/*******************************************************************************
 OpenAirInterface
 Copyright(c) 1999 - 2014 Eurecom

 OpenAirInterface is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.


 OpenAirInterface is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with OpenAirInterface.The full GNU General Public License is
 included in this distribution in the file called "COPYING". If not,
 see <http://www.gnu.org/licenses/>.

 Contact Information
 OpenAirInterface Admin: openair_admin@eurecom.fr
 OpenAirInterface Tech : openair_tech@eurecom.fr
 OpenAirInterface Dev  : openair4g-devel@lists.eurecom.fr

 Address      : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE

 *******************************************************************************/
/*! \file oaisim.c
* \brief oaisim top level
* \author Navid Nikaein 
* \date 2013-2015
* \version 1.0
* \company Eurecom
* \email: openair_tech@eurecom.fr
* \note
* \warning
*/

#include <string.h>
#include <math.h>
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <cblas.h>
#include <execinfo.h>

#include "event_handler.h"
#include "SIMULATION/RF/defs.h"
#include "PHY/types.h"
#include "PHY/defs.h"
#include "PHY/LTE_TRANSPORT/proto.h"
#include "PHY/vars.h"
#include "MAC_INTERFACE/vars.h"

#include "SIMULATION/ETH_TRANSPORT/proto.h"

//#ifdef OPENAIR2
#include "LAYER2/MAC/defs.h"
#include "LAYER2/MAC/proto.h"
#include "LAYER2/MAC/vars.h"
#include "pdcp.h"
#ifndef CELLULAR
#include "RRC/LITE/vars.h"
#endif
#include "PHY_INTERFACE/vars.h"
//#endif
#include "RRC/NAS/nas_config.h"

#ifdef IFFT_FPGA
//#include "PHY/LTE_REFSIG/mod_table.h"
#endif //IFFT_FPGA
#include "SCHED/defs.h"
#include "SCHED/vars.h"

//#ifdef XFORMS
#include "PHY/TOOLS/lte_phy_scope.h"
//#endif

#ifdef SMBV
// Rohde&Schwarz SMBV100A vector signal generator
#include "PHY/TOOLS/smbv.h"
char smbv_fname[] = "smbv_config_file.smbv";
unsigned short smbv_nframes = 4; // how many frames to configure 1,..,4
unsigned short config_frames[4] = {2,9,11,13};
unsigned char smbv_frame_cnt = 0;
uint8_t config_smbv = 0;
char smbv_ip[16];
#endif

#include "oaisim_functions.h"

#include "oaisim.h"
#include "oaisim_config.h"
#include "UTIL/OCG/OCG_extern.h"
#include "cor_SF_sim.h"
#include "UTIL/OMG/omg_constants.h"
#include "UTIL/FIFO/pad_list.h"
#include "enb_app.h"

#include "../PROC/interface.h"
#include "../PROC/channel_sim_proc.h"
#include "../PROC/Tsync.h"
#include "../PROC/Process.h"

#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OTG/otg_kpi.h"
#include "assertions.h"

#if defined(ENABLE_ITTI)
# include "intertask_interface.h"
# include "create_tasks.h"
#endif

#if T_TRACER
#include "T.h"
#endif

/*
 DCI0_5MHz_TDD0_t          UL_alloc_pdu;
 DCI1A_5MHz_TDD_1_6_t      CCCH_alloc_pdu;
 DCI2_5MHz_2A_L10PRB_TDD_t DLSCH_alloc_pdu1;
 DCI2_5MHz_2A_M10PRB_TDD_t DLSCH_alloc_pdu2;
 */

#define UL_RB_ALLOC            computeRIV(lte_frame_parms->N_RB_UL,0,24)
#define CCCH_RB_ALLOC          computeRIV(lte_frame_parms->N_RB_UL,0,3)
#define RA_RB_ALLOC            computeRIV(lte_frame_parms->N_RB_UL,0,3)
#define DLSCH_RB_ALLOC         0x1fff

#define DECOR_DIST             100
#define SF_VAR                 10

//constant for OAISIM soft realtime calibration
//#define SF_DEVIATION_OFFSET_NS 100000        /*= 0.1ms : should be as a number of UE */
//#define SLEEP_STEP_US          100           /*  = 0.01ms could be adaptive, should be as a number of UE */
//#define K                      2             /* averaging coefficient */
//#define TARGET_SF_TIME_NS      1000000       /* 1ms = 1000000 ns */

frame_t frame = 0;
char stats_buffer[16384];
channel_desc_t *eNB2UE[NUMBER_OF_eNB_MAX][NUMBER_OF_UE_MAX][MAX_NUM_CCs];
channel_desc_t *UE2eNB[NUMBER_OF_UE_MAX][NUMBER_OF_eNB_MAX][MAX_NUM_CCs];
//Added for PHY abstraction
node_desc_t *enb_data[NUMBER_OF_eNB_MAX];
node_desc_t *ue_data[NUMBER_OF_UE_MAX];
// Added for PHY abstraction
extern node_list* ue_node_list;
extern node_list* enb_node_list;
extern int pdcp_period, omg_period;

extern double **s_re, **s_im, **r_re, **r_im, **r_re0, **r_im0;
int map1, map2;
extern double **ShaF;
double snr_dB, sinr_dB, snr_direction; //,sinr_direction;
extern double snr_step;
extern uint8_t set_sinr;
extern uint8_t ue_connection_test;
extern uint8_t set_seed;
extern uint8_t target_dl_mcs;
extern uint8_t target_ul_mcs;
extern uint8_t abstraction_flag;
extern uint8_t ethernet_flag;
extern uint16_t Nid_cell;

extern LTE_DL_FRAME_PARMS *frame_parms[MAX_NUM_CCs];

//#ifdef XFORMS
int otg_enabled;
int xforms=0;
//#endif

time_stats_t oaisim_stats;
time_stats_t oaisim_stats_f;
time_stats_t dl_chan_stats;
time_stats_t ul_chan_stats;

// this should reflect the channel models in openair1/SIMULATION/TOOLS/defs.h
mapping small_scale_names[] = { 
  { "custom", custom }, { "SCM_A", SCM_A },
  { "SCM_B", SCM_B   }, { "SCM_C", SCM_C },
  { "SCM_D", SCM_D   }, { "EPA",   EPA   },
  { "EVA",   EVA     }, { "ETU",   ETU   },
  { "MBSFN", MBSFN },   { "Rayleigh8", Rayleigh8 },
  { "Rayleigh1", Rayleigh1 }, { "Rayleigh1_800", Rayleigh1_800 },
  { "Rayleigh1_corr", Rayleigh1_corr }, { "Rayleigh1_anticorr", Rayleigh1_anticorr },
  { "Rice8", Rice8 }, { "Rice1", Rice1 }, { "Rice1_corr", Rice1_corr },
  { "Rice1_anticorr", Rice1_anticorr }, { "AWGN", AWGN }, { NULL,-1 }
};
#if !defined(ENABLE_ITTI)
static void *
sigh (void *arg);
#endif
void
oai_shutdown (void);

void
help (void)
{
  printf ("Usage: oaisim -h -a -F -C tdd_config -K [log_file] -V [vcd_file] -R N_RB_DL -e -x transmission_mode -m target_dl_mcs -r(ate_adaptation) -n n_frames -s snr_dB -k ricean_factor -t max_delay -f forgetting factor -A channel_model -z cooperation_flag -u nb_local_ue -U UE mobility -b nb_local_enb -B eNB_mobility -M ethernet_flag -p nb_master -g multicast_group -l log_level -c ocg_enable -T traffic model -D multicast network device\n");

