Commit c8afb25d authored by francescomani's avatar francescomani

moving generation of precoding matrices at MAC and trying to adapt to SCF (1st version)

parent 7514bb91
...@@ -76,6 +76,8 @@ static inline const char *rnti_types(nr_rnti_type_t rr) ...@@ -76,6 +76,8 @@ static inline const char *rnti_types(nr_rnti_type_t rr)
} }
#undef R #undef R
#define NR_MAX_NB_LAYERS 4 // 8
typedef enum { typedef enum {
nr_FR1 = 0, nr_FR1 = 0,
nr_FR2 nr_FR2
......
...@@ -449,6 +449,26 @@ typedef struct ...@@ -449,6 +449,26 @@ typedef struct
} nfapi_nr_measurement_config_t; } nfapi_nr_measurement_config_t;
// Table 3–62 Precoding matrix (PM) PDU (v.222.10.04)
typedef struct {
int16_t precoder_weight_Re;
int16_t precoder_weight_Im;
} nfapi_nr_pm_weights_t;
typedef struct {
uint16_t pm_idx;
uint16_t numLayers;
uint16_t num_ant_ports;
nfapi_nr_pm_weights_t weights[4][4]; // TODO temporary hardcoding
} nfapi_nr_pm_pdu_t;
typedef struct {
uint16_t num_pm_idx;
nfapi_nr_pm_pdu_t *pmi_pdu;
} nfapi_nr_pm_list_t;
// ERROR enums // ERROR enums
typedef enum { // Table 2-22 typedef enum { // Table 2-22
NFAPI_NR_PARAM_MSG_OK = 0, NFAPI_NR_PARAM_MSG_OK = 0,
...@@ -560,6 +580,7 @@ typedef struct { ...@@ -560,6 +580,7 @@ typedef struct {
nfapi_nr_tdd_table_t tdd_table; nfapi_nr_tdd_table_t tdd_table;
nfapi_nr_measurement_config_t measurement_config; nfapi_nr_measurement_config_t measurement_config;
nfapi_nr_nfapi_t nfapi_config; nfapi_nr_nfapi_t nfapi_config;
nfapi_nr_pm_list_t pmi_list;
} nfapi_nr_config_request_scf_t; } nfapi_nr_config_request_scf_t;
...@@ -648,26 +669,6 @@ typedef struct { ...@@ -648,26 +669,6 @@ typedef struct {
} nfapi_nr_dbt_pdu_t; } nfapi_nr_dbt_pdu_t;
//table 3-33
//?
typedef struct {
uint16_t num_ant_ports;
int16_t precoder_weight_Re;
int16_t precoder_weight_Im;
} nfapi_nr_num_ant_ports_t;
typedef struct {
uint16_t numLayers; //0~65535
nfapi_nr_num_ant_ports_t* num_ant_ports_list;
} nfapi_nr_num_layers_t;
typedef struct {
uint16_t pm_idx; //0~65535
nfapi_nr_num_layers_t* num_layers_list; //0~65535
//nfapi_nr_num_ant_ports_t* num_ant_ports_list;
} nfapi_nr_pm_pdu_t;
// Section 3.4 // Section 3.4
// Section 3.4.1 slot indication // Section 3.4.1 slot indication
......
...@@ -99,381 +99,6 @@ void reset_active_stats(PHY_VARS_gNB *gNB, int frame) ...@@ -99,381 +99,6 @@ void reset_active_stats(PHY_VARS_gNB *gNB, int frame)
} }
} }
int init_codebook_gNB(PHY_VARS_gNB *gNB) {
if(gNB->frame_parms.nb_antennas_tx>1){
int CSI_RS_antenna_ports = gNB->frame_parms.nb_antennas_tx;
//NR Codebook Generation for codebook type1 SinglePanel
int N1 = gNB->ap_N1;
int N2 = gNB->ap_N2;
//Uniform Planner Array: UPA
// X X X X ... X
// X X X X ... X
// N2 . . . . ... .
// X X X X ... X
// |<-----N1---->|
int x_polarization = gNB->ap_XP;
AssertFatal(CSI_RS_antenna_ports == N1 * N2 * x_polarization,
"Nb of antenna ports at PHY %d does not correspond to what passed down with fapi %d\n",
N1 * N2 * x_polarization, CSI_RS_antenna_ports);
//Get the uniform planar array parameters
// To be confirmed
int O2 = N2 > 1 ? 4 : 1; //Vertical beam oversampling (1 or 4)
int O1 = CSI_RS_antenna_ports > 2 ? 4 : 1; //Horizontal beam oversampling (1 or 4)
// num of allowed k1 and k2 according to 5.2.2.2.1-3 and -4 in 38.214
int K1;
if(N2 == N1 || N1 == 2)
K1 = 2;
else if (N2 == 1)
K1 = 5;
else
K1 = 3;
int K2 = N2 > 1 ? 2 : 1;
// Generation of codebook Type1 with codebookMode 1 (CSI_RS_antenna_ports < 16)
if (CSI_RS_antenna_ports < 16) {
//Generate DFT vertical beams
//ll: index of a vertical beams vector (represented by i1_1 in TS 38.214)
const int max_l = N1 * O1 + (K1 - 1) * O1;
double complex v[max_l][N1];
for (int ll = 0; ll < max_l; ll++) { //i1_1
for (int nn = 0; nn < N1; nn++) {
v[ll][nn] = cexp(I * (2 * M_PI * nn * ll) / (N1 * O1));
LOG_D(PHY,"v[%d][%d] = %f +j %f\n", ll, nn, creal(v[ll][nn]), cimag(v[ll][nn]));
}
}
//Generate DFT Horizontal beams
//mm: index of a Horizontal beams vector (represented by i1_2 in TS 38.214)
const int max_m = N2 * O2 + (K2 - 1) * O2;
double complex u[max_m][N2];
for (int mm = 0; mm < max_m; mm++) { //i1_2
for (int nn = 0; nn < N2; nn++) {
u[mm][nn] = cexp(I * (2 * M_PI * nn * mm) / (N2 * O2));
LOG_D(PHY,"u[%d][%d] = %f +j %f\n", mm, nn, creal(u[mm][nn]), cimag(u[mm][nn]));
}
}
//Generate co-phasing angles
//i_2: index of a co-phasing vector
//i1_1, i1_2, and i_2 are reported from UEs
double complex theta_n[4];
for (int nn = 0; nn < 4; nn++) {
theta_n[nn] = cexp(I * M_PI * nn / 2);
LOG_D(PHY,"theta_n[%d] = %f +j %f\n", nn, creal(theta_n[nn]), cimag(theta_n[nn]));
}
//Kronecker product v_lm
double complex v_lm[max_l][max_m][N2 * N1];
//v_ll_mm_codebook denotes the elements of a precoding matrix W_i1,1_i_1,2
for(int ll = 0; ll < max_l; ll++) { //i_1_1
for (int mm = 0; mm < max_m; mm++) { //i_1_2
for (int nn1 = 0; nn1 < N1; nn1++) {
for (int nn2 = 0; nn2 < N2; nn2++) {
v_lm[ll][mm][nn1 * N2 + nn2] = v[ll][nn1] * u[mm][nn2];
LOG_D(PHY,"v_lm[%d][%d][%d] = %f +j %f\n",ll, mm, nn1 * N2 + nn2, creal(v_lm[ll][mm][nn1*N2+nn2]), cimag(v_lm[ll][mm][nn1*N2+nn2]));
}
}
}
}
int max_mimo_layers = (CSI_RS_antenna_ports < NR_MAX_NB_LAYERS) ? CSI_RS_antenna_ports : NR_MAX_NB_LAYERS;
AssertFatal(max_mimo_layers <= 4, "Max number of layers supported is 4\n");
gNB->nr_mimo_precoding_matrix = (int32_t ***)malloc16(max_mimo_layers * sizeof(int32_t **));
int32_t ***mat = gNB->nr_mimo_precoding_matrix;
double complex res_code;
//Table 5.2.2.2.1-5:
//Codebook for 1-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
gNB->pmiq_size[0] = N1*O1*N2*O2*4+1;
mat[0] = (int32_t **)malloc16(gNB->pmiq_size[0]*sizeof(int32_t *));
//pmi=0 corresponds to unit matrix
mat[0][0] = (int32_t *)calloc(2*N1*N2,sizeof(int32_t));
for(int j_col=0; j_col<1; j_col++) { //1 layer
for (int i_rows=0; i_rows<2*N1*N2; i_rows++) { //2-x polarized antenna
if(j_col==i_rows) {
mat[0][0][i_rows+j_col] = 0x7fff;
}
}
}
for(int ll=0; ll<N1*O1; ll++) { //i_1_1
for (int mm=0; mm<N2*O2; mm++) { //i_1_2
for (int nn=0; nn<4; nn++) {
int pmiq = 1+ll*N2*O2*4+mm*4+nn;
mat[0][pmiq] = (int32_t *)malloc16((2*N1*N2)*1*sizeof(int32_t));
LOG_D(PHY, "layer 1 Codebook pmiq = %d\n",pmiq);
for (int len=0; len<N1*N2; len++) {
res_code=sqrt(1/(double)CSI_RS_antenna_ports)*v_lm[ll][mm][len];
if (creal(res_code)>0)
((short*) &mat[0][pmiq][len])[0] = (short) ((creal(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[0][pmiq][len])[0] = (short) ((creal(res_code)*32768)-0.5);//convert to Q15
if (cimag(res_code)>0)
((short*) &mat[0][pmiq][len])[1] = (short) ((cimag(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[0][pmiq][len])[1] = (short) ((cimag(res_code)*32768)-0.5);//convert to Q15
LOG_D(PHY, "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, len, creal(res_code), cimag(res_code),((short*) &mat[0][pmiq][len])[0],((short*) &mat[0][pmiq][len])[1]);
}
for(int len=N1*N2; len<2*N1*N2; len++) {
res_code=sqrt(1/(double)CSI_RS_antenna_ports)*theta_n[nn]*v_lm[ll][mm][len-N1*N2];
if (creal(res_code)>0)
((short*) &mat[0][pmiq][len])[0] = (short) ((creal(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[0][pmiq][len])[0] = (short) ((creal(res_code)*32768)-0.5);//convert to Q15
if (cimag(res_code)>0)
((short*) &mat[0][pmiq][len])[1] = (short) ((cimag(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[0][pmiq][len])[1] = (short) ((cimag(res_code)*32768)-0.5);//convert to Q15
LOG_D(PHY, "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, len, creal(res_code), cimag(res_code),((short*) &mat[0][pmiq][len])[0],((short*) &mat[0][pmiq][len])[1]);
}
}
}
}
int llc = 0;
int mmc = 0;
double complex phase_sign = 0;
//Table 5.2.2.2.1-6:
//Codebook for 2-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
//Compute the code book size for generating 2 layers out of Tx antenna ports
//pmi_size is computed as follows
gNB->pmiq_size[1] = 1 + (2 * N1 * O1 * N2 * O2 * K1 * K2);
mat[1] = (int32_t **)malloc16(gNB->pmiq_size[1] * sizeof(int32_t *));
//pmi=0 corresponds to unit matrix
mat[1][0] = (int32_t *)calloc((2 * N1 * N2) * 2, sizeof(int32_t));
for(int j_col=0; j_col<2; j_col++) { //2 layers
for (int i_rows=0; i_rows<2*N1*N2; i_rows++) { //2-x polarized antenna
if(j_col==i_rows) {
mat[1][0][i_rows*2+j_col] = 0x7fff;
}
}
}
//pmi=1,...,pmi_size, we construct
int pmiq = 0;
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq += 1;
mat[1][pmiq] = (int32_t *)malloc16((2 * N1 * N2) * 2 * sizeof(int32_t));
LOG_D(PHY, "layer 2 Codebook pmiq = %d\n", pmiq);
for(int j_col = 0; j_col < 2; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col == 1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = -1;
}
for (int i_rows=0; i_rows<N1*N2; i_rows++) {
res_code=sqrt(1/(double)(2*CSI_RS_antenna_ports))*v_lm[llc][mmc][i_rows];
if (creal(res_code)>0)
((short*) &mat[1][pmiq][i_rows*2+j_col])[0] = (short) ((creal(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[1][pmiq][i_rows*2+j_col])[0] = (short) ((creal(res_code)*32768)-0.5);//convert to Q15
if (cimag(res_code)>0)
((short*) &mat[1][pmiq][i_rows*2+j_col])[1] = (short) ((cimag(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[1][pmiq][i_rows*2+j_col])[1] = (short) ((cimag(res_code)*32768)-0.5);//convert to Q15
LOG_D(PHY, "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), ((short*) &mat[1][pmiq][i_rows*2+j_col])[0], ((short*) &mat[1][pmiq][i_rows*2+j_col])[1]);
}
for (int i_rows=N1*N2; i_rows<2*N1*N2; i_rows++) {
res_code=sqrt(1/(double)(2*CSI_RS_antenna_ports))*(phase_sign)*theta_n[nn]*v_lm[llc][mmc][i_rows-N1*N2];
if (creal(res_code)>0)
((short*) &mat[1][pmiq][i_rows*2+j_col])[0] = (short) ((creal(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[1][pmiq][i_rows*2+j_col])[0] = (short) ((creal(res_code)*32768)-0.5);//convert to Q15
if (cimag(res_code)>0)
((short*) &mat[1][pmiq][i_rows*2+j_col])[1] = (short) ((cimag(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[1][pmiq][i_rows*2+j_col])[1] = (short) ((cimag(res_code)*32768)-0.5);//convert to Q15
LOG_D(PHY, "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), ((short*) &mat[1][pmiq][i_rows*2+j_col])[0], ((short*) &mat[1][pmiq][i_rows*2+j_col])[1]);
}
}
}
}
}
}
}
//Table 5.2.2.2.1-7:
//Codebook for 3-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
if(max_mimo_layers >= 3) {
//pmi_size is computed as follows
gNB->pmiq_size[2] = 1 + (2 * N1 * O1 * N2 * O2 * K1 * K2);
mat[2] = (int32_t **)malloc16(gNB->pmiq_size[2] * sizeof(int32_t *));
//pmi=0 corresponds to unit matrix
mat[2][0] = (int32_t *)calloc(2 * N1 * N2 * 3, sizeof(int32_t));
for(int j_col = 0; j_col < 3; j_col++) { //3 layers
for (int i_rows = 0; i_rows < 2 * N1 * N2; i_rows++) { //2-x polarized antenna
if(j_col == i_rows) {
mat[2][0][i_rows * 3 + j_col] = 0x7fff;
}
}
}
pmiq = 0;
//pmi=1,...,pmi_size are computed as follows
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq += 1;
mat[2][pmiq] = (int32_t *)malloc16((2 * N1 * N2 * 3) * sizeof(int32_t));
LOG_D(PHY, "layer 3 Codebook pmiq = %d\n",pmiq);
for(int j_col = 0; j_col < 3; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col==1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = 1;
}
if (j_col==2) {
llc = ll;
mmc = mm;
phase_sign = -1;
}
for (int i_rows=0; i_rows<N1*N2; i_rows++) {
res_code=sqrt(1/(double)(3*CSI_RS_antenna_ports))*v_lm[llc][mmc][i_rows];
if (creal(res_code)>0)
((short*) &mat[2][pmiq][i_rows*3+j_col])[0] = (short) ((creal(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[2][pmiq][i_rows*3+j_col])[0] = (short) ((creal(res_code)*32768)-0.5);//convert to Q15
if (cimag(res_code)>0)
((short*) &mat[2][pmiq][i_rows*3+j_col])[1] = (short) ((cimag(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[2][pmiq][i_rows*3+j_col])[1] = (short) ((cimag(res_code)*32768)-0.5);//convert to Q15
LOG_D(PHY, "3 Layer Precoding Matrix[2][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,i_rows,j_col, creal(res_code), cimag(res_code),((short*) &mat[2][pmiq][i_rows*3+j_col])[0],((short*) &mat[2][pmiq][i_rows*3+j_col])[1]);
}
for (int i_rows=N1*N2; i_rows<2*N1*N2; i_rows++) {
res_code=sqrt(1/(double)(3*CSI_RS_antenna_ports))*(phase_sign)*theta_n[nn]*v_lm[llc][mmc][i_rows-N1*N2];
if (creal(res_code)>0)
((short*) &mat[2][pmiq][i_rows*3+j_col])[0] = (short) ((creal(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[2][pmiq][i_rows*3+j_col])[0] = (short) ((creal(res_code)*32768)-0.5);//convert to Q15
if (cimag(res_code)>0)
((short*) &mat[2][pmiq][i_rows*3+j_col])[1] = (short) ((cimag(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[2][pmiq][i_rows*3+j_col])[1] = (short) ((cimag(res_code)*32768)-0.5);//convert to Q15
LOG_D(PHY, "3 Layer Precoding Matrix[2][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,i_rows,j_col, creal(res_code), cimag(res_code),((short*) &mat[2][pmiq][i_rows*3+j_col])[0],((short*) &mat[2][pmiq][i_rows*3+j_col])[1]);
}
}
}
}
}
}
}
}
//Table 5.2.2.2.1-8:
//Codebook for 4-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
if(max_mimo_layers >= 4) {
//pmi_size is computed as follows
gNB->pmiq_size[3] = 1 + (2 * N1 * O1 * N2 * O2 * K1 * K2);
mat[3] = (int32_t **)malloc16(gNB->pmiq_size[3] * sizeof(int32_t *));
//pmi=0 corresponds to unit matrix
mat[3][0] = (int32_t *)calloc((2 * N1 * N2 * 4), sizeof(int32_t));
for(int j_col = 0; j_col < 4; j_col++) { //4 layers
for (int i_rows = 0; i_rows < 2 * N1 * N2; i_rows++) { //2-x polarized antenna
if(j_col == i_rows) {
mat[3][0][i_rows * 4 + j_col] = 0x7fff;
}
}
}
pmiq = 0;
//pmi=1,...,pmi_size are computed as follows
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq += 1;
mat[3][pmiq] = (int32_t *)malloc16((2*N1*N2)*4*sizeof(int32_t));
LOG_D(PHY, "layer 4 pmiq = %d\n",pmiq);
for(int j_col=0; j_col<4; j_col++) {
if (j_col==0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col==1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = 1;
}
if (j_col==2) {
llc = ll;
mmc = mm;
phase_sign = -1;
}
if (j_col==3) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = -1;
}
for (int i_rows=0; i_rows<N1*N2; i_rows++) {
res_code=sqrt(1/(double)(4*CSI_RS_antenna_ports))*v_lm[llc][mmc][i_rows];
if (creal(res_code)>0)
((short*) &mat[3][pmiq][i_rows*4+j_col])[0] = (short) ((creal(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[3][pmiq][i_rows*4+j_col])[0] = (short) ((creal(res_code)*32768)-0.5);//convert to Q15
if (cimag(res_code)>0)
((short*) &mat[3][pmiq][i_rows*4+j_col])[1] = (short) ((cimag(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[3][pmiq][i_rows*4+j_col])[1] = (short) ((cimag(res_code)*32768)-0.5);//convert to Q15
LOG_D(PHY, "4 Layer Precoding Matrix[3][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,i_rows,j_col, creal(res_code), cimag(res_code),((short*) &mat[3][pmiq][i_rows*4+j_col])[0],((short*) &mat[3][pmiq][i_rows*4+j_col])[1]);
}
for (int i_rows=N1*N2; i_rows<2*N1*N2; i_rows++) {
res_code=sqrt(1/(double)(4*CSI_RS_antenna_ports))*(phase_sign)*theta_n[nn]*v_lm[llc][mmc][i_rows-N1*N2];
if (creal(res_code)>0)
((short*) &mat[3][pmiq][i_rows*4+j_col])[0] = (short) ((creal(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[3][pmiq][i_rows*4+j_col])[0] = (short) ((creal(res_code)*32768)-0.5);//convert to Q15
if (cimag(res_code)>0)
((short*) &mat[3][pmiq][i_rows*4+j_col])[1] = (short) ((cimag(res_code)*32768)+0.5);//convert to Q15
else
((short*) &mat[3][pmiq][i_rows*4+j_col])[1] = (short) ((cimag(res_code)*32768)-0.5);//convert to Q15
LOG_D(PHY, "4 Layer Precoding Matrix[3][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq,i_rows,j_col, creal(res_code), cimag(res_code),((short*) &mat[3][pmiq][i_rows*4+j_col])[0],((short*) &mat[3][pmiq][i_rows*4+j_col])[1]);
}
}
}
}
}
}
}
}
}
else
AssertFatal(false, "Max number of antenna ports supported is 16\n");
}
return 0;
}
// A global var to reduce the changes size // A global var to reduce the changes size
ldpc_interface_t ldpc_interface = {0}, ldpc_interface_offload = {0}; ldpc_interface_t ldpc_interface = {0}, ldpc_interface_offload = {0};
...@@ -509,8 +134,6 @@ int phy_init_nr_gNB(PHY_VARS_gNB *gNB) ...@@ -509,8 +134,6 @@ int phy_init_nr_gNB(PHY_VARS_gNB *gNB)
if (gNB->ldpc_offload_flag) if (gNB->ldpc_offload_flag)
load_LDPClib("_t2", &ldpc_interface_offload); load_LDPClib("_t2", &ldpc_interface_offload);
gNB->max_nb_pdsch = MAX_MOBILES_PER_GNB; gNB->max_nb_pdsch = MAX_MOBILES_PER_GNB;
init_codebook_gNB(gNB);
init_delay_table(fp->ofdm_symbol_size, MAX_DELAY_COMP, NR_MAX_OFDM_SYMBOL_SIZE, fp->delay_table); init_delay_table(fp->ofdm_symbol_size, MAX_DELAY_COMP, NR_MAX_OFDM_SYMBOL_SIZE, fp->delay_table);
// PBCH DMRS gold sequences generation // PBCH DMRS gold sequences generation
...@@ -703,18 +326,10 @@ void phy_free_nr_gNB(PHY_VARS_gNB *gNB) ...@@ -703,18 +326,10 @@ void phy_free_nr_gNB(PHY_VARS_gNB *gNB)
const int Prx = gNB->gNB_config.carrier_config.num_rx_ant.value; const int Prx = gNB->gNB_config.carrier_config.num_rx_ant.value;
const int max_ul_mimo_layers = 4; // taken from phy_init_nr_gNB() const int max_ul_mimo_layers = 4; // taken from phy_init_nr_gNB()
const int n_buf = Prx * max_ul_mimo_layers; const int n_buf = Prx * max_ul_mimo_layers;
PHY_MEASUREMENTS_gNB *meas=&gNB->measurements;
PHY_MEASUREMENTS_gNB *meas = &gNB->measurements;
free_and_zero(meas->n0_subband_power); free_and_zero(meas->n0_subband_power);
free_and_zero(meas->n0_subband_power_dB); free_and_zero(meas->n0_subband_power_dB);
int max_dl_mimo_layers =(fp->nb_antennas_tx<NR_MAX_NB_LAYERS) ? fp->nb_antennas_tx : NR_MAX_NB_LAYERS;
if (fp->nb_antennas_tx>1) {
for (int nl = 0; nl < max_dl_mimo_layers; nl++) {
for(int size = 0; size < gNB->pmiq_size[nl]; size++)
free_and_zero(gNB->nr_mimo_precoding_matrix[nl][size]);
free_and_zero(gNB->nr_mimo_precoding_matrix[nl]);
}
free_and_zero(gNB->nr_mimo_precoding_matrix);
}
uint32_t ***pdcch_dmrs = gNB->nr_gold_pdcch_dmrs; uint32_t ***pdcch_dmrs = gNB->nr_gold_pdcch_dmrs;
for (int slot = 0; slot < fp->slots_per_frame; slot++) { for (int slot = 0; slot < fp->slots_per_frame; slot++) {
......
...@@ -703,13 +703,17 @@ c16_t nr_layer_precoder_cm(int n_layers, ...@@ -703,13 +703,17 @@ c16_t nr_layer_precoder_cm(int n_layers,
int n_symbols, int n_symbols,
int symSz, int symSz,
c16_t datatx_F_precoding[n_layers][n_symbols][symSz], c16_t datatx_F_precoding[n_layers][n_symbols][symSz],
c16_t *prec_matrix, int ap,
nfapi_nr_pm_pdu_t *pmi_pdu,
int symbol, int symbol,
int offset) int offset)
{ {
c16_t precodatatx_F = {0}; c16_t precodatatx_F = {0};
for (int al = 0; al < n_layers; al++) for (int al = 0; al < n_layers; al++) {
precodatatx_F = c16maddShift(datatx_F_precoding[al][symbol][offset], prec_matrix[al], precodatatx_F, 15); nfapi_nr_pm_weights_t *w = &pmi_pdu->weights[al][ap];
c16_t prec_weight = {.r = w->precoder_weight_Re, .i = w->precoder_weight_Im};
precodatatx_F = c16maddShift(datatx_F_precoding[al][symbol][offset], prec_weight, precodatatx_F, 15);
}
return precodatatx_F; return precodatatx_F;
} }
...@@ -717,29 +721,33 @@ void nr_layer_precoder_simd(const int n_layers, ...@@ -717,29 +721,33 @@ void nr_layer_precoder_simd(const int n_layers,
const int n_symbols, const int n_symbols,
const int symSz, const int symSz,
const c16_t txdataF_res_mapped[n_layers][n_symbols][symSz], const c16_t txdataF_res_mapped[n_layers][n_symbols][symSz],
const c16_t prec_matrix[n_layers], const int ant,
const nfapi_nr_pm_pdu_t *pmi_pdu,
const int symbol, const int symbol,
const int sc_offset, const int sc_offset,
const int re_cnt, const int re_cnt,
c16_t *txdataF_precoded) c16_t *txdataF_precoded)
{ {
uint32_t sc = sc_offset; uint32_t sc = sc_offset;
c16_t prec_weight = {0};
// For x86, use 256 SIMD for every 8 RE and 128 SIMD for last 4 RE // For x86, use 256 SIMD for every 8 RE and 128 SIMD for last 4 RE
// For aarch64, use 128 SIMD for every 4 RE // For aarch64, use 128 SIMD for every 4 RE
// 256 SIMD: Do 8 RE in one iteration, 3 iterations for 2 RB // 256 SIMD: Do 8 RE in one iteration, 3 iterations for 2 RB
#ifdef __AVX2__ #ifdef __AVX2__
const uint32_t re_cnt_align8 = re_cnt & ~7; const uint32_t re_cnt_align8 = re_cnt & ~7;
for(; sc<sc_offset+(re_cnt_align8); sc+=sizeof(simde__m256i)/sizeof(*prec_matrix)){ for(; sc < sc_offset + (re_cnt_align8); sc += sizeof(simde__m256i) / sizeof(prec_weight)) {
// Matrix multiplication for 4 elements of the result (sizeof(simde__m256i) / sizeof(*prec_matrix) = 8) // Matrix multiplication for 4 elements of the result (sizeof(simde__m256i) / sizeof(*prec_matrix) = 8)
simde__m256i y = simde_mm256_set1_epi16(0); // Y = W[0]*X[0] + W[1]*X[1] + ... + W[nrOfLayers-1]*X[nrOfLayers-1] simde__m256i y = simde_mm256_set1_epi16(0); // Y = W[0]*X[0] + W[1]*X[1] + ... + W[nrOfLayers-1]*X[nrOfLayers-1]
for(int nl=0; nl<n_layers; nl++){ for(int nl = 0; nl < n_layers; nl++) {
prec_weight.r = pmi_pdu->weights[nl][ant].precoder_weight_Re;
prec_weight.i = pmi_pdu->weights[nl][ant].precoder_weight_Im;
const simde__m256i x = simde_mm256_loadu_epi32(&txdataF_res_mapped[nl][symbol][sc]); const simde__m256i x = simde_mm256_loadu_epi32(&txdataF_res_mapped[nl][symbol][sc]);
// Rearrange precoding matrix weight to match complex multiplication and broadcast it to match SIMD size // Rearrange precoding matrix weight to match complex multiplication and broadcast it to match SIMD size
const simde__m256i w_c = simde_mm256_set1_epi32(c16toI32(c16conj(prec_matrix[nl]))); // broadcast conjugate of w const simde__m256i w_c = simde_mm256_set1_epi32(c16toI32(c16conj(prec_weight))); // broadcast conjugate of w
const simde__m256i w_s = simde_mm256_set1_epi32(c16toI32(c16swap(prec_matrix[nl]))); // broadcast swapped real and img of w const simde__m256i w_s = simde_mm256_set1_epi32(c16toI32(c16swap(prec_weight))); // broadcast swapped real and img of w
// Multiplication and shift // Multiplication and shift
const simde__m256i reals = simde_mm256_srai_epi32(simde_mm256_madd_epi16(x, w_c), 15); // (int32_t) .r = (x.r * w.r - x.i * w.i) >> 15 const simde__m256i reals = simde_mm256_srai_epi32(simde_mm256_madd_epi16(x, w_c), 15); // (int32_t) .r = (x.r * w.r - x.i * w.i) >> 15
...@@ -754,19 +762,20 @@ void nr_layer_precoder_simd(const int n_layers, ...@@ -754,19 +762,20 @@ void nr_layer_precoder_simd(const int n_layers,
// Store the result to txdataF // Store the result to txdataF
simde_mm256_storeu_si256(&txdataF_precoded[sc], y); simde_mm256_storeu_si256(&txdataF_precoded[sc], y);
} }
#endif #endif
// 128 SIMD: Do 4 RE in one iteration, 3 iterations for 1 RB // 128 SIMD: Do 4 RE in one iteration, 3 iterations for 1 RB
const uint32_t re_cnt_align4 = re_cnt & ~3; const uint32_t re_cnt_align4 = re_cnt & ~3;
for(; sc<sc_offset+re_cnt_align4; sc+=sizeof(simde__m128i)/sizeof(*prec_matrix)){ for(; sc < sc_offset+re_cnt_align4; sc += sizeof(simde__m128i) / sizeof(prec_weight)) {
#ifdef DEBUG_DLSCH_PRECODING_PRINT_WITH_TRIVIAL // Get result with trivial solution, TODO: To be removed #ifdef DEBUG_DLSCH_PRECODING_PRINT_WITH_TRIVIAL // Get result with trivial solution, TODO: To be removed
c16_t y_triv[4]; c16_t y_triv[4];
for(int i=0; i<4; i++) for(int i = 0; i < 4; i++)
y_triv[i] = nr_layer_precoder_cm(n_layers, y_triv[i] = nr_layer_precoder_cm(n_layers,
NR_SYMBOLS_PER_SLOT, NR_SYMBOLS_PER_SLOT,
symSz, symSz,
txdataF_res_mapped, txdataF_res_mapped,
prec_matrix, ant,
pmi_pdu,
symbol, symbol,
sc + i); sc + i);
memcpy(&txdataF_precoded[sc], y_triv, sizeof(y_triv)); memcpy(&txdataF_precoded[sc], y_triv, sizeof(y_triv));
...@@ -774,12 +783,15 @@ void nr_layer_precoder_simd(const int n_layers, ...@@ -774,12 +783,15 @@ void nr_layer_precoder_simd(const int n_layers,
// Matrix multiplication for 4 elements of the result (sizeof(simde__m128i) / sizeof(c16_t) = 4) // Matrix multiplication for 4 elements of the result (sizeof(simde__m128i) / sizeof(c16_t) = 4)
simde__m128i y = simde_mm_set1_epi16(0); // Y = W[0]*X[0] + W[1]*X[1] + ... + W[nrOfLayers-1]*X[nrOfLayers-1] simde__m128i y = simde_mm_set1_epi16(0); // Y = W[0]*X[0] + W[1]*X[1] + ... + W[nrOfLayers-1]*X[nrOfLayers-1]
for(int nl=0; nl<n_layers; nl++){ for(int nl = 0; nl < n_layers; nl++) {
prec_weight.r = pmi_pdu->weights[nl][ant].precoder_weight_Re;
prec_weight.i = pmi_pdu->weights[nl][ant].precoder_weight_Im;
const simde__m128i x = simde_mm_loadu_epi32(&txdataF_res_mapped[nl][symbol][sc]); const simde__m128i x = simde_mm_loadu_epi32(&txdataF_res_mapped[nl][symbol][sc]);
// Rearrange precoding matrix weight to match complex multiplication and broadcast it to match SIMD size // Rearrange precoding matrix weight to match complex multiplication and broadcast it to match SIMD size
const simde__m128i w_c = simde_mm_set1_epi32(c16toI32(c16conj(prec_matrix[nl]))); // broadcast conjugate of w const simde__m128i w_c = simde_mm_set1_epi32(c16toI32(c16conj(prec_weight))); // broadcast conjugate of w
const simde__m128i w_s = simde_mm_set1_epi32(c16toI32(c16swap(prec_matrix[nl]))); // broadcast swapped real and img of w const simde__m128i w_s = simde_mm_set1_epi32(c16toI32(c16swap(prec_weight))); // broadcast swapped real and img of w
// Multiplication and shift // Multiplication and shift
const simde__m128i reals = simde_mm_srai_epi32(simde_mm_madd_epi16(x, w_c), 15); // (int32_t) .r = (x.r * w.r - x.i * w.i) >> 15 const simde__m128i reals = simde_mm_srai_epi32(simde_mm_madd_epi16(x, w_c), 15); // (int32_t) .r = (x.r * w.r - x.i * w.i) >> 15
......
...@@ -138,11 +138,13 @@ void apply_nr_rotation_RX(NR_DL_FRAME_PARMS *frame_parms, ...@@ -138,11 +138,13 @@ void apply_nr_rotation_RX(NR_DL_FRAME_PARMS *frame_parms,
@param[in] n_layers, number of DLSCH layers @param[in] n_layers, number of DLSCH layers
*/ */
int nr_layer_precoder(int16_t **datatx_F_precoding, const char *prec_matrix, uint8_t n_layers, int32_t re_offset); int nr_layer_precoder(int16_t **datatx_F_precoding, const char *prec_matrix, uint8_t n_layers, int32_t re_offset);
c16_t nr_layer_precoder_cm(int n_layers, c16_t nr_layer_precoder_cm(int n_layers,
int n_symbols, int n_symbols,
int symSz, int symSz,
c16_t datatx_F_precoding[n_layers][n_symbols][symSz], c16_t datatx_F_precoding[n_layers][n_symbols][symSz],
c16_t *prec_matrix, int ap,
nfapi_nr_pm_pdu_t *pmi_pdu,
int symbol, int symbol,
int offset); int offset);
...@@ -156,7 +158,8 @@ void nr_layer_precoder_simd(const int n_layers, ...@@ -156,7 +158,8 @@ void nr_layer_precoder_simd(const int n_layers,
const int n_symbols, const int n_symbols,
const int symSz, const int symSz,
const c16_t txdataF_res_mapped[n_layers][n_symbols][symSz], const c16_t txdataF_res_mapped[n_layers][n_symbols][symSz],
const c16_t prec_matrix[n_layers], const int ant,
const nfapi_nr_pm_pdu_t *pmi_pdu,
const int symbol, const int symbol,
const int sc_offset, const int sc_offset,
const int re_cnt, const int re_cnt,
......
...@@ -535,28 +535,22 @@ void nr_generate_pdsch(processingData_L1tx_t *msgTx, int frame, int slot) ...@@ -535,28 +535,22 @@ void nr_generate_pdsch(processingData_L1tx_t *msgTx, int frame, int slot)
} }
} }
else { // non-unitary Precoding else { // non-unitary Precoding
if(frame_parms->nb_antennas_tx == 1){ // no precoding matrix defined AssertFatal(frame_parms->nb_antennas_tx > 1, "No precoding can be done with a single antenna port\n");
memcpy(&txdataF[ant][txdataF_offset_per_symbol + subCarrier],
&txdataF_precoding[ant][l_symbol][subCarrier],
re_cnt * sizeof(**txdataF));
subCarrier += re_cnt;
if (subCarrier >= frame_parms->ofdm_symbol_size) {
subCarrier -= frame_parms->ofdm_symbol_size;
}
}
else { // precoding with more than 1 tx
//get the precoding matrix weights: //get the precoding matrix weights:
c16_t **mat = (c16_t**)gNB->nr_mimo_precoding_matrix[rel15->nrOfLayers - 1]; nfapi_nr_pm_pdu_t *pmi_pdu = &gNB->gNB_config.pmi_list.pmi_pdu[pmi - 1]; // pmi 0 is identity matrix
//i_row =0,...,dl_antenna_port AssertFatal(pmi == pmi_pdu->pm_idx, "PMI %d doesn't match to the one in precoding matrix %d\n",
//j_col =0,...,nrOfLayers pmi, pmi_pdu->pm_idx);
//mat[pmi][i_rows*2+j_col] AssertFatal(ant < pmi_pdu->num_ant_ports, "Antenna port index %d exceeds precoding matrix AP size %d\n",
c16_t *W_prec = &mat[pmi][ant * rel15->nrOfLayers]; ant, pmi_pdu->num_ant_ports);
AssertFatal(rel15->nrOfLayers == pmi_pdu->numLayers, "Number of layers %d doesn't match to the one in precoding matrix %d\n",
rel15->nrOfLayers, pmi_pdu->numLayers);
if((subCarrier + re_cnt) < frame_parms->ofdm_symbol_size){ // within ofdm_symbol_size, use SIMDe if((subCarrier + re_cnt) < frame_parms->ofdm_symbol_size){ // within ofdm_symbol_size, use SIMDe
nr_layer_precoder_simd(rel15->nrOfLayers, nr_layer_precoder_simd(rel15->nrOfLayers,
NR_SYMBOLS_PER_SLOT, NR_SYMBOLS_PER_SLOT,
frame_parms->ofdm_symbol_size, frame_parms->ofdm_symbol_size,
txdataF_precoding, txdataF_precoding,
W_prec, ant,
pmi_pdu,
l_symbol, l_symbol,
subCarrier, subCarrier,
re_cnt, re_cnt,
...@@ -570,7 +564,8 @@ void nr_generate_pdsch(processingData_L1tx_t *msgTx, int frame, int slot) ...@@ -570,7 +564,8 @@ void nr_generate_pdsch(processingData_L1tx_t *msgTx, int frame, int slot)
NR_SYMBOLS_PER_SLOT, NR_SYMBOLS_PER_SLOT,
frame_parms->ofdm_symbol_size, frame_parms->ofdm_symbol_size,
txdataF_precoding, txdataF_precoding,
W_prec, ant,
pmi_pdu,
l_symbol, l_symbol,
subCarrier); subCarrier);
#ifdef DEBUG_DLSCH_MAPPING #ifdef DEBUG_DLSCH_MAPPING
...@@ -586,7 +581,6 @@ void nr_generate_pdsch(processingData_L1tx_t *msgTx, int frame, int slot) ...@@ -586,7 +581,6 @@ void nr_generate_pdsch(processingData_L1tx_t *msgTx, int frame, int slot)
} }
} }
} // else{ // crossing ofdm_symbol_size, use simple arithmetic operations } // else{ // crossing ofdm_symbol_size, use simple arithmetic operations
} // else { // precoding with more than 1 tx
} // else { // non-unitary Precoding } // else { // non-unitary Precoding
rb += rb_step; rb += rb_step;
......
...@@ -619,13 +619,6 @@ typedef struct PHY_VARS_gNB_s { ...@@ -619,13 +619,6 @@ typedef struct PHY_VARS_gNB_s {
/// PDSCH DMRS sequence /// PDSCH DMRS sequence
uint32_t ****nr_gold_pdsch_dmrs; uint32_t ****nr_gold_pdsch_dmrs;
/// PDSCH codebook I precoding LUTs
/// first dimension: Rank number [0,...,noOfLayers-1[
/// second dimension: PMI [0,...,CodeSize-1[
/// third dimension: [i_rows*noOfLayers+j_col], i_rows=0,...pdsch_AntennaPorts-1 and j_col=0,...,noOfLayers-1
int32_t ***nr_mimo_precoding_matrix;
int pmiq_size[NR_MAX_NB_LAYERS];
/// PUSCH DMRS /// PUSCH DMRS
uint32_t ****nr_gold_pusch_dmrs; uint32_t ****nr_gold_pusch_dmrs;
......
...@@ -79,7 +79,6 @@ ...@@ -79,7 +79,6 @@
#define NR_MAX_PDCCH_AGG_LEVEL 16 // 3GPP TS 38.211 V15.8 Section 7.3.2 Table 7.3.2.1-1: Supported PDCCH aggregation levels #define NR_MAX_PDCCH_AGG_LEVEL 16 // 3GPP TS 38.211 V15.8 Section 7.3.2 Table 7.3.2.1-1: Supported PDCCH aggregation levels
#define NR_MAX_NB_LAYERS 4 // 8
#define NR_MAX_NB_PORTS 32 #define NR_MAX_NB_PORTS 32
#define NR_MAX_PDSCH_TBS 3824 #define NR_MAX_PDSCH_TBS 3824
......
...@@ -223,35 +223,21 @@ nrUE_params_t *get_nrUE_params(void) { ...@@ -223,35 +223,21 @@ nrUE_params_t *get_nrUE_params(void) {
} }
void validate_input_pmi(nr_pdsch_AntennaPorts_t pdsch_AntennaPorts, int nrOfLayers, int pmi) void validate_input_pmi(nfapi_nr_config_request_scf_t *gNB_config,
nr_pdsch_AntennaPorts_t pdsch_AntennaPorts,
int nrOfLayers,
int pmi)
{ {
if (pmi == 0) if (pmi == 0)
return; return;
nfapi_nr_pm_pdu_t *pmi_pdu = &gNB_config->pmi_list.pmi_pdu[pmi - 1]; // pmi 0 is identity matrix
AssertFatal(pmi == pmi_pdu->pm_idx, "PMI %d doesn't match to the one in precoding matrix %d\n", pmi, pmi_pdu->pm_idx);
AssertFatal(nrOfLayers == pmi_pdu->numLayers, "Number of layers %d doesn't match to the one in precoding matrix %d for PMI %d\n",
nrOfLayers, pmi_pdu->numLayers, pmi);
int num_antenna_ports = pdsch_AntennaPorts.N1 * pdsch_AntennaPorts.N2 * pdsch_AntennaPorts.XP; int num_antenna_ports = pdsch_AntennaPorts.N1 * pdsch_AntennaPorts.N2 * pdsch_AntennaPorts.XP;
int N1 = pdsch_AntennaPorts.N1; AssertFatal(num_antenna_ports == pmi_pdu->num_ant_ports, "Configured antenna ports %d does not match precoding matrix AP size %d for PMI %d\n",
int N2 = pdsch_AntennaPorts.N2; num_antenna_ports, pmi_pdu->num_ant_ports, pmi);
int O1 = N1 > 1 ? 4 : 1;
int O2 = N2 > 1 ? 4 : 1;
int K1, K2;
if (num_antenna_ports > 2)
get_K1_K2(N1, N2, &K1, &K2);
else {
K1 = 1; K2 = 1;
}
int num_pmi = 1; // pmi = 0 is the identity matrix
switch (nrOfLayers) {
case 1 :
num_pmi += N1 * O1 * N2 * O2 * 4;
AssertFatal(pmi < num_pmi, "Input PMI index %d exceeds the limit of configured matrices %d for %d layers\n", pmi, num_pmi, nrOfLayers);
return;
case 2 :
num_pmi += N1 * O1 * N2 * O2 * K1 * K2 * 2;
AssertFatal(pmi < num_pmi, "Input PMI index %d exceeds the limit of conigured matrices %d for %d layers\n", pmi, num_pmi, nrOfLayers);
break;
default :
AssertFatal(false, "Precoding with more than 2 nrOfLayers not yet supported\n");
}
} }
...@@ -709,7 +695,7 @@ int main(int argc, char **argv) ...@@ -709,7 +695,7 @@ int main(int argc, char **argv)
gNB->ap_N2 = pdsch_AntennaPorts.N2; gNB->ap_N2 = pdsch_AntennaPorts.N2;
gNB->ap_XP = pdsch_AntennaPorts.XP; gNB->ap_XP = pdsch_AntennaPorts.XP;
validate_input_pmi(pdsch_AntennaPorts, g_nrOfLayers, g_pmi); validate_input_pmi(&gNB_mac->config[0], pdsch_AntennaPorts, g_nrOfLayers, g_pmi);
NR_UE_NR_Capability_t* UE_Capability_nr = CALLOC(1,sizeof(NR_UE_NR_Capability_t)); NR_UE_NR_Capability_t* UE_Capability_nr = CALLOC(1,sizeof(NR_UE_NR_Capability_t));
prepare_sim_uecap(UE_Capability_nr,scc,mu, prepare_sim_uecap(UE_Capability_nr,scc,mu,
......
...@@ -50,11 +50,319 @@ ...@@ -50,11 +50,319 @@
#include "../../../../nfapi/oai_integration/vendor_ext.h" #include "../../../../nfapi/oai_integration/vendor_ext.h"
/* Softmodem params */ /* Softmodem params */
#include "executables/softmodem-common.h" #include "executables/softmodem-common.h"
#include <complex.h>
extern RAN_CONTEXT_t RC; extern RAN_CONTEXT_t RC;
//extern int l2_init_gNB(void); //extern int l2_init_gNB(void);
extern uint8_t nfapi_mode; extern uint8_t nfapi_mode;
c16_t convert_precoder_weight(double complex c_in)
{
double cr = creal(c_in) * 32768 + 0.5;
if (cr < 0)
cr -= 1;
double ci = cimag(c_in) * 32768 + 0.5;
if (ci < 0)
ci -= 1;
return (c16_t) {.r = (short)cr, .i = (short)ci};
}
nfapi_nr_pm_list_t init_DL_MIMO_codebook(gNB_MAC_INST *gNB, nr_pdsch_AntennaPorts_t antenna_ports)
{
int num_antenna_ports = antenna_ports.N1 * antenna_ports.N2 * antenna_ports.XP;
if (num_antenna_ports < 2)
return (nfapi_nr_pm_list_t) {0};
//NR Codebook Generation for codebook type1 SinglePanel
int N1 = antenna_ports.N1;
int N2 = antenna_ports.N2;
//Uniform Planner Array: UPA
// X X X X ... X
// X X X X ... X
// N2 . . . . ... .
// X X X X ... X
// |<-----N1---->|
//Get the uniform planar array parameters
// To be confirmed
int O2 = N2 > 1 ? 4 : 1; //Vertical beam oversampling (1 or 4)
int O1 = num_antenna_ports > 2 ? 4 : 1; //Horizontal beam oversampling (1 or 4)
int K1, K2;
get_K1_K2(N1, N2, &K1, &K2);
int max_mimo_layers = (num_antenna_ports < NR_MAX_NB_LAYERS) ? num_antenna_ports : NR_MAX_NB_LAYERS;
AssertFatal(max_mimo_layers <= 4, "Max number of layers supported is 4\n");
gNB->precoding_matrix_size[0] = N1 * O1 * N2 * O2 * 4;
nfapi_nr_pm_list_t mat = {.num_pm_idx = gNB->precoding_matrix_size[0]};
for (int i = 1; i < max_mimo_layers; i++) {
gNB->precoding_matrix_size[i] = 2 * N1 * O1 * N2 * O2 * K1 * K2;
mat.num_pm_idx += gNB->precoding_matrix_size[i];
}
nfapi_nr_pm_pdu_t *pmi_pdu = malloc16(mat.num_pm_idx * sizeof(*pmi_pdu));
AssertFatal(pmi_pdu != NULL, "out of memory\n");
mat.pmi_pdu = pmi_pdu;
// Generation of codebook Type1 with codebookMode 1 (num_antenna_ports < 16)
if (num_antenna_ports < 16) {
//Generate DFT vertical beams
//ll: index of a vertical beams vector (represented by i1_1 in TS 38.214)
const int max_l = N1 * O1 + (K1 - 1) * O1;
double complex v[max_l][N1];
for (int ll = 0; ll < max_l; ll++) { //i1_1
for (int nn = 0; nn < N1; nn++) {
v[ll][nn] = cexp(I * (2 * M_PI * nn * ll) / (N1 * O1));
LOG_D(PHY,"v[%d][%d] = %f +j %f\n", ll, nn, creal(v[ll][nn]), cimag(v[ll][nn]));
}
}
//Generate DFT Horizontal beams
//mm: index of a Horizontal beams vector (represented by i1_2 in TS 38.214)
const int max_m = N2 * O2 + (K2 - 1) * O2;
double complex u[max_m][N2];
for (int mm = 0; mm < max_m; mm++) { //i1_2
for (int nn = 0; nn < N2; nn++) {
u[mm][nn] = cexp(I * (2 * M_PI * nn * mm) / (N2 * O2));
LOG_D(PHY,"u[%d][%d] = %f +j %f\n", mm, nn, creal(u[mm][nn]), cimag(u[mm][nn]));
}
}
//Generate co-phasing angles
//i_2: index of a co-phasing vector
//i1_1, i1_2, and i_2 are reported from UEs
double complex theta_n[4];
for (int nn = 0; nn < 4; nn++) {
theta_n[nn] = cexp(I * M_PI * nn / 2);
LOG_D(PHY,"theta_n[%d] = %f +j %f\n", nn, creal(theta_n[nn]), cimag(theta_n[nn]));
}
//Kronecker product v_lm
double complex v_lm[max_l][max_m][N2 * N1];
//v_ll_mm_codebook denotes the elements of a precoding matrix W_i1,1_i_1,2
for(int ll = 0; ll < max_l; ll++) { //i_1_1
for (int mm = 0; mm < max_m; mm++) { //i_1_2
for (int nn1 = 0; nn1 < N1; nn1++) {
for (int nn2 = 0; nn2 < N2; nn2++) {
v_lm[ll][mm][nn1 * N2 + nn2] = v[ll][nn1] * u[mm][nn2];
LOG_D(PHY,"v_lm[%d][%d][%d] = %f +j %f\n",ll, mm, nn1 * N2 + nn2, creal(v_lm[ll][mm][nn1*N2+nn2]), cimag(v_lm[ll][mm][nn1*N2+nn2]));
}
}
}
}
double complex res_code;
//Table 5.2.2.2.1-5:
int pmiq = 0;
//Codebook for 1-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { //i_1_2
for (int nn = 0; nn < 4; nn++) {
pmiq = ll * N2 * O2 * 4 + mm * 4 + nn;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 1;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 1 Codebook pmiq = %d\n", pmiq);
for (int len = 0; len < N1 * N2; len++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len];
res_code = sqrt( 1 /(double)num_antenna_ports) * v_lm[ll][mm][len];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, len, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
for(int len = N1 * N2; len < 2 * N1 * N2; len++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[0][len];
res_code = sqrt(1 / (double)num_antenna_ports) * theta_n[nn] * v_lm[ll][mm][len-N1*N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "1 Layer Precoding Matrix[0][pmi %d][antPort %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, len, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
}
}
}
int llc = 0;
int mmc = 0;
double complex phase_sign = 0;
//Table 5.2.2.2.1-6:
//Codebook for 2-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
//Compute the code book size for generating 2 layers out of Tx antenna ports
//pmi=1,...,pmi_size, we construct
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq ++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 2;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 2 Codebook pmiq = %d\n", pmiq);
for(int j_col = 0; j_col < 2; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col == 1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(2 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "2 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
}
}
}
}
}
}
if(max_mimo_layers < 3)
return mat;
//Table 5.2.2.2.1-7:
//Codebook for 3-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
//pmi=1,...,pmi_size are computed as follows
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq ++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 3;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 3 Codebook pmiq = %d\n",pmiq);
for(int j_col = 0; j_col < 3; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col==1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = 1;
}
if (j_col==2) {
llc = ll;
mmc = mm;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code = sqrt(1 / (double)(3 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code=sqrt(1 / (double)(3 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "3 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
}
}
}
}
}
}
if(max_mimo_layers < 4)
return mat;
//Table 5.2.2.2.1-8:
//Codebook for 4-layer CSI reporting using antenna ports 3000 to 2999+PCSI-RS
for(int ll = 0; ll < N1 * O1; ll++) { //i_1_1
for (int mm = 0; mm < N2 * O2; mm++) { // i_1_2
for(int k1 = 0; k1 < K1; k1++) {
for (int k2 = 0; k2 < K2; k2++) {
for (int nn = 0; nn < 2; nn++) { // i_2
pmiq ++;
pmi_pdu[pmiq].pm_idx = pmiq + 1; // index 0 is the identity matrix
pmi_pdu[pmiq].numLayers = 4;
pmi_pdu[pmiq].num_ant_ports = num_antenna_ports;
LOG_D(PHY, "layer 4 pmiq = %d\n", pmiq);
for(int j_col = 0; j_col < 4; j_col++) {
if (j_col == 0) {
llc = ll;
mmc = mm;
phase_sign = 1;
}
if (j_col == 1) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = 1;
}
if (j_col == 2) {
llc = ll;
mmc = mm;
phase_sign = -1;
}
if (j_col == 3) {
llc = ll + k1 * O1;
mmc = mm + k2 * O2;
phase_sign = -1;
}
for (int i_rows = 0; i_rows < N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code=sqrt(1 / (double)(4 * num_antenna_ports)) * v_lm[llc][mmc][i_rows];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
for (int i_rows = N1 * N2; i_rows < 2 * N1 * N2; i_rows++) {
nfapi_nr_pm_weights_t *weights = &pmi_pdu[pmiq].weights[j_col][i_rows];
res_code=sqrt(1 / (double)(4 * num_antenna_ports)) * (phase_sign) * theta_n[nn] * v_lm[llc][mmc][i_rows - N1 * N2];
c16_t precoder_weight = convert_precoder_weight(res_code);
weights->precoder_weight_Re = precoder_weight.r;
weights->precoder_weight_Im = precoder_weight.i;
LOG_D(PHY, "4 Layer Precoding Matrix[1][pmi %d][antPort %d][layerIdx %d]= %f+j %f -> Fixed Point %d+j %d \n",
pmiq, i_rows, j_col, creal(res_code), cimag(res_code), weights->precoder_weight_Re, weights->precoder_weight_Im);
}
}
}
}
}
}
}
return mat;
}
else
AssertFatal(false, "Max number of antenna ports supported is currently 16\n");
}
static void process_rlcBearerConfig(struct NR_CellGroupConfig__rlc_BearerToAddModList *rlc_bearer2add_list, static void process_rlcBearerConfig(struct NR_CellGroupConfig__rlc_BearerToAddModList *rlc_bearer2add_list,
struct NR_CellGroupConfig__rlc_BearerToReleaseList *rlc_bearer2release_list, struct NR_CellGroupConfig__rlc_BearerToReleaseList *rlc_bearer2release_list,
NR_UE_sched_ctrl_t *sched_ctrl) NR_UE_sched_ctrl_t *sched_ctrl)
...@@ -122,7 +430,7 @@ void process_CellGroup(NR_CellGroupConfig_t *CellGroup, NR_UE_info_t *UE) ...@@ -122,7 +430,7 @@ void process_CellGroup(NR_CellGroupConfig_t *CellGroup, NR_UE_info_t *UE)
process_rlcBearerConfig(CellGroup->rlc_BearerToAddModList, CellGroup->rlc_BearerToReleaseList, &UE->UE_sched_ctrl); process_rlcBearerConfig(CellGroup->rlc_BearerToAddModList, CellGroup->rlc_BearerToReleaseList, &UE->UE_sched_ctrl);
} }
static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch_AntennaPorts, NR_ServingCellConfigCommon_t *scc) static void config_common(gNB_MAC_INST *nrmac, nr_pdsch_AntennaPorts_t pdsch_AntennaPorts, int pusch_AntennaPorts, NR_ServingCellConfigCommon_t *scc)
{ {
nfapi_nr_config_request_scf_t *cfg = &nrmac->config[0]; nfapi_nr_config_request_scf_t *cfg = &nrmac->config[0];
nrmac->common_channels[0].ServingCellConfigCommon = scc; nrmac->common_channels[0].ServingCellConfigCommon = scc;
...@@ -136,7 +444,7 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch ...@@ -136,7 +444,7 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch
get_supported_bw_mhz(*frequencyInfoDL->frequencyBandList.list.array[0] > 256 ? FR2 : FR1, bw_index); get_supported_bw_mhz(*frequencyInfoDL->frequencyBandList.list.array[0] > 256 ? FR2 : FR1, bw_index);
cfg->carrier_config.dl_bandwidth.tl.tag = NFAPI_NR_CONFIG_DL_BANDWIDTH_TAG; // temporary cfg->carrier_config.dl_bandwidth.tl.tag = NFAPI_NR_CONFIG_DL_BANDWIDTH_TAG; // temporary
cfg->num_tlv++; cfg->num_tlv++;
LOG_I(NR_MAC, "%s() dl_BandwidthP:%d\n", __FUNCTION__, cfg->carrier_config.dl_bandwidth.value); LOG_I(NR_MAC, "DL_Bandwidth:%d\n", cfg->carrier_config.dl_bandwidth.value);
cfg->carrier_config.dl_frequency.value = from_nrarfcn(*frequencyInfoDL->frequencyBandList.list.array[0], cfg->carrier_config.dl_frequency.value = from_nrarfcn(*frequencyInfoDL->frequencyBandList.list.array[0],
*scc->ssbSubcarrierSpacing, *scc->ssbSubcarrierSpacing,
...@@ -166,7 +474,7 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch ...@@ -166,7 +474,7 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch
get_supported_bw_mhz(*frequencyInfoUL->frequencyBandList->list.array[0] > 256 ? FR2 : FR1, bw_index); get_supported_bw_mhz(*frequencyInfoUL->frequencyBandList->list.array[0] > 256 ? FR2 : FR1, bw_index);
cfg->carrier_config.uplink_bandwidth.tl.tag = NFAPI_NR_CONFIG_UPLINK_BANDWIDTH_TAG; // temporary cfg->carrier_config.uplink_bandwidth.tl.tag = NFAPI_NR_CONFIG_UPLINK_BANDWIDTH_TAG; // temporary
cfg->num_tlv++; cfg->num_tlv++;
LOG_I(NR_MAC, "%s() dl_BandwidthP:%d\n", __FUNCTION__, cfg->carrier_config.uplink_bandwidth.value); LOG_I(NR_MAC, "DL_Bandwidth:%d\n", cfg->carrier_config.uplink_bandwidth.value);
int UL_pointA; int UL_pointA;
if (frequencyInfoUL->absoluteFrequencyPointA == NULL) if (frequencyInfoUL->absoluteFrequencyPointA == NULL)
...@@ -332,6 +640,7 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch ...@@ -332,6 +640,7 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch
cfg->ssb_table.ssb_subcarrier_offset.value = cfg->ssb_table.ssb_subcarrier_offset.value =
get_ssb_subcarrier_offset(*scc->downlinkConfigCommon->frequencyInfoDL->absoluteFrequencySSB, get_ssb_subcarrier_offset(*scc->downlinkConfigCommon->frequencyInfoDL->absoluteFrequencySSB,
scc->downlinkConfigCommon->frequencyInfoDL->absoluteFrequencyPointA); scc->downlinkConfigCommon->frequencyInfoDL->absoluteFrequencyPointA);
AssertFatal(cfg->ssb_table.ssb_subcarrier_offset.value < 16, AssertFatal(cfg->ssb_table.ssb_subcarrier_offset.value < 16,
"cannot handle ssb_subcarrier_offset %d resulting from Point A %ld SSB %ld: please increase dl_absoluteFrequencyPointA " "cannot handle ssb_subcarrier_offset %d resulting from Point A %ld SSB %ld: please increase dl_absoluteFrequencyPointA "
"in the config by 16\n", "in the config by 16\n",
...@@ -376,8 +685,9 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch ...@@ -376,8 +685,9 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch
cfg->num_tlv += 2; cfg->num_tlv += 2;
// logical antenna ports // logical antenna ports
cfg->carrier_config.num_tx_ant.value = pdsch_AntennaPorts; int num_pdsch_antenna_ports = pdsch_AntennaPorts.N1 * pdsch_AntennaPorts.N2 * pdsch_AntennaPorts.XP;
AssertFatal(pdsch_AntennaPorts > 0 && pdsch_AntennaPorts < 33, "pdsch_AntennaPorts in 1...32\n"); cfg->carrier_config.num_tx_ant.value = num_pdsch_antenna_ports;
AssertFatal(num_pdsch_antenna_ports > 0 && num_pdsch_antenna_ports < 33, "pdsch_AntennaPorts in 1...32\n");
cfg->carrier_config.num_tx_ant.tl.tag = NFAPI_NR_CONFIG_NUM_TX_ANT_TAG; cfg->carrier_config.num_tx_ant.tl.tag = NFAPI_NR_CONFIG_NUM_TX_ANT_TAG;
int num_ssb = 0; int num_ssb = 0;
...@@ -441,6 +751,9 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch ...@@ -441,6 +751,9 @@ static void config_common(gNB_MAC_INST *nrmac, int pdsch_AntennaPorts, int pusch
nrmac->tdd_beam_association = (int16_t *)malloc16(periods_per_frame * sizeof(int16_t)); nrmac->tdd_beam_association = (int16_t *)malloc16(periods_per_frame * sizeof(int16_t));
} }
} }
// precoding matrix configuration (to be improved)
cfg->pmi_list = init_DL_MIMO_codebook(nrmac, pdsch_AntennaPorts);
} }
void nr_mac_config_scc(gNB_MAC_INST *nrmac, NR_ServingCellConfigCommon_t *scc, const nr_mac_config_t *config) void nr_mac_config_scc(gNB_MAC_INST *nrmac, NR_ServingCellConfigCommon_t *scc, const nr_mac_config_t *config)
...@@ -464,8 +777,7 @@ void nr_mac_config_scc(gNB_MAC_INST *nrmac, NR_ServingCellConfigCommon_t *scc, c ...@@ -464,8 +777,7 @@ void nr_mac_config_scc(gNB_MAC_INST *nrmac, NR_ServingCellConfigCommon_t *scc, c
LOG_I(NR_MAC, "Configuring common parameters from NR ServingCellConfig\n"); LOG_I(NR_MAC, "Configuring common parameters from NR ServingCellConfig\n");
int num_pdsch_antenna_ports = config->pdsch_AntennaPorts.N1 * config->pdsch_AntennaPorts.N2 * config->pdsch_AntennaPorts.XP; config_common(nrmac, config->pdsch_AntennaPorts, config->pusch_AntennaPorts, scc);
config_common(nrmac, num_pdsch_antenna_ports, config->pusch_AntennaPorts, scc);
if (NFAPI_MODE == NFAPI_MODE_PNF || NFAPI_MODE == NFAPI_MODE_VNF) { if (NFAPI_MODE == NFAPI_MODE_PNF || NFAPI_MODE == NFAPI_MODE_VNF) {
// fake that the gNB is configured in nFAPI mode, which would normally be // fake that the gNB is configured in nFAPI mode, which would normally be
......
...@@ -668,8 +668,7 @@ static void pf_dl(module_id_t module_id, ...@@ -668,8 +668,7 @@ static void pf_dl(module_id_t module_id,
else else
sched_pdsch->mcs = get_mcs_from_bler(bo, stats, &sched_ctrl->dl_bler_stats, max_mcs, frame); sched_pdsch->mcs = get_mcs_from_bler(bo, stats, &sched_ctrl->dl_bler_stats, max_mcs, frame);
sched_pdsch->nrOfLayers = get_dl_nrOfLayers(sched_ctrl, current_BWP->dci_format); sched_pdsch->nrOfLayers = get_dl_nrOfLayers(sched_ctrl, current_BWP->dci_format);
sched_pdsch->pm_index = sched_pdsch->pm_index = mac->identity_pm ? 0 : get_pm_index(mac, UE, sched_pdsch->nrOfLayers, mac->radio_config.pdsch_AntennaPorts.XP);
mac->identity_pm ? 0 : get_pm_index(UE, sched_pdsch->nrOfLayers, mac->radio_config.pdsch_AntennaPorts.XP);
const uint8_t Qm = nr_get_Qm_dl(sched_pdsch->mcs, current_BWP->mcsTableIdx); const uint8_t Qm = nr_get_Qm_dl(sched_pdsch->mcs, current_BWP->mcsTableIdx);
const uint16_t R = nr_get_code_rate_dl(sched_pdsch->mcs, current_BWP->mcsTableIdx); const uint16_t R = nr_get_code_rate_dl(sched_pdsch->mcs, current_BWP->mcsTableIdx);
uint32_t tbs = nr_compute_tbs(Qm, uint32_t tbs = nr_compute_tbs(Qm,
......
...@@ -129,29 +129,36 @@ uint8_t get_dl_nrOfLayers(const NR_UE_sched_ctrl_t *sched_ctrl, ...@@ -129,29 +129,36 @@ uint8_t get_dl_nrOfLayers(const NR_UE_sched_ctrl_t *sched_ctrl,
} }
uint16_t get_pm_index(const NR_UE_info_t *UE, uint16_t get_pm_index(const gNB_MAC_INST *nrmac,
const NR_UE_info_t *UE,
int layers, int layers,
int xp_pdsch_antenna_ports) { int xp_pdsch_antenna_ports)
{
if (layers == 1) return 0;
const NR_UE_sched_ctrl_t *sched_ctrl = &UE->UE_sched_ctrl; const NR_UE_sched_ctrl_t *sched_ctrl = &UE->UE_sched_ctrl;
const int report_id = sched_ctrl->CSI_report.cri_ri_li_pmi_cqi_report.csi_report_id; const int report_id = sched_ctrl->CSI_report.cri_ri_li_pmi_cqi_report.csi_report_id;
const nr_csi_report_t *csi_report = &UE->csi_report_template[report_id]; const nr_csi_report_t *csi_report = &UE->csi_report_template[report_id];
const int N1 = csi_report->N1; const int N1 = csi_report->N1;
const int N2 = csi_report->N2; const int N2 = csi_report->N2;
const int antenna_ports = (N1*N2)<<1; const int antenna_ports = (N1 * N2) << 1;
if (xp_pdsch_antenna_ports == 1 && if (xp_pdsch_antenna_ports == 1)
antenna_ports>1)
return 0; //identity matrix (basic 5G configuration handled by PMI report is with XP antennas) return 0; //identity matrix (basic 5G configuration handled by PMI report is with XP antennas)
const int x1 = sched_ctrl->CSI_report.cri_ri_li_pmi_cqi_report.pmi_x1; const int x1 = sched_ctrl->CSI_report.cri_ri_li_pmi_cqi_report.pmi_x1;
const int x2 = sched_ctrl->CSI_report.cri_ri_li_pmi_cqi_report.pmi_x2; const int x2 = sched_ctrl->CSI_report.cri_ri_li_pmi_cqi_report.pmi_x2;
LOG_D(NR_MAC,"PMI report: x1 %d x2 %d\n",x1,x2); LOG_D(NR_MAC,"PMI report: x1 %d x2 %d layers: %d\n", x1, x2, layers);
int prev_layers_size = 0;
for (int i = 1; i < layers; i++)
prev_layers_size += nrmac->precoding_matrix_size[i - 1];
// need to return PM index to matrix initialized in init_DL_MIMO_codebook
// index 0 is for identity matrix
// order of matrices depends on layers to be transmitted
// elements from 1 to n for 1 layer
// elements from n+1 to m for 2 layers etc.
if (antenna_ports == 2) if (antenna_ports == 2)
return x2; return 1 + prev_layers_size + x2; // 0 for identity matrix
else else
AssertFatal(1==0,"More than 2 antenna ports not yet supported\n"); AssertFatal(1==0,"More than 2 antenna ports not yet supported\n");
} }
......
...@@ -377,7 +377,8 @@ NR_pdsch_dmrs_t get_dl_dmrs_params(const NR_ServingCellConfigCommon_t *scc, ...@@ -377,7 +377,8 @@ NR_pdsch_dmrs_t get_dl_dmrs_params(const NR_ServingCellConfigCommon_t *scc,
const NR_tda_info_t *tda_info, const NR_tda_info_t *tda_info,
const int Layers); const int Layers);
uint16_t get_pm_index(const NR_UE_info_t *UE, uint16_t get_pm_index(const gNB_MAC_INST *nrmac,
const NR_UE_info_t *UE,
int layers, int layers,
int xp_pdsch_antenna_ports); int xp_pdsch_antenna_ports);
......
...@@ -852,6 +852,7 @@ typedef struct gNB_MAC_INST_s { ...@@ -852,6 +852,7 @@ typedef struct gNB_MAC_INST_s {
uint8_t min_grant_prb; uint8_t min_grant_prb;
uint8_t min_grant_mcs; uint8_t min_grant_mcs;
bool identity_pm; bool identity_pm;
int precoding_matrix_size[NR_MAX_NB_LAYERS];
nr_mac_rrc_ul_if_t mac_rrc; nr_mac_rrc_ul_if_t mac_rrc;
f1_config_t f1_config; f1_config_t f1_config;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment