End-to-end control plane signaling to achieve a 5G SA connection, UE registration and PDU session establishment with the CN, as well as some basic user-plane traffic tests have been validated so far using the Quectel module and Huawei Mate 30 pro and partially validated with SIMCOM module. In terms of interoperability with different 5G Core Networks, so far this setup has been tested with:
End-to-end control plane signaling to achieve a 5G SA connection, UE registration and PDU session establishment with the CN, as well as some basic user-plane traffic tests have been validated so far using SIMCOM/Quectel modules and Huawei Mate 30 pro. In terms of interoperability with different 5G Core Networks, so far this setup has been tested with:
@@ -23,20 +45,57 @@ At the moment of writing this document interoperability with the following COTS
...
@@ -23,20 +45,57 @@ At the moment of writing this document interoperability with the following COTS
-[Free CN](https://www.free5gc.org/)
-[Free CN](https://www.free5gc.org/)
## 1.1 gNB build and configuration
## 1.1 gNB build and configuration
At the moment of writing this document, most of the code to support the SA setup is not merged into develop branch yet, but it is accessible through the following branches:
To get the code and build the gNB executable:
- NR_SA_F1AP_5GRECORDS
- develop-NR_SA_F1AP_5GRECORDS (up-to-date with latest develop branch)
./build_oai -I-w USRP #For OAI first time installation only to install software dependencies
./build_oai -I-w USRP #For OAI first time installation only to install software dependencies
./build_oai --gNB-w USRP
./build_oai --gNB-w USRP
```
```
A reference configuration file for the gNB is provided [here](https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop-NR_SA_F1AP_5GRECORDS/targets/PROJECTS/GENERIC-NR-5GC/CONF/gnb.sa.band78.fr1.106PRB.usrpb210.conf).
A reference configuration file for the gNB is provided [here](https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/targets/PROJECTS/GENERIC-NR-5GC/CONF/gnb.sa.band78.fr1.106PRB.usrpb210.conf).
In the following, we highlight the fields of the file that have to be configured according to the configuration and interfaces of the Core Network. First, the PLMN section has to be filled with the proper values that match the configuration of the AMF and the UE USIM.
In the following, we highlight the fields of the file that have to be configured according to the configuration and interfaces of the Core Network. First, the PLMN section has to be filled with the proper values that match the configuration of the AMF and the UE USIM.
...
@@ -63,13 +122,15 @@ Then, the source and destination IP interfaces for the communication with
...
@@ -63,13 +122,15 @@ Then, the source and destination IP interfaces for the communication with
the Core Network also need to be set as shown below.
the Core Network also need to be set as shown below.
```bash
```bash
////////// MME parameters:
////////// AMF parameters:
amf_ip_address =({ ipv4 ="192.168.70.132";
amf_ip_address =({ ipv4 ="192.168.70.132";
ipv6 ="192:168:30::17";
ipv6 ="192:168:30::17";
active ="yes";
active ="yes";
preference ="ipv4";
preference ="ipv4";
}
}
);
);
NETWORK_INTERFACES :
NETWORK_INTERFACES :
{
{
GNB_INTERFACE_NAME_FOR_NG_AMF ="demo-oai";
GNB_INTERFACE_NAME_FOR_NG_AMF ="demo-oai";
...
@@ -81,19 +142,44 @@ the Core Network also need to be set as shown below.
...
@@ -81,19 +142,44 @@ the Core Network also need to be set as shown below.
```
```
In the first part (*amf_ip_address*) we specify the IP of the AMF and in the second part (*NETWORK_INTERFACES*) we specify the gNB local interface with AMF (N2 interface) and the UPF (N3 interface).
In the first part (*amf_ip_address*) we specify the IP of the AMF and in the second part (*NETWORK_INTERFACES*) we specify the gNB local interface with AMF (N2 interface) and the UPF (N3 interface).
**CAUTION:** the `192.168.70.132` AMF IF address is the OAI-CN5G `AMF` Container IP address. You certainly will need to do some networking manipulations for the `gNB` server to be able to see this AMF container.
Please read [CN5G tutorial for more details](https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/blob/master/README.md).
### **gNB configuration in CU/DU split mode**
### **gNB configuration in CU/DU split mode**
For the configuration of the gNB in CU and DU blocks the following sample configuration files are provided for the CU and DU entities respectively.
For the configuration of the gNB in CU and DU blocks, the following sample configuration files are provided for the [CU](https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/targets/PROJECTS/GENERIC-NR-5GC/CONF/cu_gnb.conf) and the [DU](https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/targets/PROJECTS/GENERIC-NR-5GC/CONF/du_gnb.conf) entities respectively. These configuration files have to be updated with the IP addresses of the CU and the DU over the F1 interface. For example, in the following section from the DU configuration file, *local_n_address* corresponds to the DU address and *remote_n_address* corresponds to the CU address:
......
At the point of writing this document the control-plane exchanges between the CU and the DU over *F1-C* interface have been validated. The integration of *F1-U* over gtp-u for the support of data plane traffic is ongoing.
```bash
MACRLCs =(
{
num_cc = 1;
tr_s_preference ="local_L1";
tr_n_preference ="f1";
local_n_if_name ="lo";
local_n_address ="127.0.0.3";
remote_n_address ="127.0.0.4";
local_n_portc = 601;
local_n_portd = 2152;
remote_n_portc = 600;
remote_n_portd = 2152;
}
);
```
At the point of writing this document the control-plane exchanges between the CU and the DU over *F1-C* interface, as well as some IP traffic tests over *F1-U* have been validated using the OAI gNB/nrUE in RFSIMULATOR mode.
*These extensions are not yet fully integrated into develop branch, as they are under merge request. Until they get fully integrated, the CU/DU functionalities can be tested in [NR_F1C_F1U_extensions](https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/NR_F1C_F1U_extensions) branch.*
## 1.2 OAI 5G Core Network installation and configuration
## 1.2 OAI 5G Core Network installation and configuration
The instructions for the installation of OAI CN components (AMF, SMF, NRF, UPF) using docker compose can be found [here](https://gitlab.eurecom.fr/oai/cn5g). Below are some complementary instructions which can be useful for the deployment.
The instructions for the installation of OAI CN components (AMF, SMF, NRF, UPF) using `docker-compose` can be found [here](https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/blob/master/README.md).
## 1.3 Execution of SA scenario
## 1.3 Execution of SA scenario
After having configured the gNB, we can start the individual components in the following sequence:
After having configured the gNB, we can start the individual components in the following sequence:
- Launch Core Network
- Launch 5G Core Network
- Launch gNB
- Launch gNB
- Launch COTS UE (disable airplane mode)
- Launch COTS UE (disable airplane mode)
...
@@ -103,60 +189,92 @@ cd cmake_targets/ran_build/build
...
@@ -103,60 +189,92 @@ cd cmake_targets/ran_build/build
The SA setup with OAI UE has been validated with RFSIMULATOR for the moment. The control plane for the successful UE registration and PDU Session establishment has been verified with OAI and Nokia SA Box CNs. User-plane traffic validation after the establishment of the 5G connection is still pending for this setup.
The SA setup with OAI UE has been validated with **RFSIMULATOR**. Both control plane and user plane for the successful UE registration and PDU Session establishment has been verified with OAI and Nokia SA Box CNs.
In the following, we provide the instructions on how to build, configure and execute this SA setup.
In the following, we provide the instructions on how to build, configure and execute this SA setup.
### NAS configuration for the OAI UE
The NAS configuration parameters of the OAI UE can be set as input parameters, configuration file or can be hardcoded. More specifically:
- SUCI (*Subscription Concealed Identifier*)
- USIM_API_K and OPc keys
- NSSAI (*Network Slice Assistance Information*)
- DNN (*Data Network Name*)
Below is a sample configuration file that can be parsed through the execution command ([section 2.3](#23-execution-of-sa-scenario)).
```bash
uicc0 ={
imsi ="208990000007487";
key ="fec86ba6eb707ed08905757b1bb44b8f";
opc="C42449363BBAD02B66D16BC975D77CC1";
dnn="oai";
nssai_sst=1;
nssai_sd=1;
}
```
Alternatively, the values can be hardcoded/edited in source file ***openair3/UICC/usim_interface.c*** through the following lines:
For interoperability with OAI or other CNs, it should be ensured that the configuration of the aforementioned parameters match the configuration of the corresponding subscribed user at the core network.
## 2.1 Build and configuration
## 2.1 Build and configuration
To build the gNB and OAI UE executables:
To build the gNB and OAI UE executables:
```bash
```bash
cd cmake_targets
cd cmake_targets
./build_oai -I#For OAI first time installation only to install software dependencies
# Note: For OAI first time installation please install software dependencies as described in 1.1.
./build_oai --gNB--nrUE-w SIMU
./build_oai --gNB--nrUE-w SIMU
```
```
The gNB configuration can be performed according to what is described in section 1.1, using the same reference configuration file as with the RF scenario.
The gNB configuration can be performed according to what is described in [section 1.1](#11--gnb-build-and-configuration), using the same reference configuration file as with the RF scenario.
### NAS configuration for the OAI UE
## 2.2 OAI 5G Core Network installation and configuration
At the moment, the NAS configuration parameters of the OAI UE are hardcoded in ***openair3/NAS/NR_UE/nr_nas_msg_sim.c***. More specifically:
The instructions for the installation of OAI CN components (AMF, SMF, NRF, UPF) using `docker-compose` can be found [here](https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed/-/blob/master/README.md).
- The SUCI (*Subscription Concealed Identifier*) corresponding to default IMSI 2089900007487 is hardcoded in functions *generateRegistrationRequest()* and *generateIdentityResponse()* through the following lines:
In addition, if you do not want to build anything, please have a look at [this tutorial](https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/develop/ci-scripts/yaml_files/5g_rfsimulator/README.md).
- The NSSAI (*Network Slice Assistance Information*) and DNN (*Data Network Name*) are hardcoded in function *generatePduSessionEstablishRequest()*
```bash
uint8_t nssai[]={1,0,0,1}; //Corresponding to SST:1, SD:1
uint8_t dnn[4]={0x4,0x6f,0x61,0x69}; //Corresponding to dnn:"oai"
```
For interoperability with OAI or other CNs, it should be ensured that the configuration of the aforementioned parameters match the configuration of the corresponding subscribed user at the core network.
Hardcoding of the USIM information will soon be substituted with parsing those parameters from a configuration file.
## 2.2 Execution of SA scenario
the gNB can be launched in 2 modes:
The order of starting the different components should be the same as the one described in section 1.3.
The IP address at the execution command of the OAI UE corresponds to the target IP of the gNB host that the RFSIMULATOR at the UE will connect to. In the above example, we assume that the gNB and UE are running on the same host so the specified address (127.0.0.1) is the one of the loopback interface.
The IP address at the execution command of the OAI UE corresponds to the target IP of the gNB host that the RFSIMULATOR at the UE will connect to. In the above example, we assume that the gNB and UE are running on the same host so the specified address (127.0.0.1) is the one of the loopback interface.