Commit 2f4e52e4 authored by Raymond Knopp's avatar Raymond Knopp

got rid of old RU code in lte-enb-nbiot.c

added some hooks for nbiot in lte-ru.c. Still need to adapt RU_t and PHY_VARS_eNB_NB_IoT structures
parent 44873997
...@@ -140,118 +140,7 @@ void init_eNB_NB_IoT(eNB_func_NB_IoT_t node_function[], eNB_timing_NB_IoT_t node ...@@ -140,118 +140,7 @@ void init_eNB_NB_IoT(eNB_func_NB_IoT_t node_function[], eNB_timing_NB_IoT_t node
/**********************************************************Other structure***************************************************************/ /**********************************************************Other structure***************************************************************/
void do_OFDM_mod_rt_NB_IoT(int subframe,PHY_VARS_eNB_NB_IoT *phy_vars_eNB)
{
int CC_id = phy_vars_eNB->proc.CC_id;
unsigned int aa,slot_offset;
//int dummy_tx_b[7680*4] __attribute__((aligned(32)));
int i, tx_offset;
//int slot_sizeF = (phy_vars_eNB->frame_parms.ofdm_symbol_size)* ((phy_vars_eNB->frame_parms.Ncp==1) ? 6 : 7);
int len;
//int slot_offset_F = (subframe<<1)*slot_sizeF;
slot_offset = subframe*phy_vars_eNB->frame_parms.samples_per_tti;
if ((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_DL)||
((subframe_select(&phy_vars_eNB->frame_parms,subframe)==SF_S))) {
// LOG_D(HW,"Frame %d: Generating slot %d\n",frame,next_slot);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_ENB_OFDM_MODULATION,1);
do_OFDM_mod_symbol(&phy_vars_eNB->common_vars,
0,
subframe<<1,
&phy_vars_eNB->frame_parms,
phy_vars_eNB->do_precoding);
// if S-subframe generate first slot only
if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_DL) {
do_OFDM_mod_symbol(&phy_vars_eNB->common_vars,
0,
1+(subframe<<1),
&phy_vars_eNB->frame_parms,
phy_vars_eNB->do_precoding);
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_ENB_OFDM_MODULATION,0);
for (aa=0; aa<phy_vars_eNB->frame_parms.nb_antennas_tx; aa++) {
// if S-subframe generate first slot only
if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S)
len = phy_vars_eNB->frame_parms.samples_per_tti>>1;
else
len = phy_vars_eNB->frame_parms.samples_per_tti;
for (i=0; i<len; i++) {
tx_offset = (int)slot_offset+time_offset[aa]+i;
if (tx_offset<0)
tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti))
tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
((short*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset])[0] = ((short*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset])[0]<<openair0_cfg[CC_id].iq_txshift;
((short*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset])[1] = ((short*)&phy_vars_eNB->common_vars.txdata[0][aa][tx_offset])[1]<<openair0_cfg[CC_id].iq_txshift;
}
// if S-subframe switch to RX in second subframe
if (subframe_select(&phy_vars_eNB->frame_parms,subframe) == SF_S) {
for (i=0; i<len; i++) {
phy_vars_eNB->common_vars.txdata[0][aa][tx_offset++] = 0x00010001;
}
}
if ((((phy_vars_eNB->frame_parms.tdd_config==0) ||
(phy_vars_eNB->frame_parms.tdd_config==1) ||
(phy_vars_eNB->frame_parms.tdd_config==2) ||
(phy_vars_eNB->frame_parms.tdd_config==6)) &&
(subframe==0)) || (subframe==5)) {
// turn on tx switch N_TA_offset before
//LOG_D(HW,"subframe %d, time to switch to tx (N_TA_offset %d, slot_offset %d) \n",subframe,phy_vars_eNB->N_TA_offset,slot_offset);
for (i=0; i<phy_vars_eNB->N_TA_offset; i++) {
tx_offset = (int)slot_offset+time_offset[aa]+i-phy_vars_eNB->N_TA_offset;
if (tx_offset<0)
tx_offset += LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
if (tx_offset>=(LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti))
tx_offset -= LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*phy_vars_eNB->frame_parms.samples_per_tti;
phy_vars_eNB->common_vars.txdata[0][aa][tx_offset] = 0x00000000;
}
}
}
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_ENB_SFGEN , 0 );
}
void tx_fh_if5_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc) {
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, proc->timestamp_tx&0xffffffff );
if ((eNB->frame_parms.frame_type==FDD) ||
((eNB->frame_parms.frame_type==TDD) &&
(subframe_select(&eNB->frame_parms,proc->subframe_tx) != SF_UL)))
send_IF5(eNB, proc->timestamp_tx, proc->subframe_tx, &seqno, IF5_RRH_GW_DL);
}
void tx_fh_if5_mobipass_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc) {
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, proc->timestamp_tx&0xffffffff );
if ((eNB->frame_parms.frame_type==FDD) ||
((eNB->frame_parms.frame_type==TDD) &&
(subframe_select(&eNB->frame_parms,proc->subframe_tx) != SF_UL)))
send_IF5(eNB, proc->timestamp_tx, proc->subframe_tx, &seqno, IF5_MOBIPASS);
}
