Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
O
OpenXG-RAN
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lizhongxiao
OpenXG-RAN
Commits
e21a0996
Commit
e21a0996
authored
Mar 15, 2023
by
Roberto Louro Magueta
Committed by
rmagueta
Jun 26, 2023
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Compute LLR for QPSK for ML
parent
8fffe50a
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
325 additions
and
16 deletions
+325
-16
openair1/PHY/NR_TRANSPORT/nr_transport_proto.h
openair1/PHY/NR_TRANSPORT/nr_transport_proto.h
+12
-0
openair1/PHY/NR_TRANSPORT/nr_ulsch_demodulation.c
openair1/PHY/NR_TRANSPORT/nr_ulsch_demodulation.c
+49
-16
openair1/PHY/NR_TRANSPORT/nr_ulsch_llr_computation.c
openair1/PHY/NR_TRANSPORT/nr_ulsch_llr_computation.c
+264
-0
No files found.
openair1/PHY/NR_TRANSPORT/nr_transport_proto.h
View file @
e21a0996
...
@@ -292,6 +292,18 @@ void nr_ulsch_compute_llr(int32_t *rxdataF_comp,
...
@@ -292,6 +292,18 @@ void nr_ulsch_compute_llr(int32_t *rxdataF_comp,
void
reset_active_stats
(
PHY_VARS_gNB
*
gNB
,
int
frame
);
void
reset_active_stats
(
PHY_VARS_gNB
*
gNB
,
int
frame
);
void
reset_active_ulsch
(
PHY_VARS_gNB
*
gNB
,
int
frame
);
void
reset_active_ulsch
(
PHY_VARS_gNB
*
gNB
,
int
frame
);
void
nr_ulsch_compute_ML_llr
(
int32_t
**
rxdataF_comp
,
int32_t
***
rho
,
int16_t
**
llr_layers
,
uint8_t
nb_antennas_rx
,
uint32_t
rb_size
,
uint32_t
nb_re
,
uint8_t
symbol
,
uint32_t
rxdataF_ext_offset
,
uint8_t
mod_order
);
void
nr_ulsch_shift_llr
(
int16_t
**
llr_layers
,
uint32_t
nb_re
,
uint32_t
rxdataF_ext_offset
,
uint8_t
mod_order
,
int
shift
);
void
nr_fill_ulsch
(
PHY_VARS_gNB
*
gNB
,
void
nr_fill_ulsch
(
PHY_VARS_gNB
*
gNB
,
int
frame
,
int
frame
,
int
slot
,
int
slot
,
...
...
openair1/PHY/NR_TRANSPORT/nr_ulsch_demodulation.c
View file @
e21a0996
...
@@ -12,6 +12,7 @@
...
@@ -12,6 +12,7 @@
//#define DEBUG_CH_COMP
//#define DEBUG_CH_COMP
//#define DEBUG_RB_EXT
//#define DEBUG_RB_EXT
//#define DEBUG_CH_MAG
//#define DEBUG_CH_MAG
//#define ML_DEBUG
#define INVALID_VALUE 255
#define INVALID_VALUE 255
...
@@ -636,7 +637,7 @@ void nr_ulsch_channel_compensation(int **rxdataF_ext,
...
@@ -636,7 +637,7 @@ void nr_ulsch_channel_compensation(int **rxdataF_ext,
QAM_amp128
=
_mm_set1_epi16
(
QAM16_n1
);
// 2/sqrt(10)
QAM_amp128
=
_mm_set1_epi16
(
QAM16_n1
);
// 2/sqrt(10)
QAM_amp128b
=
_mm_setzero_si128
();
QAM_amp128b
=
_mm_setzero_si128
();
QAM_amp128c
=
_mm_setzero_si128
();
QAM_amp128c
=
_mm_setzero_si128
();
}
}
else
if
(
mod_order
==
6
)
{
else
if
(
mod_order
==
6
)
{
QAM_amp128
=
_mm_set1_epi16
(
QAM64_n1
);
//
QAM_amp128
=
_mm_set1_epi16
(
QAM64_n1
);
//
QAM_amp128b
=
_mm_set1_epi16
(
QAM64_n2
);
QAM_amp128b
=
_mm_set1_epi16
(
QAM64_n2
);
...
@@ -1081,7 +1082,7 @@ void nr_ulsch_detection_mrc(NR_DL_FRAME_PARMS *frame_parms,
...
@@ -1081,7 +1082,7 @@ void nr_ulsch_detection_mrc(NR_DL_FRAME_PARMS *frame_parms,
int32_t
**
ul_ch_mag
,
int32_t
**
ul_ch_mag
,
int32_t
**
ul_ch_magb
,
int32_t
**
ul_ch_magb
,
int32_t
**
ul_ch_magc
,
int32_t
**
ul_ch_magc
,
int32_t
***
rho
,
int32_t
***
rho
,
uint8_t
nrOfLayers
,
uint8_t
nrOfLayers
,
uint8_t
symbol
,
uint8_t
symbol
,
uint16_t
nb_rb
,
uint16_t
nb_rb
,
...
@@ -1115,7 +1116,7 @@ void nr_ulsch_detection_mrc(NR_DL_FRAME_PARMS *frame_parms,
...
@@ -1115,7 +1116,7 @@ void nr_ulsch_detection_mrc(NR_DL_FRAME_PARMS *frame_parms,
ul_ch_mag128
[
1
]
=
(
__m128i
*
)
&
ul_ch_mag
[
aatx
*
frame_parms
->
nb_antennas_rx
+
aa
][(
symbol
*
(
nb_re
+
off
))];
ul_ch_mag128
[
1
]
=
(
__m128i
*
)
&
ul_ch_mag
[
aatx
*
frame_parms
->
nb_antennas_rx
+
aa
][(
symbol
*
(
nb_re
+
off
))];
ul_ch_mag128b
[
1
]
=
(
__m128i
*
)
&
ul_ch_magb
[
aatx
*
frame_parms
->
nb_antennas_rx
+
aa
][(
symbol
*
(
nb_re
+
off
))];
ul_ch_mag128b
[
1
]
=
(
__m128i
*
)
&
ul_ch_magb
[
aatx
*
frame_parms
->
nb_antennas_rx
+
aa
][(
symbol
*
(
nb_re
+
off
))];
ul_ch_mag128c
[
1
]
=
(
__m128i
*
)
&
ul_ch_magc
[
aatx
*
frame_parms
->
nb_antennas_rx
+
aa
][(
symbol
*
(
nb_re
+
off
))];
ul_ch_mag128c
[
1
]
=
(
__m128i
*
)
&
ul_ch_magc
[
aatx
*
frame_parms
->
nb_antennas_rx
+
aa
][(
symbol
*
(
nb_re
+
off
))];
// MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
// MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
for
(
i
=
0
;
i
<
nb_rb_0
*
3
;
i
++
)
{
for
(
i
=
0
;
i
<
nb_rb_0
*
3
;
i
++
)
{
rxdataF_comp128
[
0
][
i
]
=
_mm_adds_epi16
(
rxdataF_comp128
[
0
][
i
],
rxdataF_comp128
[
1
][
i
]);
rxdataF_comp128
[
0
][
i
]
=
_mm_adds_epi16
(
rxdataF_comp128
[
0
][
i
],
rxdataF_comp128
[
1
][
i
]);
...
@@ -1898,6 +1899,9 @@ void nr_rx_pusch(PHY_VARS_gNB *gNB,
...
@@ -1898,6 +1899,9 @@ void nr_rx_pusch(PHY_VARS_gNB *gNB,
unsigned
char
harq_pid
)
unsigned
char
harq_pid
)
{
{
// Temporary flag: (true) ML receiver, (false) MMSE receiver
bool
ml_rx
=
true
;
uint8_t
aarx
,
aatx
;
uint8_t
aarx
,
aatx
;
uint32_t
nb_re_pusch
,
bwp_start_subcarrier
;
uint32_t
nb_re_pusch
,
bwp_start_subcarrier
;
int
avgs
=
0
;
int
avgs
=
0
;
...
@@ -2001,8 +2005,8 @@ void nr_rx_pusch(PHY_VARS_gNB *gNB,
...
@@ -2001,8 +2005,8 @@ void nr_rx_pusch(PHY_VARS_gNB *gNB,
int
ad_shift
=
0
;
int
ad_shift
=
0
;
if
(
rel15_ul
->
nrOfLayers
==
1
)
{
if
(
rel15_ul
->
nrOfLayers
==
1
)
{
ad_shift
=
1
+
log2_approx
(
frame_parms
->
nb_antennas_rx
>>
2
);
ad_shift
=
1
+
log2_approx
(
frame_parms
->
nb_antennas_rx
>>
2
);
}
else
{
}
else
if
(
ml_rx
==
false
)
{
ad_shift
=
-
3
;
// For 2-layers, we are already doing a bit shift in the nr_ulsch_
zero_forcing_rx
_2layers() function, so we can use more bits
ad_shift
=
-
3
;
// For 2-layers, we are already doing a bit shift in the nr_ulsch_
mmse
_2layers() function, so we can use more bits
}
}
for
(
uint8_t
symbol
=
rel15_ul
->
start_symbol_index
;
symbol
<
(
rel15_ul
->
start_symbol_index
+
rel15_ul
->
nr_of_symbols
);
symbol
++
)
{
for
(
uint8_t
symbol
=
rel15_ul
->
start_symbol_index
;
symbol
<
(
rel15_ul
->
start_symbol_index
+
rel15_ul
->
nr_of_symbols
);
symbol
++
)
{
...