  printf ("-h provides this help message!\n");
  printf ("-a Activates PHY abstraction mode\n");
  printf ("-A set the multipath channel simulation,  options are: SCM_A, SCM_B, SCM_C, SCM_D, EPA, EVA, ETU, Rayleigh8, Rayleigh1, Rayleigh1_corr,Rayleigh1_anticorr, Rice8,, Rice1, AWGN \n");
  printf ("-b Set the number of local eNB\n");
  printf ("-B Set the mobility model for eNB, options are: STATIC, RWP, RWALK, \n");
  printf ("-c [1,2,3,4] Activate the config generator (OCG) to process the scenario descriptor, or give the scenario manually: -c template_1.xml \n");
  printf ("-C [0-6] Sets TDD configuration\n");
  printf ("-e Activates extended prefix mode\n");
  printf ("-E Random number generator seed\n");
  printf ("-f Set the forgetting factor for time-variation\n");
  printf ("-F Activates FDD transmission (TDD is default)\n");
  printf ("-g Set multicast group ID (0,1,2,3) - valid if M is set\n");
  printf ("-G Enable background traffic \n");
  printf ("-H Enable handover operation (default disabled) \n");
  printf ("-I Enable CLI interface (to connect use telnet localhost 1352)\n");
  printf ("-k Set the Ricean factor (linear)\n");
  printf ("-K [log_file] Enable ITTI logging into log_file\n");
  printf ("-l Set the global log level (8:trace, 7:debug, 6:info, 4:warn, 3:error) \n");
  printf ("-L [0-1] 0 to disable new link adaptation, 1 to enable new link adapatation\n");
  printf ("-m Gives a fixed DL mcs for eNB scheduler\n");
  printf ("-M Set the machine ID for Ethernet-based emulation\n");
  printf ("-n Set the number of frames for the simulation\n");
  printf ("-O [enb_conf_file] eNB configuration file name\n");
  printf ("-p Set the total number of machine in emulation - valid if M is set\n");
  printf ("-P [trace type] Enable protocol analyzer. Possible values for OPT:\n");
  printf ("    - wireshark: Enable tracing of layers above PHY using an UDP socket\n");
  printf ("    - pcap:      Enable tracing of layers above PHY to a pcap file\n");
  printf ("    - tshark:    Not implemented yet\n");
  printf ("-q Enable Openair performance profiler \n");
  printf ("-Q Activate and set the MBMS service: 0 : not used (default eMBMS disabled), 1: eMBMS and RRC Connection enabled, 2: eMBMS relaying and RRC Connection enabled, 3: eMBMS enabled, RRC Connection disabled, 4: eMBMS relaying enabled, RRC Connection disabled\n");
  printf ("-R [6,15,25,50,75,100] Sets N_RB_DL\n");
  printf ("-r Activates rate adaptation (DL for now)\n");
  printf ("-s snr_dB set a fixed (average) SNR, this deactivates the openair channel model generator (OCM)\n");
  printf ("-S snir_dB set a fixed (average) SNIR, this deactivates the openair channel model generator (OCM)\n");
  printf ("-t Gives a fixed UL mcs for eNB scheduler\n");
  printf ("-T activate the traffic generator. Valide options are m2m,scbr,mcbr,bcbr,auto_pilot,bicycle_race,open_arena,team_fortress,m2m_traffic,auto_pilot_l,auto_pilot_m,auto_pilot_h,auto_pilot_e,virtual_game_l,virtual_game_m,virtual_game_h,virtual_game_f,alarm_humidity,alarm_smoke,alarm_temperature,openarena_dl,openarena_ul,voip_g711,voip_g729,video_vbr_10mbps,video_vbr_4mbps,video_vbr_2mbp,video_vbr_768kbps,video_vbr_384kbps,video_vbr_192kpbs,background_users\n");
  printf ("-u Set the number of local UE\n");
  printf ("-U Set the mobility model for UE, options are: STATIC, RWP, RWALK\n");
  printf ("-V [vcd_file] Enable VCD dump into vcd_file\n");
  printf ("-w number of CBA groups, if not specified or zero, CBA is inactive\n");
#ifdef SMBV
  printf ("-W IP address to connect to Rohde&Schwarz SMBV100A and configure SMBV from config file. -W0 uses default IP 192.168.12.201\n");
#else
  printf ("-W [Rohde&Schwarz SMBV100A functions disabled. Recompile with SMBV=1]\n");
#endif
  printf ("-x Set the transmission mode (1,2,5,6 supported for now)\n");
  printf ("-Y Set the global log verbosity (none, low, medium, high, full) \n");
  printf ("-z Set the cooperation flag (0 for no cooperation, 1 for delay diversity and 2 for distributed alamouti\n");
  printf ("-Z Reserved\n");
}

pthread_t log_thread;

void
log_thread_init (void)
{
  //create log_list
  //log_list_init(&log_list);
#ifndef LOG_NO_THREAD

  log_shutdown = 0;

  if ((pthread_mutex_init (&log_lock, NULL) != 0)
      || (pthread_cond_init (&log_notify, NULL) != 0)) {
    return;
  }

  if (pthread_create (&log_thread, NULL, log_thread_function, (void*) NULL)
      != 0) {
    log_thread_finalize ();
    return;
  }

#endif

}

//Call it after the last LOG call
int
log_thread_finalize (void)
{
  int err = 0;

#ifndef LOG_NO_THREAD

  if (pthread_mutex_lock (&log_lock) != 0) {
    return -1;
  }

  log_shutdown = 1;

  /* Wake up LOG thread */
  if ((pthread_cond_broadcast (&log_notify) != 0)
      || (pthread_mutex_unlock (&log_lock) != 0)) {
    err = -1;
  }

  if (pthread_join (log_thread, NULL) != 0) {
    err = -1;
  }

  if (pthread_mutex_unlock (&log_lock) != 0) {
    err = -1;
  }

  if (!err) {
    //log_list_free(&log_list);
    pthread_mutex_lock (&log_lock);
    pthread_mutex_destroy (&log_lock);
    pthread_cond_destroy (&log_notify);
  }

#endif

  return err;
}

#if defined(ENABLE_ITTI)
static void set_cli_start(module_id_t module_idP, uint8_t start)
{
  if (module_idP < NB_eNB_INST) {
    oai_emulation.info.cli_start_enb[module_idP] = start;
  } else {
    oai_emulation.info.cli_start_ue[module_idP - NB_eNB_INST] = start;
  }
}
#endif

#ifdef OPENAIR2
int omv_write(int pfd, node_list* enb_node_list, node_list* ue_node_list, Data_Flow_Unit omv_data)
{
  module_id_t i, j;
  omv_data.end = 0;

  //omv_data.total_num_nodes = NB_UE_INST + NB_eNB_INST;
  for (i = 0; i < NB_eNB_INST; i++) {
    if (enb_node_list != NULL) {
      omv_data.geo[i].x = (enb_node_list->node->x_pos < 0.0) ? 0.0 : enb_node_list->node->x_pos;
      omv_data.geo[i].y = (enb_node_list->node->y_pos < 0.0) ? 0.0 : enb_node_list->node->y_pos;
      omv_data.geo[i].z = 1.0;
      omv_data.geo[i].mobility_type = oai_emulation.info.omg_model_enb;
      omv_data.geo[i].node_type = 0; //eNB
      enb_node_list = enb_node_list->next;
      omv_data.geo[i].Neighbors = 0;

      for (j = NB_eNB_INST; j < NB_UE_INST + NB_eNB_INST; j++) {
        if (is_UE_active (i, j - NB_eNB_INST) == 1) {
          omv_data.geo[i].Neighbor[omv_data.geo[i].Neighbors] = j;
          omv_data.geo[i].Neighbors++;
          LOG_D(
            OMG,
            "[eNB %d][UE %d] is_UE_active(i,j) %d geo (x%d, y%d) num neighbors %d\n", i, j-NB_eNB_INST, is_UE_active(i,j-NB_eNB_INST), omv_data.geo[i].x, omv_data.geo[i].y, omv_data.geo[i].Neighbors);
        }
      }
    }
  }

  for (i = NB_eNB_INST; i < NB_UE_INST + NB_eNB_INST; i++) {
    if (ue_node_list != NULL) {
      omv_data.geo[i].x = (ue_node_list->node->x_pos < 0.0) ? 0.0 : ue_node_list->node->x_pos;
      omv_data.geo[i].y = (ue_node_list->node->y_pos < 0.0) ? 0.0 : ue_node_list->node->y_pos;
      omv_data.geo[i].z = 1.0;
      omv_data.geo[i].mobility_type = oai_emulation.info.omg_model_ue;
      omv_data.geo[i].node_type = 1; //UE
      //trial
      omv_data.geo[i].state = 1;
      omv_data.geo[i].rnti = 88;
      omv_data.geo[i].connected_eNB = 0;
      omv_data.geo[i].RSRP = 66;
      omv_data.geo[i].RSRQ = 55;
      omv_data.geo[i].Pathloss = 44;
      omv_data.geo[i].RSSI[0] = 33;
      omv_data.geo[i].RSSI[1] = 22;

      if ((sizeof(omv_data.geo[0].RSSI) / sizeof(omv_data.geo[0].RSSI[0])) > 2) {
        omv_data.geo[i].RSSI[2] = 11;
      }

      ue_node_list = ue_node_list->next;
      omv_data.geo[i].Neighbors = 0;

      for (j = 0; j < NB_eNB_INST; j++) {
        if (is_UE_active (j, i - NB_eNB_INST) == 1) {
          omv_data.geo[i].Neighbor[omv_data.geo[i].Neighbors] = j;
          omv_data.geo[i].Neighbors++;
          LOG_D(
            OMG,
            "[UE %d][eNB %d] is_UE_active  %d geo (x%d, y%d) num neighbors %d\n", i-NB_eNB_INST, j, is_UE_active(j,i-NB_eNB_INST), omv_data.geo[i].x, omv_data.geo[i].y, omv_data.geo[i].Neighbors);
        }
      }
    }
  }

  LOG_E(OMG, "pfd %d \n", pfd);

  if (write (pfd, &omv_data, sizeof(struct Data_Flow_Unit)) == -1)
    perror ("write omv failed");

  return 1;
}

void omv_end(int pfd, Data_Flow_Unit omv_data)
{
  omv_data.end = 1;

  if (write (pfd, &omv_data, sizeof(struct Data_Flow_Unit)) == -1)
    perror ("write omv failed");
}
#endif

#ifdef OPENAIR2
int pfd[2]; // fd for omv : fixme: this could be a local var
#endif

#ifdef OPENAIR2
static Data_Flow_Unit omv_data;
#endif //ALU
static module_id_t UE_inst = 0;
static module_id_t eNB_inst = 0;
#ifdef Rel10
static module_id_t RN_id = 0;
#endif

Packet_OTG_List_t *otg_pdcp_buffer;

typedef enum l2l1_task_state_e {
  L2L1_WAITTING, L2L1_RUNNING, L2L1_TERMINATED,
} l2l1_task_state_t;

l2l1_task_state_t l2l1_state = L2L1_WAITTING;

/*------------------------------------------------------------------------------*/
void *
l2l1_task (void *args_p)
{

  int CC_id;

  // Framing variables
  int32_t slot, last_slot, next_slot;

#ifdef Rel10
  relaying_type_t r_type = no_relay; // no relaying
#endif

  lte_subframe_t direction;

  char fname[64], vname[64];
  int sf;
  protocol_ctxt_t  ctxt;
  //#ifdef XFORMS
  // current status is that every UE has a DL scope for a SINGLE eNB (eNB_id=0)
  // at eNB 0, an UL scope for every UE
  FD_lte_phy_scope_ue *form_ue[MAX_NUM_CCs][NUMBER_OF_UE_MAX];
  FD_lte_phy_scope_enb *form_enb[NUMBER_OF_UE_MAX];
  char title[255];
  char xname[32] = "oaisim";
  int xargc = 1;
  char *xargv[1];
  //#endif

#define PRINT_STATS
#ifdef PRINT_STATS
  int len;
  FILE *UE_stats[NUMBER_OF_UE_MAX];
  FILE *UE_stats_th[NUMBER_OF_UE_MAX];
  FILE *eNB_stats[NUMBER_OF_eNB_MAX];
  FILE *eNB_avg_thr;
  FILE *eNB_l2_stats;
  char UE_stats_filename[255];
  char eNB_stats_filename[255];
  char UE_stats_th_filename[255];
  char eNB_stats_th_filename[255];
#endif

  for (CC_id = 0; CC_id < MAX_NUM_CCs; CC_id++)
    for (eNB_inst = 0; eNB_inst < NB_eNB_INST; eNB_inst++) {
      for (sf = 0; sf < 10; sf++) {
        PHY_vars_eNB_g[eNB_inst][CC_id]->proc[sf].frame_tx = 0;
        PHY_vars_eNB_g[eNB_inst][CC_id]->proc[sf].frame_rx = 0;
        PHY_vars_eNB_g[eNB_inst][CC_id]->proc[sf].subframe_tx = (sf + 1)
            % 10;
        PHY_vars_eNB_g[eNB_inst][CC_id]->proc[sf].subframe_rx = (sf + 9)
            % 10;
      }

      PHY_vars_eNB_g[eNB_inst][CC_id]->proc[0].frame_rx = 1023;
      PHY_vars_eNB_g[eNB_inst][CC_id]->proc[9].frame_tx = 1;
    }

  //#ifdef XFORMS
  if (xforms==1) {
    xargv[0] = xname;
    fl_initialize (&xargc, xargv, NULL, 0, 0);
    eNB_inst = 0;
    
    for (UE_inst = 0; UE_inst < NB_UE_INST; UE_inst++) {
      for (CC_id=0;CC_id<MAX_NUM_CCs;CC_id++) {
	// DL scope at UEs
	form_ue[CC_id][UE_inst] = create_lte_phy_scope_ue();
	sprintf (title, "LTE DL SCOPE eNB %d to UE %d CC_id %d", eNB_inst, UE_inst, CC_id);
	fl_show_form (form_ue[CC_id][UE_inst]->lte_phy_scope_ue, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);

	if (openair_daq_vars.use_ia_receiver == 1) {
	  fl_set_button(form_ue[CC_id][UE_inst]->button_0,1);
	  fl_set_object_label(form_ue[CC_id][UE_inst]->button_0, "IA Receiver ON");
	  fl_set_object_color(form_ue[CC_id][UE_inst]->button_0, FL_GREEN, FL_GREEN);
	}
	
      }
      // UL scope at eNB 0
      form_enb[UE_inst] = create_lte_phy_scope_enb();
      sprintf (title, "LTE UL SCOPE UE %d to eNB %d", UE_inst, eNB_inst);
      fl_show_form (form_enb[UE_inst]->lte_phy_scope_enb, FL_PLACE_HOTSPOT, FL_FULLBORDER, title);
      
    }
  }
  //#endif

#ifdef PRINT_STATS

  for (UE_inst=0; UE_inst<NB_UE_INST; UE_inst++) {
    sprintf(UE_stats_filename,"UE_stats%d.txt",UE_inst);
    UE_stats[UE_inst] = fopen (UE_stats_filename, "w");
  }

  for (eNB_inst=0; eNB_inst<NB_eNB_INST; eNB_inst++) {
    sprintf(eNB_stats_filename,"eNB_stats%d.txt",eNB_inst);
    eNB_stats[eNB_inst] = fopen (eNB_stats_filename, "w");
  }

  if(abstraction_flag==0) {
    for (UE_inst=0; UE_inst<NB_UE_INST; UE_inst++) {
      sprintf(UE_stats_th_filename,"UE_stats_th%d_tx%d.txt",UE_inst,oai_emulation.info.transmission_mode);
      UE_stats_th[UE_inst] = fopen (UE_stats_th_filename, "w");
    }

    sprintf(eNB_stats_th_filename,"eNB_stats_th_tx%d.txt",oai_emulation.info.transmission_mode);
    eNB_avg_thr = fopen (eNB_stats_th_filename, "w");
  } else {
    for (UE_inst=0; UE_inst<NB_UE_INST; UE_inst++) {
      sprintf(UE_stats_th_filename,"UE_stats_abs_th%d_tx%d.txt",UE_inst,oai_emulation.info.transmission_mode);
      UE_stats_th[UE_inst] = fopen (UE_stats_th_filename, "w");
    }

    sprintf(eNB_stats_th_filename,"eNB_stats_abs_th_tx%d.txt",oai_emulation.info.transmission_mode);
    eNB_avg_thr = fopen (eNB_stats_th_filename, "w");
  }

#ifdef OPENAIR2
  eNB_l2_stats = fopen ("eNB_l2_stats.txt", "w");
  LOG_I(EMU,"eNB_l2_stats=%p\n", eNB_l2_stats);
#endif

#endif

#if defined(ENABLE_ITTI)
  MessageDef *message_p = NULL;
  const char *msg_name = NULL;
  int result;

  itti_mark_task_ready (TASK_L2L1);
  LOG_I(EMU, "TASK_L2L1 is READY\n");

  if (oai_emulation.info.nb_enb_local > 0) {
    /* Wait for the initialize message */
    do {
      if (message_p != NULL) {
        result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
        AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
      }

      itti_receive_msg (TASK_L2L1, &message_p);
      msg_name = ITTI_MSG_NAME (message_p);
      LOG_I(EMU, "TASK_L2L1 received %s in state L2L1_WAITTING\n", msg_name);

      switch (ITTI_MSG_ID(message_p)) {
      case INITIALIZE_MESSAGE:
        l2l1_state = L2L1_RUNNING;
        break;

      case ACTIVATE_MESSAGE:
        set_cli_start(ITTI_MSG_INSTANCE (message_p), 1);
        break;

      case DEACTIVATE_MESSAGE:
        set_cli_start(ITTI_MSG_INSTANCE (message_p), 0);
        break;

      case TERMINATE_MESSAGE:
        l2l1_state = L2L1_TERMINATED;
        break;

      default:
        LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
        break;
      }
    } while (l2l1_state == L2L1_WAITTING);

    result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
    AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
  }

#endif
  start_meas (&oaisim_stats);

  for (frame = 0;
       (l2l1_state != L2L1_TERMINATED)
       && (frame < oai_emulation.info.n_frames);
       frame++) {

#if defined(ENABLE_ITTI)

    do {
      // Checks if a message has been sent to L2L1 task
      itti_poll_msg (TASK_L2L1, &message_p);

      if (message_p != NULL) {
        msg_name = ITTI_MSG_NAME (message_p);
        LOG_I(EMU, "TASK_L2L1 received %s\n", msg_name);

        switch (ITTI_MSG_ID(message_p)) {
        case ACTIVATE_MESSAGE:
          set_cli_start(ITTI_MSG_INSTANCE (message_p), 1);
          break;

        case DEACTIVATE_MESSAGE:
          set_cli_start(ITTI_MSG_INSTANCE (message_p), 0);
          break;

        case TERMINATE_MESSAGE:
          l2l1_state = L2L1_TERMINATED;
          break;

        case MESSAGE_TEST:
          break;

        default:
          LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
          break;
        }

        result = itti_free (ITTI_MSG_ORIGIN_ID(message_p), message_p);
        AssertFatal (result == EXIT_SUCCESS, "Failed to free memory (%d)!\n", result);
      }
    } while(message_p != NULL);

#endif

    //Run the aperiodic user-defined events
    if (oai_emulation.info.oeh_enabled == 1)
      execute_events (frame);

    if (ue_connection_test == 1) {
      if ((frame % 20) == 0) {
        snr_dB += snr_direction;
        sinr_dB -= snr_direction;
      }

      if (snr_dB == -20) {
        snr_direction = snr_step;
      } else if (snr_dB == 20) {
        snr_direction = -snr_step;
      }
    }

    oai_emulation.info.frame = frame;
    //oai_emulation.info.time_ms += 1;
    oai_emulation.info.time_s += 0.01; // emu time in s, each frame lasts for 10 ms // JNote: TODO check the coherency of the time and frame (I corrected it to 10 (instead of 0.01)

    // if n_frames not set by the user or is greater than max num frame then set adjust the frame counter
    if ((oai_emulation.info.n_frames_flag == 0)
        || (oai_emulation.info.n_frames >= 0xffff)) {
      frame %= (oai_emulation.info.n_frames - 1);
    }

    update_omg (frame); // frequency is defined in the omg_global params configurable by the user

    update_omg_ocm ();

#ifdef OPENAIR2

    // check if pipe is still open
    if ((oai_emulation.info.omv_enabled == 1)) {
      omv_write (pfd[1], enb_node_list, ue_node_list, omv_data);
    }

#endif
#ifdef DEBUG_OMG
    /*
     if ((((int) oai_emulation.info.time_s) % 100) == 0) {
     for (UE_inst = oai_emulation.info.first_ue_local; UE_inst < (oai_emulation.info.first_ue_local + oai_emulation.info.nb_ue_local); UE_inst++) {
     get_node_position (UE, UE_inst);
     }
     }
     */
#endif

    update_ocm ();

    for (slot = 0; slot < 20; slot++) {
      if (slot % 2 == 0)
        start_meas (&oaisim_stats_f);

      wait_for_slot_isr ();

#if defined(ENABLE_ITTI)
      itti_update_lte_time(frame, slot);
#endif

      last_slot = (slot - 1) % 20;

      if (last_slot < 0)
        last_slot += 20;

      next_slot = (slot + 1) % 20;

      oai_emulation.info.time_ms = frame * 10 + (slot >> 1);

      direction = subframe_select (frame_parms[0], next_slot >> 1);