void tx_fh_if4p5_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc) {
if ((eNB->frame_parms.frame_type==FDD) ||
((eNB->frame_parms.frame_type==TDD) &&
(subframe_select(&eNB->frame_parms,proc->subframe_tx) != SF_UL)))
send_IF4p5(eNB,proc->frame_tx,proc->subframe_tx, IF4p5_PDLFFT);
}
void proc_tx_high0_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB, void proc_tx_high0_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
...@@ -305,10 +194,6 @@ void proc_tx_full_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB, ...@@ -305,10 +194,6 @@ void proc_tx_full_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,
// do PHY high // do PHY high
proc_tx_high0_NB_IoT(eNB,proc,r_type,rn); proc_tx_high0_NB_IoT(eNB,proc,r_type,rn);
// do OFDM modulation
do_OFDM_mod_rt_NB_IoT(proc->subframe_tx,eNB);
// if TX fronthaul go ahead
if (eNB->tx_fh) eNB->tx_fh(eNB,proc);
} }
...@@ -342,7 +227,7 @@ static inline int rxtx_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *p ...@@ -342,7 +227,7 @@ static inline int rxtx_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *p
if ((eNB->do_prach)&&((eNB->node_function != NGFI_RCC_IF4p5_NB_IoT))) if ((eNB->do_prach)&&((eNB->node_function != NGFI_RCC_IF4p5_NB_IoT)))
eNB->do_prach(eNB,proc->frame_rx,proc->subframe_rx); eNB->do_prach(eNB,proc->frame_rx,proc->subframe_rx);
phy_procedures_eNB_common_RX(eNB,proc);
// UE-specific RX processing for subframe n // UE-specific RX processing for subframe n
///////////////////////////////////// for NB-IoT testing //////////////////////// ///////////////////////////////////// for NB-IoT testing ////////////////////////
...@@ -385,7 +270,7 @@ static inline int rxtx_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *p ...@@ -385,7 +270,7 @@ static inline int rxtx_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *p
return(0); return(0);
} }
/*
static void* eNB_thread_single_NB_IoT( void* param ) { static void* eNB_thread_single_NB_IoT( void* param ) {
static int eNB_thread_single_status; static int eNB_thread_single_status;
...@@ -558,12 +443,14 @@ static void* eNB_thread_single_NB_IoT( void* param ) { ...@@ -558,12 +443,14 @@ static void* eNB_thread_single_NB_IoT( void* param ) {
return &eNB_thread_single_status; return &eNB_thread_single_status;
} }
*/
/*! /*!
* \brief The RX UE-specific and TX thread of eNB. * \brief The RX UE-specific and TX thread of eNB.
* \param param is a \ref eNB_proc_t structure which contains the info what to process. * \param param is a \ref eNB_proc_t structure which contains the info what to process.
* \returns a pointer to an int. The storage is not on the heap and must not be freed. * \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/ */
/*
static void* eNB_thread_rxtx_NB_IoT( void* param ) { static void* eNB_thread_rxtx_NB_IoT( void* param ) {
static int eNB_thread_rxtx_status; static int eNB_thread_rxtx_status;
...@@ -611,853 +498,12 @@ static void* eNB_thread_rxtx_NB_IoT( void* param ) { ...@@ -611,853 +498,12 @@ static void* eNB_thread_rxtx_NB_IoT( void* param ) {
return &eNB_thread_rxtx_status; return &eNB_thread_rxtx_status;
} }
*/
// asynchronous UL with IF5 (RCC,RAU,eNodeB_BBU) void eNB_nb_iot_top(PHY_VARS_eNB *eNB, int frame_rx, int subframe_rx, char *string,RU_t *ru) {
void fh_if5_asynch_UL_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int *frame,int *subframe) {
eNB_proc_NB_IoT_t *proc = &eNB->proc;
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
recv_IF5(eNB, &proc->timestamp_rx, *subframe, IF5_MOBIPASS);
int offset_mobipass = 40120;
pthread_mutex_lock(&proc->mutex_asynch_rxtx);
proc->subframe_rx = ((proc->timestamp_rx-offset_mobipass)/fp->samples_per_tti)%10;
proc->frame_rx = ((proc->timestamp_rx-offset_mobipass)/(fp->samples_per_tti*10))&1023;
if (proc->first_rx == 1) {
proc->first_rx =2;
*subframe = proc->subframe_rx;
*frame = proc->frame_rx;
LOG_E(PHY,"[Mobipass]timestamp_rx:%"PRId64", frame_rx %d, subframe: %d\n",proc->timestamp_rx,proc->frame_rx,proc->subframe_rx);
}
else {
if (proc->subframe_rx != *subframe) {
proc->first_rx++;
LOG_E(PHY,"[Mobipass]timestamp:%"PRId64", subframe_rx %d is not what we expect %d, first_rx:%d\n",proc->timestamp_rx, proc->subframe_rx,*subframe, proc->first_rx);
//exit_fun("Exiting");
}
if (proc->frame_rx != *frame) {
proc->first_rx++;
LOG_E(PHY,"[Mobipass]timestamp:%"PRId64", frame_rx %d is not what we expect %d, first_rx:%d\n",proc->timestamp_rx,proc->frame_rx,*frame, proc->first_rx);
// exit_fun("Exiting");
}
// temporary solution
*subframe = proc->subframe_rx;
*frame = proc->frame_rx;
}
pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
} // eNodeB_3GPP_BBU
// asynchronous UL with IF4p5 (RCC,RAU,eNodeB_BBU)