@@ -2108,7 +2112,7 @@ void nr_rx_pusch(PHY_VARS_gNB *gNB,
...
@@ -2108,7 +2112,7 @@ void nr_rx_pusch(PHY_VARS_gNB *gNB,
nb_re_pusch
);
nb_re_pusch
);
// Apply MMSE for 2 Tx layers
// Apply MMSE for 2 Tx layers
if
(
rel15_ul
->
nrOfLayers
==
2
)
{
if
(
ml_rx
==
false
&&
rel15_ul
->
nrOfLayers
==
2
)
{
nr_ulsch_mmse_2layers
(
frame_parms
,
nr_ulsch_mmse_2layers
(
frame_parms
,
pusch_vars
->
rxdataF_comp
,
pusch_vars
->
rxdataF_comp
,
pusch_vars
->
ul_ch_mag0
,
pusch_vars
->
ul_ch_mag0
,
...
@@ -2159,16 +2163,45 @@ void nr_rx_pusch(PHY_VARS_gNB *gNB,
...
@@ -2159,16 +2163,45 @@ void nr_rx_pusch(PHY_VARS_gNB *gNB,
/*-------------------- LLRs computation -------------------------------------------------------------*/
/*-------------------- LLRs computation -------------------------------------------------------------*/
/*-----------------------------------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------------------------------*/
start_meas
(
&
gNB
->
ulsch_llr_stats
);
start_meas
(
&
gNB
->
ulsch_llr_stats
);
for
(
aatx
=
0
;
aatx
<
rel15_ul
->
nrOfLayers
;
aatx
++
)
{
if
(
ml_rx
==
false
||
rel15_ul
->
nrOfLayers
==
1
)
{
nr_ulsch_compute_llr
(
&
pusch_vars
->
rxdataF_comp
[
aatx
*
frame_parms
->
nb_antennas_rx
][
symbol
*
(
off
+
rel15_ul
->
rb_size
*
NR_NB_SC_PER_RB
)],
for
(
aatx
=
0
;
aatx
<
rel15_ul
->
nrOfLayers
;
aatx
++
)
{
pusch_vars
->
ul_ch_mag0
[
aatx
*
frame_parms
->
nb_antennas_rx
],
nr_ulsch_compute_llr
(
&
pusch_vars
->
rxdataF_comp
[
aatx
*
frame_parms
->
nb_antennas_rx
][
symbol
*
(
off
+
rel15_ul
->
rb_size
*
NR_NB_SC_PER_RB
)],
pusch_vars
->
ul_ch_magb0
[
aatx
*
frame_parms
->
nb_antennas_rx
],
pusch_vars
->
ul_ch_mag0
[
aatx
*
frame_parms
->
nb_antennas_rx
],
pusch_vars
->
ul_ch_magc0
[
aatx
*
frame_parms
->
nb_antennas_rx
],
pusch_vars
->
ul_ch_magb0
[
aatx
*
frame_parms
->
nb_antennas_rx
],
&
pusch_vars
->
llr_layers
[
aatx
][
rxdataF_ext_offset
*
rel15_ul
->
qam_mod_order
],
pusch_vars
->
ul_ch_magc0
[
aatx
*
frame_parms
->
nb_antennas_rx
],
rel15_ul
->
rb_size
,
&
pusch_vars
->
llr_layers
[
aatx
][
rxdataF_ext_offset
*
rel15_ul
->
qam_mod_order
],
pusch_vars
->
ul_valid_re_per_slot
[
symbol
],
rel15_ul
->
rb_size
,
symbol
,
pusch_vars
->
ul_valid_re_per_slot
[
symbol
],
rel15_ul
->
qam_mod_order
);
symbol
,
rel15_ul
->
qam_mod_order
);
}
}
else
{
nr_ulsch_compute_ML_llr
(
pusch_vars
->
rxdataF_comp
,
pusch_vars
->
rho
,
pusch_vars
->
llr_layers
,
frame_parms
->
nb_antennas_rx
,
rel15_ul
->
rb_size
,
nb_re_pusch
,
symbol
,
rxdataF_ext_offset
,
rel15_ul
->
qam_mod_order
);
if
(
rel15_ul
->
qam_mod_order
==
2
)
{
nr_ulsch_shift_llr
(
pusch_vars
->
llr_layers
,
nb_re_pusch
,
rxdataF_ext_offset
,
rel15_ul
->
qam_mod_order
,
4
);
}
#ifdef ML_DEBUG
c16_t
*
llr_layers0
=
(
c16_t
*
)
&
pusch_vars
->
llr_layers
[
0
][
rxdataF_ext_offset
*
rel15_ul
->
qam_mod_order
];
c16_t
*
llr_layers1
=
(
c16_t
*
)
&
pusch_vars
->
llr_layers
[
1
][
rxdataF_ext_offset
*
rel15_ul
->
qam_mod_order
];
printf
(
"===============================
\n
"
);
printf
(
"AFTER nr_ulsch_compute_ML_llr()
\n
"
);
printf
(
"===============================
\n
"
);
for
(
int
k
=
0
;
k
<
nb_re_pusch
;
k
++
)
{
printf
(
"[%3i] llr_layers0 = (%6i, %6i), llr_layers1 = (%6i, %6i)
\n
"
,
k
,
llr_layers0
[
k
].
r
,
llr_layers0
[
k
].
i
,
llr_layers1
[
k
].
r
,
llr_layers1
[
k
].
i
);
}
printf
(
"
\n
"
);
#endif
}
}
stop_meas
(
&
gNB
->
ulsch_llr_stats
);
stop_meas
(
&
gNB
->
ulsch_llr_stats
);
rxdataF_ext_offset
+=
pusch_vars
->
ul_valid_re_per_slot
[
symbol
];
rxdataF_ext_offset
+=
pusch_vars
->
ul_valid_re_per_slot
[
symbol
];
...
...
openair1/PHY/NR_TRANSPORT/nr_ulsch_llr_computation.c
View file @
e21a0996
...
@@ -509,3 +509,267 @@ void nr_ulsch_compute_llr(int32_t *rxdataF_comp,
...
@@ -509,3 +509,267 @@ void nr_ulsch_compute_llr(int32_t *rxdataF_comp,
break
;
break
;
}
}
}
}
/*
* This function computes the LLRs of stream 0 (s_0) in presence of the interfering stream 1 (s_1) assuming that both symbols are
* QPSK. It can be used for both MU-MIMO interference-aware receiver or for SU-MIMO receivers.
*
* Input:
* stream0_in: MF filter output for 1st stream, i.e., y0' = h0'*y0
* stream1_in: MF filter output for 2nd stream, i.e., y1' = h1'*y0
* rho01: Channel cross correlation, i.e., rho01 = h0'*h1
* length: Number of resource elements
*
* Output:
* stream0_out: Output LLRs for 1st stream
*/
void
nr_ulsch_qpsk_qpsk
(
c16_t
*
stream0_in
,
c16_t
*
stream1_in
,
c16_t
*
stream0_out
,
c16_t
*
rho01
,
uint32_t
length
)
{
__m128i
*
rho01_128i
=
(
__m128i
*
)
rho01
;
__m128i
*
stream0_128i_in
=
(
__m128i
*
)
stream0_in
;
__m128i
*
stream1_128i_in
=
(
__m128i
*
)
stream1_in
;
__m128i
*
stream0_128i_out
=
(
__m128i
*
)
stream0_out
;
__m128i
ONE_OVER_2_SQRT_2
=
_mm_set1_epi16
(
23170
);
// round(2 ^ 16 / (2 * sqrt(2)))
// In each iteration, we take 8 complex symbols
for
(
int
i
=
0
;
i
<
length
>>
2
;
i
+=
2
)
{
/// Compute real and imaginary parts of MF output for stream 0 (desired stream)
// Put xmm0 = [Re(0,1) Re(2,3) Im(0,1) Im(2,3)]
__m128i
xmm0
=
stream0_128i_in
[
i
];
// 4 symbols
xmm0
=
simde_mm_shufflelo_epi16
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm0
=
simde_mm_shufflehi_epi16
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm0
=
simde_mm_shuffle_epi32
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
// Put xmm1 = [Re(4,5) Re(6,7) Im(4,5) Im(6,7)]
__m128i
xmm1
=
stream0_128i_in
[
i
+
1
];
// 4 symbols
xmm1
=
simde_mm_shufflelo_epi16
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm1
=
simde_mm_shufflehi_epi16
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm1
=
simde_mm_shuffle_epi32
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
__m128i
y0r
=
simde_mm_unpacklo_epi64
(
xmm0
,
xmm1
);
// y0r = Re(y0)
__m128i
y0i
=
simde_mm_unpackhi_epi64
(
xmm0
,
xmm1
);
// y0i = Im(y0)
__m128i
y0r_over2
=
simde_mm_mulhi_epi16
(
y0r
,
ONE_OVER_2_SQRT_2
);
y0r_over2
=
_mm_slli_epi16
(
y0r_over2
,
1
);
// y0r_over2 = Re(y0) / sqrt(2)
__m128i
y0i_over2
=
simde_mm_mulhi_epi16
(
y0i
,
ONE_OVER_2_SQRT_2
);
y0i_over2
=
_mm_slli_epi16
(
y0i_over2
,
1
);
// y0i_over2 = Im(y0) / sqrt(2)
/// Compute real and imaginary parts of MF output for stream 1 (interference stream)
// Put xmm0 = [Re(0,1) Re(2,3) Im(0,1) Im(2,3)]
xmm0
=
stream1_128i_in
[
i
];
// 4 symbols
xmm0
=
simde_mm_shufflelo_epi16
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm0
=
simde_mm_shufflehi_epi16
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm0
=
simde_mm_shuffle_epi32
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
// Put xmm1 = [Re(4,5) Re(6,7) Im(4,5) Im(6,7)]
xmm1
=
stream1_128i_in
[
i
+
1
];
// 4 symbols
xmm1
=
simde_mm_shufflelo_epi16
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm1
=
simde_mm_shufflehi_epi16
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm1
=
simde_mm_shuffle_epi32
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
__m128i
y1r
=
simde_mm_unpacklo_epi64
(
xmm0
,
xmm1
);
// y1r = Re(y1)
__m128i
y1i
=
simde_mm_unpackhi_epi64
(
xmm0
,
xmm1
);
// y1i = Im(y1)
__m128i
y1r_over2
=
simde_mm_srai_epi16
(
y1r
,
1
);
// y1r_over2 = Re(y1) / 2
__m128i
y1i_over2
=
simde_mm_srai_epi16
(
y1i
,
1
);
// y1i_over2 = Im(y1) / 2
/// Get real and imaginary parts of rho
// Put xmm0 = [Re(0,1) Re(2,3) Im(0,1) Im(2,3)]
xmm0
=
rho01_128i
[
i
];
// 4 symbols
xmm0
=
simde_mm_shufflelo_epi16
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm0
=
simde_mm_shufflehi_epi16
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm0
=
simde_mm_shuffle_epi32
(
xmm0
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
// Put xmm1 = [Re(4,5) Re(6,7) Im(4,5) Im(6,7)]
xmm1
=
rho01_128i
[
i
+
1
];
// 4 symbols
xmm1
=
simde_mm_shufflelo_epi16
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm1
=
simde_mm_shufflehi_epi16
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
xmm1
=
simde_mm_shuffle_epi32
(
xmm1
,
0xd8
);
//_MM_SHUFFLE(0,2,1,3));
__m128i
rhor
=
simde_mm_unpacklo_epi64
(
xmm0
,
xmm1
);
// rhor = Re(rho)
__m128i
rhoi
=
simde_mm_unpackhi_epi64
(
xmm0
,
xmm1
);
// rhoi = Im(rho)
/// Compute |psi_r| and |psi_i|
// psi_r = rhor * xR + rhoi * xI
// psi_i = rhor * xI - rhoi * xR
// Put (rho_r + rho_i)/(2*sqrt(2)) in rho_p
// rhor * xR + rhoi * xI --> xR = 1/sqrt(2) and xI = 1/sqrt(2)
// rhor * xI - rhoi * xR --> xR = -1/sqrt(2) and xI = 1/sqrt(2)
__m128i
rho_p
=
simde_mm_adds_epi16
(
rhor
,
rhoi
);
// rho_p = Re(rho) + Im(rho)
rho_p
=
simde_mm_mulhi_epi16
(
rho_p
,
ONE_OVER_2_SQRT_2
);
// rho_p = rho_p / (2*sqrt(2))
// Put (rho_r - rho_i)/(2*sqrt(2)) in rho_m
// rhor * xR + rhoi * xI --> xR = 1/sqrt(2) and xI = -1/sqrt(2)
// rhor * xI - rhoi * xR --> xR = 1/sqrt(2) and xI = 1/sqrt(2)
__m128i
rho_m
=
simde_mm_subs_epi16
(
rhor
,
rhoi
);
// rho_m = Re(rho) - Im(rho)
rho_m
=
simde_mm_mulhi_epi16
(
rho_m
,
ONE_OVER_2_SQRT_2
);
// rho_m = rho_m / (2*sqrt(2))
// xR = 1/sqrt(2) and xI = 1/sqrt(2)
__m128i
abs_psi_rpm
=
simde_mm_subs_epi16
(
rho_p
,
y1r_over2
);
// psi_rpm = rho_p - y1r/2
abs_psi_rpm
=
simde_mm_abs_epi16
(
abs_psi_rpm
);
// abs_psi_rpm = |psi_rpm|
// xR = 1/sqrt(2) and xI = 1/sqrt(2)
__m128i
abs_psi_imm
=
simde_mm_subs_epi16
(
rho_m
,
y1i_over2
);
// psi_imm = rho_m - y1i/2
abs_psi_imm
=
simde_mm_abs_epi16
(
abs_psi_imm
);
// abs_psi_imm = |psi_imm|
// xR = 1/sqrt(2) and xI = -1/sqrt(2)
__m128i
abs_psi_rmm
=
simde_mm_subs_epi16
(
rho_m
,
y1r_over2
);
// psi_rmm = rho_m - y1r/2
abs_psi_rmm
=
simde_mm_abs_epi16
(
abs_psi_rmm
);
// abs_psi_rmm = |psi_rmm|
// xR = -1/sqrt(2) and xI = 1/sqrt(2)
__m128i
abs_psi_ipm
=
simde_mm_subs_epi16
(
rho_p
,
y1i_over2
);
// psi_ipm = rho_p - y1i/2
abs_psi_ipm
=
simde_mm_abs_epi16
(
abs_psi_ipm
);
// abs_psi_ipm = |psi_ipm|
// xR = -1/sqrt(2) and xI = -1/sqrt(2)
__m128i
abs_psi_rpp
=
simde_mm_adds_epi16
(
rho_p
,
y1r_over2
);
// psi_rpp = rho_p + y1r/2
abs_psi_rpp
=
simde_mm_abs_epi16
(
abs_psi_rpp
);
// abs_psi_rpp = |psi_rpp|
// xR = -1/sqrt(2) and xI = -1/sqrt(2)
__m128i
abs_psi_imp
=
simde_mm_adds_epi16
(
rho_m
,
y1i_over2
);
// psi_imp = rho_m + y1i/2
abs_psi_imp
=
simde_mm_abs_epi16
(
abs_psi_imp
);
// abs_psi_imp = |psi_imp|
// xR = -1/sqrt(2) and xI = 1/sqrt(2)
__m128i
abs_psi_rmp
=
simde_mm_adds_epi16
(
rho_m
,
y1r_over2
);
// psi_rmp = rho_m + y1r/2
abs_psi_rmp
=
simde_mm_abs_epi16
(
abs_psi_rmp
);
// abs_psi_rmp = |psi_rmp|
// xR = 1/sqrt(2) and xI = -1/sqrt(2)
__m128i
abs_psi_ipp
=
simde_mm_adds_epi16
(
rho_p
,
y1i_over2
);
// psi_ipm = rho_p + y1i/2
abs_psi_ipp
=
simde_mm_abs_epi16
(
abs_psi_ipp
);
// abs_psi_ipp = |psi_ipm|
/// Compute bit metrics (lambda)
// lambda = max { |psi_r - y1r| * |x2R| + |psi_i - y1i| * |x2I| + y0r * xR + y0i * xI}
// xR = 1/sqrt(2) and xI = 1/sqrt(2)
// For numerator: bit_met_num_re_p = abs_psi_rpm + abs_psi_imm + y0r/sqrt(2) + y0i/sqrt(2)
__m128i
bit_met_num_re_p
=
simde_mm_adds_epi16
(
abs_psi_rpm
,
abs_psi_imm
);
bit_met_num_re_p
=
simde_mm_adds_epi16
(
bit_met_num_re_p
,
y0r_over2
);
bit_met_num_re_p
=
simde_mm_adds_epi16
(
bit_met_num_re_p
,
y0i_over2
);
// xR = 1/sqrt(2) and xI = -1/sqrt(2)
// For numerator: bit_met_num_re_m = abs_psi_rmm + abs_psi_ipp + y0r/sqrt(2) - y0i/sqrt(2)
__m128i
bit_met_num_re_m
=
simde_mm_adds_epi16
(
abs_psi_rmm
,
abs_psi_ipp
);
bit_met_num_re_m
=
simde_mm_adds_epi16
(
bit_met_num_re_m
,
y0r_over2
);
bit_met_num_re_m
=
simde_mm_subs_epi16
(
bit_met_num_re_m
,
y0i_over2
);
// xR = -1/sqrt(2) and xI = 1/sqrt(2)
// For denominator: bit_met_den_re_p = abs_psi_rmp + abs_psi_ipm - y0r/sqrt(2) + y0i/sqrt(2)
__m128i
bit_met_den_re_p
=
simde_mm_adds_epi16
(
abs_psi_rmp
,
abs_psi_ipm
);
bit_met_den_re_p
=
simde_mm_subs_epi16
(
bit_met_den_re_p
,
y0r_over2
);
bit_met_den_re_p
=
simde_mm_adds_epi16
(
bit_met_den_re_p
,
y0i_over2
);
// xR = -1/sqrt(2) and xI = -1/sqrt(2)
// For denominator: bit_met_den_re_m = abs_psi_rpp + abs_psi_imp - y0r/sqrt(2) - y0i/sqrt(2)
__m128i
bit_met_den_re_m
=
simde_mm_adds_epi16
(
abs_psi_rpp
,
abs_psi_imp
);
bit_met_den_re_m
=
simde_mm_subs_epi16
(
bit_met_den_re_m
,
y0r_over2
);
bit_met_den_re_m
=
simde_mm_subs_epi16
(
bit_met_den_re_m
,
y0i_over2
);
// xR = 1/sqrt(2) and xI = 1/sqrt(2)
// For numerator: bit_met_num_im_p = abs_psi_rpm + abs_psi_imm + y0r/sqrt(2) + y0i/sqrt(2)
__m128i
bit_met_num_im_p
=
simde_mm_adds_epi16
(
abs_psi_rpm
,
abs_psi_imm
);
bit_met_num_im_p
=
simde_mm_adds_epi16
(
bit_met_num_im_p
,
y0r_over2
);
bit_met_num_im_p
=
simde_mm_adds_epi16
(
bit_met_num_im_p
,
y0i_over2
);
// xR = -1/sqrt(2) and xI = 1/sqrt(2)
// For numerator: bit_met_num_im_m = abs_psi_rmp + abs_psi_ipm - y0r/sqrt(2) + y0i/sqrt(2)
__m128i
bit_met_num_im_m
=
simde_mm_adds_epi16
(
abs_psi_rmp
,
abs_psi_ipm
);
bit_met_num_im_m
=
simde_mm_subs_epi16
(
bit_met_num_im_m
,
y0r_over2
);
bit_met_num_im_m
=
simde_mm_adds_epi16
(
bit_met_num_im_m
,
y0i_over2
);
// xR = 1/sqrt(2) and xI = -1/sqrt(2)
// For denominator: bit_met_den_im_p = abs_psi_rmm + abs_psi_ipp + y0r/sqrt(2) - y0i/sqrt(2)
__m128i
bit_met_den_im_p
=
simde_mm_adds_epi16
(
abs_psi_rmm
,
abs_psi_ipp
);
bit_met_den_im_p
=
simde_mm_adds_epi16
(
bit_met_den_im_p
,
y0r_over2
);
bit_met_den_im_p
=
simde_mm_subs_epi16
(
bit_met_den_im_p
,
y0i_over2
);
// xR = -1/sqrt(2) and xI = -1/sqrt(2)
// For denominator: bit_met_den_im_m = abs_psi_rpp + abs_psi_imp - y0r/sqrt(2)- y0i/sqrt(2)
__m128i
bit_met_den_im_m
=
simde_mm_adds_epi16
(
abs_psi_rpp
,
abs_psi_imp
);
bit_met_den_im_m
=
simde_mm_subs_epi16
(
bit_met_den_im_m
,
y0r_over2
);
bit_met_den_im_m
=
simde_mm_subs_epi16
(
bit_met_den_im_m
,
y0i_over2
);
/// Compute the LLRs
// LLR = lambda(c==1) - lambda(c==0)
__m128i
logmax_num_re0
=
simde_mm_max_epi16
(
bit_met_num_re_p
,
bit_met_num_re_m
);
// LLR of the first bit: Bit = 1
__m128i
logmax_den_re0
=
simde_mm_max_epi16
(
bit_met_den_re_p
,
bit_met_den_re_m
);
// LLR of the first bit: Bit = 0
__m128i
logmax_num_im0
=
simde_mm_max_epi16
(
bit_met_num_im_p
,
bit_met_num_im_m
);
// LLR of the second bit: Bit = 1
__m128i
logmax_den_im0
=
simde_mm_max_epi16
(
bit_met_den_im_p
,
bit_met_den_im_m
);
// LLR of the second bit: Bit = 0
y0r
=
simde_mm_subs_epi16
(
logmax_num_re0
,
logmax_den_re0
);
// LLR of first bit [L1(1), L1(2), L1(3), L1(4)]
y0i
=
simde_mm_subs_epi16
(
logmax_num_im0
,
logmax_den_im0
);
// LLR of second bit [L2(1), L2(2), L2(3), L2(4)]
// [L1(1), L2(1), L1(2), L2(2)]
simde_mm_storeu_si128
(
&
stream0_128i_out
[
i
],
simde_mm_unpacklo_epi16
(
y0r
,
y0i
));
// false if only 2 REs remain
if
(
i
<
((
length
>>
1
)
-
1
))
{
simde_mm_storeu_si128
(
&
stream0_128i_out
[
i
+
1
],
simde_mm_unpackhi_epi16
(
y0r
,
y0i
));
}
}
_mm_empty
();
_m_empty
();
}
void
nr_ulsch_compute_ML_llr
(
int32_t
**
rxdataF_comp
,
int32_t
***
rho
,
int16_t
**
llr_layers
,
uint8_t
nb_antennas_rx
,
uint32_t
rb_size
,
uint32_t
nb_re
,
uint8_t
symbol
,
uint32_t
rxdataF_ext_offset
,
uint8_t
mod_order
)
{
int
off
=
((
rb_size
&
1
)
==
1
)
?
4
:
0
;
c16_t
*
rxdataF_comp0
=
(
c16_t
*
)
&
rxdataF_comp
[
0
][
symbol
*
(
off
+
(
rb_size
*
NR_NB_SC_PER_RB
))];
c16_t
*
rxdataF_comp1
=
(
c16_t
*
)
&
rxdataF_comp
[
nb_antennas_rx
][
symbol
*
(
off
+
(
rb_size
*
NR_NB_SC_PER_RB
))];
c16_t
*
llr_layers0
=
(
c16_t
*
)
&
llr_layers
[
0
][
rxdataF_ext_offset
*
mod_order
];
c16_t
*
llr_layers1
=
(
c16_t
*
)
&
llr_layers
[
1
][
rxdataF_ext_offset
*
mod_order
];
c16_t
*
rho0
=
(
c16_t
*
)
&
rho
[
0
][
1
][
symbol
*
(
off
+
(
rb_size
*
NR_NB_SC_PER_RB
))];
c16_t
*
rho1
=
(
c16_t
*
)
&
rho
[
0
][
2
][
symbol
*
(
off
+
(
rb_size
*
NR_NB_SC_PER_RB
))];
switch
(
mod_order
)
{
case
2
:
nr_ulsch_qpsk_qpsk
(
rxdataF_comp0
,
rxdataF_comp1
,
llr_layers0
,
rho0
,
nb_re
);
nr_ulsch_qpsk_qpsk
(
rxdataF_comp1
,
rxdataF_comp0
,
llr_layers1
,
rho1
,
nb_re
);
break
;
case
4
:
case
6
:
AssertFatal
(
1
==
0
,
"LLR computation is not implemented yet for ML with Qm = %d
\n
"
,
mod_order
);
default:
AssertFatal
(
1
==
0
,
"nr_ulsch_compute_llr: invalid Qm value, symbol = %d, Qm = %d
\n
"
,
symbol
,
mod_order
);
}
}
void
nr_ulsch_shift_llr
(
int16_t
**
llr_layers
,
uint32_t
nb_re
,
uint32_t
rxdataF_ext_offset
,
uint8_t
mod_order
,
int
shift
)
{
__m128i
*
llr_layers0
=
(
__m128i
*
)
&
llr_layers
[
0
][
rxdataF_ext_offset
*
mod_order
];
__m128i
*
llr_layers1
=
(
__m128i
*
)
&
llr_layers
[
1
][
rxdataF_ext_offset
*
mod_order
];
uint8_t
mem_offset
=
((
16
-
((
long
)
llr_layers0
))
&
0xF
)
>>
2
;
if
(
mem_offset
>
0
)
{
c16_t
*
llr_layers0_c16
=
(
c16_t
*
)
&
llr_layers
[
0
][
rxdataF_ext_offset
*
mod_order
];
c16_t
*
llr_layers1_c16
=
(
c16_t
*
)
&
llr_layers
[
1
][
rxdataF_ext_offset
*
mod_order
];
for
(
int
i
=
0
;
i
<
mem_offset
;
i
++
)
{
llr_layers0_c16
[
i
]
=
c16Shift
(
llr_layers0_c16
[
i
],
shift
);
llr_layers1_c16
[
i
]
=
c16Shift
(
llr_layers1_c16
[
i
],
shift
);
}
llr_layers0
=
(
__m128i
*
)
&
llr_layers
[
0
][
rxdataF_ext_offset
*
mod_order
+
(
mem_offset
<<
1
)];
llr_layers1
=
(
__m128i
*
)
&
llr_layers
[
1
][
rxdataF_ext_offset
*
mod_order
+
(
mem_offset
<<
1
)];
}
for
(
int
i
=
0
;
i
<
nb_re
>>
2
;
i
++
)
{
llr_layers0
[
i
]
=
simde_mm_srai_epi16
(
llr_layers0
[
i
],
shift
);
llr_layers1
[
i
]
=
simde_mm_srai_epi16
(
llr_layers1
[
i
],
shift
);
}
}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment