
NR LDPC Decoder

Sebastian Wagner (TCL)

October 2, 2019

Currently Supported:

BG Lifting Size Z Code Rate R

1 all 1/3, 2/3, 8/9
2 all 1/5, 1/3, 2/3

Version 1.0:

• Initial version

Version 2.0:

• Enhancements in message passing:

– LUTs replaced by smaller BG-specific parameters

– Inefficient load/store replaced by circular memcpy

• Bug fixes:

– Fixed bug in function llr2CnProcBuf

– Corrected input LLR dynamic range in BLER simulations

• Results:

– Size of LUTs reduced significantly (60MB to 200KB)

– Siginifcantly enhances execution time (factor 3.5)

– Improved BLER performance (all simulation results have been updated)

1

Contents

1 Introduction 3
1.1 LDPC in NR . 3
1.2 LDPC Decoding . 4

2 LDPC Decoder Implementation 5
2.1 Check Node Processing . 6
2.2 Bit Node Processing . 7
2.3 Mapping to the Processing Buffers . 9

3 Performance Results 10
3.1 BLER Performance . 10
3.2 Decoding Latency . 13

4 Parity Check and Early Stopping Criteria 14

5 Conclusion 15

6 Future Work 16
6.1 Improved BLER Performance . 16
6.2 Reduced Decoding Latency . 16

2

1 Introduction

Low Density Parity Check (LDPC) codes have been developed by Gallager in 1963 [1]. They are
linear error correcting codes that are capacity-achieving for large block length and are completely
described by their Parity Check Matrix (PCM) HM×N . The PCM H defines M constraints on the
codeword c of length N such that

Hc = 0. (1)

The number of information bits B that can be encoded with H is given by B = N −M . Hence the
code rate R of H reads

R =
B

N
= 1− M

N
. (2)

1.1 LDPC in NR

NR uses quasi-cyclic (QC) Protograph LDPC codes, i.e. a smaller graph, called Base Graph (BG),
is defined and utilized to construct the larger PCM. This has the advantage that the large PCM does
not have to be stored in memory and allows for a more efficient implementation while maintaining
good decoding properties. Two BGs HBG ∈ NMb×Nb are defined in NR:

1. HBG1 ∈ N46×68

2. HBG2 ∈ N42×52

where N is the set of integers. For instance the first 3 rows and 13 columns of BG2 are given by

HBG2 =

 9 117 204 26 ∅ ∅ 189 ∅ ∅ 205 0 0 ∅ ∅
127 ∅ ∅ 166 253 125 226 156 224 252 ∅ 0 0 ∅
81 114 ∅ 44 52 ∅ ∅ ∅ 240 ∅ 1 ∅ 0 0

 .
To obtain the PCM H from the BG HBG, each element HBG(i, j) in the BG is replaced by a

lifting matrix of size Zc × Zc according to

HBG(i, j) =

{
0 if HBG(i, j) = ∅
IPij otherwise

(3)

where IPij
is the identity matrix circularly shifted to the right by Pij = HBG(i, j) mod Zc. Hence,

the resulting PCM H will be of size MbZc ×NbZc.
The lifting size Zc depends on the number of bits to encode. To limit the complexity, a discrete

set Z of possible values of Zc has been defined in [2] and the optimal value Zc is calculated according
to

Zc = min
Z∈Z

[
Z ≥ B

Nb

]
. (4)

The base rate of the two BGs is 1/3 and 1/5 for BG1 and BG2, respectively. That is, BG1
encodes K = 22Zc bits and BG2 encodes K = 10Zc bits. Note that the first 2 columns of BG 1 and
2 are always punctured, that is after encoding, the first 2Zc bits are discarded and not transmitted.
For instance, consider B = 500 information bits to encode using BG2, (1.2) yields Zc = 64 hence
K = 640. Since K > B, K − B = 140 filler bits are appended to the information bits. The PCM
HBG2 is of size 2688 × 3328 and the 640 bits b are encoded according to (1) at a rate R ≈ 0.192.
To achieve the higher base rate of 0.2, the first 128 are punctured, i.e. instead of transmitting all
3328 bits, only 3200 are transmitted resulting in the desired rate R = 640/3200 = 0.2.