#ifdef PROC

      if(Channel_Flag==1)
        Channel_Func(s_re2,s_im2,r_re2,r_im2,r_re02,r_im02,r_re0_d,r_im0_d,r_re0_u,r_im0_u,eNB2UE,UE2eNB,enb_data,ue_data,abstraction_flag,frame_parms,slot);

      if(Channel_Flag==0)
#endif
      {
#if defined(ENABLE_ITTI)
        log_set_instance_type (LOG_INSTANCE_ENB);
#endif

        //    if ((next_slot % 2) == 0)
        if ((slot & 1) == 0)
          clear_eNB_transport_info (oai_emulation.info.nb_enb_local);

        for (eNB_inst = oai_emulation.info.first_enb_local;
             (eNB_inst
              < (oai_emulation.info.first_enb_local
                 + oai_emulation.info.nb_enb_local));
             eNB_inst++) {
          if (oai_emulation.info.cli_start_enb[eNB_inst] != 0) {
            if ((slot & 1) == 0)
              LOG_D(EMU,
                    "PHY procedures eNB %d for frame %d, slot %d (subframe TX %d, RX %d) TDD %d/%d Nid_cell %d\n",
                    eNB_inst,
                    frame,
                    slot,
                    PHY_vars_eNB_g[eNB_inst][0]->proc[slot >> 1].subframe_tx,
                    PHY_vars_eNB_g[eNB_inst][0]->proc[slot >> 1].subframe_rx,
                    PHY_vars_eNB_g[eNB_inst][0]->lte_frame_parms.frame_type,
                    PHY_vars_eNB_g[eNB_inst][0]->lte_frame_parms.tdd_config,
                    PHY_vars_eNB_g[eNB_inst][0]->lte_frame_parms.Nid_cell);

#ifdef OPENAIR2
                        //Application: traffic gen
            update_otg_eNB (eNB_inst, oai_emulation.info.time_ms);

            //IP/OTG to PDCP and PDCP to IP operation
            //        pdcp_run (frame, 1, 0, eNB_inst); //PHY_vars_eNB_g[eNB_id]->Mod_id
#endif

            // PHY_vars_eNB_g[eNB_id]->frame = frame;
            if ((slot & 1) == 0)
              phy_procedures_eNB_lte (slot >> 1,
                                      PHY_vars_eNB_g[eNB_inst],
                                      abstraction_flag, no_relay,
                                      NULL);

#ifdef PRINT_STATS

            if(last_slot==9 && frame%10==0)
              if(eNB_avg_thr)
                fprintf(eNB_avg_thr,"%d %d\n",PHY_vars_eNB_g[eNB_inst][0]->proc[slot>>1].frame_tx,
                        (PHY_vars_eNB_g[eNB_inst][0]->total_system_throughput)/((PHY_vars_eNB_g[eNB_inst][0]->proc[slot>>1].frame_tx+1)*10));

            if (eNB_stats[eNB_inst]) {
              len = dump_eNB_stats(PHY_vars_eNB_g[eNB_inst][0], stats_buffer, 0);
              rewind (eNB_stats[eNB_inst]);
              fwrite (stats_buffer, 1, len, eNB_stats[eNB_inst]);
              fflush(eNB_stats[eNB_inst]);
            }

#ifdef OPENAIR2

            if (eNB_l2_stats) {
              len = dump_eNB_l2_stats (stats_buffer, 0);
              rewind (eNB_l2_stats);
              fwrite (stats_buffer, 1, len, eNB_l2_stats);
              fflush(eNB_l2_stats);
            }

#endif
#endif
          }
        }

        // Call ETHERNET emulation here
        //emu_transport (frame, last_slot, next_slot, direction, oai_emulation.info.frame_type, ethernet_flag);

#if defined(ENABLE_ITTI)
        log_set_instance_type (LOG_INSTANCE_UE);
#endif

        if ((next_slot % 2) == 0)
          // if ((slot&1) == 0)
          clear_UE_transport_info (oai_emulation.info.nb_ue_local);

        for (UE_inst = oai_emulation.info.first_ue_local;
             (UE_inst < (oai_emulation.info.first_ue_local + oai_emulation.info.nb_ue_local));
             UE_inst++) {
          if (oai_emulation.info.cli_start_ue[UE_inst] != 0) {
#if defined(ENABLE_ITTI) && defined(ENABLE_USE_MME)

#else

            if (frame >= (UE_inst * 20)) // activate UE only after 20*UE_id frames so that different UEs turn on separately
#endif
            {
              LOG_D(EMU,
                    "PHY procedures UE %d for frame %d, slot %d (subframe TX %d, RX %d)\n",
                    UE_inst, frame, slot, next_slot >> 1,
                    last_slot >> 1);

              if (PHY_vars_UE_g[UE_inst][0]->UE_mode[0]
                  != NOT_SYNCHED) {
                if (frame > 0) {
                  PHY_vars_UE_g[UE_inst][0]->frame_rx = frame;
                  PHY_vars_UE_g[UE_inst][0]->slot_rx =  last_slot;
                  PHY_vars_UE_g[UE_inst][0]->slot_tx = next_slot;

                  if (next_slot > 1)
                    PHY_vars_UE_g[UE_inst][0]->frame_tx = frame;
                  else
                    PHY_vars_UE_g[UE_inst][0]->frame_tx = frame + 1;

#ifdef OPENAIR2
                  //Application
                  update_otg_UE (UE_inst, oai_emulation.info.time_ms);

                  //Access layer
		  PROTOCOL_CTXT_SET_BY_MODULE_ID(&ctxt, UE_inst, 0, ENB_FLAG_NO, NOT_A_RNTI, frame, next_slot);
                  pdcp_run (&ctxt);
#endif

                  for (CC_id = 0; CC_id < MAX_NUM_CCs;
                       CC_id++) {
                    phy_procedures_UE_lte (
                      PHY_vars_UE_g[UE_inst][CC_id],
                      0, abstraction_flag,
                      normal_txrx, no_relay,
                      NULL);
                  }

                  ue_data[UE_inst]->tx_power_dBm =
                    PHY_vars_UE_g[UE_inst][0]->tx_power_dBm;
                }
              } else {
                if (abstraction_flag == 1) {
                  LOG_E(EMU,
                        "sync not supported in abstraction mode (UE%d,mode%d)\n",
                        UE_inst,
                        PHY_vars_UE_g[UE_inst][0]->UE_mode[0]);
                  exit (-1);
                }

                if ((frame > 0)
                    && (last_slot
                        == (LTE_SLOTS_PER_FRAME
                            - 2))) {
                  initial_sync (PHY_vars_UE_g[UE_inst][0],
                                normal_txrx);

                  /*
                   write_output("dlchan00.m","dlch00",&(PHY_vars_UE_g[0]->lte_ue_common_vars.dl_ch_estimates[0][0][0]),(6*(PHY_vars_UE_g[0]->lte_frame_parms.ofdm_symbol_size)),1,1);
                   if (PHY_vars_UE_g[0]->lte_frame_parms.nb_antennas_rx>1)
                   write_output("dlchan01.m","dlch01",&(PHY_vars_UE_g[0]->lte_ue_common_vars.dl_ch_estimates[0][1][0]),(6*(PHY_vars_UE_g[0]->lte_frame_parms.ofdm_symbol_size)),1,1);
                   write_output("dlchan10.m","dlch10",&(PHY_vars_UE_g[0]->lte_ue_common_vars.dl_ch_estimates[0][2][0]),(6*(PHY_vars_UE_g[0]->lte_frame_parms.ofdm_symbol_size)),1,1);
                   if (PHY_vars_UE_g[0]->lte_frame_parms.nb_antennas_rx>1)
                   write_output("dlchan11.m","dlch11",&(PHY_vars_UE_g[0]->lte_ue_common_vars.dl_ch_estimates[0][3][0]),(6*(PHY_vars_UE_g[0]->lte_frame_parms.ofdm_symbol_size)),1,1);
                   write_output("rxsig.m","rxs",PHY_vars_UE_g[0]->lte_ue_common_vars.rxdata[0],PHY_vars_UE_g[0]->lte_frame_parms.samples_per_tti*10,1,1);
                   write_output("rxsigF.m","rxsF",PHY_vars_UE_g[0]->lte_ue_common_vars.rxdataF[0],2*PHY_vars_UE_g[0]->lte_frame_parms.symbols_per_tti*PHY_vars_UE_g[0]->lte_frame_parms.ofdm_symbol_size,2,1);
                   write_output("pbch_rxF_ext0.m","pbch_ext0",PHY_vars_UE_g[0]->lte_ue_pbch_vars[0]->rxdataF_ext[0],6*12*4,1,1);
                   write_output("pbch_rxF_comp0.m","pbch_comp0",PHY_vars_UE_g[0]->lte_ue_pbch_vars[0]->rxdataF_comp[0],6*12*4,1,1);
                   write_output("pbch_rxF_llr.m","pbch_llr",PHY_vars_UE_g[0]->lte_ue_pbch_vars[0]->llr,(frame_parms->Ncp==0) ? 1920 : 1728,1,4);
                   */
                }
              }

#ifdef PRINT_STATS

              if(last_slot==2 && frame%10==0) {
                if (UE_stats_th[UE_inst]) {
                  fprintf(UE_stats_th[UE_inst],"%d %d\n",frame, PHY_vars_UE_g[UE_inst][0]->bitrate[0]/1000);
                }
              }

              if (UE_stats[UE_inst]) {
                len = dump_ue_stats (PHY_vars_UE_g[UE_inst][0], stats_buffer, 0, normal_txrx, 0);
                rewind (UE_stats[UE_inst]);
                fwrite (stats_buffer, 1, len, UE_stats[UE_inst]);
                fflush(UE_stats[UE_inst]);
              }

#endif
            }
          }
        }

#ifdef Rel10

        for (RN_id=oai_emulation.info.first_rn_local;
             RN_id<oai_emulation.info.first_rn_local+oai_emulation.info.nb_rn_local;
             RN_id++) {
          // UE id and eNB id of the RN
          UE_inst= oai_emulation.info.first_ue_local+oai_emulation.info.nb_ue_local + RN_id;// NB_UE_INST + RN_id
          eNB_inst= oai_emulation.info.first_enb_local+oai_emulation.info.nb_enb_local + RN_id;// NB_eNB_INST + RN_id

          // currently only works in FDD
          if (oai_emulation.info.eMBMS_active_state == 4) {
            r_type = multicast_relay;
            //LOG_I(EMU,"Activating the multicast relaying\n");
          } else {
            LOG_E(EMU,"Not supported eMBMS option when relaying is enabled %d\n", r_type);
            exit(-1);
          }

          PHY_vars_RN_g[RN_id]->frame = frame;

          if ( oai_emulation.info.frame_type == 0) {
            // RN == UE
            if (frame>0) {
              if (PHY_vars_UE_g[UE_inst][0]->UE_mode[0] != NOT_SYNCHED) {
                LOG_D(EMU,"[RN %d] PHY procedures UE %d for frame %d, slot %d (subframe TX %d, RX %d)\n",
                      RN_id, UE_inst, frame, slot, next_slot >> 1,last_slot>>1);
                PHY_vars_UE_g[UE_inst][0]->frame_rx = frame;
                PHY_vars_UE_g[UE_inst][0]->slot_rx = last_slot;
                PHY_vars_UE_g[UE_inst][0]->slot_tx = next_slot;

                if (next_slot>1) PHY_vars_UE_g[UE_inst][0]->frame_tx = frame;
                else PHY_vars_UE_g[UE_inst][0]->frame_tx = frame+1;

                phy_procedures_UE_lte (PHY_vars_UE_g[UE_inst][0], 0, abstraction_flag,normal_txrx,
                                       r_type, PHY_vars_RN_g[RN_id]);
              } else if (last_slot == (LTE_SLOTS_PER_FRAME-2)) {
                initial_sync(PHY_vars_UE_g[UE_inst][0],normal_txrx);
              }
            }

            // RN == eNB
            LOG_D(EMU,"[RN %d] PHY procedures eNB %d for frame %d, slot %d (subframe TX %d, RX %d)\n",
                  RN_id, eNB_inst, frame, slot, next_slot >> 1,last_slot>>1);
            phy_procedures_eNB_lte(slot>>1, PHY_vars_eNB_g[eNB_inst], abstraction_flag,
                                   r_type, PHY_vars_RN_g[RN_id]);
          } else {
            LOG_E(EMU,"TDD is not supported for multicast relaying %d\n", r_type);
            exit(-1);
          }
        }

#endif
        emu_transport (frame, last_slot, next_slot, direction,
                       oai_emulation.info.frame_type[0], ethernet_flag);

        if ((direction == SF_DL)
            || (frame_parms[0]->frame_type == FDD)) {
          // consider only sec id 0
          /*  for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
           if (abstraction_flag == 0) {
           do_OFDM_mod(PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdataF[0],
           PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdata[0],
           frame,next_slot,
           frame_parms);
           }
           }*/
          start_meas (&dl_chan_stats);

          for (UE_inst = 0; UE_inst < NB_UE_INST; UE_inst++)
            for (CC_id = 0; CC_id < MAX_NUM_CCs; CC_id++) {
#warning figure out what to do with UE frame_parms during initial_sync
              do_DL_sig (r_re0,
                         r_im0,
                         r_re,
                         r_im,
                         s_re,
                         s_im,
                         eNB2UE,
                         enb_data,
                         ue_data,
                         next_slot,
                         abstraction_flag,
                         &PHY_vars_eNB_g[0][CC_id]->lte_frame_parms,
                         UE_inst, CC_id);
            }

          stop_meas (&dl_chan_stats);
        }

        if ((direction == SF_UL) || (frame_parms[0]->frame_type == 0)) { //if ((subframe<2) || (subframe>4))
          start_meas (&ul_chan_stats);

          for (CC_id = 0; CC_id < MAX_NUM_CCs; CC_id++) {
#warning figure out what to do with UE frame_parms during initial_sync
            do_UL_sig (r_re0, r_im0, r_re, r_im, s_re, s_im, UE2eNB,
                       enb_data, ue_data, next_slot,
                       abstraction_flag,
                       &PHY_vars_eNB_g[0][CC_id]->lte_frame_parms,
                       frame, CC_id);
          }

          stop_meas (&ul_chan_stats);
          /*
           int ccc;
           fprintf(SINRpost,"SINRdb For eNB New Subframe : \n ");
           for(ccc = 0 ; ccc<301; ccc++)
           {
           fprintf(SINRpost,"_ %f ", SINRpost_eff[ccc]);
           }
           fprintf(SINRpost,"SINRdb For eNB : %f \n ", SINRpost_eff[ccc]);
           */
        }

        if ((direction == SF_S)) { //it must be a special subframe
          if (next_slot % 2 == 0) { //DL part
            /*  for (eNB_id=0;eNB_id<NB_eNB_INST;eNB_id++) {
             if (abstraction_flag == 0) {
             do_OFDM_mod(PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdataF[0],
             PHY_vars_eNB_g[eNB_id]->lte_eNB_common_vars.txdata[0],
             frame,next_slot,
             frame_parms);
             }
             }*/
            start_meas (&dl_chan_stats);

            for (UE_inst = 0; UE_inst < NB_UE_INST; UE_inst++)
              for (CC_id = 0; CC_id < MAX_NUM_CCs; CC_id++) {
#warning  check dimensions of r_reN,r_imN for multiple CCs
                do_DL_sig (r_re0,
                           r_im0,
                           r_re,
                           r_im,
                           s_re,
                           s_im,
                           eNB2UE,
                           enb_data,
                           ue_data,
                           next_slot,
                           abstraction_flag,
                           &PHY_vars_eNB_g[0][CC_id]->lte_frame_parms,
                           UE_inst, CC_id);
              }

            stop_meas (&dl_chan_stats);
            /*
             for (aarx=0;aarx<UE2eNB[1][0]->nb_rx;aarx++)
             for (aatx=0;aatx<UE2eNB[1][0]->nb_tx;aatx++)
             for (k=0;k<UE2eNB[1][0]->channel_length;k++)
             printf("SB(%d,%d,%d)->(%f,%f)\n",k,aarx,aatx,UE2eNB[1][0]->ch[aarx+(aatx*UE2eNB[1][0]->nb_rx)][k].r,UE2eNB[1][0]->ch[aarx+(aatx*UE2eNB[1][0]->nb_rx)][k].i);
             */
          } else { // UL part
            start_meas (&ul_chan_stats);

            for (CC_id = 0; CC_id < MAX_NUM_CCs; CC_id++) {
#warning  check dimensions of r_reN,r_imN for multiple CCs
              do_UL_sig (r_re0,
                         r_im0,
                         r_re,
                         r_im,
                         s_re,
                         s_im,
                         UE2eNB,
                         enb_data,
                         ue_data,
                         next_slot,
                         abstraction_flag,
                         &PHY_vars_eNB_g[0][CC_id]->lte_frame_parms,
                         frame, CC_id);
            }

            stop_meas (&ul_chan_stats);

            /*        int ccc;
             fprintf(SINRpost,"SINRdb For eNB New Subframe : \n ");
             for(ccc = 0 ; ccc<301; ccc++)
             {
             fprintf(SINRpost,"_ %f ", SINRpost_eff[ccc]);
             }
             fprintf(SINRpost,"SINRdb For eNB : %f \n ", SINRpost_eff[ccc]);
             }
             */
          }
        }

        if ((last_slot == 1) && (frame == 0) && (abstraction_flag == 0)
            && (oai_emulation.info.n_frames == 1)) {

          write_output ("dlchan0.m",
                        "dlch0",
                        &(PHY_vars_UE_g[0][0]->lte_ue_common_vars.dl_ch_estimates[0][0][0]),
                        (6
                         * (PHY_vars_UE_g[0][0]->lte_frame_parms.ofdm_symbol_size)),
                        1, 1);
          write_output ("dlchan1.m",
                        "dlch1",
                        &(PHY_vars_UE_g[0][0]->lte_ue_common_vars.dl_ch_estimates[1][0][0]),
                        (6
                         * (PHY_vars_UE_g[0][0]->lte_frame_parms.ofdm_symbol_size)),
                        1, 1);
          write_output ("dlchan2.m",
                        "dlch2",
                        &(PHY_vars_UE_g[0][0]->lte_ue_common_vars.dl_ch_estimates[2][0][0]),
                        (6
                         * (PHY_vars_UE_g[0][0]->lte_frame_parms.ofdm_symbol_size)),
                        1, 1);
          write_output ("pbch_rxF_comp0.m",
                        "pbch_comp0",
                        PHY_vars_UE_g[0][0]->lte_ue_pbch_vars[0]->rxdataF_comp[0],
                        6 * 12 * 4, 1, 1);
          write_output ("pbch_rxF_llr.m", "pbch_llr",
                        PHY_vars_UE_g[0][0]->lte_ue_pbch_vars[0]->llr,
                        (frame_parms[0]->Ncp == 0) ? 1920 : 1728, 1,
                        4);
        }

