Commit 18f7a702 authored by Cedric Roux's avatar Cedric Roux

snow3g: provide a faster implementation

parent 73ae18da
......@@ -20,86 +20,22 @@
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "assertions.h"
#include "conversions.h"
#include "nas_stream_eea1.h"
#include "snow3g.h"
void nas_stream_encrypt_eea1(nas_stream_cipher_t const *stream_cipher, uint8_t *out)
{
snow_3g_context_t snow_3g_context;
int n ;
int i = 0;
uint32_t zero_bit = 0;
//uint32_t byte_length;
uint32_t *KS;
uint32_t K[4],IV[4];
uint8_t *key = (uint8_t *)stream_cipher->context;
DevAssert(stream_cipher != NULL);
DevAssert(out != NULL);
n = ( stream_cipher->blength + 31 ) / 32;
zero_bit = stream_cipher->blength & 0x7;
//byte_length = stream_cipher->blength >> 3;
memset(&snow_3g_context, 0, sizeof(snow_3g_context));
/*Initialisation*/
/* Load the confidentiality key for SNOW 3G initialization as in section 3.4. */
memcpy(K+3,key+0,4); /*K[3] = key[0]; we assume
K[3]=key[0]||key[1]||...||key[31] , with key[0] the
* most important bit of key*/
memcpy(K+2,key+4,4); /*K[2] = key[1];*/
memcpy(K+1,key+8,4); /*K[1] = key[2];*/
memcpy(K+0,key+12,4); /*K[0] = key[3]; we assume
* K[0]=key[96]||key[97]||...||key[127] , with key[127] the
* least important bit of key*/
K[3] = hton_int32(K[3]);
K[2] = hton_int32(K[2]);
K[1] = hton_int32(K[1]);
K[0] = hton_int32(K[0]);
/* Prepare the initialization vector (IV) for SNOW 3G initialization as in section 3.4. */
IV[3] = stream_cipher->count;
IV[2] = ((((uint32_t)stream_cipher->bearer) << 3) | ((((uint32_t)stream_cipher->direction) & 0x1) << 2)) << 24;
IV[1] = IV[3];
IV[0] = IV[2];
/* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/
snow3g_initialize(K, IV, &snow_3g_context);
KS = (uint32_t *)malloc(4*n);
snow3g_generate_key_stream(n,(uint32_t*)KS, &snow_3g_context);
if (zero_bit > 0) {
KS[n - 1] = KS[n - 1] & (uint32_t)(0xFFFFFFFF << (8 - zero_bit));
}
for (i=0; i<n; i++) {
KS[i] = hton_int32(KS[i]);
}
/* Exclusive-OR the input data with keystream to generate the output bit
stream */
for (i=0; i<n*4; i++) {
stream_cipher->message[i] ^= *(((uint8_t*)KS)+i);
}
int ceil_index = 0;
if (zero_bit > 0) {
ceil_index = (stream_cipher->blength+7) >> 3;
stream_cipher->message[ceil_index - 1] = stream_cipher->message[ceil_index - 1] & (uint8_t)(0xFF << (8 - zero_bit));
}
free(KS);
memcpy(out, stream_cipher->message, n*4);
if (zero_bit > 0) {
out[ceil_index - 1] = stream_cipher->message[ceil_index - 1];
}
snow3g_ciphering(stream_cipher->count,
stream_cipher->bearer,
stream_cipher->direction,
key,
stream_cipher->blength / 8,
stream_cipher->message,
out);
}
stream_security_context_t *stream_ciphering_init_eea1(const uint8_t *ciphering_key)
......
......@@ -24,9 +24,6 @@
#include "secu_defs.h"
#include <stdlib.h>
#include <stdint.h>
void nas_stream_encrypt_eea1(nas_stream_cipher_t const *stream_cipher, uint8_t *out);
stream_security_context_t *stream_ciphering_init_eea1(const uint8_t *ciphering_key);
......
......@@ -19,105 +19,12 @@
* contact@openairinterface.org
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <math.h> // double ceil(double x);
#include "nas_stream_eia1.h"
#include "assertions.h"
#include "conversions.h"
#include "snow3g.h"
#define SECU_DEBUG
// see spec 3GPP Confidentiality and Integrity Algorithms UEA2&UIA2. Document 1: UEA2 and UIA2 Specification. Version 1.1
/* MUL64x.
* Input V: a 64-bit input.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
* function.
* See section 4.3.2 for details.
*/
static uint64_t MUL64x(uint64_t V, uint64_t c)
{
if ( V & 0x8000000000000000 )
return (V << 1) ^ c;
else
return V << 1;
}
/* MUL64xPOW.