3

1.2 LDPC Decoding

The decoding of codeword c can be achieved via the classical message passing algorithm. This
algorithm can be illustrated best using the Tanner graph of the PCM. The rows of the PCM are
called check nodes (CN) since they represent the parity check equations. The parity check equation
of each of these check nodes involves various bits in the codeword. Similarly, every column of the
PCM corresponds to a bit and each bit is involved in several parity check equations. In the Tanner
graph representation, the bits are called bit nodes (BN). Let’s go back to the previous example of
BG2 and assume Zc = 2, hence the first 3 rows and 13 columns of BG2 HBG2 read

HBG2 =

1 1 0 0 ∅ ∅ 1 ∅ ∅ 1 0 0 ∅ ∅
1 ∅ ∅ 0 1 1 0 0 0 0 ∅ 0 0 ∅
1 0 ∅ 0 0 ∅ ∅ ∅ 0 ∅ 1 ∅ 0 0

 .
Replacing the elements according to (3), we obtain the first 6 rows and 26 columns of the PCM as

H =


0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0
1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0
1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1

 .

The Tanner graph of the first 8 BNs is shown in Figure 1.2.

v0 v1 v2

c3c2c1c0 c4 c5 c6

Figure 1: Tanner graph for first 7 bits nodes and 3 check nodes from (1.2).

The message passing algorithm is an iterative algorithm where probabilities of the bits (being
either 0 or 1) are exchanged between the BNs and CNs. After sufficient iterations, the probabilities
will have either converged to either 0 or 1 and the parity check equations will be satisfied, at this
point, the codeword has been decoded correctly.

4

2 LDPC Decoder Implementation

The implementation on a general purpose processor (GPP) has to take advantage of potential instruc-
tion extension of the processor architecture. We focus on the Intel x86 instruction set architecture
(ISA) and its advanced vector extension (AVX). In particular, we utilize AVX2 with its 256-bit single
instruction multiple data (SIMD) format. In order to utilize AVX2 to speed up the processing at the
CNs and BNs, the corresponding data has to be ordered/aligned in a specific way. The processing
flow of the LDPC decoder is depicted in 2.

llr2llrProcBuf

llr2CnProcBuf

cnProc

cn2bnProcBuf

bnProcPc

cnProc

cn2bnProcBuf

bnProcPc

bn2cnProcBuf

bnProc

llrRes2llrOut

llr2bit

cnProcPc

iterations done

First Iteration Subsequent Iterations

Figure 2: LDPC Decoder processing flow.

The functions involved are described in more detail in Table 1.
The input LLRs are assumed to be 8-bit and aligned on 32 bytes. CN processing is carried out

in 8-bit whereas BN processing is done in 16 bit. Subsequently, the processing tasks at the CNs and
BNs are explained in more detail.

5

Function Description

llr2llrProcBuf Copies input LLRs to LLR processing buffer
llr2CnProcBuf Copies input LLRs to CN processing buffer
cnProc Performs CN signal processing
cnProcPc Performs parity check
cn2bnProcBuf Copies the CN results to the BN processing buffer
bnProcPc Performs BN processing for parity check and/or hard-decision
bnProc Utilizes the results of bnProcPc to compute LLRs for CN processing
bn2cnProcBuf Copies the BN results to the CN processing buffer
llrRes2llrOut Copies the results of bnProcPc to output LLRs
llr2bit Performs hard-decision on the output LLRs

Table 1: Summary of the LDPC decoder functions.

2.1 Check Node Processing

Denote qij the value from BN j to CN i and let Bi be the set of connected BNs to the ith CN. Then,
using the min-sum approximation, CN i has to carry out the following operation for each connected
BN.

rji =
∏

j′∈Bi\j

sgn qij′ min
j′∈Bi\j

|qij′ | (5)

where rji is the value returned to BN j from CN i. There are Mb = {46, 42} CNs in BG 1
and BG 2, respectively. Each of these CNs is connected to only a small number of BNs. The
number of connected BNs to CN i is |Bi|. In BG1 and BG2, |Bi| = {3, 4, 5, 6, 7, 8, 9, 10, 19} and
|Bi| = {3, 4, 5, 6, 8, 10}, respectively. The following tables show the number of CNs M|Bi| that are
connected to the same number of BNs.

|Bi| 3 4 5 6 7 8 9 10 19

MBG1
|Bi| 1 5 18 8 5 2 2 1 4

MBG2
|Bi| 6 20 9 3 0 2 0 2 0

Table 2: Ceck node groups for BG1 and BG2.

It can be observed that each CN is at least connected to 3 BNs and there are 9 groups and 5
groups in BG1 and BG2, respectively. Denote the set of CN groups as G and Mk the number of
CNs in group k ∈ G, e.g. for BG2 M4 = 20Zc. Each CN group will be processed separately. The
CN processing buffer pkC of group k is defined as

pkC = {q11q21 . . . qMk1︸ ︷︷ ︸
1.BN

, q12q22 . . . qMk2︸ ︷︷ ︸
2.BN

, . . . , q12q22 . . . qMkk︸ ︷︷ ︸
lastBN

} (6)

Hence, |pkC | = kMk, e.g, Zc = 128, |p4C | = 4 · 20 · 128 = 10240.

Listing 1: Example of CN processing for group 3 from cnProc.

const uint8_t lut_idxCnProcG3 [3][2] = {{72 ,144} , {0,144}, {0 ,72}};

6

// ===

// Process group with 3 BNs

// Number of groups of 32 CNs for parallel processing

M = (lut_numCnInCnGroups [0]*Z) >>5;

// Set the offset to each bit within a group in terms of 32 Byte

bitOffsetInGroup = (lut_numCnInCnGroups_BG2_R15 [0]* NR_LDPC_ZMAX) >>5;

// Set pointers to start of group 3

p_cnProcBuf = (__m256i *) &cnProcBuf [lut_startAddrCnGroups [0]];

p_cnProcBufRes = (__m256i *) &cnProcBufRes[lut_startAddrCnGroups [0]];

// Loop over every BN

for (j=0; j<3; j++)

{

// Set of results pointer to correct BN address

p_cnProcBufResBit = p_cnProcBufRes + (j*bitOffsetInGroup);

// Loop over CNs

for (i=0; i<M; i++)

{

// Abs and sign of 32 CNs (first BN)

ymm0 = p_cnProcBuf[lut_idxCnProcG3[j][0] + i];

sgn = _mm256_sign_epi8 (*p_ones , ymm0);

min = _mm256_abs_epi8(ymm0);

// 32 CNs of second BN

ymm0 = p_cnProcBuf[lut_idxCnProcG3[j][1] + i];

min = _mm256_min_epu8(min , _mm256_abs_epi8(ymm0));

sgn = _mm256_sign_epi8(sgn , ymm0);

// Store result

min = _mm256_min_epu8(min , *p_maxLLR); // 128 in epi8 is -127

*p_cnProcBufResBit = _mm256_sign_epi8(min , sgn);

p_cnProcBufResBit ++;

}

}

}

Once all results of the check node processing rji have been calculated, they are copied to the bit
node processing buffer.

2.2 Bit Node Processing

Denote rji the value from CN i to BN j and let Cj be the set of connected CNs to the jth BN. Each
BN j has to carry out the following operation for every connected CN i ∈ Cj .

qij = Λj +
∑

i′∈Cj\i

rji′ (7)

There are Nb = {68, 52} BNs in BG 1 and BG 2, respectively. Each of these BNs is connected
to only a small number of CNs. The number of connected CNs to BN j is |Cj |. In BG1 and BG2,
|Cj | = {1, 4, 7, 8, 9, 10, 11, 12, 28, 30} and |Cj | = {1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 22, 23}, respectively.
The following tables show the number of BNs K|Cj | that are connected to the same number of CNs.

The BNs that are connected to a single CN do not need to be considered in the BN processing
since (7) yields qij = Λj . It can be observed that the grouping is less compact, i.e. there are many

7

|Cj | 1 4 5 6 7 8 9 10 11 12 13 14 15 16 22 23 28 30

KBG1
|Cj | 42 1 1 2 4 3 1 4 3 4 1 0 0 0 0 0 1 1

KBG2
|Cj | 38 0 2 1 1 1 2 1 0 1 1 1 0 1 1 1 0 0

Table 3: Bit node groups for BG1 and BG2 for base rates 1/3 and 1/5, respectively.

groups with only a small number of elements.
Denote the set of BN groups as B and Kk the number of BNs in group k ∈ B, e.g. for BG2

K5 = 2Zc. Each BN group will be processed separately. The BN processing buffer pkB of group k is
defined as

pkB = {r11r21 . . . rKk1︸ ︷︷ ︸
1.CN

, r12r22 . . . rKk2︸ ︷︷ ︸
2.CN

, . . . , r12r22 . . . rKkk︸ ︷︷ ︸
lastCN

} (8)

Hence, |pkB | = kKk, e.g, Zc = 128, |p5B | = 5 · 2 · 128 = 1024.
Depending on the code rate, some parity bits are not being transmitted. For instance, for BG2

with code rate R = 1/3 the last 20Zc bits are discarded. Therefore, the last 20 columns or the last
20Zc parity check equation are not required for decoding. This means that the BN groups shown in
table 3 are depending on the rate.

Listing 2: Example of BN processing for group 3 from bnProcPc.

// If elements in group move to next address

idxBnGroup ++;

// Number of groups of 32 BNs for parallel processing

M = (lut_numBnInBnGroups [2]*Z) >>5;

// Set the offset to each CN within a group in terms of 16 Byte

cnOffsetInGroup = (lut_numBnInBnGroups [2]* NR_LDPC_ZMAX) >>4;

// Set pointers to start of group 3

p_bnProcBuf = (__m128i *) &bnProcBuf [lut_startAddrBnGroups [idxBnGroup]];

p_llrProcBuf = (__m128i *) &llrProcBuf [lut_startAddrBnGroupsLlr[idxBnGroup]];

p_llrRes = (__m256i *) &llrRes [lut_startAddrBnGroupsLlr[idxBnGroup]];

// Loop over BNs

for (i=0,j=0; i<M; i++,j+=2)

{

// First 16 LLRs of first CN

ymmRes0 = _mm256_cvtepi8_epi16(p_bnProcBuf[j]);

ymmRes1 = _mm256_cvtepi8_epi16(p_bnProcBuf[j+1]);

// Loop over CNs

for (k=1; k<3; k++)

{

ymm0 = _mm256_cvtepi8_epi16(p_bnProcBuf[k*cnOffsetInGroup + j]);

ymmRes0 = _mm256_adds_epi16(ymmRes0 , ymm0);

ymm1 = _mm256_cvtepi8_epi16(p_bnProcBuf[k*cnOffsetInGroup + j+1]);

ymmRes1 = _mm256_adds_epi16(ymmRes1 , ymm1);

}

// Add LLR from receiver input

ymm0 = _mm256_cvtepi8_epi16(p_llrProcBuf[j]);

8

ymmRes0 = _mm256_adds_epi16(ymmRes0 , ymm0);

ymm1 = _mm256_cvtepi8_epi16(p_llrProcBuf[j+1]);

ymmRes1 = _mm256_adds_epi16(ymmRes1 , ymm1);

// Pack results back to epi8

ymm0 = _mm256_packs_epi16(ymmRes0 , ymmRes1);

// ymm0 = [ymmRes1 [255:128] ymmRes0 [255:128] ymmRes1 [127:0] ymmRes0

[127:0]]

// p_llrRes = [ymmRes1 [255:128] ymmRes1 [127:0] ymmRes0 [255:128] ymmRes0

[127:0]]

*p_llrRes = _mm256_permute4x64_epi64(ymm0 , 0xD8);

// Next result

p_llrRes ++;

}

}

The sum of the LLRs is carried out in 16 bit for accuracy and is then saturated to 8 bit for CN
processing. Saturation after each addition results in significant loss of sensitivity for low code rates.

2.3 Mapping to the Processing Buffers

For efficient processing with the AVX instructions, the data is required to be aligned in a certain
manner. That is the reason why processing buffers have been introduced. The drawback is that
the results of the processing need to copied every time to the processing buffer of the next task.
However, the speed up in computation with AVX more than makes up for the time wasted in copying
data. The copying is implemented as a circular memcpy because every edge in the BG is a circular
shift of a Z × Z identity matrix. Hence, a circular mempcy consists of two regular memcpys each
copying a part of the Z values depending on the circular shift in the BG definition. The circular
shifts are stored in nrLDPC lut.h in arrays circShift BGX ZX CNGX. In the specification there are
only 8 sets of cirular shifts defined. However, the applied circular shift depends on Z, i.e. modulo
Z. To avoid inefficient modulo operations in loops, we store the the circular shift values for every
Z. Moreover, for convinience the arrays are already arranged depending on the CN group (CNG).

9

3 Performance Results

In this section, the performance in terms of BLER and decoding latency of the current LDPC
decoder implementation is verified.

3.1 BLER Performance

In all simulations, we assume AWGN, QPSK modulation and 8-bit input LLRs, i.e. −127 until
+127. The DLSCH coding procedure in 38.212 is used to encode/decode the TB and an error is
declared if the TB CRC check failed. Results are averaged over at least 10 000 channel realizations.

The first set of simulations in Figure 3 compares the current LDPC decoder implementation to
the reference implementation developed by Kien. This reference implementation is called LDPC
Ref and uses the min-sum algorithm with 2 layers and 16 bit for processing. Our current optimized
decoder implementation is referred to as LDPC OAI. Moreover, reference results provided by Huawei
are also shown.

−4−3.5−3−2.5−2−1.5−1−0.5 0 0.5 1 1.5 2

10−4

10−3

10−2

10−1

100

20 iter

10 iter

5 iter

SNR [dB]

B
L

E
R

Huawei 2017-06-15
LDPC Ref
LDPC OAI
MATLAB NMS SF=1

Figure 3: BLER vs. SNR, BG2, Rate=1/5, {5,10,20} Iterations, B=1280.

From Figure 3 it can be observed that the reference decoder outperforms the current implemen-
tation significantly for low to medium number of iterations. The reason is the implementation of 2
layers in the reference decoder, which results in faster convergence for punctured codes and hence
requires less iterations to achieve a given BLER target. Note that there is a large performance
loss of about 4 dB at BLER 10−2 between the Huawei reference and the current optimized decoder
implementation with 5 iterations.

Moreover, there is a gap of about 1.5 dB between the results provided by Huawei and the
current decoder with 20 iterations. The reason is the min-sum approximation algorithm used in
both the reference decoder and the current implementation. The gap can be closed by using a
tighter approximation like the min-sum with normalization or the lambda-min approach. Moreover,
the gap closes for higher code rates which can be observed from Figure 4. The gap is only about 0.6
dB for 50 iterations.

10

The Matlab results denoted MATLAB NMS are obtained with the function nrLDPCDecode pro-
vided by the MATLAB 5G Toolbox R2019b. The following options are provided to the function:
’Termination’,’max’,’Algorithm’,’Normalized min-sum’,’ScalingFactor’,1. Furthermore,
the 8-bit input LLRs are adapted to fit the dynamic range of nrLDPCDecode which is shown in
Listing 3.

Listing 3: Input adaptation for MATLAB LDPC Decoder

maxLLR = max(abs(softbits));

rxLLRs = round((softbits/maxLLR)*127);

// adjust range to fit tanh use in decoder code

softbits = rxLLRs /3.4;

A scaling factor (SF) of 1 has been chosen to compare the results more easily with the LDPC
OAI since the resulting check node processing is the same. However, the Matlab normelized min-
sum algorithm uses layered processing and floating point operations. Thus, for the same number of
iterations, the performance is significantly better than LDPC OAI, especially for small a number of
iterations.

3 3.5 4 4.5 5 5.5 6 6.5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
L

E
R

Huawei 2017-06-15
LDPC OAI 5 iter
LDPC OAI 50 iter

Figure 4: BLER vs. SNR, BG2, Rate=2/3, {5,50} Iterations, B=1280.

In Figure 5 we compare the performance of different algorithms using at most 50 iterations with
early stopping if the parity check passes. The Matlab layered believe propagation (LBP) is used with
unquantized input LLRs and performs the best since no approximation is done in the processing.
Both NMS and offset min-sum (OMS) use a scaling factor and offset, respectively, that has been
empirically found to perform best in this simulation setting. Theirs performance is very close to
the BLP and OMS is slightly better than NMS. The performance of LDPC OAI is more than 1
dB worse mainly because of the looser approximation. Moreover, the NMS algorithm with SF=1
performs worst probably because the SF is not optimized for the input LLRs. From the results in
Figure 5 we can conclude that the performance of the LDPC OAI can be significantly improved
by adopting an offset min-sum approximation improving the performance to within 0.3dB of the
Huawei reference curve.

11

−4 −3.5 −3 −2.5 −2 −1.5 −1

10−4

10−3

10−2

10−1

100

SNR [dB]

B
L

E
R

Huawei 2017-06-15
LDPC OAI
MATLAB LBP
MATLAB NMS SF=1
MATLAB NMS SF=0.65
MATLAB OMS OS=0.025

Figure 5: BLER vs. SNR, BG2, Rate=1/5, max iterations = 50, B=1280.

Figure 6 shows the performance of BG1 with largest block size of B = 8448 and highest code
rate R = 8/9. From Figure 6 it can be observed that the performance gap is only about 0.3 dB if
50 iterations are used. However, for 5 iterations there is still a significant performance loss of about
2.3 dB at BLER 10−2.

12

6 6.5 7 7.5 8 8.5 9

10−4

10−3

10−2

10−1

100

SNR [dB]

B
L

E
R

Huawei
LDPC OAI 5 iter
LDPC OAI 50 iter

Figure 6: BLER vs. SNR, BG1, Rate=8/9 {5,50} Iterations, B=8448.

3.2 Decoding Latency

This section provides results in terms of decoding latency. That is, the time it takes the decoder to
to finish decoding for a given number of iterations. To measure the run time of the decoder we use
the OAI tool time meas.h. The clock frequency is about 2.9 GHZ, decoder is run on a single core
and the results are averaged over 10 000 blocks.

The results in Table 4 show the impact of the number of iterations on the decoding latency. It
can be observed that the latency roughly doubles if the number of iterations are doubled.

Function Time [µs] (5 it) Time [µs] (10 it) Time [µs] (20 it)

llr2llrProcBuf 0.5 0.5 0.5
llr2CnProcBuf 5.0 4.8 4.9
cnProc 12.4 23.0 42.7
bnProcPc 8.4 14.8 27.0
bnProc 5.5 10.1 19.0
cn2bnProcBuf 14.9 24.4 44.0
bn2cnProcBuf 10.5 17.8 31.8
llrRes2llrOut 0.3 0.3 0.3
llr2bit 0.2 0.2 0.2

Total 58.5 97.1 172.6

Table 4: BG2, Z=128, R=1/5, B=1280, LDPC OAI

Table 5 shows the impact of the code rate on the latency for a given block size and 5 iterations.
It can be observed that the performance gain from code rate 1/3 to 2/3 is about a factor 2.

Table 6 shows the results for BG1, larges block size and different code rates. The latency
difference betwee code rate 1/3 and code rate 2/3 is less than half because upper left corner of the

13

Function Time [µs] (R=1/5) Time [µs] (R=1/3) Time [µs] (R=2/3)

llr2llrProcBuf 1.5 0.9 0.5
llr2CnProcBuf 6.0 4.1 2.2
cnProc 32.2 23.7 14.4
bnProcPc 21.2 12.1 5.5
bnProc 9.8 5.9 2.9
cn2bnProcBuf 23.3 13.9 6.8
bn2cnProcBuf 14.8 9.7 5.0
llrRes2llrOut 0.6 0.4 0.3
llr2bit 0.7 0.4 0.2

Total 111.0 71.8 38.5

Table 5: BG2, Z=384, B=3840, LDPC OAI, 5 iterations

PCM is more dense than the rest of the PCM.

Function Time [µs] (R=1/3) Time [µs] (R=2/3) Time [µs] (R=8/9)

llr2llrProcBuf 2.1 1.2 0.9
llr2CnProcBuf 10.6 5.4 2.9
cnProc 89.8 66.3 50.0
bnProcPc 28.1 12.4 7.1
bnProc 17.1 8.1 4.8
cn2bnProcBuf 38.7 17.1 9.3
bn2cnProcBuf 25.6 12.7 7.2
llrRes2llrOut 0.8 0.4 0.3
llr2bit 0.9 0.4 0.3

Total 214.6 124.6 83.6

Table 6: BG1, Z=384, B=8448, LDPC OAI, 5 iterations

From the above results it can be observed that the data transfer between CNs and BNs takes up
a significant amount of the run time. However, the performance gain due to AVX instructions in
both CN and BN processing is significantly larger than the penalty incurred by the data transfers.

4 Parity Check and Early Stopping Criteria

It is often unnecessary to carry out the maximum number of iterations. After each iteration a parity
check (PC) (1) can be computed and if a valid code word is found the decoder can stop. This
functionality has been implemented and the additional overhead is reasonable. The PC is carried
out in the CN processing buffer and the calculation complexity itself is negligible. However, for the
processing it is necessary to move the BN results to the CN buffer which takes time, the overall
overhead is at most 10% compared to an algorithm without early stopping criteria with the same
number of iterations. The PC has to be activated via the define NR LDPC ENABLE PARITY CHECK.

14

5 Conclusion

The results in the previous sections show that the current optimized LDPC implementation full-fills
the requirements in terms of decoding latency for low to medium number of iterations at the expense
of a loss in BLER performance. To improve BLER performance, it is recommended to implement
a layered algorithm and a min-sum algorithm with normalization. Further improvements upon the
current implementation are detailed in the next section.

15

6 Future Work

The improvements upon the current LDPC decoder implementation can be divided into two cate-
gories:

1. Improved BLER performance

2. Reduced decoding latency

6.1 Improved BLER Performance

The BLER performance can be improved by using a tighter approximation than the min-sum ap-
proximation. For instance, the min-sum algorithm can be improved by adding a correction factor
in the CN processing . The min-sum approximation in (5) is modified as

rji =
∏

j′∈Bi\j

sgn qij′ min
j′∈Bi\j

|qij′ |+ w(qij′) (9)

The correction term w(qij′) is defined as

w(qij′) =


c if

−c if

0 otherwise

(10)

where the constant c is of order 0.5 typically.

6.2 Reduced Decoding Latency

The following improvements will reduce the decoding latency:

• Adapt to AVX512

• Optimization of CN processing

• Implement 2/3-layers for faster convergence

AVX512: The computations in the CN and BN processing can be further accelerated by using
AVX512 instructions. This improvement will speed-up the CN and BN processing by a approxi-
mately a factor of 2.

Optimization of CN Processing: It can be investigated if CN processing can be improved by
computing two minima regardless of the number of BNs. Susequently, the (absolute) value fed back
to the BN is one of those minima.

Layered processing: The LDPC code in NR always punctures the first 2 columns of the base
graph. Hence, the decoder inserts LLRs with value 0 at their place and needs to retrieve those bits
during the decoding process. Instead of computing all the parity equations and then passing the
results to the BN processing, it is beneficial to first compute parity equations where at most one
punctured BN is connected to that CN. If two punctured BNs are connected than according to (5),
the result will be again 0. Thus in a first sub-iteration those parity equation are computed and the

16

results are send to BN processing which calculates the results using only those rows in the PCM.
In the second sub-iteration the remaining check equation are used. The convergence of this layered
approach is much fast since the bit can be retrieved more quickly while the decoding complexity
remains the same. Therefore, for a fixed number of iterations the layered algorithm will have a
significantly better performance.

17

References

[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information theory, vol. 8,
no. 1, pp. 21–28, 1962.

[2] 3rd Generation Partnership Project, “Multiplexing and channel coding (Release 15),” 3GPP TS
38.212 V15.0.1, Tech. Rep., Mar. 2018.

18