void fh_if4p5_asynch_UL_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int *frame,int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_NB_IoT_t *proc = &eNB->proc;
uint16_t packet_type;
uint32_t symbol_number,symbol_mask,symbol_mask_full,prach_rx;
symbol_number = 0;
symbol_mask = 0;
symbol_mask_full = (1<<fp->symbols_per_tti)-1;
prach_rx = 0;
do { // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
recv_IF4p5(eNB, &proc->frame_rx, &proc->subframe_rx, &packet_type, &symbol_number);
if (proc->first_rx != 0) {
*frame = proc->frame_rx;
*subframe = proc->subframe_rx;
proc->first_rx--;
}
else {
if (proc->frame_rx != *frame) {
LOG_E(PHY,"fh_if4p5_asynch_UL: frame_rx %d is not what we expect %d\n",proc->frame_rx,*frame);
exit_fun("Exiting");
}
if (proc->subframe_rx != *subframe) {
LOG_E(PHY,"fh_if4p5_asynch_UL: subframe_rx %d is not what we expect %d\n",proc->subframe_rx,*subframe);
exit_fun("Exiting");
}
}
if (packet_type == IF4p5_PULFFT) {
symbol_mask = symbol_mask | (1<<symbol_number);
prach_rx = (is_prach_subframe(fp, proc->frame_rx, proc->subframe_rx)>0) ? 1 : 0;
} else if (packet_type == IF4p5_PRACH) {
prach_rx = 0;
}
} while( (symbol_mask != symbol_mask_full) || (prach_rx == 1));
}
void fh_if5_asynch_DL_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int *frame,int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_NB_IoT_t *proc = &eNB->proc;
int subframe_tx,frame_tx;
openair0_timestamp timestamp_tx;
recv_IF5(eNB, &timestamp_tx, *subframe, IF5_RRH_GW_DL);
clock_gettime( CLOCK_MONOTONIC, &end_fh);
end_fh_sf = *subframe;
recv_if_count = recv_if_count + 1;
LOG_D(HW,"[From SF %d to SF %d] RTT_FH: %"PRId64"\n", start_fh_prev_sf, end_fh_sf, clock_difftime_ns(start_fh_prev, end_fh));
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_RECV_IF5, 0 );
subframe_tx = (timestamp_tx/fp->samples_per_tti)%10;
frame_tx = (timestamp_tx/(fp->samples_per_tti*10))&1023;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB, frame_tx );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB, subframe_tx );
if (proc->first_tx != 0) {
*subframe = subframe_tx;
*frame = frame_tx;
proc->first_tx = 0;
}
else {
if (subframe_tx != *subframe) {
LOG_E(PHY,"fh_if5_asynch_DL: subframe_tx %d is not what we expect %d\n",subframe_tx,*subframe);
exit_fun("Exiting");
}
if (frame_tx != *frame) {
LOG_E(PHY,"fh_if5_asynch_DL: frame_tx %d is not what we expect %d\n",frame_tx,*frame);
exit_fun("Exiting");
}
}
}
void fh_if4p5_asynch_DL_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int *frame,int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_NB_IoT_t *proc = &eNB->proc;
uint16_t packet_type;
uint32_t symbol_number,symbol_mask_full;
int subframe_tx,frame_tx;
symbol_number = 0;
LOG_D(PHY,"fh_asynch_DL_IF4p5: in, frame %d, subframe %d\n",*frame,*subframe);
// correct for TDD
if (fp->frame_type == TDD) {
while (subframe_select(fp,*subframe) == SF_UL) {
*subframe=*subframe+1;
if (*subframe==10) {
*subframe=0;
*frame=*frame+1;
}
}
}
LOG_D(PHY,"fh_asynch_DL_IF4p5: after TDD correction, frame %d, subframe %d\n",*frame,*subframe);
symbol_mask_full = ((subframe_select(fp,*subframe) == SF_S) ? (1<<fp->dl_symbols_in_S_subframe) : (1<<fp->symbols_per_tti))-1;
do { // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
recv_IF4p5(eNB, &frame_tx, &subframe_tx, &packet_type, &symbol_number);
if (proc->first_tx != 0) {
*frame = frame_tx;
*subframe = subframe_tx;
proc->first_tx = 0;
proc->frame_offset = frame_tx - proc->frame_tx;
symbol_mask_full = ((subframe_select(fp,*subframe) == SF_S) ? (1<<fp->dl_symbols_in_S_subframe) : (1<<fp->symbols_per_tti))-1;
}
else {
if (frame_tx != *frame) {
LOG_E(PHY,"fh_if4p5_asynch_DL: frame_tx %d is not what we expect %d\n",frame_tx,*frame);
exit_fun("Exiting");
}
if (subframe_tx != *subframe) {
LOG_E(PHY,"fh_if4p5_asynch_DL: (frame %d) subframe_tx %d is not what we expect %d\n",frame_tx,subframe_tx,*subframe);
//*subframe = subframe_tx;
exit_fun("Exiting");
}
}
if (packet_type == IF4p5_PDLFFT) {
proc->symbol_mask[subframe_tx] =proc->symbol_mask[subframe_tx] | (1<<symbol_number);
}
else {
LOG_E(PHY,"Illegal IF4p5 packet type (should only be IF4p5_PDLFFT%d\n",packet_type);
exit_fun("Exiting");
}
} while (proc->symbol_mask[*subframe] != symbol_mask_full);
*frame = frame_tx;
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_FRAME_NUMBER_TX0_ENB, frame_tx );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_SUBFRAME_NUMBER_TX0_ENB, subframe_tx );
// intialize this to zero after we're done with the subframe
proc->symbol_mask[*subframe] = 0;
do_OFDM_mod_rt_NB_IoT(*subframe, eNB);
}
/*!
* \brief The Asynchronous RX/TX FH thread of RAU/RCC/eNB/RRU.
* This handles the RX FH for an asynchronous RRU/UE
* \param param is a \ref eNB_proc_t structure which contains the info what to process.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void* eNB_thread_asynch_rxtx_NB_IoT( void* param ) {
static int eNB_thread_asynch_rxtx_status;
eNB_proc_NB_IoT_t *proc = (eNB_proc_NB_IoT_t*)param;
PHY_VARS_eNB_NB_IoT *eNB = PHY_vars_eNB_NB_IoT_g[0][proc->CC_id];
int subframe=0, frame=0;
thread_top_init("thread_asynch",1,870000L,1000000L,1000000L);
// wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe
wait_sync("thread_asynch");
// wait for top-level synchronization and do one acquisition to get timestamp for setting frame/subframe
printf( "waiting for devices (eNB_thread_asynch_rx)\n");
wait_on_condition(&proc->mutex_asynch_rxtx,&proc->cond_asynch_rxtx,&proc->instance_cnt_asynch_rxtx,"thread_asynch");
printf( "devices ok (eNB_thread_asynch_rx)\n");
while (!oai_exit) {
if (oai_exit) break;
if (subframe==9) {
subframe=0;
frame++;
frame&=1023;
} else {
subframe++;
}
if (eNB->fh_asynch) eNB->fh_asynch(eNB,&frame,&subframe);
else AssertFatal(1==0, "Unknown eNB->node_function %d",eNB->node_function);
}
eNB_thread_asynch_rxtx_status=0;
return(&eNB_thread_asynch_rxtx_status);
}
void rx_rf_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int *frame,int *subframe) {
eNB_proc_NB_IoT_t *proc = &eNB->proc;
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
void *rxp[fp->nb_antennas_rx],*txp[fp->nb_antennas_tx];
unsigned int rxs,txs;
int i;
int tx_sfoffset = (eNB->single_thread_flag == 1) ? 3 : 2;
openair0_timestamp ts,old_ts;
if (proc->first_rx==0) {
// Transmit TX buffer based on timestamp from RX
// printf("trx_write -> USRP TS %llu (sf %d)\n", (proc->timestamp_rx+(3*fp->samples_per_tti)),(proc->subframe_rx+2)%10);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TST, (proc->timestamp_rx+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance)&0xffffffff );
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
// prepare tx buffer pointers
lte_subframe_t SF_type = subframe_select(fp,(proc->subframe_rx+tx_sfoffset)%10);
lte_subframe_t prevSF_type = subframe_select(fp,(proc->subframe_rx+tx_sfoffset+9)%10);
lte_subframe_t nextSF_type = subframe_select(fp,(proc->subframe_rx+tx_sfoffset+1)%10);
if ((SF_type == SF_DL) ||
(SF_type == SF_S)) {
for (i=0; i<fp->nb_antennas_tx; i++)
txp[i] = (void*)&eNB->common_vars.txdata[0][i][((proc->subframe_rx+tx_sfoffset)%10)*fp->samples_per_tti];
int siglen=fp->samples_per_tti,flags=1;
if (SF_type == SF_S) {
siglen = fp->dl_symbols_in_S_subframe*(fp->ofdm_symbol_size+fp->nb_prefix_samples0);
flags=3; // end of burst
}
if ((fp->frame_type == TDD) &&
(SF_type == SF_DL)&&
(prevSF_type == SF_UL) &&
(nextSF_type == SF_DL))
flags = 2; // start of burst
if ((fp->frame_type == TDD) &&
(SF_type == SF_DL)&&
(prevSF_type == SF_UL) &&
(nextSF_type == SF_UL))
flags = 4; // start of burst and end of burst (only one DL SF between two UL)
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 1 );
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_WRITE_FLAGS,flags);
txs = eNB->rfdevice.trx_write_func(&eNB->rfdevice,
proc->timestamp_rx+eNB->ts_offset+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance,
txp,
siglen,
fp->nb_antennas_tx,
flags);
clock_gettime( CLOCK_MONOTONIC, &end_rf);
end_rf_ts = proc->timestamp_rx+eNB->ts_offset+(tx_sfoffset*fp->samples_per_tti)-openair0_cfg[0].tx_sample_advance;
if (recv_if_count != 0 ) {
recv_if_count = recv_if_count-1;
LOG_D(HW,"[From Timestamp %"PRId64" to Timestamp %"PRId64"] RTT_RF: %"PRId64"; RTT_RF\n", start_rf_prev_ts, end_rf_ts, clock_difftime_ns(start_rf_prev, end_rf));
LOG_D(HW,"[From Timestamp %"PRId64" to Timestamp %"PRId64"] RTT_RF: %"PRId64"; RTT_RF\n",start_rf_prev2_ts, end_rf_ts, clock_difftime_ns(start_rf_prev2, end_rf));
}
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_WRITE, 0 );
if (txs != siglen) {
LOG_E(PHY,"TX : Timeout (sent %d/%d)\n",txs, fp->samples_per_tti);
exit_fun( "problem transmitting samples" );
}
}
}
for (i=0; i<fp->nb_antennas_rx; i++)
rxp[i] = (void*)&eNB->common_vars.rxdata[0][i][*subframe*fp->samples_per_tti];
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 1 );
old_ts = proc->timestamp_rx;
rxs = eNB->rfdevice.trx_read_func(&eNB->rfdevice,
&ts,
rxp,
fp->samples_per_tti,
fp->nb_antennas_rx);
start_rf_prev2= start_rf_prev;
start_rf_prev2_ts= start_rf_prev_ts;
start_rf_prev = start_rf_new;
start_rf_prev_ts = start_rf_new_ts;
clock_gettime( CLOCK_MONOTONIC, &start_rf_new);
start_rf_new_ts = ts;
LOG_D(PHY,"rx_rf: first_rx %d received ts %"PRId64" (sptti %d)\n",proc->first_rx,ts,fp->samples_per_tti);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
proc->timestamp_rx = ts-eNB->ts_offset;
if (rxs != fp->samples_per_tti)
LOG_E(PHY,"rx_rf: Asked for %d samples, got %d from USRP\n",fp->samples_per_tti,rxs);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_TRX_READ, 0 );
if (proc->first_rx == 1) {
eNB->ts_offset = proc->timestamp_rx;
proc->timestamp_rx=0;
}
else {
if (proc->timestamp_rx - old_ts != fp->samples_per_tti) {
LOG_I(PHY,"rx_rf: rfdevice timing drift of %"PRId64" samples (ts_off %"PRId64")\n",proc->timestamp_rx - old_ts - fp->samples_per_tti,eNB->ts_offset);
eNB->ts_offset += (proc->timestamp_rx - old_ts - fp->samples_per_tti);
proc->timestamp_rx = ts-eNB->ts_offset;
}
}
proc->frame_rx = (proc->timestamp_rx / (fp->samples_per_tti*10))&1023;
proc->subframe_rx = (proc->timestamp_rx / fp->samples_per_tti)%10;
proc->frame_rx = (proc->frame_rx+proc->frame_offset)&1023;
proc->frame_tx = proc->frame_rx;
if (proc->subframe_rx > 5) proc->frame_tx=(proc->frame_tx+1)&1023;
// synchronize first reception to frame 0 subframe 0
proc->timestamp_tx = proc->timestamp_rx+(4*fp->samples_per_tti);
// printf("trx_read <- USRP TS %lu (offset %d sf %d, f %d, first_rx %d)\n", proc->timestamp_rx,eNB->ts_offset,proc->subframe_rx,proc->frame_rx,proc->first_rx);
if (proc->first_rx == 0) {
if (proc->subframe_rx != *subframe){
LOG_E(PHY,"rx_rf: Received Timestamp (%"PRId64") doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->timestamp_rx,proc->subframe_rx,*subframe);
exit_fun("Exiting");
}
int f2 = (*frame+proc->frame_offset)&1023;
if (proc->frame_rx != f2) {
LOG_E(PHY,"rx_rf: Received Timestamp (%"PRId64") doesn't correspond to the time we think it is (proc->frame_rx %d frame %d, frame_offset %d, f2 %d)\n",proc->timestamp_rx,proc->frame_rx,*frame,proc->frame_offset,f2);
exit_fun("Exiting");
}
} else {
proc->first_rx--;
*frame = proc->frame_rx;
*subframe = proc->subframe_rx;
}
//printf("timestamp_rx %lu, frame %d(%d), subframe %d(%d)\n",proc->timestamp_rx,proc->frame_rx,frame,proc->subframe_rx,subframe);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
if (rxs != fp->samples_per_tti)
exit_fun( "problem receiving samples" );
}
void rx_fh_if5_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int *frame, int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_NB_IoT_t *proc = &eNB->proc;
recv_IF5(eNB, &proc->timestamp_rx, *subframe, IF5_RRH_GW_UL);
proc->frame_rx = (proc->timestamp_rx / (fp->samples_per_tti*10))&1023;
proc->subframe_rx = (proc->timestamp_rx / fp->samples_per_tti)%10;
if (proc->first_rx == 0) {
if (proc->subframe_rx != *subframe){
LOG_E(PHY,"rx_fh_if5: Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d)\n",proc->subframe_rx,*subframe);
exit_fun("Exiting");
}
if (proc->frame_rx != *frame) {
LOG_E(PHY,"rx_fh_if5: Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d)\n",proc->frame_rx,*frame);
exit_fun("Exiting");
}
} else {
proc->first_rx--;
*frame = proc->frame_rx;
*subframe = proc->subframe_rx;
}
proc->timestamp_tx = proc->timestamp_rx + (4*fp->samples_per_tti);
VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
}
void rx_fh_if4p5_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int *frame,int *subframe) {
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
eNB_proc_NB_IoT_t *proc = &eNB->proc;
int f,sf;
uint16_t packet_type;
uint32_t symbol_number=0;
uint32_t symbol_mask_full;
if ((fp->frame_type == TDD) && (subframe_select(fp,*subframe)==SF_S))
symbol_mask_full = (1<<fp->ul_symbols_in_S_subframe)-1;
else
symbol_mask_full = (1<<fp->symbols_per_tti)-1;
if (eNB->CC_id==1) LOG_I(PHY,"rx_fh_if4p5: frame %d, subframe %d\n",*frame,*subframe);
do { // Blocking, we need a timeout on this !!!!!!!!!!!!!!!!!!!!!!!
recv_IF4p5(eNB, &f, &sf, &packet_type, &symbol_number);
//proc->frame_rx = (proc->frame_rx + proc->frame_offset)&1023;
if (packet_type == IF4p5_PULFFT) {
LOG_D(PHY,"rx_fh_if4p5: frame %d, subframe %d, PULFFT symbol %d\n",f,sf,symbol_number);
proc->symbol_mask[sf] = proc->symbol_mask[sf] | (1<<symbol_number);
} else if (packet_type == IF4p5_PULTICK) {
if ((proc->first_rx==0) && (f!=*frame))
LOG_E(PHY,"rx_fh_if4p5: PULTICK received frame %d != expected %d\n",f,*frame);
if ((proc->first_rx==0) && (sf!=*subframe))
LOG_E(PHY,"rx_fh_if4p5: PULTICK received subframe %d != expected %d (first_rx %d)\n",sf,*subframe,proc->first_rx);
break;
} else if (packet_type == IF4p5_PRACH) {
LOG_D(PHY,"rx_fh:if4p5: frame %d, subframe %d, PRACH\n",f,sf);
// wakeup prach processing
if (eNB->do_prach) eNB->do_prach(eNB,f,sf);
}
if (eNB->CC_id==1) LOG_I(PHY,"rx_fh_if4p5: symbol_mask[%d] %x\n",*subframe,proc->symbol_mask[*subframe]);
} while(proc->symbol_mask[*subframe] != symbol_mask_full);
proc->subframe_rx = sf;
proc->frame_rx = f;
proc->symbol_mask[*subframe] = 0;
proc->symbol_mask[(9+*subframe)%10]= 0; // to handle a resynchronization event
if (eNB->CC_id==1) LOG_I(PHY,"Clearing symbol_mask[%d]\n",*subframe);
//caculate timestamp_rx, timestamp_tx based on frame and subframe
proc->timestamp_rx = ((proc->frame_rx * 10) + proc->subframe_rx ) * fp->samples_per_tti ;
proc->timestamp_tx = proc->timestamp_rx + (4*fp->samples_per_tti);
if (proc->first_rx == 0) {
if (proc->subframe_rx != *subframe){
LOG_E(PHY,"rx_fh_if4p5, CC_id %d: Received Timestamp doesn't correspond to the time we think it is (proc->subframe_rx %d, subframe %d,CCid %d)\n",eNB->CC_id,proc->subframe_rx,*subframe,eNB->CC_id);
}
if (proc->frame_rx != *frame) {
if (proc->frame_rx == proc->frame_offset) // This means that the RRU has adjusted its frame timing
proc->frame_offset = 0;
else
LOG_E(PHY,"rx_fh_if4p5: Received Timestamp doesn't correspond to the time we think it is (proc->frame_rx %d frame %d,CCid %d)\n",proc->frame_rx,*frame,eNB->CC_id);
}
} else {
proc->first_rx = 0;
if (eNB->CC_id==0)
proc->frame_offset = 0;
else
proc->frame_offset = PHY_vars_eNB_NB_IoT_g[0][0]->proc.frame_rx;
*frame = proc->frame_rx;//(proc->frame_rx + proc->frame_offset)&1023;
*subframe = proc->subframe_rx;
}
if (eNB->CC_id==0) VCD_SIGNAL_DUMPER_DUMP_VARIABLE_BY_NAME( VCD_SIGNAL_DUMPER_VARIABLES_TRX_TS, proc->timestamp_rx&0xffffffff );
}
void rx_fh_slave_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int *frame,int *subframe) {
// This case is for synchronization to another thread
// it just waits for an external event. The actual rx_fh is handle by the asynchronous RX thread
eNB_proc_NB_IoT_t *proc=&eNB->proc;
if (wait_on_condition(&proc->mutex_FH,&proc->cond_FH,&proc->instance_cnt_FH,"rx_fh_slave") < 0)
return;
release_thread(&proc->mutex_FH,&proc->instance_cnt_FH,"rx_fh_slave");
}
uint32_t sync_corr[307200] __attribute__((aligned(32)));
// This thread run the initial synchronization like a UE
void *eNB_thread_synch_NB_IoT(void *arg) {
PHY_VARS_eNB_NB_IoT *eNB = (PHY_VARS_eNB_NB_IoT*)arg;
LTE_DL_FRAME_PARMS *fp=&eNB->frame_parms;
int32_t sync_pos,sync_pos2;
uint32_t peak_val;
thread_top_init("eNB_thread_synch",0,5000000,10000000,10000000);
wait_sync("eNB_thread_synch");
// initialize variables for PSS detection
lte_sync_time_init(&eNB->frame_parms);
while (!oai_exit) {
// wait to be woken up
pthread_mutex_lock(&eNB->proc.mutex_synch);
while (eNB->proc.instance_cnt_synch < 0)
pthread_cond_wait(&eNB->proc.cond_synch,&eNB->proc.mutex_synch);
pthread_mutex_unlock(&eNB->proc.mutex_synch);
// if we're not in synch, then run initial synch
if (eNB->in_synch == 0) {
// run intial synch like UE
LOG_I(PHY,"Running initial synchronization\n");
sync_pos = lte_sync_time_eNB(eNB->common_vars.rxdata[0],
fp,
fp->samples_per_tti*5,
&peak_val,
sync_corr);
LOG_I(PHY,"eNB synch: %d, val %d\n",sync_pos,peak_val);
if (sync_pos >= 0) {
if (sync_pos >= fp->nb_prefix_samples)
sync_pos2 = sync_pos - fp->nb_prefix_samples;
else
sync_pos2 = sync_pos + (fp->samples_per_tti*10) - fp->nb_prefix_samples;
if (fp->frame_type == FDD) {
// PSS is hypothesized in last symbol of first slot in Frame
int sync_pos_slot = (fp->samples_per_tti>>1) - fp->ofdm_symbol_size - fp->nb_prefix_samples;
if (sync_pos2 >= sync_pos_slot)
eNB->rx_offset = sync_pos2 - sync_pos_slot;
else
eNB->rx_offset = (fp->samples_per_tti*10) + sync_pos2 - sync_pos_slot;
}
else {
}
LOG_I(PHY,"Estimated sync_pos %d, peak_val %d => timing offset %d\n",sync_pos,peak_val,eNB->rx_offset);
/*
if ((peak_val > 300000) && (sync_pos > 0)) {
// if (sync_pos++ > 3) {
write_output("eNB_sync.m","sync",(void*)&sync_corr[0],fp->samples_per_tti*5,1,2);
write_output("eNB_rx.m","rxs",(void*)eNB->common_vars.rxdata[0][0],fp->samples_per_tti*10,1,1);
exit(-1);
}
*/
eNB->in_synch=1;
}
}
// release thread
pthread_mutex_lock(&eNB->proc.mutex_synch);
eNB->proc.instance_cnt_synch--;
pthread_mutex_unlock(&eNB->proc.mutex_synch);
} // oai_exit
lte_sync_time_free();
return NULL;
}
/*!