* Input V: a 64-bit input.
* Input i: a positive integer.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
function.
* See section 4.3.3 for details.
*/
static uint64_t MUL64xPOW(uint64_t V, uint32_t i, uint64_t c)
{
if ( i == 0)
return V;
else
return MUL64x( MUL64xPOW(V,i-1,c) , c);
}
/* MUL64.
* Input V: a 64-bit input.
* Input P: a 64-bit input.
* Input c: a 64-bit input.
* Output : a 64-bit output.
* A 64-bit memory is allocated which is to be freed by the calling
* function.
* See section 4.3.4 for details.
*/
static uint64_t MUL64(uint64_t V, uint64_t P, uint64_t c)
{
uint64_t result = 0;
int i = 0;
for ( i=0; i<64; i++) {
if( ( P>>i ) & 0x1 )
result ^= MUL64xPOW(V,i,c);
}
return result;
}
/* read a big endian uint64_t at given address (potentially not 64-bits aligned)
* don't read more than 'available_bytes'
* (use 0 if no byte to read)
* (note: the compiler will optimize this, no need to do better)
*/
static inline uint64_t U64(uint8_t *p, int available_bytes)
{
uint64_t a = 0;
uint64_t b = 0;
uint64_t c = 0;
uint64_t d = 0;
uint64_t e = 0;
uint64_t f = 0;
uint64_t g = 0;
uint64_t h = 0;
switch (available_bytes) {
case 8: h = p[7]; /* falltrough */
case 7: g = p[6]; /* falltrough */
case 6: f = p[5]; /* falltrough */
case 5: e = p[4]; /* falltrough */
case 4: d = p[3]; /* falltrough */
case 3: c = p[2]; /* falltrough */
case 2: b = p[1]; /* falltrough */
case 1: a = p[0];
}
return (a << (32+24)) | (b << (32+16)) | (c << (32+8)) | (d << 32)
| (e << 24) | (f << 16) | (g << 8) | h;
}
/*!
* @brief Create integrity cmac t for a given message.
* @param[in] stream_cipher Structure containing various variables to setup encoding
......@@ -125,98 +32,14 @@ static inline uint64_t U64(uint8_t *p, int available_bytes)
*/
void nas_stream_encrypt_eia1(nas_stream_cipher_t const *stream_cipher, uint8_t out[4])
{
snow_3g_context_t snow_3g_context;
uint32_t K[4],IV[4], z[5];
int i=0,D;
uint32_t MAC_I = 0;
uint64_t EVAL;
uint64_t V;
uint64_t P;
uint64_t Q;
uint64_t c;
uint64_t M_D_2;
int rem_bits;
uint8_t *key = (uint8_t *)stream_cipher->context;
/* Load the Integrity Key for SNOW3G initialization as in section 4.4. */
memcpy(K+3,key+0,4); /*K[3] = key[0]; we assume
K[3]=key[0]||key[1]||...||key[31] , with key[0] the
* most important bit of key*/
memcpy(K+2,key+4,4); /*K[2] = key[1];*/
memcpy(K+1,key+8,4); /*K[1] = key[2];*/
memcpy(K+0,key+12,4); /*K[0] = key[3]; we assume
K[0]=key[96]||key[97]||...||key[127] , with key[127] the
* least important bit of key*/
K[3] = hton_int32(K[3]);
K[2] = hton_int32(K[2]);
K[1] = hton_int32(K[1]);
K[0] = hton_int32(K[0]);
/* Prepare the Initialization Vector (IV) for SNOW3G initialization as in
section 4.4. */
IV[3] = (uint32_t)stream_cipher->count;
IV[2] = ((((uint32_t)stream_cipher->bearer) & 0x0000001F) << 27);
IV[1] = (uint32_t)(stream_cipher->count) ^ ( (uint32_t)(stream_cipher->direction) << 31 ) ;
IV[0] = ((((uint32_t)stream_cipher->bearer) & 0x0000001F) << 27) ^ ((uint32_t)(stream_cipher->direction & 0x00000001) << 15);
//printf ("K:\n");
//hexprint(K, 16);
//printf ("K[0]:%08X\n",K[0]);
//printf ("K[1]:%08X\n",K[1]);
//printf ("K[2]:%08X\n",K[2]);
//printf ("K[3]:%08X\n",K[3]);
//printf ("IV:\n");
//hexprint(IV, 16);
//printf ("IV[0]:%08X\n",IV[0]);
//printf ("IV[1]:%08X\n",IV[1]);
//printf ("IV[2]:%08X\n",IV[2]);
//printf ("IV[3]:%08X\n",IV[3]);
z[0] = z[1] = z[2] = z[3] = z[4] = 0;
/* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */
snow3g_initialize(K, IV, &snow_3g_context);
snow3g_generate_key_stream(5, z, &snow_3g_context);
//printf ("z[0]:%08X\n",z[0]);
//printf ("z[1]:%08X\n",z[1]);
//printf ("z[2]:%08X\n",z[2]);
//printf ("z[3]:%08X\n",z[3]);
//printf ("z[4]:%08X\n",z[4]);
P = ((uint64_t)z[0] << 32) | (uint64_t)z[1];
Q = ((uint64_t)z[2] << 32) | (uint64_t)z[3];
//printf ("P:%16lX\n",P);
//printf ("Q:%16lX\n",Q);
/* Calculation */
D = ceil( stream_cipher->blength / 64.0 ) + 1;
//printf ("D:%d\n",D);
EVAL = 0;
c = 0x1b;
AssertFatal(stream_cipher->blength % 8 == 0, "unsupported buffer length\n");
uint8_t *message = stream_cipher->message;
/* for 0 <= i <= D-3 */
for (i=0; i<D-2; i++) {
V = EVAL ^ U64(&message[4 * 2*i], 8);
EVAL = MUL64(V,P,c);
}
/* for D-2 */
rem_bits = stream_cipher->blength % 64;
if (rem_bits == 0)
rem_bits = 64;
M_D_2 = U64(&message[4 * (2*(D-2))], rem_bits/8);
V = EVAL ^ M_D_2;
EVAL = MUL64(V,P,c);
/* for D-1 */
EVAL ^= stream_cipher->blength;
/* Multiply by Q */
EVAL = MUL64(EVAL,Q,c);
MAC_I = (uint32_t)(EVAL >> 32) ^ z[4];
//printf ("MAC_I:%16X\n",MAC_I);
MAC_I = hton_int32(MAC_I);
memcpy(out, &MAC_I, 4);
snow3g_integrity(stream_cipher->count,
stream_cipher->bearer,
stream_cipher->direction,
key,
stream_cipher->blength / 8,
stream_cipher->message,
out);
}
stream_security_context_t *stream_integrity_init_eia1(const uint8_t *integrity_key)
......
This diff is collapsed.
......@@ -19,59 +19,24 @@
* contact@openairinterface.org
*/
/*! \file snow3g.h
* \brief
* \author Open source Adapted from Specification of the 3GPP Confidentiality and
* Integrity Algorithms UEA2 & UIA2. Document 2: SNOW 3G Specification
* \integrators Kharbach Othmane, GAUTHIER Lionel.
* \date 2014
* \version
* \note
* \bug
* \warning
*/
#ifndef SNOW3G_H_
#define SNOW3G_H_
#ifndef _SNOW3G_H_
#define _SNOW3G_H_
typedef struct snow_3g_context_s {
uint32_t LFSR_S0;
uint32_t LFSR_S1;
uint32_t LFSR_S2;
uint32_t LFSR_S3;
uint32_t LFSR_S4;
uint32_t LFSR_S5;
uint32_t LFSR_S6;
uint32_t LFSR_S7;
uint32_t LFSR_S8;
uint32_t LFSR_S9;
uint32_t LFSR_S10;
uint32_t LFSR_S11;
uint32_t LFSR_S12;
uint32_t LFSR_S13;
uint32_t LFSR_S14;
uint32_t LFSR_S15;
#include <stdint.h>
/* FSM : The Finite State Machine has three 32-bit registers R1, R2 and R3.
*/
uint32_t FSM_R1;
uint32_t FSM_R2;
uint32_t FSM_R3;
} snow_3g_context_t;
/* Initialization.
* Input k[4]: Four 32-bit words making up 128-bit key.
* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
* Output: All the LFSRs and FSM are initialized for key generation.
*/
void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP);
/* Generation of Keystream.
* input n: number of 32-bit words of keystream.
* input z: space for the generated keystream, assumes
* memory is allocated already.
* output: generated keystream which is filled in z
*/
void snow3g_generate_key_stream(uint32_t n, uint32_t *z, snow_3g_context_t *snow_3g_context_pP);
void snow3g_ciphering(uint32_t count,
int bearer,
int direction,
const uint8_t *key,
int length,
const uint8_t *in,
uint8_t *out);
void snow3g_integrity(uint32_t count,
int bearer,
int direction,
const uint8_t *key,
int length,
const uint8_t *in,
uint8_t *out);
#endif
#endif /* _SNOW3G_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment