].pdu_type = FAPI_NR_DL_CONFIG_TYPE_DCI;
dl_config->number_pdus = dl_config->number_pdus + 1;
}
}
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* file: nr_compute_tbs.c
purpose: Compute NR TBS
author: Hongzhi WANG (TCL)
*/
#define INDEX_MAX_TBS_TABLE (93)
#include "common/utils/nr/nr_common.h"
#include <math.h>
//Table 5.1.2.2-2
uint16_t Tbstable_nr[INDEX_MAX_TBS_TABLE] = {24,32,40,48,56,64,72,80,88,96,104,112,120,128,136,144,152,160,168,176,184,192,208,224,240,256,272,288,304,320,336,352,368,384,408,432,456,480,504,528,552,576,608,640,672,704,736,768,808,848,888,928,984,1032,1064,1128,1160,1192,1224,1256,1288,1320,1352,1416,1480,1544,1608,1672,1736,1800,1864,1928,2024,2088,2152,2216,2280,2408,2472,2536,2600,2664,2728,2792,2856,2976,3104,3240,3368,3496,3624,3752,3824};
uint16_t NPRB_LBRM[7] = {32,66,107,135,162,217,273};
uint32_t nr_compute_tbs(uint16_t Qm,
uint16_t R,
uint16_t nb_rb,
uint16_t nb_symb_sch,
uint16_t nb_dmrs_prb,
uint16_t nb_rb_oh,
uint8_t Nl)
{
uint16_t nbp_re, nb_re;
uint32_t nr_tbs=0;
uint32_t Ninfo, Np_info, C;
uint8_t n, scale;
nbp_re = 12 * nb_symb_sch - nb_dmrs_prb - nb_rb_oh;
nb_re = min(156, nbp_re) * nb_rb;
scale = (R>1024)?11:10;
// Intermediate number of information bits
Ninfo = (nb_re * R * Qm * Nl)>>scale;
if (Ninfo <=3824) {
n = max(3, floor(log2(Ninfo)) - 6);
Np_info = max(24, (Ninfo>>n)<<n);
for (int i=0; i<INDEX_MAX_TBS_TABLE; i++) {
if (Tbstable_nr[i] >= Np_info){
nr_tbs = Tbstable_nr[i];
break;
}
}
}
else {
n = log2(Ninfo-24)-5;
Np_info = max(3840, (ROUNDIDIV((Ninfo-24),(1<<n)))<<n);
if (R <= 256) {
C = CEILIDIV((Np_info+24),3816);
nr_tbs = (C<<3)*CEILIDIV((Np_info+24),(C<<3)) - 24;
}
else {
if (Np_info > 8424){
C = CEILIDIV((Np_info+24),8424);
nr_tbs = (C<<3)*CEILIDIV((Np_info+24),(C<<3)) - 24;
}
else {
nr_tbs = ((CEILIDIV((Np_info+24),8))<<3) - 24;
}
}
}
//printf("Ninfo %d nbp_re %d nb_re %d Qm %d, R %d, tbs %d\n", Ninfo, nbp_re, nb_re, Qm, R, nr_tbs);
return nr_tbs;
}
//tbslbrm calculation according to 5.4.2.1 of 38.212
uint32_t nr_compute_tbslbrm(uint16_t table,
uint16_t nb_rb,
uint8_t Nl,
uint8_t C)
{
uint16_t R, nb_re;
uint16_t nb_rb_lbrm=0;
uint8_t Qm;
int i;
uint32_t nr_tbs=0;
uint32_t Ninfo, Np_info;
uint8_t n;
for (i=0; i<7; i++) {
if (NPRB_LBRM[i] >= nb_rb){
nb_rb_lbrm = NPRB_LBRM[i];
break;
}
}
Qm = ((table == 1)? 8 : 6);
R = 948;
nb_re = 156 * nb_rb_lbrm;
// Intermediate number of information bits
Ninfo = (nb_re * R * Qm * Nl)>>10;
if (Ninfo <=3824) {
n = max(3, floor(log2(Ninfo)) - 6);
Np_info = max(24, (Ninfo>>n)<<n);
for (int i=0; i<INDEX_MAX_TBS_TABLE; i++) {
if (Tbstable_nr[i] >= Np_info){
nr_tbs = Tbstable_nr[i];
break;
}
}
}
else {
n = log2(Ninfo-24)-5;
Np_info = max(3840, (ROUNDIDIV((Ninfo-24),(1<<n)))<<n);
if (R <= 256) {
nr_tbs = (C<<3)*CEILIDIV((Np_info+24),(C<<3)) - 24;
}
else {
if (Np_info > 8424){
nr_tbs = (C<<3)*CEILIDIV((Np_info+24),(C<<3)) - 24;
}
else {
nr_tbs = ((CEILIDIV((Np_info+24),8))<<3) - 24;
}
}
}
return nr_tbs;
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file mac.h
* \brief MAC data structures, constant, and function prototype
* \author Navid Nikaein and Raymond Knopp, WIE-TAI CHEN
* \date Dec. 2019
* \version 0.1
* \company Eurecom
* \email raymond.knopp@eurecom.fr
*/
#ifndef __LAYER2_NR_MAC_COMMON_H__
#define __LAYER2_NR_MAC_COMMON_H__
uint16_t config_bandwidth(int mu, int nb_rb, int nr_band);
uint64_t from_nrarfcn(int nr_bandP, uint8_t scs_index, uint32_t dl_nrarfcn);
uint32_t to_nrarfcn(int nr_bandP, uint64_t dl_CarrierFreq, uint8_t scs_index, uint32_t bw);
int16_t fill_dmrs_mask(NR_PDSCH_Config_t *pdsch_Config,int dmrs_TypeA_Position,int NrOfSymbols);
typedef enum {
NR_DL_DCI_FORMAT_1_0 = 0,
NR_DL_DCI_FORMAT_1_1,
NR_DL_DCI_FORMAT_2_0,
NR_DL_DCI_FORMAT_2_1,
NR_DL_DCI_FORMAT_2_2,
NR_DL_DCI_FORMAT_2_3,
NR_UL_DCI_FORMAT_0_0,
NR_UL_DCI_FORMAT_0_1
} nr_dci_format_t;
typedef enum {
NR_RNTI_new = 0,
NR_RNTI_C,
NR_RNTI_RA,
NR_RNTI_P,
NR_RNTI_CS,
NR_RNTI_TC,
NR_RNTI_SP_CSI,
NR_RNTI_SI,
NR_RNTI_SFI,
NR_RNTI_INT,
NR_RNTI_TPC_PUSCH,
NR_RNTI_TPC_PUCCH,
NR_RNTI_TPC_SRS
} nr_rnti_type_t;
#endif
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#include "rrc_defs.h"
#include "rrc_extern.h"
#include "rrc_eNB_UE_context.h"
#include "common/ran_context.h"
#include "LTE_DL-DCCH-Message.h"
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
extern RAN_CONTEXT_t RC;
extern mui_t rrc_eNB_mui;
int rrc_eNB_generate_RRCConnectionReconfiguration_endc(protocol_ctxt_t *ctxt,
rrc_eNB_ue_context_t *ue_context,
unsigned char *buffer,
int buffer_size,
OCTET_STRING_t *scg_group_config,
OCTET_STRING_t *scg_RB_config)
{
asn_enc_rval_t enc_rval;
LTE_DL_DCCH_Message_t dl_dcch_msg;
LTE_RRCConnectionReconfiguration_t *r;
int trans_id;
LTE_RadioResourceConfigDedicated_t rrcd;
#if 0
LTE_DRB_ToAddModList_t drb_list;
struct LTE_DRB_ToAddMod drb;
long eps_bearer_id;
struct LTE_RLC_Config rlc;
long lcid;
struct LTE_LogicalChannelConfig lc;
#endif
LTE_DRB_ToReleaseList_t drb_list;
LTE_DRB_Identity_t drb;
struct LTE_LogicalChannelConfig__ul_SpecificParameters ul_params;
long lcg;
struct LTE_RadioResourceConfigDedicated__mac_MainConfig mac;
struct LTE_MAC_MainConfig__ext4 mac_ext4;
struct LTE_MAC_MainConfig__ext4__dualConnectivityPHR dc_phr;
memset(&rrcd, 0, sizeof(rrcd));
memset(&drb_list, 0, sizeof(drb_list));
memset(&drb, 0, sizeof(drb));
#if 0
memset(&rlc, 0, sizeof(rlc));
memset(&lc, 0, sizeof(lc));
#endif
memset(&ul_params, 0, sizeof(ul_params));
memset(&mac, 0, sizeof(mac));
memset(&mac_ext4, 0, sizeof(mac_ext4));
memset(&dc_phr, 0, sizeof(dc_phr));
trans_id = rrc_eNB_get_next_transaction_identifier(ctxt->module_id);
memset(&dl_dcch_msg,0,sizeof(LTE_DL_DCCH_Message_t));
dl_dcch_msg.message.present = LTE_DL_DCCH_MessageType_PR_c1;
dl_dcch_msg.message.choice.c1.present = LTE_DL_DCCH_MessageType__c1_PR_rrcConnectionReconfiguration;
r = &dl_dcch_msg.message.choice.c1.choice.rrcConnectionReconfiguration;
r->rrc_TransactionIdentifier = trans_id;
r->criticalExtensions.present = LTE_RRCConnectionReconfiguration__criticalExtensions_PR_c1;
r->criticalExtensions.choice.c1.present = LTE_RRCConnectionReconfiguration__criticalExtensions__c1_PR_rrcConnectionReconfiguration_r8;
r->criticalExtensions.choice.c1.choice.rrcConnectionReconfiguration_r8.radioResourceConfigDedicated = &rrcd;
#if 0
rrcd.drb_ToAddModList = &drb_list;
eps_bearer_id = 5;
drb.eps_BearerIdentity = &eps_bearer_id;
drb.drb_Identity = 5;
drb.rlc_Config = &rlc;
lcid = 4;
drb.logicalChannelIdentity = &lcid;
drb.logicalChannelConfig = &lc;
ASN_SEQUENCE_ADD(&drb_list.list, &drb);
rlc.present = LTE_RLC_Config_PR_am;
rlc.choice.am.ul_AM_RLC.t_PollRetransmit = LTE_T_PollRetransmit_ms50;
rlc.choice.am.ul_AM_RLC.pollPDU = LTE_PollPDU_p16;
rlc.choice.am.ul_AM_RLC.pollByte = LTE_PollByte_kBinfinity;
rlc.choice.am.ul_AM_RLC.maxRetxThreshold = LTE_UL_AM_RLC__maxRetxThreshold_t8;
rlc.choice.am.dl_AM_RLC.t_Reordering = LTE_T_Reordering_ms35;
rlc.choice.am.dl_AM_RLC.t_StatusProhibit = LTE_T_StatusProhibit_ms25;
lc.ul_SpecificParameters = &ul_params;
#endif
/* release drb 1 */
drb = 1;
ASN_SEQUENCE_ADD(&drb_list.list, &drb);
rrcd.drb_ToReleaseList = &drb_list;
ul_params.priority = 12;
ul_params.prioritisedBitRate = LTE_LogicalChannelConfig__ul_SpecificParameters__prioritisedBitRate_kBps8;
ul_params.bucketSizeDuration = LTE_LogicalChannelConfig__ul_SpecificParameters__bucketSizeDuration_ms300;
lcg = 3;
ul_params.logicalChannelGroup = &lcg;
rrcd.mac_MainConfig = &mac;
mac.present = LTE_RadioResourceConfigDedicated__mac_MainConfig_PR_explicitValue;
mac.choice.explicitValue.timeAlignmentTimerDedicated = LTE_TimeAlignmentTimer_sf10240;
mac.choice.explicitValue.ext4 = &mac_ext4;
mac_ext4.dualConnectivityPHR = &dc_phr;
dc_phr.present = LTE_MAC_MainConfig__ext4__dualConnectivityPHR_PR_setup;
dc_phr.choice.setup.phr_ModeOtherCG_r12 = LTE_MAC_MainConfig__ext4__dualConnectivityPHR__setup__phr_ModeOtherCG_r12_virtual;
/* NR config */
struct LTE_RRCConnectionReconfiguration_v890_IEs cr_890;
struct LTE_RRCConnectionReconfiguration_v920_IEs cr_920;
struct LTE_RRCConnectionReconfiguration_v1020_IEs cr_1020;
struct LTE_RRCConnectionReconfiguration_v1130_IEs cr_1130;
struct LTE_RRCConnectionReconfiguration_v1250_IEs cr_1250;