        /*
         if ((last_slot==1) && (frame==1)) {
         write_output("dlsch_rxF_comp0.m","dlsch0_rxF_comp0",PHY_vars_UE->lte_ue_pdsch_vars[eNB_id]->rxdataF_comp[0],300*(-(PHY_vars_UE->lte_frame_parms.Ncp*2)+14),1,1);
         write_output("pdcch_rxF_comp0.m","pdcch0_rxF_comp0",PHY_vars_UE->lte_ue_pdcch_vars[eNB_id]->rxdataF_comp[0],4*300,1,1);
         }
         */
      } // if Channel_Flag==0

      if (slot % 2 == 1)
        stop_meas (&oaisim_stats_f);
    } //end of slot

    if ((frame >= 10) && (frame <= 11) && (abstraction_flag == 0)
#ifdef PROC
        &&(Channel_Flag==0)
#endif
       ) {
      sprintf (fname, "UEtxsig%d.m", frame);
      sprintf (vname, "txs%d", frame);
      write_output (fname,
                    vname,
                    PHY_vars_UE_g[0][0]->lte_ue_common_vars.txdata[0],
                    PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti
                    * 10,
                    1, 1);
      sprintf (fname, "eNBtxsig%d.m", frame);
      sprintf (vname, "txs%d", frame);
      write_output (fname,
                    vname,
                    PHY_vars_eNB_g[0][0]->lte_eNB_common_vars.txdata[0][0],
                    PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti
                    * 10,
                    1, 1);
      sprintf (fname, "eNBtxsigF%d.m", frame);
      sprintf (vname, "txsF%d", frame);
      write_output (fname,
                    vname,
                    PHY_vars_eNB_g[0][0]->lte_eNB_common_vars.txdataF[0][0],
                    PHY_vars_eNB_g[0][0]->lte_frame_parms.symbols_per_tti
                    * PHY_vars_eNB_g[0][0]->lte_frame_parms.ofdm_symbol_size,
                    1, 1);
      sprintf (fname, "UErxsig%d.m", frame);
      sprintf (vname, "rxs%d", frame);
      write_output (fname,
                    vname,
                    PHY_vars_UE_g[0][0]->lte_ue_common_vars.rxdata[0],
                    PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti
                    * 10,
                    1, 1);
      sprintf (fname, "eNBrxsig%d.m", frame);
      sprintf (vname, "rxs%d", frame);
      write_output (fname,
                    vname,
                    PHY_vars_eNB_g[0][0]->lte_eNB_common_vars.rxdata[0][0],
                    PHY_vars_UE_g[0][0]->lte_frame_parms.samples_per_tti
                    * 10,
                    1, 1);
    }

    //#ifdef XFORMS
    if (xforms==1) {
    eNB_inst = 0;

    for (UE_inst = 0; UE_inst < NB_UE_INST; UE_inst++) {
      for (CC_id=0;CC_id<MAX_NUM_CCs;CC_id++) {
	phy_scope_UE(form_ue[CC_id][UE_inst],
		     PHY_vars_UE_g[UE_inst][CC_id],
		     eNB_inst,
		     UE_inst,
		     7);
      }

      phy_scope_eNB(form_enb[UE_inst],
                    PHY_vars_eNB_g[eNB_inst][0],
                    UE_inst);

    }
    }
    //#endif

#ifdef SMBV

    // Rohde&Schwarz SMBV100A vector signal generator
    if ((frame == config_frames[0]) || (frame == config_frames[1]) || (frame == config_frames[2]) || (frame == config_frames[3])) {
      smbv_frame_cnt++;
    }

#endif

  }

  //end of frame

  stop_meas (&oaisim_stats);
  oai_shutdown ();

#ifdef PRINT_STATS

  for (UE_inst=0; UE_inst<NB_UE_INST; UE_inst++) {
    if (UE_stats[UE_inst])
      fclose (UE_stats[UE_inst]);

    if(UE_stats_th[UE_inst])
      fclose (UE_stats_th[UE_inst]);
  }

  for (eNB_inst=0; eNB_inst<NB_eNB_INST; eNB_inst++) {
    if (eNB_stats[eNB_inst])
      fclose (eNB_stats[eNB_inst]);
  }

  if (eNB_avg_thr)
    fclose (eNB_avg_thr);

  if (eNB_l2_stats)
    fclose (eNB_l2_stats);

#endif

#if defined(ENABLE_ITTI)
  itti_terminate_tasks(TASK_L2L1);
#endif

  return NULL;
}

/*------------------------------------------------------------------------------*/
int
main (int argc, char **argv)
{

  clock_t t;

#ifdef SMBV
  // Rohde&Schwarz SMBV100A vector signal generator
  strcpy(smbv_ip,DEFAULT_SMBV_IP);
#endif

#ifdef PROC
  int node_id;
  int port,Process_Flag=0,wgt,Channel_Flag=0,temp;
#endif

#if T_TRACER
  char *T_ip = "127.0.0.1";
  int T_port = 2020;
  printf("connecting to T tracer IP %s port %d\n", T_ip, T_port);
  T_connect_to_tracer(T_ip, T_port);
#endif

  //default parameters
  oai_emulation.info.n_frames = 0xffff; //1024;          //10;
  oai_emulation.info.n_frames_flag = 0; //fixme
  snr_dB = 30;

  //Default values if not changed by the user in get_simulation_options();
  pdcp_period = 1;
  omg_period = 1;
  // start thread for log gen
  log_thread_init ();

  init_oai_emulation (); // to initialize everything !!!

  // get command-line options
  get_simulation_options (argc, argv); //Command-line options

  // Initialize VCD LOG module
  VCD_SIGNAL_DUMPER_INIT (oai_emulation.info.vcd_file);

#if !defined(ENABLE_ITTI)
  pthread_t tid;
  int err;
  sigset_t sigblock;
  sigemptyset (&sigblock);
  sigaddset (&sigblock, SIGHUP);
  sigaddset (&sigblock, SIGINT);
  sigaddset (&sigblock, SIGTERM);
  sigaddset (&sigblock, SIGQUIT);
  //sigaddset(&sigblock, SIGKILL);

  if ((err = pthread_sigmask (SIG_BLOCK, &sigblock, NULL)) != 0) {
    printf ("SIG_BLOCK error\n");
    return -1;
  }

  if (pthread_create (&tid, NULL, sigh, NULL)) {
    printf ("Pthread for tracing Signals is not created!\n");
    return -1;
  } else {
    printf ("Pthread for tracing Signals is created!\n");
  }

#endif
  // configure oaisim with OCG
  oaisim_config (); // config OMG and OCG, OPT, OTG, OLG

  if (ue_connection_test == 1) {
    snr_direction = -snr_step;
    snr_dB = 20;
    sinr_dB = -20;
  }

#ifdef OPENAIR2
  init_omv ();
#endif
  //Before this call, NB_UE_INST and NB_eNB_INST are not set correctly
  check_and_adjust_params ();

  set_seed = oai_emulation.emulation_config.seed.value;

  init_otg_pdcp_buffer ();

  init_seed (set_seed);

  init_openair1 ();

  init_openair2 ();

  init_ocm ();

#ifdef SMBV
  // Rohde&Schwarz SMBV100A vector signal generator
  smbv_init_config(smbv_fname, smbv_nframes);
  smbv_write_config_from_frame_parms(smbv_fname, &PHY_vars_eNB_g[0][0]->lte_frame_parms);
#endif

  // add events to future event list: Currently not used
  //oai_emulation.info.oeh_enabled = 1;
  if (oai_emulation.info.oeh_enabled == 1)
    schedule_events ();

  // oai performance profiler is enabled
  if (oai_emulation.info.opp_enabled == 1)
    reset_opp_meas ();

  init_time ();

  init_slot_isr ();

  t = clock ();

  LOG_N(EMU,
        ">>>>>>>>>>>>>>>>>>>>>>>>>>> OAIEMU initialization done <<<<<<<<<<<<<<<<<<<<<<<<<<\n\n");

#if defined(ENABLE_ITTI)

  // Handle signals until all tasks are terminated
  if (create_tasks(oai_emulation.info.nb_enb_local, oai_emulation.info.nb_ue_local) >= 0) {
    itti_wait_tasks_end();
  } else {
    exit(-1); // need a softer mode
  }

#else

  if (oai_emulation.info.nb_enb_local > 0) {
    eNB_app_task (NULL); // do nothing for the moment
  }

  l2l1_task (NULL);
#endif
  t = clock () - t;
  LOG_I(EMU, "Duration of the simulation: %f seconds\n",
        ((float) t) / CLOCKS_PER_SEC);

  LOG_N(EMU,
        ">>>>>>>>>>>>>>>>>>>>>>>>>>> OAIEMU Ending <<<<<<<<<<<<<<<<<<<<<<<<<<\n\n");

  raise (SIGINT);
  //  oai_shutdown ();

  return (0);
}

void
reset_opp_meas (void)
{
  uint8_t eNB_id = 0, UE_id = 0;

  reset_meas (&oaisim_stats);
  reset_meas (&oaisim_stats_f); // frame

  // init time stats here (including channel)
  reset_meas (&dl_chan_stats);
  reset_meas (&ul_chan_stats);

  for (UE_id = 0; UE_id < NB_UE_INST; UE_id++) {
    reset_meas (&PHY_vars_UE_g[UE_id][0]->phy_proc);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->phy_proc_rx);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->phy_proc_tx);

    reset_meas (&PHY_vars_UE_g[UE_id][0]->ofdm_demod_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->rx_dft_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_channel_estimation_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_freq_offset_estimation_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_decoding_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_rate_unmatching_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_turbo_decoding_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_deinterleaving_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_llr_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_unscrambling_stats);

    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_init_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_alpha_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_beta_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_gamma_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_ext_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_intl1_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_intl2_stats);

    reset_meas (&PHY_vars_UE_g[UE_id][0]->tx_prach);

    reset_meas (&PHY_vars_UE_g[UE_id][0]->ofdm_mod_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_encoding_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_modulation_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_segmentation_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_rate_matching_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_turbo_encoding_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_interleaving_stats);
    reset_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_multiplexing_stats);
    /*
     * L2 functions
     */

    // UE MAC
    reset_meas (&UE_mac_inst[UE_id].ue_scheduler); // total
    reset_meas (&UE_mac_inst[UE_id].tx_ulsch_sdu); // inlcude rlc_data_req + mac header gen
    reset_meas (&UE_mac_inst[UE_id].rx_dlsch_sdu); // include mac_rrc_data_ind or mac_rlc_status_ind+mac_rlc_data_ind and  mac header parser
    reset_meas (&UE_mac_inst[UE_id].ue_query_mch);
    reset_meas (&UE_mac_inst[UE_id].rx_mch_sdu); // include rld_data_ind+ parse mch header
    reset_meas (&UE_mac_inst[UE_id].rx_si); // include rlc_data_ind + mac header parser

    reset_meas (&UE_pdcp_stats[UE_id].pdcp_run);
    reset_meas (&UE_pdcp_stats[UE_id].data_req);
    reset_meas (&UE_pdcp_stats[UE_id].data_ind);
    reset_meas (&UE_pdcp_stats[UE_id].apply_security);
    reset_meas (&UE_pdcp_stats[UE_id].validate_security);
    reset_meas (&UE_pdcp_stats[UE_id].pdcp_ip);
    reset_meas (&UE_pdcp_stats[UE_id].ip_pdcp);

  }

  for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {

    for (UE_id = 0; UE_id < NB_UE_INST; UE_id++) {
      reset_meas (&eNB2UE[eNB_id][UE_id][0]->random_channel);
      reset_meas (&eNB2UE[eNB_id][UE_id][0]->interp_time);
      reset_meas (&eNB2UE[eNB_id][UE_id][0]->interp_freq);
      reset_meas (&eNB2UE[eNB_id][UE_id][0]->convolution);
      reset_meas (&UE2eNB[UE_id][eNB_id][0]->random_channel);
      reset_meas (&UE2eNB[UE_id][eNB_id][0]->interp_time);
      reset_meas (&UE2eNB[UE_id][eNB_id][0]->interp_freq);
      reset_meas (&UE2eNB[UE_id][eNB_id][0]->convolution);
    }

    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->phy_proc);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->phy_proc_rx);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->phy_proc_tx);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->rx_prach);

    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ofdm_mod_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_encoding_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_modulation_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_scrambling_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_rate_matching_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_turbo_encoding_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_interleaving_stats);

    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ofdm_demod_stats);
    //reset_meas(&PHY_vars_eNB_g[eNB_id]->rx_dft_stats);
    //reset_meas(&PHY_vars_eNB_g[eNB_id]->ulsch_channel_estimation_stats);
    //reset_meas(&PHY_vars_eNB_g[eNB_id]->ulsch_freq_offset_estimation_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_decoding_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_demodulation_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_rate_unmatching_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_turbo_decoding_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_deinterleaving_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_demultiplexing_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_llr_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_init_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_alpha_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_beta_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_gamma_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_ext_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_intl1_stats);
    reset_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_intl2_stats);
#ifdef LOCALIZATION
    reset_meas(&PHY_vars_eNB_g[eNB_id][0]->localization_stats);
#endif

    /*
     * L2 functions
     */
    // eNB MAC
    reset_meas (&eNB_mac_inst[eNB_id].eNB_scheduler); // total
    reset_meas (&eNB_mac_inst[eNB_id].schedule_si); // only schedule + tx
    reset_meas (&eNB_mac_inst[eNB_id].schedule_ra); // only ra
    reset_meas (&eNB_mac_inst[eNB_id].schedule_ulsch); // onlu ulsch
    reset_meas (&eNB_mac_inst[eNB_id].fill_DLSCH_dci); // only dci
    reset_meas (&eNB_mac_inst[eNB_id].schedule_dlsch_preprocessor); // include rlc_data_req + MAC header gen
    reset_meas (&eNB_mac_inst[eNB_id].schedule_dlsch); // include rlc_data_req + MAC header gen + pre-processor
    reset_meas (&eNB_mac_inst[eNB_id].schedule_mch); // only embms
    reset_meas (&eNB_mac_inst[eNB_id].rx_ulsch_sdu); // include rlc_data_ind + mac header parser

    reset_meas (&eNB_pdcp_stats[eNB_id].pdcp_run);
    reset_meas (&eNB_pdcp_stats[eNB_id].data_req);
    reset_meas (&eNB_pdcp_stats[eNB_id].data_ind);
    reset_meas (&eNB_pdcp_stats[eNB_id].apply_security);
    reset_meas (&eNB_pdcp_stats[eNB_id].validate_security);
    reset_meas (&eNB_pdcp_stats[eNB_id].pdcp_ip);
    reset_meas (&eNB_pdcp_stats[eNB_id].ip_pdcp);

  }
}

void
print_opp_meas (void)
{

  uint8_t eNB_id = 0, UE_id = 0;

  print_meas (&oaisim_stats, "[OAI][total_exec_time]", &oaisim_stats,
              &oaisim_stats);
  print_meas (&oaisim_stats_f, "[OAI][SF_exec_time]", &oaisim_stats,
              &oaisim_stats_f);

  print_meas (&dl_chan_stats, "[DL][chan_stats]", &oaisim_stats,
              &oaisim_stats_f);
  print_meas (&ul_chan_stats, "[UL][chan_stats]", &oaisim_stats,
              &oaisim_stats_f);

  for (UE_id = 0; UE_id < NB_UE_INST; UE_id++) {
    for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {
      print_meas (&eNB2UE[eNB_id][UE_id][0]->random_channel,
                  "[DL][random_channel]", &oaisim_stats, &oaisim_stats_f);
      print_meas (&eNB2UE[eNB_id][UE_id][0]->interp_time,
                  "[DL][interp_time]", &oaisim_stats, &oaisim_stats_f);
      print_meas (&eNB2UE[eNB_id][UE_id][0]->interp_freq,
                  "[DL][interp_freq]", &oaisim_stats, &oaisim_stats_f);
      print_meas (&eNB2UE[eNB_id][UE_id][0]->convolution,
                  "[DL][convolution]", &oaisim_stats, &oaisim_stats_f);

      print_meas (&UE2eNB[UE_id][eNB_id][0]->random_channel,
                  "[UL][random_channel]", &oaisim_stats, &oaisim_stats_f);
      print_meas (&UE2eNB[UE_id][eNB_id][0]->interp_time,
                  "[UL][interp_time]", &oaisim_stats, &oaisim_stats_f);
      print_meas (&UE2eNB[UE_id][eNB_id][0]->interp_freq,
                  "[UL][interp_freq]", &oaisim_stats, &oaisim_stats_f);
      print_meas (&UE2eNB[UE_id][eNB_id][0]->convolution,
                  "[UL][convolution]", &oaisim_stats, &oaisim_stats_f);
    }
  }

  for (UE_id = 0; UE_id < NB_UE_INST; UE_id++) {
    print_meas (&PHY_vars_UE_g[UE_id][0]->phy_proc, "[UE][total_phy_proc]",
                &oaisim_stats, &oaisim_stats_f);

    print_meas (&PHY_vars_UE_g[UE_id][0]->phy_proc_rx,
                "[UE][total_phy_proc_rx]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ofdm_demod_stats,
                "[UE][ofdm_demod]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->rx_dft_stats, "[UE][rx_dft]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_channel_estimation_stats,
                "[UE][channel_est]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_freq_offset_estimation_stats,
                "[UE][freq_offset]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_llr_stats, "[UE][llr]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_unscrambling_stats,
                "[UE][unscrambling]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_decoding_stats,
                "[UE][decoding]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_rate_unmatching_stats,
                "[UE][rate_unmatching]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_deinterleaving_stats,
                "[UE][deinterleaving]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_turbo_decoding_stats,
                "[UE][turbo_decoding]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_init_stats,
                "[UE][ |_tc_init]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_alpha_stats,
                "[UE][ |_tc_alpha]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_beta_stats,
                "[UE][ |_tc_beta]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_gamma_stats,
                "[UE][ |_tc_gamma]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_ext_stats,
                "[UE][ |_tc_ext]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_intl1_stats,
                "[UE][ |_tc_intl1]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->dlsch_tc_intl2_stats,
                "[UE][ |_tc_intl2]", &oaisim_stats, &oaisim_stats_f);

    print_meas (&PHY_vars_UE_g[UE_id][0]->phy_proc_tx,
                "[UE][total_phy_proc_tx]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ofdm_mod_stats, "[UE][ofdm_mod]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_modulation_stats,
                "[UE][modulation]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_encoding_stats,
                "[UE][encoding]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_segmentation_stats,
                "[UE][segmentation]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_rate_matching_stats,
                "[UE][rate_matching]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_turbo_encoding_stats,
                "[UE][turbo_encoding]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_interleaving_stats,
                "[UE][interleaving]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_UE_g[UE_id][0]->ulsch_multiplexing_stats,
                "[UE][multiplexing]", &oaisim_stats, &oaisim_stats_f);

  }

  for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->phy_proc,
                "[eNB][total_phy_proc]", &oaisim_stats, &oaisim_stats_f);

    print_meas (&PHY_vars_eNB_g[eNB_id][0]->phy_proc_tx,
                "[eNB][total_phy_proc_tx]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ofdm_mod_stats,
                "[eNB][ofdm_mod]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_modulation_stats,
                "[eNB][modulation]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_scrambling_stats,
                "[eNB][scrambling]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_encoding_stats,
                "[eNB][encoding]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_interleaving_stats,
                "[eNB][|_interleaving]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_rate_matching_stats,
                "[eNB][|_rate_matching]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->dlsch_turbo_encoding_stats,
                "[eNB][|_turbo_encoding]", &oaisim_stats, &oaisim_stats_f);

    print_meas (&PHY_vars_eNB_g[eNB_id][0]->phy_proc_rx,
                "[eNB][total_phy_proc_rx]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ofdm_demod_stats,
                "[eNB][ofdm_demod]", &oaisim_stats, &oaisim_stats_f);
    //print_meas(&PHY_vars_eNB_g[eNB_id][0]->ulsch_channel_estimation_stats,"[eNB][channel_est]");
    //print_meas(&PHY_vars_eNB_g[eNB_id][0]->ulsch_freq_offset_estimation_stats,"[eNB][freq_offset]");
    //print_meas(&PHY_vars_eNB_g[eNB_id][0]->rx_dft_stats,"[eNB][rx_dft]");
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_demodulation_stats,
                "[eNB][demodulation]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_decoding_stats,
                "[eNB][decoding]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_deinterleaving_stats,
                "[eNB][|_deinterleaving]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_demultiplexing_stats,
                "[eNB][|_demultiplexing]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_rate_unmatching_stats,
                "[eNB][|_rate_unmatching]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_turbo_decoding_stats,
                "[eNB][|_turbo_decoding]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_init_stats,
                "[eNB][ |_tc_init]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_alpha_stats,
                "[eNB][ |_tc_alpha]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_beta_stats,
                "[eNB][ |_tc_beta]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_gamma_stats,
                "[eNB][ |_tc_gamma]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_ext_stats,
                "[eNB][ |_tc_ext]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_intl1_stats,
                "[eNB][ |_tc_intl1]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&PHY_vars_eNB_g[eNB_id][0]->ulsch_tc_intl2_stats,
                "[eNB][ |_tc_intl2]", &oaisim_stats, &oaisim_stats_f);

    print_meas (&PHY_vars_eNB_g[eNB_id][0]->rx_prach, "[eNB][rx_prach]",
                &oaisim_stats, &oaisim_stats_f);

#ifdef LOCALIZATION
    print_meas(&PHY_vars_eNB_g[eNB_id][0]->localization_stats, "[eNB][LOCALIZATION]",&oaisim_stats,&oaisim_stats_f);
#endif
  }

  for (UE_id = 0; UE_id < NB_UE_INST; UE_id++) {

    print_meas (&UE_mac_inst[UE_id].ue_scheduler, "[UE][mac_scheduler]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_mac_inst[UE_id].tx_ulsch_sdu, "[UE][tx_ulsch_sdu]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_mac_inst[UE_id].rx_dlsch_sdu, "[UE][rx_dlsch_sdu]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_mac_inst[UE_id].ue_query_mch, "[UE][query_MCH]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_mac_inst[UE_id].rx_mch_sdu, "[UE][rx_mch_sdu]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_mac_inst[UE_id].rx_si, "[UE][rx_si]", &oaisim_stats,
                &oaisim_stats_f);

    print_meas (&UE_pdcp_stats[UE_id].pdcp_run, "[UE][total_pdcp_run]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_pdcp_stats[UE_id].data_req, "[UE][DL][pdcp_data_req]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_pdcp_stats[UE_id].data_ind, "[UE][UL][pdcp_data_ind]",
                &oaisim_stats, &oaisim_stats_f);

    print_meas (&UE_pdcp_stats[UE_id].apply_security,
                "[UE][DL][apply_security]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_pdcp_stats[UE_id].validate_security,
                "[UE][UL][validate_security]", &oaisim_stats,
                &oaisim_stats_f);
    print_meas (&UE_pdcp_stats[UE_id].ip_pdcp, "[UE][DL][ip_pdcp]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&UE_pdcp_stats[UE_id].pdcp_ip, "[UE][UL][pdcp_ip]",
                &oaisim_stats, &oaisim_stats_f);

  }

  for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {

    print_meas (&eNB_mac_inst[eNB_id].eNB_scheduler, "[eNB][mac_scheduler]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_mac_inst[eNB_id].schedule_si, "[eNB][DL][SI]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_mac_inst[eNB_id].schedule_ra, "[eNB][DL][RA]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_mac_inst[eNB_id].fill_DLSCH_dci,
                "[eNB][DL/UL][fill_DCI]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_mac_inst[eNB_id].schedule_dlsch_preprocessor,
                "[eNB][DL][preprocessor]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_mac_inst[eNB_id].schedule_dlsch,
                "[eNB][DL][schedule_tx_dlsch]", &oaisim_stats,
                &oaisim_stats_f);
    print_meas (&eNB_mac_inst[eNB_id].schedule_mch, "[eNB][DL][mch]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_mac_inst[eNB_id].schedule_ulsch, "[eNB][UL][ULSCH]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_mac_inst[eNB_id].rx_ulsch_sdu,
                "[eNB][UL][rx_ulsch_sdu]", &oaisim_stats, &oaisim_stats_f);

    print_meas (&eNB_pdcp_stats[eNB_id].pdcp_run, "[eNB][pdcp_run]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_pdcp_stats[eNB_id].data_req,
                "[eNB][DL][pdcp_data_req]", &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_pdcp_stats[eNB_id].data_ind,
                "[eNB][UL][pdcp_data_ind]", &oaisim_stats, &oaisim_stats_f);

    print_meas (&eNB_pdcp_stats[eNB_id].apply_security,
                "[eNB][DL][apply_security]", &oaisim_stats,
                &oaisim_stats_f);
    print_meas (&eNB_pdcp_stats[eNB_id].validate_security,
                "[eNB][UL][validate_security]", &oaisim_stats,
                &oaisim_stats_f);
    print_meas (&eNB_pdcp_stats[eNB_id].ip_pdcp, "[eNB][DL][ip_pdcp]",
                &oaisim_stats, &oaisim_stats_f);
    print_meas (&eNB_pdcp_stats[eNB_id].pdcp_ip, "[eNB][UL][pdcp_ip]",
                &oaisim_stats, &oaisim_stats_f);

  }

}

static void *
sigh (void *arg)
{

  int signum;
  sigset_t sigcatch;
  sigemptyset (&sigcatch);
  sigaddset (&sigcatch, SIGHUP);
  sigaddset (&sigcatch, SIGINT);
  sigaddset (&sigcatch, SIGTERM);
  sigaddset (&sigcatch, SIGQUIT);

  for (;;) {
    sigwait (&sigcatch, &signum);

    //sigwait(&sigblock, &signum);
    switch (signum) {
    case SIGHUP:
    case SIGINT:
    case SIGTERM:
    case SIGQUIT:
      fprintf (stderr, "received signal %d \n", signum);
      // no need for mutx: when ITTI not used, this variable is only accessed by this function
      l2l1_state = L2L1_TERMINATED;
      break;

    default:
      fprintf (stderr, "Unexpected signal %d \n", signum);
      exit (-1);
      break;
    }
  }

  pthread_exit (NULL);
}

void
oai_shutdown (void)
{
  static int done = 0;

  if (done)
    return;

  free (otg_pdcp_buffer);
  otg_pdcp_buffer = 0;

#ifdef SMBV

  // Rohde&Schwarz SMBV100A vector signal generator
  if (config_smbv) {
    smbv_send_config (smbv_fname,smbv_ip);
  }

#endif

  //Perform KPI measurements
  if (oai_emulation.info.otg_enabled == 1){
    LOG_N(EMU,"calling OTG kpi gen .... \n");
    kpi_gen ();
  }
  if (oai_emulation.info.opp_enabled == 1)
    print_opp_meas ();

  // relase all rx state
  if (ethernet_flag == 1) {
    emu_transport_release ();
  }

#ifdef PROC

  if (abstraction_flag == 0 && Channel_Flag==0 && Process_Flag==0)
#else
  if (abstraction_flag == 0)
#endif
  {
    /*
     #ifdef IFFT_FPGA
     free(txdataF2[0]);
     free(txdataF2[1]);
     free(txdataF2);
     free(txdata[0]);
     free(txdata[1]);
     free(txdata);
     #endif
     */

    for (int i = 0; i < 2; i++) {
      free (s_re[i]);
      free (s_im[i]);
      free (r_re[i]);
      free (r_im[i]);
    }

    free (s_re);
    free (s_im);
    free (r_re);
    free (r_im);
    s_re = 0;
    s_im = 0;
    r_re = 0;
    r_im = 0;

    lte_sync_time_free ();
  }

  // added for PHY abstraction
  if (oai_emulation.info.ocm_enabled == 1) {
    for (eNB_inst = 0; eNB_inst < NUMBER_OF_eNB_MAX; eNB_inst++) {
      free (enb_data[eNB_inst]);
      enb_data[eNB_inst] = 0;
    }

    for (UE_inst = 0; UE_inst < NUMBER_OF_UE_MAX; UE_inst++) {
      free (ue_data[UE_inst]);
      ue_data[UE_inst] = 0;
    }
  } //End of PHY abstraction changes

#ifdef OPENAIR2
  mac_top_cleanup ();
#endif

  // stop OMG
  stop_mobility_generator (omg_param_list); //omg_param_list.mobility_type
#ifdef OPENAIR2

  if (oai_emulation.info.omv_enabled == 1)
    omv_end (pfd[1], omv_data);

#endif

  if ((oai_emulation.info.ocm_enabled == 1) && (ethernet_flag == 0)
      && (ShaF != NULL)) {
    destroyMat (ShaF, map1, map2);
    ShaF = 0;
  }

  if (opt_enabled == 1)
    terminate_opt ();

  if (oai_emulation.info.cli_enabled)
    cli_server_cleanup ();

  for (int i = 0; i < NUMBER_OF_eNB_MAX + NUMBER_OF_UE_MAX; i++)
    if (oai_emulation.info.oai_ifup[i] == 1) {
      char interfaceName[8];
      snprintf (interfaceName, sizeof(interfaceName), "oai%d", i);
      bringInterfaceUp (interfaceName, 0);
    }

  log_thread_finalize ();
  logClean ();
  VCD_SIGNAL_DUMPER_CLOSE ();

  done = 1; // prevent next invokation of this function

  LOG_N(EMU,
        ">>>>>>>>>>>>>>>>>>>>>>>>>>> OAIEMU shutdown <<<<<<<<<<<<<<<<<<<<<<<<<<\n\n");
}

eNB_MAC_INST*
get_eNB_mac_inst (module_id_t module_idP)
{
  return (&eNB_mac_inst[module_idP]);
}

OAI_Emulation*
get_OAI_emulation ()
{
  return &oai_emulation;
}