* \brief The Fronthaul thread of RRU/RAU/RCC/eNB
* In the case of RRU/eNB, handles interface with external RF
* In the case of RAU/RCC, handles fronthaul interface with RRU/RAU
* \param param is a \ref eNB_proc_t structure which contains the info what to process.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void* eNB_thread_FH_NB_IoT( void* param ) {
static int eNB_thread_FH_status;
eNB_proc_NB_IoT_t *proc = (eNB_proc_NB_IoT_t*)param;
PHY_VARS_eNB_NB_IoT *eNB = PHY_vars_eNB_NB_IoT_g[0][proc->CC_id];
LTE_DL_FRAME_PARMS *fp = &eNB->frame_parms;
int subframe=0, frame=0;
// set default return value
eNB_thread_FH_status = 0;
thread_top_init("eNB_thread_FH",0,870000,1000000,1000000);
wait_sync("eNB_thread_FH");
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)
if (eNB->node_function < NGFI_RRU_IF5_NB_IoT)
wait_system_ready ("Waiting for eNB application to be ready %s\r", &start_eNB);
#endif
// Start IF device if any
if (eNB->start_if)
if (eNB->start_if(eNB) != 0)
LOG_E(HW,"Could not start the IF device\n");
// Start RF device if any
if (eNB->start_rf)
if (eNB->start_rf(eNB) != 0)
LOG_E(HW,"Could not start the RF device\n");
// wakeup asnych_rxtx thread because the devices are ready at this point
pthread_mutex_lock(&proc->mutex_asynch_rxtx);
proc->instance_cnt_asynch_rxtx=0;
pthread_mutex_unlock(&proc->mutex_asynch_rxtx);
pthread_cond_signal(&proc->cond_asynch_rxtx);
// This is a forever while loop, it loops over subframes which are scheduled by incoming samples from HW devices
while (!oai_exit) {
// these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
// They are set on the first rx/tx in the underly FH routines.
if (subframe==9) {
subframe=0;
frame++;
frame&=1023;
} else {
subframe++;
}
// synchronization on FH interface, acquire signals/data and block
if (eNB->rx_fh) eNB->rx_fh(eNB,&frame,&subframe);
else AssertFatal(1==0, "No fronthaul interface : eNB->node_function %d",eNB->node_function);
T(T_ENB_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx), T_INT(proc->subframe_rx));
// At this point, all information for subframe has been received on FH interface
// If this proc is to provide synchronization, do so
wakeup_slaves(proc);
// wake up RXn_TXnp4 thread for the subframe
// choose even or odd thread for RXn-TXnp4 processing
if (wakeup_rxtx(proc,&proc->proc_rxtx[proc->subframe_rx&1],fp) < 0)
break;
// artifical sleep for very slow fronthaul
if (eNB->frame_parms.N_RB_DL==6)
rt_sleep_ns(800000LL);
}
printf( "Exiting FH thread \n");
eNB_thread_FH_status = 0;
return &eNB_thread_FH_status;
}
/************************************************************************************************************************/
/* this function maps the phy_vars_eNB tx and rx buffers to the available rf chains.
Each rf chain is is addressed by the card number and the chain on the card. The
rf_map specifies for each CC, on which rf chain the mapping should start. Multiple
antennas are mapped to successive RF chains on the same card. */
int setup_eNB_buffers_NB_IoT(PHY_VARS_eNB_NB_IoT **phy_vars_eNB, openair0_config_t *openair0_cfg) {
int i,j;
int CC_id,card,ant;
//uint16_t N_TA_offset = 0;
LTE_DL_FRAME_PARMS *frame_parms;
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
if (phy_vars_eNB[CC_id]) {
frame_parms = &(phy_vars_eNB[CC_id]->frame_parms);
printf("setup_eNB_buffers: frame_parms = %p\n",frame_parms);
} else {
printf("phy_vars_eNB[%d] not initialized\n", CC_id);
return(-1);
}
/*
if (frame_parms->frame_type == TDD) {
if (frame_parms->N_RB_DL == 100)
N_TA_offset = 624;
else if (frame_parms->N_RB_DL == 50)
N_TA_offset = 624/2;
else if (frame_parms->N_RB_DL == 25)
N_TA_offset = 624/4;
}
*/
if (openair0_cfg[CC_id].mmapped_dma == 1) {
// replace RX signal buffers with mmaped HW versions
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
card = i/4;
ant = i%4;
printf("Mapping eNB CC_id %d, rx_ant %d, on card %d, chain %d\n",CC_id,i,phy_vars_eNB[CC_id]->rf_map.card+card, phy_vars_eNB[CC_id]->rf_map.chain+ant);
free(phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
phy_vars_eNB[CC_id]->common_vars.rxdata[0][i] = openair0_cfg[phy_vars_eNB[CC_id]->rf_map.card+card].rxbase[phy_vars_eNB[CC_id]->rf_map.chain+ant];
printf("rxdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
for (j=0; j<16; j++) {
printf("rxbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->common_vars.rxdata[0][i][j]);
phy_vars_eNB[CC_id]->common_vars.rxdata[0][i][j] = 16-j;
}
}
for (i=0; i<frame_parms->nb_antennas_tx; i++) {
card = i/4;
ant = i%4;
printf("Mapping eNB CC_id %d, tx_ant %d, on card %d, chain %d\n",CC_id,i,phy_vars_eNB[CC_id]->rf_map.card+card, phy_vars_eNB[CC_id]->rf_map.chain+ant);
free(phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
phy_vars_eNB[CC_id]->common_vars.txdata[0][i] = openair0_cfg[phy_vars_eNB[CC_id]->rf_map.card+card].txbase[phy_vars_eNB[CC_id]->rf_map.chain+ant];
printf("txdata[%d] @ %p\n",i,phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
for (j=0; j<16; j++) {
printf("txbuffer %d: %x\n",j,phy_vars_eNB[CC_id]->common_vars.txdata[0][i][j]);
phy_vars_eNB[CC_id]->common_vars.txdata[0][i][j] = 16-j;
}
}
}
else { // not memory-mapped DMA
//nothing to do, everything already allocated in lte_init
/*
rxdata = (int32_t**)malloc16(frame_parms->nb_antennas_rx*sizeof(int32_t*));
txdata = (int32_t**)malloc16(frame_parms->nb_antennas_tx*sizeof(int32_t*));
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
free(phy_vars_eNB[CC_id]->common_vars.rxdata[0][i]);
rxdata[i] = (int32_t*)(32 + malloc16(32+frame_parms->samples_per_tti*10*sizeof(int32_t))); // FIXME broken memory allocation
phy_vars_eNB[CC_id]->common_vars.rxdata[0][i] = rxdata[i]; //-N_TA_offset; // N_TA offset for TDD FIXME! N_TA_offset > 16 => access of unallocated memory
memset(rxdata[i], 0, frame_parms->samples_per_tti*10*sizeof(int32_t));
printf("rxdata[%d] @ %p (%p) (N_TA_OFFSET %d)\n", i, phy_vars_eNB[CC_id]->common_vars.rxdata[0][i],rxdata[i],N_TA_offset);
}
for (i=0; i<frame_parms->nb_antennas_tx; i++) {
free(phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
txdata[i] = (int32_t*)(32 + malloc16(32 + frame_parms->samples_per_tti*10*sizeof(int32_t))); // FIXME broken memory allocation
phy_vars_eNB[CC_id]->common_vars.txdata[0][i] = txdata[i];
memset(txdata[i],0, frame_parms->samples_per_tti*10*sizeof(int32_t));
printf("txdata[%d] @ %p\n", i, phy_vars_eNB[CC_id]->common_vars.txdata[0][i]);
}
*/
}
}
return(0);
}
int start_if_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB) {
return(eNB->ifdevice.trx_start_func(&eNB->ifdevice));
}
int start_rf_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB) {
return(eNB->rfdevice.trx_start_func(&eNB->rfdevice));
}
/**************************************************************************************************************************************/
/*!
* \brief The prach receive thread of eNB.
* \param param is a \ref eNB_proc_t structure which contains the info what to process.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void* eNB_thread_prach_NB_IoT( void* param ) {
static int eNB_thread_prach_status;
PHY_VARS_eNB_NB_IoT *eNB= (PHY_VARS_eNB_NB_IoT *)param;
L1_proc_t *proc = &eNB->proc;
// set default return value
eNB_thread_prach_status = 0;
thread_top_init("eNB_thread_prach_NB_IoT",1,500000L,1000000L,20000000L);
while (!oai_exit) {
if (oai_exit) break;
if (wait_on_condition(&proc->mutex_prach,&proc->cond_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
//prach_procedures(eNB);
////// NB_IoT testing ///////
prach_procedures_NB_IoT(eNB);
/////////////////////////////
if (release_thread(&proc->mutex_prach,&proc->instance_cnt_prach,"eNB_prach_thread") < 0) break;
}
printf( "Exiting eNB thread PRACH\n");
eNB_thread_prach_status = 0;
return &eNB_thread_prach_status;
} }
extern void eNB_fep_rru_if5_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc_rxtx);
extern void eNB_fep_full_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,eNB_rxtx_proc_NB_IoT_t *proc_rxtx);
extern void do_prach_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int frame,int subframe); extern void do_prach_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,int frame,int subframe);
......
...@@ -1093,10 +1093,13 @@ int check_sync(RU_t *ru, RU_t *ru_master, int subframe){ ...@@ -1093,10 +1093,13 @@ int check_sync(RU_t *ru, RU_t *ru_master, int subframe){
void wakeup_L1s(RU_t *ru) { void wakeup_L1s(RU_t *ru) {
int i; int i;
PHY_VARS_eNB **eNB_list = ru->eNB_list; PHY_VARS_eNB **eNB_list = ru->eNB_list;
PHY_VARS_eNB_NB_IoT **eNB_nbiot_list = ru->eNB_nbiot_list;
LOG_D(PHY,"wakeup_L1s (num %d) for RU %d (%d.%d)\n",ru->num_eNB,ru->idx, ru->proc.frame_rx,ru->proc.subframe_rx); LOG_D(PHY,"wakeup_L1s (num %d) for RU %d (%d.%d)\n",ru->num_eNB,ru->idx, ru->proc.frame_rx,ru->proc.subframe_rx);
PHY_VARS_eNB *eNB=eNB_list[0]; PHY_VARS_eNB *eNB=eNB_list[0];
PHY_VARS_eNB *eNB_nbiot=eNB_nbiot_list[0];
L1_proc_t *proc = &eNB->proc; L1_proc_t *proc = &eNB->proc;
L1_nbiot_proc_t *proc_nbiot = &eNB_nbiot->proc;
struct timespec t; struct timespec t;
LOG_D(PHY,"wakeup_L1s (num %d) for RU %d ru->eNB_top:%p\n",ru->num_eNB,ru->idx, ru->eNB_top); LOG_D(PHY,"wakeup_L1s (num %d) for RU %d ru->eNB_top:%p\n",ru->num_eNB,ru->idx, ru->eNB_top);
...@@ -1178,6 +1181,8 @@ void wakeup_L1s(RU_t *ru) { ...@@ -1178,6 +1181,8 @@ void wakeup_L1s(RU_t *ru) {
} }
} }
} }
// call NB-IOT RX/TX entry-point from ru_thread directly
if (ru->eNB_nb_iot_top != 0) ru->eNB_nb_iot_top(eNB_nb_iot_list[0],proc->frame_rx,proc->subframe_rx,string,ru);
} }
/* /*
AssertFatal(0==pthread_mutex_lock(&ruproc->mutex_eNBs),""); AssertFatal(0==pthread_mutex_lock(&ruproc->mutex_eNBs),"");
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment