/*******************************************************************************
    OpenAirInterface
    Copyright(c) 1999 - 2014 Eurecom

    OpenAirInterface is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.


    OpenAirInterface is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with OpenAirInterface.The full GNU General Public License is
   included in this distribution in the file called "COPYING". If not,
   see <http://www.gnu.org/licenses/>.

  Contact Information
  OpenAirInterface Admin: openair_admin@eurecom.fr
  OpenAirInterface Tech : openair_tech@eurecom.fr
  OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr

  Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

 *******************************************************************************/
#ifndef __LTE_ESTIMATION_DEFS__H__
#define __LTE_ESTIMATION_DEFS__H__

#include "PHY/defs.h"
/*
#ifdef EMOS
#include "SCHED/phy_procedures_emos.h"
#endif
 */

/** @addtogroup _PHY_PARAMETER_ESTIMATION_BLOCKS_
 * @{
 */

/*!\brief Timing drift hysterisis in samples*/
#define SYNCH_HYST 1

/*!
\brief This function is used for time-frequency scanning prior to complete cell search.  It scans
over the entire LTE band for maximum correlation and keeps the 10 best scores and the correspoding frequency offset (5 kHz granularity) for each of the 3 PSS sequences.
\param ue Pointer to UE variables
\param band index of lte band
\param DL_freq Central RF Frequency in Hz
*/
/*!
\brief This function allocates memory needed for the synchronization.
\param frame_parms LTE DL frame parameter structure

 */

int lte_sync_time_init(LTE_DL_FRAME_PARMS *frame_parms); //LTE_UE_COMMON *common_vars

/*! \fn void lte_sync_time_free()
\brief This function frees the memory allocated by lte_sync_time_init.
 */
void lte_sync_time_free(void);

/*!
\brief This function performs the coarse timing synchronization.
The algorithm uses a time domain correlation with a downsampled version of the received signal.
\param rxdata Received time domain data for all rx antennas
\param frame_parms LTE DL frame parameter structure
\param eNB_id return value with the eNb_id
\return sync_pos Position of the sync within the frame (downsampled) if successfull and -1 if there was an error or no peak was detected.
 */
int lte_sync_time(int **rxdata,
                  LTE_DL_FRAME_PARMS *frame_parms,
                  int *eNB_id);

/*!
\brief This function performs the coarse frequency and PSS synchronization.
The algorithm uses a frequency-domain correlation.  It scans over 20 MHz/10ms signal chunks using each of the 3 PSS finding the most likely (strongest) carriers and their frequency offset (+-2.5 kHz).
\param ue Pointer to UE data structure
\param band index of band in scan_info structure, used to store statistics
\param DL_freq center frequency of band being scanned, used when storing statistics
*/
void lte_sync_timefreq(PHY_VARS_UE *ue,int band,unsigned int DL_freq);


/*!
\brief This function performs detection of the PRACH (=SRS) at the eNb to estimate the timing advance
The algorithm uses a time domain correlation with a downsampled version of the received signal.
\param rxdata Received time domain data for all rx antennas
\param frame_parms LTE DL frame parameter structure
\param length Length for correlation
\param peak_val pointer to value of returned peak
\param sync_corr_eNb pointer to correlation buffer
\return sync_pos Position of the sync within the frame (downsampled) if successfull and -1 if there was an error or no peak was detected.
 */
int lte_sync_time_eNB(int32_t **rxdata,
                      LTE_DL_FRAME_PARMS *frame_parms,
                      uint32_t length,
                      uint32_t *peak_val,
                      uint32_t *sync_corr_eNb);

int lte_sync_time_eNB_emul(PHY_VARS_eNB *phy_vars_eNb,
                           uint8_t sect_id,
                           int32_t *sync_val);

/*!
\brief This function performs channel estimation including frequency and temporal interpolation
\param phy_vars_ue Pointer to UE PHY variables
\param eNB_id Index of target eNB
\param eNB_offset Offset for interfering eNB (in terms cell ID mod 3)
\param Ns slot number (0..19)
\param p antenna port
\param l symbol within slot
\param symbol symbol within frame
*/
int lte_dl_channel_estimation(PHY_VARS_UE *phy_vars_ue,
                              module_id_t eNB_id,
                              uint8_t eNB_offset,
                              uint8_t Ns,
                              uint8_t p,
                              uint8_t l,
                              uint8_t symbol);


int lte_dl_msbfn_channel_estimation(PHY_VARS_UE *phy_vars_ue,
                                    module_id_t eNB_id,
                                    uint8_t eNB_offset,
                                    int subframe,
                                    unsigned char l,
                                    unsigned char symbol);

int lte_dl_mbsfn_channel_estimation(PHY_VARS_UE *phy_vars_ue,
                                    module_id_t eNB_id,
                                    uint8_t eNB_offset,
                                    int subframe,
                                    unsigned char l);

/*
#ifdef EMOS
int lte_dl_channel_estimation_emos(int dl_ch_estimates_emos[NB_ANTENNAS_RX*NB_ANTENNAS_TX][N_RB_DL_EMOS*N_PILOTS_PER_RB*N_SLOTS_EMOS],
           int **rxdataF,
           LTE_DL_FRAME_PARMS *frame_parms,
           unsigned char Ns,
           unsigned char p,
           unsigned char l,
           unsigned char sector);
#endif
 */

/*!
\brief Frequency offset estimation for LTE
We estimate the frequency offset by calculating the phase difference between channel estimates for symbols carrying pilots (l==0 or l==3/4). We take a moving average of the phase difference.
\param dl_ch_estimates pointer to structure that holds channel estimates (one slot)
\param frame_parms pointer to LTE frame parameters
\param l symbol within slot
\param freq_offset pointer to the returned frequency offset
\param reset When non-zer it resets the filter to the initial value (set whenever tuning has been changed or for a one-shot estimate)
 */
int lte_est_freq_offset(int **dl_ch_estimates,
                        LTE_DL_FRAME_PARMS *frame_parms,
                        int l,
                        int* freq_offset,
			int reset);

int lte_mbsfn_est_freq_offset(int **dl_ch_estimates,
                              LTE_DL_FRAME_PARMS *frame_parms,
                              int l,
                              int* freq_offset);

/*! \brief Tracking of timing for LTE
This function computes the time domain channel response, finds the peak and adjusts the timing in pci_interface.offset accordingly.
\param frame_parms LTE DL frame parameter structure
\param phy_vars_ue Pointer to UE PHY data structure
\param eNb_id
\param clear If clear==1 moving average filter is reset
\param coef Coefficient of the moving average filter (Q1.15)
 */

void lte_adjust_synch(LTE_DL_FRAME_PARMS *frame_parms,
                      PHY_VARS_UE *phy_vars_ue,
                      module_id_t eNb_id,
                      unsigned char clear,
                      short coef);

//! \brief this function fills the PHY_VARS_UE->PHY_measurement structure
void lte_ue_measurements(PHY_VARS_UE *phy_vars_ue,
                         unsigned int subframe_offset,
                         unsigned char N0_symbol,
                         unsigned char abstraction_flag);

//! \brief This function performance RSRP/RSCP measurements
void ue_rrc_measurements(PHY_VARS_UE *phy_vars_ue,
                         uint8_t slot,
                         uint8_t abstraction_flag);

void lte_ue_measurements_emul(PHY_VARS_UE *phy_vars_ue,uint8_t last_slot,uint8_t eNB_id);

/*! \brief Function to return the path-loss based on the UE cell-specific reference signal strength and transmission power of eNB
@param Mod_id Module ID for UE
@param eNB_index Index of eNB on which to act
@returns Path loss in dB
 */
int16_t get_PL(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
uint32_t get_RSRP(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
uint32_t get_RSRQ(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index);
uint8_t get_n_adj_cells(module_id_t Mod_id,uint8_t CC_id);
uint32_t get_rx_total_gain_dB(module_id_t Mod_id,uint8_t CC_id);
uint32_t get_RSSI(module_id_t Mod_id,uint8_t CC_id);
int8_t set_RSRP_filtered(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rsrp);
int8_t set_RSRQ_filtered(module_id_t Mod_id,uint8_t CC_id,uint8_t eNB_index,float rstq);

//! Automatic gain control
void phy_adjust_gain (PHY_VARS_UE *phy_vars_ue,
                      unsigned char eNB_id);

int lte_ul_channel_estimation(PHY_VARS_eNB *phy_vars_eNB,
                              module_id_t eNB_id,
                              module_id_t UE_id,
                              uint8_t subframe,
                              uint8_t l,
                              uint8_t Ns,
                              uint8_t cooperation_flag);

int16_t lte_ul_freq_offset_estimation(LTE_DL_FRAME_PARMS *frame_parms,
                                      int32_t *ul_ch_estimates,
                                      uint16_t nb_rb);

int lte_srs_channel_estimation(LTE_DL_FRAME_PARMS *frame_parms,
                               LTE_eNB_COMMON *eNb_common_vars,
                               LTE_eNB_SRS *eNb_srs_vars,
                               SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
                               unsigned char sub_frame_number,
                               unsigned char eNb_id);

int lte_est_timing_advance(LTE_DL_FRAME_PARMS *frame_parms,
                           LTE_eNB_SRS *lte_eNb_srs,
                           unsigned int *eNb_id,
                           unsigned char clear,
                           unsigned char number_of_cards,
                           short coef);

int lte_est_timing_advance_pusch(PHY_VARS_eNB* phy_vars_eNB,module_id_t UE_id,uint8_t subframe);

void lte_eNB_I0_measurements(PHY_VARS_eNB *phy_vars_eNB,
			     int subframe,
                             module_id_t eNB_id,
                             unsigned char clear);

void lte_eNB_I0_measurements_emul(PHY_VARS_eNB *phy_vars_eNB,
                                  uint8_t sect_id);


void lte_eNB_srs_measurements(PHY_VARS_eNB *phy_vars_eNBy,
                              module_id_t eNB_id,
                              module_id_t UE_id,
                              unsigned char init_averaging);


void freq_equalization(LTE_DL_FRAME_PARMS *frame_parms,
                       int **rxdataF_comp,
                       int **ul_ch_mag,
                       int **ul_ch_mag_b,
                       unsigned char symbol,
                       unsigned short Msc_RS,
                       unsigned char Qm);


/** @} */
#endif