struct LTE_RRCConnectionReconfiguration_v1310_IEs cr_1310;
struct LTE_RRCConnectionReconfiguration_v1430_IEs cr_1430;
struct LTE_RRCConnectionReconfiguration_v1510_IEs cr_1510;
struct LTE_RRCConnectionReconfiguration_v1510_IEs__nr_Config_r15 nr;
memset(&cr_890, 0, sizeof(cr_890));
memset(&cr_920, 0, sizeof(cr_920));
memset(&cr_1020, 0, sizeof(cr_1020));
memset(&cr_1130, 0, sizeof(cr_1130));
memset(&cr_1250, 0, sizeof(cr_1250));
memset(&cr_1310, 0, sizeof(cr_1310));
memset(&cr_1430, 0, sizeof(cr_1430));
memset(&cr_1510, 0, sizeof(cr_1510));
memset(&nr, 0, sizeof(nr));
r->criticalExtensions.choice.c1.choice.rrcConnectionReconfiguration_r8.nonCriticalExtension = &cr_890;
cr_890.nonCriticalExtension = &cr_920;
cr_920.nonCriticalExtension = &cr_1020;
cr_1020.nonCriticalExtension = &cr_1130;
cr_1130.nonCriticalExtension = &cr_1250;
cr_1250.nonCriticalExtension = &cr_1310;
cr_1310.nonCriticalExtension = &cr_1430;
cr_1430.nonCriticalExtension = &cr_1510;
cr_1510.nr_Config_r15 = &nr;
nr.present = LTE_RRCConnectionReconfiguration_v1510_IEs__nr_Config_r15_PR_setup;
nr.choice.setup.endc_ReleaseAndAdd_r15 = 0; /* FALSE */
OCTET_STRING_t dummy_scg_conf;
unsigned char scg_conf_buf[4] = { 0, 0, 0, 0 };
if (scg_group_config!=NULL)
nr.choice.setup.nr_SecondaryCellGroupConfig_r15 = scg_group_config; //&scg_conf;
else{
nr.choice.setup.nr_SecondaryCellGroupConfig_r15 = &dummy_scg_conf;
dummy_scg_conf.buf = scg_conf_buf;
dummy_scg_conf.size = 4;
}
#ifdef DEBUG_SCG_CONFIG
{
int size_s = nr.choice.setup.nr_SecondaryCellGroupConfig_r15->size;
int i;
LOG_I(RRC, "Dumping nr_SecondaryCellGroupConfig: %d", size_s);
for (i=0; i<size_s; i++) printf("%2.2x", (unsigned char)nr.choice.setup.nr_SecondaryCellGroupConfig_r15->buf[i]);
printf("\n");
}
#endif
long sk_counter = 0;
cr_1510.sk_Counter_r15 = &sk_counter;
OCTET_STRING_t dummy_nr1_conf;
unsigned char nr1_buf[4] = { 0, 0, 0, 0 };
if(scg_RB_config!=NULL)
cr_1510.nr_RadioBearerConfig1_r15 = scg_RB_config;
else{
cr_1510.nr_RadioBearerConfig1_r15 = &dummy_nr1_conf;
dummy_nr1_conf.buf = nr1_buf;
dummy_nr1_conf.size = 4;
}
#ifdef DEBUG_SCG_CONFIG
{
int size_s = cr_1510.nr_RadioBearerConfig1_r15->size;
int i;
LOG_I(RRC, "Dumping nr_RadioBearerConfig1: %d", size_s);
for (i=0; i<size_s; i++) printf("%2.2x", (unsigned char)cr_1510.nr_RadioBearerConfig1_r15->buf[i]);
printf("\n");
}
#endif
#if 0
OCTET_STRING_t nr2_conf;
unsigned char nr2_buf[4] = { 0, 0, 0, 0 };
cr_1510.nr_RadioBearerConfig2_r15 = &nr2_conf;
nr2_conf.buf = nr2_buf;
nr2_conf.size = 4;
#endif
enc_rval = uper_encode_to_buffer(&asn_DEF_LTE_DL_DCCH_Message,
NULL,
(void *)&dl_dcch_msg,
buffer,
buffer_size);
{
int len = (enc_rval.encoded + 7) / 8;
int i;
printf("len = %d\n", len);
for (i = 0; i < len; i++) printf(" %2.2x", buffer[i]);
printf("\n");
}
return (enc_rval.encoded + 7) / 8;
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file rrc_gNB_UE_context.h
* \brief rrc procedures for UE context
* \author Lionel GAUTHIER
* \date 2015
* \version 1.0
* \company Eurecom
* \email: lionel.gauthier@eurecom.fr
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "common/utils/LOG/log.h"
#include "rrc_gNB_UE_context.h"
#include "msc.h"
//------------------------------------------------------------------------------
void nr_uid_linear_allocator_init(
nr_uid_allocator_t *const uid_pP
)
//------------------------------------------------------------------------------
{
memset(uid_pP, 0, sizeof(nr_uid_allocator_t));
}
//------------------------------------------------------------------------------
uid_nr_t nr_uid_linear_allocator_new(gNB_RRC_INST *const rrc_instance_pP)
//------------------------------------------------------------------------------
{
unsigned int i;
unsigned int bit_index = 1;
uid_nr_t uid = 0;
nr_uid_allocator_t *uia_p = &rrc_instance_pP->uid_allocator;
for (i=0; i < UID_LINEAR_ALLOCATOR_BITMAP_SIZE; i++) {
if (uia_p->bitmap[i] != UINT_MAX) {
bit_index = 1;
uid = 0;
while ((uia_p->bitmap[i] & bit_index) == bit_index) {
bit_index = bit_index << 1;
uid += 1;
}
uia_p->bitmap[i] |= bit_index;
return uid + (i*sizeof(unsigned int)*8);
}
}
return UINT_MAX;
}
//------------------------------------------------------------------------------
void
nr_uid_linear_allocator_free(
gNB_RRC_INST *rrc_instance_pP,
uid_nr_t uidP
)
//------------------------------------------------------------------------------
{
unsigned int i = uidP/sizeof(unsigned int)/8;
unsigned int bit = uidP % (sizeof(unsigned int) * 8);
unsigned int value = ~(0x00000001 << bit);
if (i < UID_LINEAR_ALLOCATOR_BITMAP_SIZE) {
rrc_instance_pP->uid_allocator.bitmap[i] &= value;
}
}
//------------------------------------------------------------------------------
int rrc_gNB_compare_ue_rnti_id(
struct rrc_gNB_ue_context_s *c1_pP, struct rrc_gNB_ue_context_s *c2_pP)
//------------------------------------------------------------------------------
{
if (c1_pP->ue_id_rnti > c2_pP->ue_id_rnti) {
return 1;
}
if (c1_pP->ue_id_rnti < c2_pP->ue_id_rnti) {
return -1;
}
return 0;
}
/* Generate the tree management functions */
RB_GENERATE(rrc_nr_ue_tree_s, rrc_gNB_ue_context_s, entries,
rrc_gNB_compare_ue_rnti_id);
//------------------------------------------------------------------------------
struct rrc_gNB_ue_context_s *
rrc_gNB_allocate_new_UE_context(
gNB_RRC_INST *rrc_instance_pP
)
//------------------------------------------------------------------------------
{
struct rrc_gNB_ue_context_s *new_p;
new_p = (struct rrc_gNB_ue_context_s * )malloc(sizeof(struct rrc_gNB_ue_context_s));
if (new_p == NULL) {
LOG_E(RRC, "Cannot allocate new ue context\n");
return NULL;
}
memset(new_p, 0, sizeof(struct rrc_gNB_ue_context_s));
new_p->local_uid = nr_uid_linear_allocator_new(rrc_instance_pP);
for(int i = 0; i < NB_RB_MAX; i++) {
new_p->ue_context.e_rab[i].xid = -1;
new_p->ue_context.modify_e_rab[i].xid = -1;
}
LOG_I(NR_RRC,"Returning new UE context at %p\n",new_p);
return(new_p);
}
//------------------------------------------------------------------------------
struct rrc_gNB_ue_context_s *
rrc_gNB_get_ue_context(
gNB_RRC_INST *rrc_instance_pP,
rnti_t rntiP)
//------------------------------------------------------------------------------
{
rrc_gNB_ue_context_t temp;
memset(&temp, 0, sizeof(struct rrc_gNB_ue_context_s));
/* gNB ue rrc id = 24 bits wide */
temp.ue_id_rnti = rntiP;
struct rrc_gNB_ue_context_s *ue_context_p = NULL;
ue_context_p = RB_FIND(rrc_nr_ue_tree_s, &rrc_instance_pP->rrc_ue_head, &temp);
if ( ue_context_p != NULL) {
return ue_context_p;
} else {
RB_FOREACH(ue_context_p, rrc_nr_ue_tree_s, &(rrc_instance_pP->rrc_ue_head)) {
if (ue_context_p->ue_context.rnti == rntiP) {
return ue_context_p;
}
}
return NULL;
}
}
void rrc_gNB_free_mem_UE_context(
const protocol_ctxt_t *const ctxt_pP,
struct rrc_gNB_ue_context_s *const ue_context_pP
)
//-----------------------------------------------------------------------------
{
LOG_T(RRC,
PROTOCOL_RRC_CTXT_UE_FMT" Clearing UE context 0x%p (free internal structs)\n",
PROTOCOL_RRC_CTXT_UE_ARGS(ctxt_pP),
ue_context_pP);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_LTE_SCellToAddMod_r10, &ue_context_pP->ue_context.sCell_config[0]);
ASN_STRUCT_FREE_CONTENTS_ONLY(asn_DEF_LTE_SCellToAddMod_r10, &ue_context_pP->ue_context.sCell_config[1]);
// empty the internal fields of the UE context here
}
//------------------------------------------------------------------------------
void rrc_gNB_remove_ue_context(
const protocol_ctxt_t *const ctxt_pP,
gNB_RRC_INST *rrc_instance_pP,
struct rrc_gNB_ue_context_s *ue_context_pP)
//------------------------------------------------------------------------------
{
if (rrc_instance_pP == NULL) {
LOG_E(RRC, PROTOCOL_RRC_CTXT_UE_FMT" Bad RRC instance\n",
PROTOCOL_RRC_CTXT_UE_ARGS(ctxt_pP));
return;
}
if (ue_context_pP == NULL) {
LOG_E(RRC, PROTOCOL_RRC_CTXT_UE_FMT" Trying to free a NULL UE context\n",
PROTOCOL_RRC_CTXT_UE_ARGS(ctxt_pP));
return;
}
RB_REMOVE(rrc_nr_ue_tree_s, &rrc_instance_pP->rrc_ue_head, ue_context_pP);
MSC_LOG_EVENT(
MSC_RRC_ENB,
"0 Removed UE %"PRIx16" ",
ue_context_pP->ue_context.rnti);
rrc_gNB_free_mem_UE_context(ctxt_pP, ue_context_pP);
nr_uid_linear_allocator_free(rrc_instance_pP, ue_context_pP->local_uid);
free(ue_context_pP);
rrc_instance_pP->Nb_ue --;
LOG_I(RRC,
PROTOCOL_RRC_CTXT_UE_FMT" Removed UE context\n",
PROTOCOL_RRC_CTXT_UE_ARGS(ctxt_pP));
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file rrc_eNB_UE_context.h
* \brief rrc procedures for UE context
* \author Lionel GAUTHIER
* \date 2015
* \version 1.0
* \company Eurecom
* \email: lionel.gauthier@eurecom.fr
*/
#ifndef __RRC_ENB_UE_CONTEXT_H__
#include "collection/tree.h"
#include "COMMON/platform_types.h"
#include "nr_rrc_defs.h"
void
nr_uid_linear_allocator_init(
nr_uid_allocator_t* const uid_pP
);
uid_t
nr_uid_linear_allocator_new(
gNB_RRC_INST* rrc_instance_pP
);
void
nr_uid_linear_allocator_free(
gNB_RRC_INST* rrc_instance_pP,
uid_t uidP
);
int rrc_gNB_compare_ue_rnti_id(
struct rrc_gNB_ue_context_s* c1_pP,
struct rrc_gNB_ue_context_s* c2_pP
);
RB_PROTOTYPE(rrc_ue_tree_s, rrc_gNB_ue_context_s, entries, rrc_gNB_compare_ue_rnti_id);
struct rrc_gNB_ue_context_s*
rrc_gNB_allocate_new_UE_context(
gNB_RRC_INST* rrc_instance_pP
);
struct rrc_gNB_ue_context_s*
rrc_gNB_get_ue_context(
gNB_RRC_INST* rrc_instance_pP,
rnti_t rntiP
);
void rrc_gNB_remove_ue_context(
const protocol_ctxt_t* const ctxt_pP,
gNB_RRC_INST* rrc_instance_pP,
struct rrc_gNB_ue_context_s* ue_context_pP
);
#endif
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file rrc_gNB_internode.c
* \brief rrc internode procedures for gNB
* \author Raymond Knopp
* \date 2019
* \version 1.0
* \company Eurecom
* \email: raymond.knopp@eurecom.fr
*/
#ifndef RRC_GNB_INTERNODE_C
#define RRC_GNB_INTERNODE_C
#include "nr_rrc_defs.h"
#include "NR_RRCReconfiguration.h"
#include "NR_UE-NR-Capability.h"
#include "NR_CG-ConfigInfo.h"
#include "NR_UE-CapabilityRAT-ContainerList.h"
#include "LTE_UE-CapabilityRAT-ContainerList.h"
#include "NR_CG-Config.h"
int parse_CG_ConfigInfo(gNB_RRC_INST *rrc, NR_CG_ConfigInfo_t *CG_ConfigInfo) {
if (CG_ConfigInfo->criticalExtensions.present == NR_CG_ConfigInfo__criticalExtensions_PR_c1) {
if (CG_ConfigInfo->criticalExtensions.choice.c1) {
if (CG_ConfigInfo->criticalExtensions.choice.c1->present == NR_CG_ConfigInfo__criticalExtensions__c1_PR_cg_ConfigInfo) {
NR_CG_ConfigInfo_IEs_t *cg_ConfigInfo = CG_ConfigInfo->criticalExtensions.choice.c1->choice.cg_ConfigInfo;
if (cg_ConfigInfo->ue_CapabilityInfo) {
// Decode UE-CapabilityRAT-ContainerList
LTE_UE_CapabilityRAT_ContainerList_t *UE_CapabilityRAT_ContainerList=NULL;
asn_dec_rval_t dec_rval = uper_decode(NULL,
&asn_DEF_LTE_UE_CapabilityRAT_ContainerList,
(void**)&UE_CapabilityRAT_ContainerList,
cg_ConfigInfo->ue_CapabilityInfo->buf,
cg_ConfigInfo->ue_CapabilityInfo->size, 0, 0);
if ((dec_rval.code != RC_OK) && (dec_rval.consumed == 0)) {
AssertFatal(1==0,"[InterNode] Failed to decode NR_UE_CapabilityRAT_ContainerList (%zu bits), size of OCTET_STRING %lu\n",
dec_rval.consumed, cg_ConfigInfo->ue_CapabilityInfo->size);
}
rrc_parse_ue_capabilities(rrc,UE_CapabilityRAT_ContainerList);
}
if (cg_ConfigInfo->candidateCellInfoListMN) AssertFatal(1==0,"Can't handle candidateCellInfoListMN yet\n");
}
else AssertFatal(1==0,"c1 extension is not cg_ConfigInfo, returning\n");
}
else {
LOG_E(RRC,"c1 extension not found, returning\n");
return(-1);
}
} else {
LOG_E(RRC,"Ignoring unknown CG_ConfigInfo extensions\n");
return(-1);
}
return(0);
}
int generate_CG_Config(gNB_RRC_INST *rrc,
NR_CG_Config_t *cg_Config,
NR_RRCReconfiguration_t *reconfig,
NR_RadioBearerConfig_t *rbconfig) {
cg_Config->criticalExtensions.present = NR_CG_Config__criticalExtensions_PR_c1;
cg_Config->criticalExtensions.choice.c1 = calloc(1,sizeof(*cg_Config->criticalExtensions.choice.c1));
cg_Config->criticalExtensions.choice.c1->present = NR_CG_Config__criticalExtensions__c1_PR_cg_Config;
cg_Config->criticalExtensions.choice.c1->choice.cg_Config = calloc(1,sizeof(NR_CG_Config_IEs_t));
char buffer[1024];
int total_size;
asn_enc_rval_t enc_rval = uper_encode_to_buffer(&asn_DEF_NR_RRCReconfiguration, NULL, (void *)reconfig, buffer, 1024);
AssertFatal (enc_rval.encoded > 0, "ASN1 message encoding failed (%s, %jd)!\n",
enc_rval.failed_type->name, enc_rval.encoded);
cg_Config->criticalExtensions.choice.c1->choice.cg_Config->scg_CellGroupConfig = calloc(1,sizeof(OCTET_STRING_t));
OCTET_STRING_fromBuf(cg_Config->criticalExtensions.choice.c1->choice.cg_Config->scg_CellGroupConfig,
(const char *)buffer,
(enc_rval.encoded+7)>>3);
total_size = (enc_rval.encoded+7)>>3;
LOG_I(RRC,"Dumping NR_RRCReconfiguration message (%jd bytes)\n",(enc_rval.encoded+7)>>3);
for (int i=0;i<(enc_rval.encoded+7)>>3;i++) {
printf("%02x",((uint8_t *)buffer)[i]);
}
printf("\n");
FILE *fd = fopen("reconfig.raw","w");
fwrite((void*)buffer,1,(size_t)((enc_rval.encoded+7)>>3),fd);
fclose(fd);
enc_rval = uper_encode_to_buffer(&asn_DEF_NR_RadioBearerConfig, NULL, (void *)rbconfig, buffer, 1024);
AssertFatal (enc_rval.encoded > 0, "ASN1 message encoding failed (%s, %jd)!\n",
enc_rval.failed_type->name, enc_rval.encoded);
cg_Config->criticalExtensions.choice.c1->choice.cg_Config->scg_RB_Config = calloc(1,sizeof(OCTET_STRING_t));
OCTET_STRING_fromBuf(cg_Config->criticalExtensions.choice.c1->choice.cg_Config->scg_RB_Config,
(const char *)buffer,
(enc_rval.encoded+7)>>3);
LOG_I(RRC,"Dumping scg_RB_Config message (%jd bytes)\n",(enc_rval.encoded+7)>>3);
for (int i=0;i<(enc_rval.encoded+7)>>3;i++) {
printf("%02x",((uint8_t*)buffer)[i]);
}
printf("\n");
fd = fopen("rbconfig.raw","w");
fwrite((void*)buffer,1,(size_t)((enc_rval.encoded+7)>>3),fd);
fclose(fd);
total_size = total_size + ((enc_rval.encoded+7)>>3);
return(total_size);
}
#endif
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file rrc_gNB_nsa.c
* \brief rrc NSA procedures for gNB
* \author Raymond Knopp
* \date 2019
* \version 1.0
* \company Eurecom
* \email: raymond.knopp@eurecom.fr
*/
#ifndef RRC_GNB_NSA_C
#define RRC_GNB_NSA_C
#include "nr_rrc_defs.h"
#include "NR_RRCReconfiguration.h"
#include "NR_UE-NR-Capability.h"
//#include "NR_UE-CapabilityRAT-ContainerList.h"
#include "LTE_UE-CapabilityRAT-ContainerList.h"
#include "NR_CG-Config.h"
#include "openair2/LAYER2/NR_MAC_gNB/mac_proto.h"
void rrc_parse_ue_capabilities(gNB_RRC_INST *rrc,LTE_UE_CapabilityRAT_ContainerList_t *UE_CapabilityRAT_ContainerList) {
struct rrc_gNB_ue_context_s *ue_context_p = NULL;
OCTET_STRING_t *ueCapabilityRAT_Container_nr;
OCTET_STRING_t *ueCapabilityRAT_Container_MRDC;
int list_size;
AssertFatal(UE_CapabilityRAT_ContainerList!=NULL,"UE_CapabilityRAT_ContainerList is null\n");
AssertFatal((list_size=UE_CapabilityRAT_ContainerList->list.count) >= 2, "UE_CapabilityRAT_ContainerList->list.size %d < 2\n",UE_CapabilityRAT_ContainerList->list.count);
for (int i=0;i<list_size;i++) {
if (UE_CapabilityRAT_ContainerList->list.array[i]->rat_Type == LTE_RAT_Type_nr) ueCapabilityRAT_Container_nr = &UE_CapabilityRAT_ContainerList->list.array[i]->ueCapabilityRAT_Container;
else if (UE_CapabilityRAT_ContainerList->list.array[i]->rat_Type == LTE_RAT_Type_eutra_nr) ueCapabilityRAT_Container_MRDC = &UE_CapabilityRAT_ContainerList->list.array[i]->ueCapabilityRAT_Container;
}
AssertFatal(ueCapabilityRAT_Container_nr!=NULL,"ueCapabilityRAT_Container_nr is NULL\n");
AssertFatal(ueCapabilityRAT_Container_MRDC!=NULL,"ueCapabilityRAT_Container_MRDC is NULL\n");
// decode and store capabilities
ue_context_p = rrc_gNB_allocate_new_UE_context(rrc);
asn_dec_rval_t dec_rval = uper_decode(NULL,
&asn_DEF_NR_UE_NR_Capability,
(void **)&ue_context_p->ue_context.UE_Capability_nr,
ueCapabilityRAT_Container_nr->buf,
ueCapabilityRAT_Container_nr->size, 0, 0);
if ((dec_rval.code != RC_OK) && (dec_rval.consumed == 0)) {
LOG_E(RRC, "Failed to decode UE NR capabilities (%zu bytes) container size %lu\n", dec_rval.consumed,ueCapabilityRAT_Container_nr->size);
ASN_STRUCT_FREE(asn_DEF_NR_UE_NR_Capability,
ue_context_p->ue_context.UE_Capability_nr);
ue_context_p->ue_context.UE_Capability_nr = 0;
AssertFatal(1==0,"exiting\n");
}
dec_rval = uper_decode(NULL,
&asn_DEF_NR_UE_MRDC_Capability,
(void **)&ue_context_p->ue_context.UE_Capability_MRDC,
ueCapabilityRAT_Container_MRDC->buf,
ueCapabilityRAT_Container_MRDC->size, 0, 0);
if ((dec_rval.code != RC_OK) && (dec_rval.consumed == 0)) {
LOG_E(RRC, "Failed to decode UE MRDC capabilities (%zu bytes)\n", dec_rval.consumed);
ASN_STRUCT_FREE(asn_DEF_NR_UE_MRDC_Capability,
ue_context_p->ue_context.UE_Capability_MRDC);
ue_context_p->ue_context.UE_Capability_MRDC = 0;
AssertFatal(1==0,"exiting\n");
}
// dump ue_capabilities
if ( LOG_DEBUGFLAG(DEBUG_ASN1) ) {
xer_fprint(stdout, &asn_DEF_NR_UE_NR_Capability, ue_context_p->ue_context.UE_Capability_nr);
}
if ( LOG_DEBUGFLAG(DEBUG_ASN1) ) {
xer_fprint(stdout, &asn_DEF_NR_UE_MRDC_Capability, ue_context_p->ue_context.UE_Capability_MRDC);
}
rrc_add_nsa_user(rrc,ue_context_p);
}
void rrc_add_nsa_user(gNB_RRC_INST *rrc,struct rrc_gNB_ue_context_s *ue_context_p) {
// generate nr-Config-r15 containers for LTE RRC : inside message for X2 EN-DC (CG-Config Message from 38.331)
rrc_gNB_carrier_data_t *carrier=&rrc->carrier;
MessageDef *msg;
msg = itti_alloc_new_message(TASK_RRC_ENB, X2AP_ENDC_SGNB_ADDITION_REQ_ACK);
// NR RRCReconfiguration
AssertFatal(rrc->Nb_ue < MAX_NR_RRC_UE_CONTEXTS,"cannot add another UE\n");
ue_context_p->ue_context.reconfig = calloc(1,sizeof(NR_RRCReconfiguration_t));
ue_context_p->ue_context.secondaryCellGroup = calloc(1,sizeof(NR_CellGroupConfig_t));
memset((void*)ue_context_p->ue_context.reconfig,0,sizeof(NR_RRCReconfiguration_t));
ue_context_p->ue_context.reconfig->rrc_TransactionIdentifier=0;
ue_context_p->ue_context.reconfig->criticalExtensions.present = NR_RRCReconfiguration__criticalExtensions_PR_rrcReconfiguration;
NR_RRCReconfiguration_IEs_t *reconfig_ies=calloc(1,sizeof(NR_RRCReconfiguration_IEs_t));
ue_context_p->ue_context.reconfig->criticalExtensions.choice.rrcReconfiguration = reconfig_ies;
carrier->initial_csi_index[rrc->Nb_ue] = 0;
fill_default_reconfig(carrier->servingcellconfigcommon,
reconfig_ies,
ue_context_p->ue_context.secondaryCellGroup,
carrier->pdsch_AntennaPorts,
carrier->initial_csi_index[rrc->Nb_ue]);
ue_context_p->ue_context.rb_config = calloc(1,sizeof(NR_RRCReconfiguration_t));
fill_default_rbconfig(ue_context_p->ue_context.rb_config);
ue_context_p->ue_id_rnti = ue_context_p->ue_context.secondaryCellGroup->spCellConfig->reconfigurationWithSync->newUE_Identity;
NR_CG_Config_t *CG_Config = calloc(1,sizeof(*CG_Config));
memset((void*)CG_Config,0,sizeof(*CG_Config));
int CG_Config_size = generate_CG_Config(rrc,CG_Config,ue_context_p->ue_context.reconfig,ue_context_p->ue_context.rb_config);
//X2AP_ENDC_SGNB_ADDITION_REQ_ACK(msg).rrc_buffer_size = CG_Config_size; //Need to verify correct value for the buffer_size
// Send to X2 entity to transport to MeNB
asn_enc_rval_t enc_rval = uper_encode_to_buffer(&asn_DEF_NR_CG_Config,
NULL,
(void *)CG_Config,
X2AP_ENDC_SGNB_ADDITION_REQ_ACK(msg).rrc_buffer,
1024);
X2AP_ENDC_SGNB_ADDITION_REQ_ACK(msg).rrc_buffer_size = (enc_rval.encoded+7)>>3;
itti_send_msg_to_task(TASK_X2AP, ENB_MODULE_ID_TO_INSTANCE(0), msg); //Check right id instead of hardcoding
rrc->Nb_ue++;
// configure MAC and RLC
rrc_mac_config_req_gNB(rrc->module_id,
rrc->carrier.ssb_SubcarrierOffset,
rrc->carrier.pdsch_AntennaPorts,
NULL,
1, // add_ue flag
ue_context_p->ue_id_rnti,
ue_context_p->ue_context.secondaryCellGroup);
}
#endif
This source diff could not be displayed because it is too large. You can view the blob instead.
Active_eNBs = ( "eNB-Eurecom-LTEBox");
# Asn1_verbosity, choice in: none, info, annoying
Asn1_verbosity = "none";
eNBs =
(
{
////////// Identification parameters:
eNB_ID = 0xe01;
cell_type = "CELL_MACRO_ENB";
eNB_name = "eNB-Eurecom-LTEBox";
// Tracking area code, 0x0000 and 0xfffe are reserved values
tracking_area_code = 1;
plmn_list = ( { mcc = 208; mnc = 93; mnc_length = 2; } );
tr_s_preference = "local_mac"
////////// Physical parameters:
component_carriers = (
{
node_function = "3GPP_eNODEB";
node_timing = "synch_to_ext_device";
node_synch_ref = 0;
frame_type = "FDD";
tdd_config = 3;
tdd_config_s = 0;
prefix_type = "NORMAL";
eutra_band = 7;
downlink_frequency = 2685000000L;
uplink_frequency_offset = -120000000;
Nid_cell = 1;
N_RB_DL = 50;
Nid_cell_mbsfn = 0;
nb_antenna_ports = 1;
nb_antennas_tx = 1;
nb_antennas_rx = 1;
tx_gain = 90;
rx_gain = 125;
pbch_repetition = "FALSE";
prach_root = 0;
prach_config_index = 0;
prach_high_speed = "DISABLE";
prach_zero_correlation = 1;
prach_freq_offset = 2;
pucch_delta_shift = 1;
pucch_nRB_CQI = 0;
pucch_nCS_AN = 0;
pucch_n1_AN = 0;
pdsch_referenceSignalPower = -27;
pdsch_p_b = 0;
pusch_n_SB = 1;
pusch_enable64QAM = "DISABLE";
pusch_hoppingMode = "interSubFrame";
pusch_hoppingOffset = 0;
pusch_groupHoppingEnabled = "ENABLE";
pusch_groupAssignment = 0;
pusch_sequenceHoppingEnabled = "DISABLE";
pusch_nDMRS1 = 1;
phich_duration = "NORMAL";
phich_resource = "ONESIXTH";
srs_enable = "DISABLE";
/* srs_BandwidthConfig =;
srs_SubframeConfig =;
srs_ackNackST =;
srs_MaxUpPts =;*/
pusch_p0_Nominal = -96;
pusch_alpha = "AL1";
pucch_p0_Nominal = -104;
msg3_delta_Preamble = 6;
pucch_deltaF_Format1 = "deltaF2";
pucch_deltaF_Format1b = "deltaF3";
pucch_deltaF_Format2 = "deltaF0";
pucch_deltaF_Format2a = "deltaF0";
pucch_deltaF_Format2b = "deltaF0";
rach_numberOfRA_Preambles = 64;
rach_preamblesGroupAConfig = "DISABLE";
/*
rach_sizeOfRA_PreamblesGroupA = ;
rach_messageSizeGroupA = ;
rach_messagePowerOffsetGroupB = ;
*/
rach_powerRampingStep = 4;
rach_preambleInitialReceivedTargetPower = -108;
rach_preambleTransMax = 10;
rach_raResponseWindowSize = 10;
rach_macContentionResolutionTimer = 48;
rach_maxHARQ_Msg3Tx = 4;
pcch_default_PagingCycle = 128;
pcch_nB = "oneT";
bcch_modificationPeriodCoeff = 2;
ue_TimersAndConstants_t300 = 1000;
ue_TimersAndConstants_t301 = 1000;
ue_TimersAndConstants_t310 = 1000;
ue_TimersAndConstants_t311 = 10000;
ue_TimersAndConstants_n310 = 20;
ue_TimersAndConstants_n311 = 1;
ue_TransmissionMode = 1;
//Parameters for SIB18
rxPool_sc_CP_Len = "normal";
rxPool_sc_Period = "sf40";
rxPool_data_CP_Len = "normal";
rxPool_ResourceConfig_prb_Num = 20;
rxPool_ResourceConfig_prb_Start = 5;
rxPool_ResourceConfig_prb_End = 44;
rxPool_ResourceConfig_offsetIndicator_present = "prSmall";
rxPool_ResourceConfig_offsetIndicator_choice = 0;
rxPool_ResourceConfig_subframeBitmap_present = "prBs40";
rxPool_ResourceConfig_subframeBitmap_choice_bs_buf = "00000000000000000000";
rxPool_ResourceConfig_subframeBitmap_choice_bs_size = 5;
rxPool_ResourceConfig_subframeBitmap_choice_bs_bits_unused = 0;
/* rxPool_dataHoppingConfig_hoppingParameter = 0;
rxPool_dataHoppingConfig_numSubbands = "ns1";
rxPool_dataHoppingConfig_rbOffset = 0;
rxPool_commTxResourceUC-ReqAllowed = "TRUE";
*/
// Parameters for SIB19
discRxPool_cp_Len = "normal"
discRxPool_discPeriod = "rf32"
discRxPool_numRetx = 1;
discRxPool_numRepetition = 2;
discRxPool_ResourceConfig_prb_Num = 5;
discRxPool_ResourceConfig_prb_Start = 3;
discRxPool_ResourceConfig_prb_End = 21;
discRxPool_ResourceConfig_offsetIndicator_present = "prSmall";
discRxPool_ResourceConfig_offsetIndicator_choice = 0;
discRxPool_ResourceConfig_subframeBitmap_present = "prBs40";
discRxPool_ResourceConfig_subframeBitmap_choice_bs_buf = "f0ffffffff";
discRxPool_ResourceConfig_subframeBitmap_choice_bs_size = 5;
discRxPool_ResourceConfig_subframeBitmap_choice_bs_bits_unused = 0;
}
);
srb1_parameters :
{
# timer_poll_retransmit = (ms) [5, 10, 15, 20,... 250, 300, 350, ... 500]
timer_poll_retransmit = 80;
# timer_reordering = (ms) [0,5, ... 100, 110, 120, ... ,200]
timer_reordering = 35;
# timer_reordering = (ms) [0,5, ... 250, 300, 350, ... ,500]
timer_status_prohibit = 0;
# poll_pdu = [4, 8, 16, 32 , 64, 128, 256, infinity(>10000)]
poll_pdu = 4;
# poll_byte = (kB) [25,50,75,100,125,250,375,500,750,1000,1250,1500,2000,3000,infinity(>10000)]
poll_byte = 99999;
# max_retx_threshold = [1, 2, 3, 4 , 6, 8, 16, 32]
max_retx_threshold = 4;
}
# ------- SCTP definitions
SCTP :
{
# Number of streams to use in input/output
SCTP_INSTREAMS = 2;
SCTP_OUTSTREAMS = 2;
};
////////// MME parameters:
mme_ip_address = ( { ipv4 = "192.168.12.26";
ipv6 = "192:168:30::17";
active = "yes";
preference = "ipv4";
}
);
///X2
enable_x2 = "yes";
t_reloc_prep = 1000; /* unit: millisecond */
tx2_reloc_overall = 2000; /* unit: millisecond */
NETWORK_INTERFACES :
{
ENB_INTERFACE_NAME_FOR_S1_MME = "enp0s31f6";
ENB_IPV4_ADDRESS_FOR_S1_MME = "192.168.12.188/23";
ENB_INTERFACE_NAME_FOR_S1U = "enp0s31f6";
ENB_IPV4_ADDRESS_FOR_S1U = "192.168.12.188/23";
ENB_PORT_FOR_S1U = 2152; # Spec 2152
ENB_IPV4_ADDRESS_FOR_X2C = "192.168.12.188/23";
ENB_PORT_FOR_X2C = 36422; # Spec 36422
};
}
);
DU = (
{
DU_INTERFACE_NAME_FOR_F1U = "lo";
DU_IPV4_ADDRESS_FOR_F1U = "127.0.0.1/16";
DU_PORT_FOR_F1U = 22100;
F1_U_DU_TRANSPORT_TYPE = "TCP";
}
);
CU = (
{
CU_INTERFACE_NAME_FOR_F1U = "lo";
CU_IPV4_ADDRESS_FOR_F1U = "127.0.0.1"; //Address to search the DU
CU_PORT_FOR_F1U = 22100;
F1_U_CU_TRANSPORT_TYPE = "TCP"; // One of TCP/UDP/SCTP
DU_TYPE = "LTE";
}//,
// {
// CU_INTERFACE_NAME_FOR_F1U = "eth0";
// CU_IPV4_ADDRESS_FOR_F1U = "10.64.93.142"; //Address to search the DU
// CU_PORT_FOR_F1U = 2211;
// F1_U_CU_TRANSPORT_TYPE = "TCP"; // One of TCP/UDP/SCTP
// DU_TYPE = "WiFi";
// }
);
CU_BALANCING = "ALL";
MACRLCs = (
{
num_cc = 1;
tr_s_preference = "local_L1";
tr_n_preference = "local_RRC";
phy_test_mode = 0;
puSch10xSnr = 200;
puCch10xSnr = 200;
}
);
L1s = (
{
num_cc = 1;
tr_n_preference = "local_mac";
}
);
RUs = (
{
local_rf = "yes"
nb_tx = 1
nb_rx = 1
att_tx = 0
att_rx = 0;
bands = [7];
max_pdschReferenceSignalPower = -27;
max_rxgain = 125;
eNB_instances = [0];
}
);
NETWORK_CONTROLLER :
{
FLEXRAN_ENABLED = "no";
FLEXRAN_INTERFACE_NAME = "lo";
FLEXRAN_IPV4_ADDRESS = "127.0.0.1";
FLEXRAN_PORT = 2210;
FLEXRAN_CACHE = "/mnt/oai_agent_cache";
FLEXRAN_AWAIT_RECONF = "no";
};
THREAD_STRUCT = (
{
#three config for level of parallelism "PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"
parallel_config = "PARALLEL_SINGLE_THREAD";
#two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"
worker_config = "WORKER_ENABLE";
}
);
log_config :
{
global_log_level ="info";
global_log_verbosity ="medium";
hw_log_level ="info";
hw_log_verbosity ="medium";
phy_log_level ="info";
phy_log_verbosity ="medium";
mac_log_level ="info";
mac_log_verbosity ="high";
rlc_log_level ="info";
rlc_log_verbosity ="medium";
pdcp_log_level ="info";
pdcp_log_verbosity ="medium";
rrc_log_level ="info";
rrc_log_verbosity ="medium";
};
Active_gNBs = ( "gNB-Eurecom-5GNRBox");
# Asn1_verbosity, choice in: none, info, annoying
Asn1_verbosity = "none";
gNBs =
(
{
////////// Identification parameters:
gNB_ID = 0xe00;
cell_type = "CELL_MACRO_GNB";
gNB_name = "gNB-Eurecom-5GNRBox";
// Tracking area code, 0x0000 and 0xfffe are reserved values
tracking_area_code = 1;
plmn_list = ({mcc = 208; mnc = 93; mnc_length = 2;});
tr_s_preference = "local_mac"
////////// Physical parameters:
ssb_SubcarrierOffset = 0;
pdsch_AntennaPorts = 1;
servingCellConfigCommon = (
{
#spCellConfigCommon
physCellId = 0;
# downlinkConfigCommon
#frequencyInfoDL
# this is pointA + 23 PRBs@120kHz SCS (same as initial BWP)
absoluteFrequencySSB = 2077907;
dl_frequencyBand = 257;
# this is 27.900 GHz
dl_absoluteFrequencyPointA = 2077499;
#scs-SpecificCarrierList
dl_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
dl_subcarrierSpacing = 3;
dl_carrierBandwidth = 32;
#initialDownlinkBWP
#genericParameters
# this is RBstart=0,L=50 (275*(L-1))+RBstart
initialDLBWPlocationAndBandwidth = 8525;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialDLBWPsubcarrierSpacing = 3;
#pdcch-ConfigCommon
initialDLBWPcontrolResourceSetZero = 12;
initialDLBWPsearchSpaceZero = 0;
#pdsch-ConfigCommon
#pdschTimeDomainAllocationList (up to 16 entries)
initialDLBWPk0_0 = 0;
#initialULBWPmappingType
#0=typeA,1=typeB
initialDLBWPmappingType_0 = 0;
#this is SS=2,L=3
initialDLBWPstartSymbolAndLength_0 = 40;
initialDLBWPk0_1 = 0;
initialDLBWPmappingType_1 = 0;
#this is SS=2,L=12
initialDLBWPstartSymbolAndLength_1 = 53;
initialDLBWPk0_2 = 0;
initialDLBWPmappingType_2 = 0;
#this is SS=1,L=12
initialDLBWPstartSymbolAndLength_2 = 54;
#uplinkConfigCommon
#frequencyInfoUL
ul_frequencyBand = 257;
#scs-SpecificCarrierList
ul_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
ul_subcarrierSpacing = 3;
ul_carrierBandwidth = 32;
pMax = 20;
#initialUplinkBWP
#genericParameters
initialULBWPlocationAndBandwidth = 8525;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialULBWPsubcarrierSpacing = 3;
#rach-ConfigCommon
#rach-ConfigGeneric
prach_ConfigurationIndex = 98;
#prach_msg1_FDM
#0 = one, 1=two, 2=four, 3=eight
prach_msg1_FDM = 0;
prach_msg1_FrequencyStart = 0;
zeroCorrelationZoneConfig = 13;
preambleReceivedTargetPower = -118;
#preamblTransMax (0...10) = (3,4,5,6,7,8,10,20,50,100,200)
preambleTransMax = 6;
#powerRampingStep
# 0=dB0,1=dB2,2=dB4,3=dB6
powerRampingStep = 1;
#ra_ReponseWindow
#1,2,4,8,10,20,40,80
ra_ResponseWindow = 4;
#ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR
#0=oneeighth,1=onefourth,2=half,3=one,4=two,5=four,6=eight,7=sixteen
ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR = 3;
#oneHalf (0..15) 4,8,12,16,...60,64
ssb_perRACH_OccasionAndCB_PreamblesPerSSB = 15;
#ra_ContentionResolutionTimer
#(0..7) 8,16,24,32,40,48,56,64
ra_ContentionResolutionTimer = 7;
rsrp_ThresholdSSB = 19;
#prach-RootSequenceIndex_PR
#0 = 839, 1 = 139
prach_RootSequenceIndex_PR = 1;
prach_RootSequenceIndex = 1;
# SCS for msg1, can only be 15 for 30 kHz < 6 GHz, takes precendence over the one derived from prach-ConfigIndex
#
msg1_SubcarrierSpacing = 1,
# restrictedSetConfig
# 0=unrestricted, 1=restricted type A, 2=restricted type B
restrictedSetConfig = 0,
# pusch-ConfigCommon (up to 16 elements)
initialULBWPk2_0 = 2;
initialULBWPmappingType_0 = 1
# this is SS=0 L=11
initialULBWPstartSymbolAndLength_0 = 55;
initialULBWPk2_1 = 2;
initialULBWPmappingType_1 = 1;
# this is SS=0 L=12
initialULBWPstartSymbolAndLength_1 = 69;
msg3_DeltaPreamble = 1;
p0_NominalWithGrant =-90;
# pucch-ConfigCommon setup :
# pucchGroupHopping
# 0 = neither, 1= group hopping, 2=sequence hopping
pucchGroupHopping = 0;
hoppingId = 40;
p0_nominal = -90;
# ssb_PositionsInBurs_BitmapPR
# 1=short, 2=medium, 3=long
ssb_PositionsInBurst_PR = 3;
ssb_PositionsInBurst_Bitmap = 0x100000001L;
# ssb_periodicityServingCell
# 0 = ms5, 1=ms10, 2=ms20, 3=ms40, 4=ms80, 5=ms160, 6=spare2, 7=spare1
ssb_periodicityServingCell = 2;
# dmrs_TypeA_position
# 0 = pos2, 1 = pos3
dmrs_TypeA_Position = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
subcarrierSpacing = 3;
#tdd-UL-DL-ConfigurationCommon
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
referenceSubcarrierSpacing = 3;
# pattern1
# dl_UL_TransmissionPeriodicity
# 0=ms0p5, 1=ms0p625, 2=ms1, 3=ms1p25, 4=ms2, 5=ms2p5, 6=ms5, 7=ms10
dl_UL_TransmissionPeriodicity = 5;
nrofDownlinkSlots = 10;
nrofDownlinkSymbols = 0;
nrofUplinkSlots = 10;
nrofUplinkSymbols = 0;
ssPBCH_BlockPower = 10;
}
);
# ------- SCTP definitions
SCTP :
{
# Number of streams to use in input/output
SCTP_INSTREAMS = 2;
SCTP_OUTSTREAMS = 2;
};
////////// MME parameters:
mme_ip_address = ( { ipv4 = "192.168.12.26";
ipv6 = "192:168:30::17";
active = "yes";
preference = "ipv4";
}
);
NETWORK_INTERFACES :
{
GNB_INTERFACE_NAME_FOR_S1_MME = "eth0";
GNB_IPV4_ADDRESS_FOR_S1_MME = "192.168.12.111/24";
GNB_INTERFACE_NAME_FOR_S1U = "eth0";
GNB_IPV4_ADDRESS_FOR_S1U = "192.168.12.111/24";
GNB_PORT_FOR_S1U = 2152; # Spec 2152
};
}
);
MACRLCs = (
{
num_cc = 1;
tr_s_preference = "local_L1";
tr_n_preference = "local_RRC";
}
);
L1s = (
{
num_cc = 1;
tr_n_preference = "local_mac";
}
);
RUs = (
{
local_rf = "yes"
nb_tx = 1;
nb_rx = 1;
att_tx = 0;
att_rx = 0;
bands = [7];
max_pdschReferenceSignalPower = -27;
max_rxgain = 114;
eNB_instances = [0];
sdr_addrs = "addr=192.168.10.2,second_addr=192.168.20.2";
if_freq = 5300000000;
}
);
THREAD_STRUCT = (
{
#three config for level of parallelism "PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"
parallel_config = "PARALLEL_RU_L1_TRX_SPLIT";
#two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"
worker_config = "WORKER_ENABLE";
}
);
log_config :
{
global_log_level ="info";
global_log_verbosity ="medium";
hw_log_level ="info";
hw_log_verbosity ="medium";
phy_log_level ="info";
phy_log_verbosity ="medium";
mac_log_level ="info";
mac_log_verbosity ="high";
rlc_log_level ="info";
rlc_log_verbosity ="medium";
pdcp_log_level ="info";
pdcp_log_verbosity ="medium";
rrc_log_level ="info";
rrc_log_verbosity ="medium";
};
Active_gNBs = ( "gNB-Eurecom-5GNRBox");
# Asn1_verbosity, choice in: none, info, annoying
Asn1_verbosity = "none";
gNBs =
(
{
////////// Identification parameters:
gNB_ID = 0xe00;
cell_type = "CELL_MACRO_GNB";
gNB_name = "gNB-Eurecom-5GNRBox";
// Tracking area code, 0x0000 and 0xfffe are reserved values
tracking_area_code = 1;
plmn_list = ({mcc = 208; mnc = 93; mnc_length = 2;});
tr_s_preference = "local_mac"
////////// Physical parameters:
ssb_SubcarrierOffset = 0;
pdsch_AntennaPorts = 1;
servingCellConfigCommon = (
{
#spCellConfigCommon
physCellId = 0;
# downlinkConfigCommon
#frequencyInfoDL
# this is pointA + 23 PRBs@120kHz SCS (same as initial BWP)
absoluteFrequencySSB = 2078315;
dl_frequencyBand = 257;
# this is 27.900 GHz
dl_absoluteFrequencyPointA = 2077499;
#scs-SpecificCarrierList
dl_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
dl_subcarrierSpacing = 3;
dl_carrierBandwidth = 66;
#initialDownlinkBWP
#genericParameters
# this is RBstart=0,L=50 (275*(L-1))+RBstart
initialDLBWPlocationAndBandwidth = 13475;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialDLBWPsubcarrierSpacing = 3;
#pdcch-ConfigCommon
initialDLBWPcontrolResourceSetZero = 12;
initialDLBWPsearchSpaceZero = 0;
#pdsch-ConfigCommon
#pdschTimeDomainAllocationList (up to 16 entries)
initialDLBWPk0_0 = 0;
#initialULBWPmappingType
#0=typeA,1=typeB
initialDLBWPmappingType_0 = 0;
#this is SS=2,L=3
initialDLBWPstartSymbolAndLength_0 = 40;
initialDLBWPk0_1 = 0;
initialDLBWPmappingType_1 = 0;
#this is SS=2,L=12
initialDLBWPstartSymbolAndLength_1 = 53;
initialDLBWPk0_2 = 0;
initialDLBWPmappingType_2 = 0;
#this is SS=1,L=12
initialDLBWPstartSymbolAndLength_2 = 54;
#uplinkConfigCommon
#frequencyInfoUL
ul_frequencyBand = 257;
#scs-SpecificCarrierList
ul_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
ul_subcarrierSpacing = 3;
ul_carrierBandwidth = 66;
pMax = 20;
#initialUplinkBWP
#genericParameters
initialULBWPlocationAndBandwidth = 13475;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialULBWPsubcarrierSpacing = 3;
#rach-ConfigCommon
#rach-ConfigGeneric
prach_ConfigurationIndex = 98;
#prach_msg1_FDM
#0 = one, 1=two, 2=four, 3=eight
prach_msg1_FDM = 0;
prach_msg1_FrequencyStart = 0;
zeroCorrelationZoneConfig = 13;
preambleReceivedTargetPower = -118;
#preamblTransMax (0...10) = (3,4,5,6,7,8,10,20,50,100,200)
preambleTransMax = 6;
#powerRampingStep
# 0=dB0,1=dB2,2=dB4,3=dB6
powerRampingStep = 1;
#ra_ReponseWindow
#1,2,4,8,10,20,40,80
ra_ResponseWindow = 4;
#ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR
#0=oneeighth,1=onefourth,2=half,3=one,4=two,5=four,6=eight,7=sixteen
ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR = 3;
#oneHalf (0..15) 4,8,12,16,...60,64
ssb_perRACH_OccasionAndCB_PreamblesPerSSB = 15;
#ra_ContentionResolutionTimer
#(0..7) 8,16,24,32,40,48,56,64
ra_ContentionResolutionTimer = 7;
rsrp_ThresholdSSB = 19;
#prach-RootSequenceIndex_PR
#0 = 839, 1 = 139
prach_RootSequenceIndex_PR = 1;
prach_RootSequenceIndex = 1;
# SCS for msg1, can only be 15 for 30 kHz < 6 GHz, takes precendence over the one derived from prach-ConfigIndex
#
msg1_SubcarrierSpacing = 1,
# restrictedSetConfig
# 0=unrestricted, 1=restricted type A, 2=restricted type B
restrictedSetConfig = 0,
# pusch-ConfigCommon (up to 16 elements)
initialULBWPk2_0 = 2;
initialULBWPmappingType_0 = 1
# this is SS=0 L=11
initialULBWPstartSymbolAndLength_0 = 55;
initialULBWPk2_1 = 2;
initialULBWPmappingType_1 = 1;
# this is SS=0 L=12
initialULBWPstartSymbolAndLength_1 = 69;
msg3_DeltaPreamble = 1;
p0_NominalWithGrant =-90;
# pucch-ConfigCommon setup :
# pucchGroupHopping
# 0 = neither, 1= group hopping, 2=sequence hopping
pucchGroupHopping = 0;
hoppingId = 40;
p0_nominal = -90;
# ssb_PositionsInBurs_BitmapPR
# 1=short, 2=medium, 3=long
ssb_PositionsInBurst_PR = 3;
ssb_PositionsInBurst_Bitmap = 1;
# ssb_periodicityServingCell
# 0 = ms5, 1=ms10, 2=ms20, 3=ms40, 4=ms80, 5=ms160, 6=spare2, 7=spare1
ssb_periodicityServingCell = 2;
# dmrs_TypeA_position
# 0 = pos2, 1 = pos3
dmrs_TypeA_Position = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
subcarrierSpacing = 3;
#tdd-UL-DL-ConfigurationCommon
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
referenceSubcarrierSpacing = 1;
# pattern1
# dl_UL_TransmissionPeriodicity
# 0=ms0p5, 1=ms0p625, 2=ms1, 3=ms1p25, 4=ms2, 5=ms2p5, 6=ms5, 7=ms10
dl_UL_TransmissionPeriodicity = 6;
nrofDownlinkSlots = 30;
nrofDownlinkSymbols = 0;
nrofUplinkSlots = 10;
nrofUplinkSymbols = 0;
ssPBCH_BlockPower = 10;
}
);
# ------- SCTP definitions
SCTP :
{
# Number of streams to use in input/output
SCTP_INSTREAMS = 2;
SCTP_OUTSTREAMS = 2;
};
////////// MME parameters:
mme_ip_address = ( { ipv4 = "192.168.12.26";
ipv6 = "192:168:30::17";
active = "yes";
preference = "ipv4";
}
);
NETWORK_INTERFACES :
{
GNB_INTERFACE_NAME_FOR_S1_MME = "eth0";
GNB_IPV4_ADDRESS_FOR_S1_MME = "192.168.12.111/24";
GNB_INTERFACE_NAME_FOR_S1U = "eth0";
GNB_IPV4_ADDRESS_FOR_S1U = "192.168.12.111/24";
GNB_PORT_FOR_S1U = 2152; # Spec 2152
};
}
);
MACRLCs = (
{
num_cc = 1;
tr_s_preference = "local_L1";
tr_n_preference = "local_RRC";
}
);
L1s = (
{
num_cc = 1;
tr_n_preference = "local_mac";
}
);
RUs = (
{
local_rf = "yes"
nb_tx = 1
nb_rx = 1
att_tx = 0
att_rx = 0;
bands = [7];
max_pdschReferenceSignalPower = -27;
max_rxgain = 114;
eNB_instances = [0];
sdr_addrs = "type=n300";
}
);
THREAD_STRUCT = (
{
#three config for level of parallelism "PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"
parallel_config = "PARALLEL_RU_L1_TRX_SPLIT";
#two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"
worker_config = "WORKER_ENABLE";
}
);
log_config :
{
global_log_level ="info";
global_log_verbosity ="medium";
hw_log_level ="info";
hw_log_verbosity ="medium";
phy_log_level ="info";
phy_log_verbosity ="medium";
mac_log_level ="info";
mac_log_verbosity ="high";
rlc_log_level ="info";
rlc_log_verbosity ="medium";
pdcp_log_level ="info";
pdcp_log_verbosity ="medium";
rrc_log_level ="info";
rrc_log_verbosity ="medium";
};
Active_gNBs = ( "gNB-Eurecom-5GNRBox");
# Asn1_verbosity, choice in: none, info, annoying
Asn1_verbosity = "none";
gNBs =
(
{
////////// Identification parameters:
gNB_ID = 0xe00;
cell_type = "CELL_MACRO_GNB";
gNB_name = "gNB-Eurecom-5GNRBox";
// Tracking area code, 0x0000 and 0xfffe are reserved values
tracking_area_code = 600;
plmn_list = ({mcc = 311; mnc = 480; mnc_length = 3;});
tr_s_preference = "local_mac"
////////// Physical parameters:
ssb_SubcarrierOffset = 0;
pdsch_AntennaPorts = 1;
servingCellConfigCommon = (
{
#spCellConfigCommon
physCellId = 0;
# downlinkConfigCommon
#frequencyInfoDL
# this is pointA + 23 PRBs@120kHz SCS (same as initial BWP)
absoluteFrequencySSB = 2071241;
dl_frequencyBand = 261;
# this is 27.900 GHz
dl_absoluteFrequencyPointA = 2070833;
#scs-SpecificCarrierList
dl_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
dl_subcarrierSpacing = 3;
dl_carrierBandwidth = 32;
#initialDownlinkBWP
#genericParameters
# this is RBstart=0,L=50 (275*(L-1))+RBstart
initialDLBWPlocationAndBandwidth = 8525;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialDLBWPsubcarrierSpacing = 3;
#pdcch-ConfigCommon
initialDLBWPcontrolResourceSetZero = 12;
initialDLBWPsearchSpaceZero = 0;
#pdsch-ConfigCommon
#pdschTimeDomainAllocationList (up to 16 entries)
initialDLBWPk0_0 = 0;
#initialULBWPmappingType
#0=typeA,1=typeB
initialDLBWPmappingType_0 = 0;
#this is SS=2,L=3
initialDLBWPstartSymbolAndLength_0 = 40;
initialDLBWPk0_1 = 0;
initialDLBWPmappingType_1 = 0;
#this is SS=2,L=12
initialDLBWPstartSymbolAndLength_1 = 53;
initialDLBWPk0_2 = 0;
initialDLBWPmappingType_2 = 0;
#this is SS=1,L=12
initialDLBWPstartSymbolAndLength_2 = 54;
#uplinkConfigCommon
#frequencyInfoUL
ul_frequencyBand = 261;
#scs-SpecificCarrierList
ul_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
ul_subcarrierSpacing = 3;
ul_carrierBandwidth = 32;
pMax = 20;
#initialUplinkBWP
#genericParameters
initialULBWPlocationAndBandwidth = 8525;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialULBWPsubcarrierSpacing = 3;
#rach-ConfigCommon
#rach-ConfigGeneric
prach_ConfigurationIndex = 98;
#prach_msg1_FDM
#0 = one, 1=two, 2=four, 3=eight
prach_msg1_FDM = 0;
prach_msg1_FrequencyStart = 0;
zeroCorrelationZoneConfig = 13;
preambleReceivedTargetPower = -118;
#preamblTransMax (0...10) = (3,4,5,6,7,8,10,20,50,100,200)
preambleTransMax = 6;
#powerRampingStep
# 0=dB0,1=dB2,2=dB4,3=dB6
powerRampingStep = 1;
#ra_ReponseWindow
#1,2,4,8,10,20,40,80
ra_ResponseWindow = 4;
#ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR
#0=oneeighth,1=onefourth,2=half,3=one,4=two,5=four,6=eight,7=sixteen
ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR = 3;
#oneHalf (0..15) 4,8,12,16,...60,64
ssb_perRACH_OccasionAndCB_PreamblesPerSSB = 15;
#ra_ContentionResolutionTimer
#(0..7) 8,16,24,32,40,48,56,64
ra_ContentionResolutionTimer = 7;
rsrp_ThresholdSSB = 19;
#prach-RootSequenceIndex_PR
#0 = 839, 1 = 139
prach_RootSequenceIndex_PR = 1;
prach_RootSequenceIndex = 1;
# SCS for msg1, can only be 15 for 30 kHz < 6 GHz, takes precendence over the one derived from prach-ConfigIndex
#
msg1_SubcarrierSpacing = 1,
# restrictedSetConfig
# 0=unrestricted, 1=restricted type A, 2=restricted type B
restrictedSetConfig = 0,
# pusch-ConfigCommon (up to 16 elements)
initialULBWPk2_0 = 2;
initialULBWPmappingType_0 = 1
# this is SS=0 L=11
initialULBWPstartSymbolAndLength_0 = 55;
initialULBWPk2_1 = 2;
initialULBWPmappingType_1 = 1;
# this is SS=0 L=12
initialULBWPstartSymbolAndLength_1 = 69;
msg3_DeltaPreamble = 1;
p0_NominalWithGrant =-90;
# pucch-ConfigCommon setup :
# pucchGroupHopping
# 0 = neither, 1= group hopping, 2=sequence hopping
pucchGroupHopping = 0;
hoppingId = 40;
p0_nominal = -90;
# ssb_PositionsInBurs_BitmapPR
# 1=short, 2=medium, 3=long
ssb_PositionsInBurst_PR = 3;
ssb_PositionsInBurst_Bitmap = 0x100000001L;
# ssb_periodicityServingCell
# 0 = ms5, 1=ms10, 2=ms20, 3=ms40, 4=ms80, 5=ms160, 6=spare2, 7=spare1
ssb_periodicityServingCell = 2;
# dmrs_TypeA_position
# 0 = pos2, 1 = pos3
dmrs_TypeA_Position = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
subcarrierSpacing = 3;
#tdd-UL-DL-ConfigurationCommon
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
referenceSubcarrierSpacing = 3;
# pattern1
# dl_UL_TransmissionPeriodicity
# 0=ms0p5, 1=ms0p625, 2=ms1, 3=ms1p25, 4=ms2, 5=ms2p5, 6=ms5, 7=ms10
dl_UL_TransmissionPeriodicity = 5;
nrofDownlinkSlots = 10;
nrofDownlinkSymbols = 0;
nrofUplinkSlots = 10;
nrofUplinkSymbols = 0;
ssPBCH_BlockPower = 10;
}
);
# ------- SCTP definitions
SCTP :
{
# Number of streams to use in input/output
SCTP_INSTREAMS = 2;
SCTP_OUTSTREAMS = 2;
};
////////// MME parameters:
mme_ip_address = ( { ipv4 = "192.168.12.26";
ipv6 = "192:168:30::17";
active = "yes";
preference = "ipv4";
}
);
NETWORK_INTERFACES :
{
GNB_INTERFACE_NAME_FOR_S1_MME = "eth0";
GNB_IPV4_ADDRESS_FOR_S1_MME = "192.168.12.111/24";
GNB_INTERFACE_NAME_FOR_S1U = "eth0";
GNB_IPV4_ADDRESS_FOR_S1U = "192.168.12.111/24";
GNB_PORT_FOR_S1U = 2152; # Spec 2152
};
}
);
MACRLCs = (
{
num_cc = 1;
tr_s_preference = "local_L1";
tr_n_preference = "local_RRC";
}
);
L1s = (
{
num_cc = 1;
tr_n_preference = "local_mac";
}
);
RUs = (
{
local_rf = "yes"
nb_tx = 1;
nb_rx = 1;
att_tx = 0;
att_rx = 0;
bands = [7];
max_pdschReferenceSignalPower = -27;
max_rxgain = 114;
eNB_instances = [0];
sdr_addrs = "addr=192.168.10.2,second_addr=192.168.20.2";
if_freq = 5124520000L;
}
);
THREAD_STRUCT = (
{
#three config for level of parallelism "PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"
parallel_config = "PARALLEL_RU_L1_TRX_SPLIT";
#two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"
worker_config = "WORKER_ENABLE";
}
);
log_config :
{
global_log_level ="info";
global_log_verbosity ="medium";
hw_log_level ="info";
hw_log_verbosity ="medium";
phy_log_level ="info";
phy_log_verbosity ="medium";
mac_log_level ="info";
mac_log_verbosity ="high";
rlc_log_level ="info";
rlc_log_verbosity ="medium";
pdcp_log_level ="info";
pdcp_log_verbosity ="medium";
rrc_log_level ="info";
rrc_log_verbosity ="medium";
};
Active_gNBs = ( "gNB-Eurecom-5GNRBox");
# Asn1_verbosity, choice in: none, info, annoying
Asn1_verbosity = "none";
gNBs =
(
{
////////// Identification parameters:
gNB_ID = 0xe00;
cell_type = "CELL_MACRO_GNB";
gNB_name = "gNB-Eurecom-5GNRBox";
// Tracking area code, 0x0000 and 0xfffe are reserved values
tracking_area_code = 1;
plmn_list = ({mcc = 208; mnc = 93; mnc_length = 2;});
tr_s_preference = "local_mac"
////////// Physical parameters:
ssb_SubcarrierOffset = 31;
pdsch_AntennaPorts = 1;
servingCellConfigCommon = (
{
#spCellConfigCommon
physCellId = 10;
# downlinkConfigCommon
#frequencyInfoDL
# this is 3600 MHz + 84 PRBs@30kHz SCS (same as initial BWP)
absoluteFrequencySSB = 641272;
dl_frequencyBand = 78;
# this is 3600 MHz
dl_absoluteFrequencyPointA = 640000;
#scs-SpecificCarrierList
dl_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
dl_subcarrierSpacing = 1;
dl_carrierBandwidth = 106;
#initialDownlinkBWP
#genericParameters
# this is RBstart=84,L=13 (275*(L-1))+RBstart
initialDLBWPlocationAndBandwidth = 6366;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialDLBWPsubcarrierSpacing = 1;
#pdcch-ConfigCommon
initialDLBWPcontrolResourceSetZero = 0;
initialDLBWPsearchSpaceZero = 0;
#pdsch-ConfigCommon
#pdschTimeDomainAllocationList (up to 16 entries)
initialDLBWPk0_0 = 0;
#initialULBWPmappingType
#0=typeA,1=typeB
initialDLBWPmappingType_0 = 0;
#this is SS=2,L=3
initialDLBWPstartSymbolAndLength_0 = 40;
initialDLBWPk0_1 = 0;
initialDLBWPmappingType_1 = 0;
#this is SS=2,L=12
initialDLBWPstartSymbolAndLength_1 = 53;
initialDLBWPk0_2 = 0;
initialDLBWPmappingType_2 = 0;
#this is SS=1,L=12
initialDLBWPstartSymbolAndLength_2 = 54;
#uplinkConfigCommon
#frequencyInfoUL
ul_frequencyBand = 78;
#scs-SpecificCarrierList
ul_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
ul_subcarrierSpacing = 1;
ul_carrierBandwidth = 106;
pMax = 20;
#initialUplinkBWP
#genericParameters
initialULBWPlocationAndBandwidth = 6366;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialULBWPsubcarrierSpacing = 1;
#rach-ConfigCommon
#rach-ConfigGeneric
prach_ConfigurationIndex = 98;
#prach_msg1_FDM
#0 = one, 1=two, 2=four, 3=eight
prach_msg1_FDM = 0;
prach_msg1_FrequencyStart = 0;
zeroCorrelationZoneConfig = 13;
preambleReceivedTargetPower = -118;
#preamblTransMax (0...10) = (3,4,5,6,7,8,10,20,50,100,200)
preambleTransMax = 6;
#powerRampingStep
# 0=dB0,1=dB2,2=dB4,3=dB6
powerRampingStep = 1;
#ra_ReponseWindow
#1,2,4,8,10,20,40,80
ra_ResponseWindow = 5;
#ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR
#1=oneeighth,2=onefourth,3=half,4=one,5=two,6=four,7=eight,8=sixteen
ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR = 4;
#oneHalf (0..15) 4,8,12,16,...60,64
ssb_perRACH_OccasionAndCB_PreamblesPerSSB = 15;
#ra_ContentionResolutionTimer
#(0..7) 8,16,24,32,40,48,56,64
ra_ContentionResolutionTimer = 7;
rsrp_ThresholdSSB = 19;
#prach-RootSequenceIndex_PR
#1 = 839, 2 = 139
prach_RootSequenceIndex_PR = 2;
prach_RootSequenceIndex = 0;
# SCS for msg1, can only be 15 for 30 kHz < 6 GHz, takes precendence over the one derived from prach-ConfigIndex
#
msg1_SubcarrierSpacing = 1,
# restrictedSetConfig
# 0=unrestricted, 1=restricted type A, 2=restricted type B
restrictedSetConfig = 0,
# pusch-ConfigCommon (up to 16 elements)
initialULBWPk2_0 = 2;
initialULBWPmappingType_0 = 1
# this is SS=0 L=11
initialULBWPstartSymbolAndLength_0 = 55;
initialULBWPk2_1 = 2;
initialULBWPmappingType_1 = 1;
# this is SS=0 L=12
initialULBWPstartSymbolAndLength_1 = 69;
msg3_DeltaPreamble = 1;
p0_NominalWithGrant =-90;
# pucch-ConfigCommon setup :
# pucchGroupHopping
# 0 = neither, 1= group hopping, 2=sequence hopping
pucchGroupHopping = 0;
hoppingId = 40;
p0_nominal = -90;
# ssb_PositionsInBurs_BitmapPR
# 1=short, 2=medium, 3=long
ssb_PositionsInBurst_PR = 2;
ssb_PositionsInBurst_Bitmap = 1;
# ssb_periodicityServingCell
# 0 = ms5, 1=ms10, 2=ms20, 3=ms40, 4=ms80, 5=ms160, 6=spare2, 7=spare1
ssb_periodicityServingCell = 2;
# dmrs_TypeA_position
# 0 = pos2, 1 = pos3
dmrs_TypeA_Position = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
subcarrierSpacing = 1;
#tdd-UL-DL-ConfigurationCommon
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
referenceSubcarrierSpacing = 1;
# pattern1
# dl_UL_TransmissionPeriodicity
# 0=ms0p5, 1=ms0p625, 2=ms1, 3=ms1p25, 4=ms2, 5=ms2p5, 6=ms5, 7=ms10
dl_UL_TransmissionPeriodicity = 6;
nrofDownlinkSlots = 7;
nrofDownlinkSymbols = 6;
nrofUplinkSlots = 2;
nrofUplinkSymbols = 4;
ssPBCH_BlockPower = 10;
}
);
# ------- SCTP definitions
SCTP :
{
# Number of streams to use in input/output
SCTP_INSTREAMS = 2;
SCTP_OUTSTREAMS = 2;
};
////////// MME parameters:
mme_ip_address = ( { ipv4 = "192.168.12.26";
ipv6 = "192:168:30::17";
active = "yes";
preference = "ipv4";
}
);
///X2
enable_x2 = "yes";
t_reloc_prep = 1000; /* unit: millisecond */
tx2_reloc_overall = 2000; /* unit: millisecond */
target_enb_x2_ip_address = (
{ ipv4 = "192.168.12.196";
ipv6 = "192:168:30::17";
preference = "ipv4";
}
);
NETWORK_INTERFACES :
{
GNB_INTERFACE_NAME_FOR_S1_MME = "eth0";
GNB_IPV4_ADDRESS_FOR_S1_MME = "192.168.12.111/24";
GNB_INTERFACE_NAME_FOR_S1U = "eth0";
GNB_IPV4_ADDRESS_FOR_S1U = "192.168.12.111/24";
GNB_PORT_FOR_S1U = 2152; # Spec 2152
GNB_IPV4_ADDRESS_FOR_X2C = "192.168.12.111/24";
GNB_PORT_FOR_X2C = 36422; # Spec 36422
};
}
);
MACRLCs = (
{
num_cc = 1;
tr_s_preference = "local_L1";
tr_n_preference = "local_RRC";
}
);
L1s = (
{
num_cc = 1;
tr_n_preference = "local_mac";
}
);
RUs = (
{
local_rf = "yes"
nb_tx = 1
nb_rx = 1
att_tx = 0
att_rx = 0;
bands = [7];
max_pdschReferenceSignalPower = -27;
max_rxgain = 114;
eNB_instances = [0];
clock_src = "internal";
}
);
THREAD_STRUCT = (
{
#three config for level of parallelism "PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"
parallel_config = "PARALLEL_RU_L1_TRX_SPLIT";
#two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"
worker_config = "WORKER_ENABLE";
}
);
log_config :
{
global_log_level ="info";
global_log_verbosity ="medium";
hw_log_level ="info";
hw_log_verbosity ="medium";
phy_log_level ="info";
phy_log_verbosity ="medium";
mac_log_level ="info";
mac_log_verbosity ="high";
rlc_log_level ="info";
rlc_log_verbosity ="medium";
pdcp_log_level ="info";
pdcp_log_verbosity ="medium";
rrc_log_level ="info";
rrc_log_verbosity ="medium";
};
Active_gNBs = ( "gNB-Eurecom-5GNRBox");
# Asn1_verbosity, choice in: none, info, annoying
Asn1_verbosity = "none";
gNBs =
(
{
////////// Identification parameters:
gNB_ID = 0xe00;
cell_type = "CELL_MACRO_GNB";
gNB_name = "gNB-Eurecom-5GNRBox";
// Tracking area code, 0x0000 and 0xfffe are reserved values
tracking_area_code = 1;
plmn_list = ({mcc = 208; mnc = 93; mnc_length = 2;});
tr_s_preference = "local_mac"
////////// Physical parameters:
ssb_SubcarrierOffset = 0;
pdsch_AntennaPorts = 1;
servingCellConfigCommon = (
{
#spCellConfigCommon
physCellId = 0;
# downlinkConfigCommon
#frequencyInfoDL
# this is 3600 MHz + 84 PRBs@30kHz SCS (same as initial BWP)
absoluteFrequencySSB = 642016;
dl_frequencyBand = 78;
# this is 3600 MHz
dl_absoluteFrequencyPointA = 640000;
#scs-SpecificCarrierList
dl_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
dl_subcarrierSpacing = 1;
dl_carrierBandwidth = 217;
#initialDownlinkBWP
#genericParameters
# this is RBstart=84,L=50 (275*(L-1))+RBstart
initialDLBWPlocationAndBandwidth = 13559;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialDLBWPsubcarrierSpacing = 1;
#pdcch-ConfigCommon
initialDLBWPcontrolResourceSetZero = 12;
initialDLBWPsearchSpaceZero = 0;
#pdsch-ConfigCommon
#pdschTimeDomainAllocationList (up to 16 entries)
initialDLBWPk0_0 = 0;
#initialULBWPmappingType
#0=typeA,1=typeB
initialDLBWPmappingType_0 = 0;
#this is SS=2,L=3
initialDLBWPstartSymbolAndLength_0 = 40;
initialDLBWPk0_1 = 0;
initialDLBWPmappingType_1 = 0;
#this is SS=2,L=12
initialDLBWPstartSymbolAndLength_1 = 53;
initialDLBWPk0_2 = 0;
initialDLBWPmappingType_2 = 0;
#this is SS=1,L=12
initialDLBWPstartSymbolAndLength_2 = 54;
#uplinkConfigCommon
#frequencyInfoUL
ul_frequencyBand = 78;
#scs-SpecificCarrierList
ul_offstToCarrier = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
ul_subcarrierSpacing = 1;
ul_carrierBandwidth = 217;
pMax = 20;
#initialUplinkBWP
#genericParameters
initialULBWPlocationAndBandwidth = 13559;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
initialULBWPsubcarrierSpacing = 1;
#rach-ConfigCommon
#rach-ConfigGeneric
prach_ConfigurationIndex = 98;
#prach_msg1_FDM
#0 = one, 1=two, 2=four, 3=eight
prach_msg1_FDM = 0;
prach_msg1_FrequencyStart = 0;
zeroCorrelationZoneConfig = 13;
preambleReceivedTargetPower = -118;
#preamblTransMax (0...10) = (3,4,5,6,7,8,10,20,50,100,200)
preambleTransMax = 6;
#powerRampingStep
# 0=dB0,1=dB2,2=dB4,3=dB6
powerRampingStep = 1;
#ra_ReponseWindow
#1,2,4,8,10,20,40,80
ra_ResponseWindow = 4;
#ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR
#0=oneeighth,1=onefourth,2=half,3=one,4=two,5=four,6=eight,7=sixteen
ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR = 3;
#oneHalf (0..15) 4,8,12,16,...60,64
ssb_perRACH_OccasionAndCB_PreamblesPerSSB = 15;
#ra_ContentionResolutionTimer
#(0..7) 8,16,24,32,40,48,56,64
ra_ContentionResolutionTimer = 7;
rsrp_ThresholdSSB = 19;
#prach-RootSequenceIndex_PR
#0 = 839, 1 = 139
prach_RootSequenceIndex_PR = 1;
prach_RootSequenceIndex = 1;
# SCS for msg1, can only be 15 for 30 kHz < 6 GHz, takes precendence over the one derived from prach-ConfigIndex
#
msg1_SubcarrierSpacing = 1,
# restrictedSetConfig
# 0=unrestricted, 1=restricted type A, 2=restricted type B
restrictedSetConfig = 0,
# pusch-ConfigCommon (up to 16 elements)
initialULBWPk2_0 = 2;
initialULBWPmappingType_0 = 1
# this is SS=0 L=11
initialULBWPstartSymbolAndLength_0 = 55;
initialULBWPk2_1 = 2;
initialULBWPmappingType_1 = 1;
# this is SS=0 L=12
initialULBWPstartSymbolAndLength_1 = 69;
msg3_DeltaPreamble = 1;
p0_NominalWithGrant =-90;
# pucch-ConfigCommon setup :
# pucchGroupHopping
# 0 = neither, 1= group hopping, 2=sequence hopping
pucchGroupHopping = 0;
hoppingId = 40;
p0_nominal = -90;
# ssb_PositionsInBurs_BitmapPR
# 1=short, 2=medium, 3=long
ssb_PositionsInBurst_PR = 2;
ssb_PositionsInBurst_Bitmap = 15;
# ssb_periodicityServingCell
# 0 = ms5, 1=ms10, 2=ms20, 3=ms40, 4=ms80, 5=ms160, 6=spare2, 7=spare1
ssb_periodicityServingCell = 2;
# dmrs_TypeA_position
# 0 = pos2, 1 = pos3
dmrs_TypeA_Position = 0;
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
subcarrierSpacing = 1;
#tdd-UL-DL-ConfigurationCommon
# subcarrierSpacing
# 0=kHz15, 1=kHz30, 2=kHz60, 3=kHz120
referenceSubcarrierSpacing = 1;
# pattern1
# dl_UL_TransmissionPeriodicity
# 0=ms0p5, 1=ms0p625, 2=ms1, 3=ms1p25, 4=ms2, 5=ms2p5, 6=ms5, 7=ms10
dl_UL_TransmissionPeriodicity = 6;
nrofDownlinkSlots = 2;
nrofDownlinkSymbols = 1;
nrofUplinkSlots = 7;
nrofUplinkSymbols = 7;
ssPBCH_BlockPower = 10;
}
);
# ------- SCTP definitions
SCTP :
{
# Number of streams to use in input/output
SCTP_INSTREAMS = 2;
SCTP_OUTSTREAMS = 2;
};
////////// MME parameters:
mme_ip_address = ( { ipv4 = "192.168.12.26";
ipv6 = "192:168:30::17";
active = "yes";
preference = "ipv4";
}
);
///X2
enable_x2 = "yes";
t_reloc_prep = 1000; /* unit: millisecond */
tx2_reloc_overall = 2000; /* unit: millisecond */
target_enb_x2_ip_address = (
{ ipv4 = "192.168.12.188";
ipv6 = "192:168:30::17";
preference = "ipv4";
}
);
NETWORK_INTERFACES :
{
GNB_INTERFACE_NAME_FOR_S1_MME = "enp0s31f6";
GNB_IPV4_ADDRESS_FOR_S1_MME = "192.168.12.75/24";
GNB_INTERFACE_NAME_FOR_S1U = "eth0";
GNB_IPV4_ADDRESS_FOR_S1U = "192.168.12.75/24";
GNB_PORT_FOR_S1U = 2152; # Spec 2152
GNB_IPV4_ADDRESS_FOR_X2C = "192.168.12.75/23";
GNB_PORT_FOR_X2C = 36422; # Spec 36422
};
}
);
MACRLCs = (
{
num_cc = 1;
tr_s_preference = "local_L1";
tr_n_preference = "local_RRC";
}
);
L1s = (
{
num_cc = 1;
tr_n_preference = "local_mac";
}
);
RUs = (
{
local_rf = "yes"
nb_tx = 1
nb_rx = 1
att_tx = 0
att_rx = 0;
bands = [7];
max_pdschReferenceSignalPower = -27;
max_rxgain = 114;
eNB_instances = [0];
sdr_addrs = "addr=192.168.20.2,mgmt_addr=192.168.20.2";
clock_src = "internal";
}
);
THREAD_STRUCT = (
{
#three config for level of parallelism "PARALLEL_SINGLE_THREAD", "PARALLEL_RU_L1_SPLIT", or "PARALLEL_RU_L1_TRX_SPLIT"
parallel_config = "PARALLEL_RU_L1_TRX_SPLIT";
#two option for worker "WORKER_DISABLE" or "WORKER_ENABLE"
worker_config = "WORKER_ENABLE";
}
);
log_config :
{
global_log_level ="info";
global_log_verbosity ="medium";
hw_log_level ="info";
hw_log_verbosity ="medium";
phy_log_level ="info";
phy_log_verbosity ="medium";
mac_log_level ="info";
mac_log_verbosity ="high";
rlc_log_level ="info";
rlc_log_verbosity ="medium";
pdcp_log_level ="info";
pdcp_log_verbosity ="medium";
rrc_log_level ="info";
rrc_log_verbosity ="medium";
};
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment