/* * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The OpenAirInterface Software Alliance licenses this file to You under * the OAI Public License, Version 1.1 (the "License"); you may not use this file * except in compliance with the License. * You may obtain a copy of the License at * * http://www.openairinterface.org/?page_id=698 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *------------------------------------------------------------------------------- * For more information about the OpenAirInterface (OAI) Software Alliance: * contact@openairinterface.org */ #include <string.h> #include <math.h> #include <unistd.h> #include <fcntl.h> #include <sys/ioctl.h> #include <sys/mman.h> #include "common/config/config_userapi.h" #include "common/utils/LOG/log.h" #include "common/ran_context.h" #include "PHY/types.h" #include "PHY/defs_nr_common.h" #include "PHY/defs_nr_UE.h" #include "PHY/defs_gNB.h" #include "PHY/NR_REFSIG/refsig_defs_ue.h" #include "PHY/MODULATION/modulation_eNB.h" #include "PHY/MODULATION/modulation_UE.h" #include "PHY/NR_ESTIMATION/nr_ul_estimation.h" #include "PHY/INIT/phy_init.h" #include "PHY/NR_TRANSPORT/nr_transport_proto.h" #include "PHY/NR_UE_TRANSPORT/nr_transport_proto_ue.h" #include "PHY/NR_UE_TRANSPORT/pucch_nr.h" #include "SCHED_NR/sched_nr.h" #include "openair1/SIMULATION/TOOLS/sim.h" #include "openair1/SIMULATION/RF/rf.h" #include "openair1/SIMULATION/NR_PHY/nr_unitary_defs.h" #include "openair1/SIMULATION/NR_PHY/nr_dummy_functions.c" PHY_VARS_gNB *gNB; PHY_VARS_NR_UE *UE; RAN_CONTEXT_t RC; openair0_config_t openair0_cfg[MAX_CARDS]; int32_t uplink_frequency_offset[MAX_NUM_CCs][4]; double cpuf; uint8_t nfapi_mode = 0; uint16_t NB_UE_INST = 1; uint8_t const nr_rv_round_map[4] = {0, 2, 1, 3}; uint8_t const nr_rv_round_map_ue[4] = {0, 2, 1, 3}; // needed for some functions PHY_VARS_NR_UE * PHY_vars_UE_g[1][1]={{NULL}}; void init_downlink_harq_status(NR_DL_UE_HARQ_t *dl_harq) {} int main(int argc, char **argv) { char c; int i,aa=0;//,l; double sigma2, sigma2_dB=10,SNR,snr0=-2.0,snr1=2.0; double cfo=0; uint8_t snr1set=0; int **txdataF,**rxdataF; double **s_re,**s_im,**r_re,**r_im; //int sync_pos, sync_pos_slot; //FILE *rx_frame_file; FILE *output_fd = NULL; //uint8_t write_output_file=0; //int result; //int freq_offset; //int subframe_offset; //char fname[40], vname[40]; int trial,n_trials=100,n_errors=0,ack_nack_errors=0,sr_errors=0; uint8_t transmission_mode = 1,n_tx=1,n_rx=1; uint16_t Nid_cell=0; uint64_t SSB_positions=0x01; channel_desc_t *UE2gNB; int format=0; //uint8_t extended_prefix_flag=0; FILE *input_fd=NULL; //uint8_t nacktoack_flag=0; int16_t amp=0x7FFF; int nr_slot_tx=0; uint64_t actual_payload=0,payload_received; int nr_bit=1; // maximum value possible is 2 uint8_t m0=0;// higher layer paramater initial cyclic shift uint8_t nrofSymbols=1; //number of OFDM symbols can be 1-2 for format 1 uint8_t startingSymbolIndex=0; // resource allocated see 9.2.1, 38.213 for more info.should be actually present in the resource set provided uint16_t startingPRB=0,startingPRB_intraSlotHopping=0; //PRB number not sure see 9.2.1, 38.213 for more info. Should be actually present in the resource set provided uint16_t nrofPRB=2; uint8_t timeDomainOCC=0; SCM_t channel_model=AWGN;//Rayleigh1_anticorr; double DS_TDL = .03; int N_RB_DL=273,mu=1; float target_error_rate=0.001; int frame_length_complex_samples; //int frame_length_complex_samples_no_prefix; NR_DL_FRAME_PARMS *frame_parms; //unsigned char frame_type = 0; int loglvl=OAILOG_WARNING; int sr_flag = 0; cpuf = get_cpu_freq_GHz(); if ( load_configmodule(argc,argv,CONFIG_ENABLECMDLINEONLY) == 0) { exit_fun("[NR_PUCCHSIM] Error, configuration module init failed\n"); } randominit(0); logInit(); while ((c = getopt (argc, argv, "f:hA:f:g:i:I:P:B:b:T:m:n:r:o:s:S:x:y:z:N:F:GR:IL:q:c")) != -1) { switch (c) { case 'f': //write_output_file=1; output_fd = fopen(optarg,"w"); if (output_fd==NULL) { printf("Error opening %s\n",optarg); exit(-1); } break; case 'g': switch((char)*optarg) { case 'A': channel_model=SCM_A; break; case 'B': channel_model=SCM_B; break; case 'C': channel_model=SCM_C; break; case 'D': channel_model=SCM_D; break; case 'E': channel_model=EPA; break; case 'F': channel_model=EVA; break; case 'G': channel_model=ETU; break; case 'H': channel_model = TDL_C; DS_TDL = .030; // 30 ns break; case 'I': channel_model = TDL_C; DS_TDL = .3; // 300ns break; case 'J': channel_model=TDL_D; DS_TDL = .03; break; default: printf("Unsupported channel model!\n"); exit(-1); } break; case 'n': n_trials = atoi(optarg); break; case 'o': cfo = atof(optarg); printf("Setting CFO to %f Hz\n",cfo); break; case 's': snr0 = atof(optarg); printf("Setting SNR0 to %f\n",snr0); break; case 'S': snr1 = atof(optarg); snr1set=1; printf("Setting SNR1 to %f\n",snr1); break; /* case 't': Td= atof(optarg); break; case 'p': extended_prefix_flag=1; break; case 'd': frame_type = 1; break; case 'r': ricean_factor = pow(10,-.1*atof(optarg)); if (ricean_factor>1) { printf("Ricean factor must be between 0 and 1\n"); exit(-1); } break; */ case 'x': transmission_mode=atoi(optarg); if ((transmission_mode!=1) && (transmission_mode!=2) && (transmission_mode!=6)) { printf("Unsupported transmission mode %d\n",transmission_mode); exit(-1); } break; case 'y': n_tx=atoi(optarg); if ((n_tx==0) || (n_tx>2)) { printf("Unsupported number of tx antennas %d\n",n_tx); exit(-1); } break; case 'z': n_rx=atoi(optarg); if ((n_rx==0) || (n_rx>2)) { printf("Unsupported number of rx antennas %d\n",n_rx); exit(-1); } break; case 'N': Nid_cell = atoi(optarg); break; case 'R': N_RB_DL = atoi(optarg); break; case 'F': input_fd = fopen(optarg,"r"); if (input_fd==NULL) { printf("Problem with filename %s\n",optarg); exit(-1); } break; case 'L': loglvl = atoi(optarg); break; case 'i': nrofSymbols=(uint8_t)atoi(optarg); break; case 'I': startingSymbolIndex=(uint8_t)atoi(optarg); break; case 'r': startingPRB=atoi(optarg); break; case 'q': nrofPRB=atoi(optarg); break; case 'P': format=atoi(optarg); break; case 'm': m0=atoi(optarg); break; case 'b': nr_bit=atoi(optarg); break; case 'c': sr_flag=1; break; case 'B': actual_payload=atoi(optarg); break; case 'T': //nacktoack_flag=(uint8_t)atoi(optarg); target_error_rate=0.001; break; default: case 'h': printf("%s -h(elp) -p(extended_prefix) -N cell_id -f output_filename -F input_filename -g channel_model -n n_frames -t Delayspread -s snr0 -S snr1 -x transmission_mode -y TXant -z RXant -i Intefrence0 -j Interference1 -A interpolation_file -C(alibration offset dB) -N CellId\n", argv[0]); printf("-h This message\n"); printf("-p Use extended prefix mode\n"); printf("-d Use TDD\n"); printf("-n Number of frames to simulate\n"); printf("-s Starting SNR, runs from SNR0 to SNR0 + 5 dB. If n_frames is 1 then just SNR is simulated\n"); printf("-S Ending SNR, runs from SNR0 to SNR1\n"); printf("-t Delay spread for multipath channel\n"); printf("-g [A,B,C,D,E,F,G] Use 3GPP SCM (A,B,C,D) or 36-101 (E-EPA,F-EVA,G-ETU) models (ignores delay spread and Ricean factor)\n"); printf("-x Transmission mode (1,2,6 for the moment)\n"); printf("-y Number of TX antennas used in eNB\n"); printf("-z Number of RX antennas used in UE\n"); printf("-i Relative strength of first intefering eNB (in dB) - cell_id mod 3 = 1\n"); printf("-j Relative strength of second intefering eNB (in dB) - cell_id mod 3 = 2\n"); printf("-o Carrier frequency offset in Hz\n"); printf("-N Nid_cell\n"); printf("-R N_RB_DL\n"); printf("-O oversampling factor (1,2,4,8,16)\n"); printf("-A Interpolation_filname Run with Abstraction to generate Scatter plot using interpolation polynomial in file\n"); //printf("-C Generate Calibration information for Abstraction (effective SNR adjustment to remove Pe bias w.r.t. AWGN)\n"); printf("-f Output filename (.txt format) for Pe/SNR results\n"); printf("-F Input filename (.txt format) for RX conformance testing\n"); printf("-i Enter number of ofdm symbols for pucch\n"); printf("-I Starting symbol index for pucch\n"); printf("-r PUCCH starting PRB\n"); printf("-q PUCCH number of PRB\n"); printf("-P Enter the format of PUCCH\n"); printf("-b number of HARQ bits (1-2)\n"); printf("-B payload to be transmitted on PUCCH\n"); printf("-m initial cyclic shift m0\n"); printf("-T to check nacktoack miss for format 1"); exit (-1); break; } } set_glog(loglvl); if (snr1set==0) snr1 = snr0+10; printf("Initializing gNodeB for mu %d, N_RB_DL %d\n",mu,N_RB_DL); if((format!=0) && (format!=1) && (format!=2)){ printf("PUCCH format %d not supported\n",format); exit(0); } AssertFatal(((format < 2)&&(nr_bit<3)&&(actual_payload<4)) || ((format == 2)&&(nr_bit>2)&&(nr_bit<65)),"illegal combination format %d, nr_bit %d\n", format,nr_bit); actual_payload &= ((1<<nr_bit)-1); printf("Transmitted payload is %ld\n",actual_payload); RC.gNB = (PHY_VARS_gNB**) malloc(sizeof(PHY_VARS_gNB *)); RC.gNB[0] = malloc(sizeof(PHY_VARS_gNB)); gNB = RC.gNB[0]; memset((void*)gNB,0,sizeof(*gNB)); frame_parms = &gNB->frame_parms; //to be initialized I suppose (maybe not necessary for PBCH) frame_parms->nb_antennas_tx = n_tx; frame_parms->nb_antennas_rx = n_rx; frame_parms->N_RB_DL = N_RB_DL; frame_parms->N_RB_UL = N_RB_DL; frame_parms->Nid_cell = Nid_cell; nfapi_nr_config_request_scf_t *cfg = &gNB->gNB_config; cfg->carrier_config.num_tx_ant.value = n_tx; cfg->carrier_config.num_rx_ant.value = n_rx; nr_phy_config_request_sim(gNB,N_RB_DL,N_RB_DL,mu,Nid_cell,SSB_positions); phy_init_nr_gNB(gNB,0,0); double fs,bw,scs,eps; if (mu == 1 && N_RB_DL == 217) { fs = 122.88e6; bw = 80e6; scs = 30000; } else if (mu == 1 && N_RB_DL == 245) { fs = 122.88e6; bw = 90e6; scs = 30000; } else if (mu == 1 && N_RB_DL == 273) { fs = 122.88e6; bw = 100e6; scs = 30000; } else if (mu == 1 && N_RB_DL == 106) { fs = 61.44e6; bw = 40e6; scs = 30000; } else AssertFatal(1==0,"Unsupported numerology for mu %d, N_RB %d\n",mu, N_RB_DL); // cfo with respect to sub-carrier spacing eps = cfo/scs; // computation of integer and fractional FO to compare with estimation results int IFO; if(eps!=0.0){ printf("Introducing a CFO of %lf relative to SCS of %d kHz\n",eps,(int)(scs/1000)); if (eps>0) IFO=(int)(eps+0.5); else IFO=(int)(eps-0.5); printf("FFO = %lf; IFO = %d\n",eps-IFO,IFO); } UE2gNB = new_channel_desc_scm(n_tx, n_rx, channel_model, fs, bw, DS_TDL,0, 0, 0); if (UE2gNB==NULL) { printf("Problem generating channel model. Exiting.\n"); exit(-1); } frame_length_complex_samples = frame_parms->samples_per_subframe*NR_NUMBER_OF_SUBFRAMES_PER_FRAME; //frame_length_complex_samples_no_prefix = frame_parms->samples_per_subframe_wCP; s_re = malloc(2*sizeof(double*)); s_im = malloc(2*sizeof(double*)); r_re = malloc(2*sizeof(double*)); r_im = malloc(2*sizeof(double*)); txdataF = malloc(2*sizeof(int*)); rxdataF = malloc(2*sizeof(int*)); gNB->common_vars.rxdataF=rxdataF; memcpy((void*)&gNB->frame_parms,(void*)frame_parms,sizeof(frame_parms)); for (i=0; i<2; i++) { s_re[i] = malloc(frame_length_complex_samples*sizeof(double)); bzero(s_re[i],frame_length_complex_samples*sizeof(double)); s_im[i] = malloc(frame_length_complex_samples*sizeof(double)); bzero(s_im[i],frame_length_complex_samples*sizeof(double)); r_re[i] = malloc(frame_length_complex_samples*sizeof(double)); bzero(r_re[i],frame_length_complex_samples*sizeof(double)); r_im[i] = malloc(frame_length_complex_samples*sizeof(double)); bzero(r_im[i],frame_length_complex_samples*sizeof(double)); printf("Allocating %d samples for txdataF/rxdataF\n",14*frame_parms->ofdm_symbol_size); txdataF[i] = memalign(32,14*frame_parms->ofdm_symbol_size*sizeof(int)); bzero(txdataF[i],14*frame_parms->ofdm_symbol_size*sizeof(int)); rxdataF[i] = memalign(32,14*frame_parms->ofdm_symbol_size*sizeof(int)); bzero(rxdataF[i],14*frame_parms->ofdm_symbol_size*sizeof(int)); } //configure UE UE = malloc(sizeof(PHY_VARS_NR_UE)); memcpy(&UE->frame_parms,frame_parms,sizeof(NR_DL_FRAME_PARMS)); UE->pucch_config_common_nr->hoppingId = Nid_cell; //phy_init_nr_top(UE); //called from init_nr_ue_signal UE->perfect_ce = 0; if(eps!=0.0) UE->UE_fo_compensation = 1; // if a frequency offset is set then perform fo estimation and compensation if (init_nr_ue_signal(UE, 1, 0) != 0) { printf("Error at UE NR initialisation\n"); exit(-1); } uint8_t mcs=0; startingPRB_intraSlotHopping=N_RB_DL-1; pucch_GroupHopping_t PUCCH_GroupHopping=UE->pucch_config_common_nr->pucch_GroupHopping; uint32_t hopping_id=UE->pucch_config_common_nr->hoppingId; uint32_t dmrs_scrambling_id = 0, data_scrambling_id=0; //t_nrPolar_params *currentPtr; int shift = 0; if(format==0){ if (sr_flag) shift = 1<<nr_bit; if (nr_bit ==0) mcs=table1_mcs[0]; else if(nr_bit==1) mcs=table1_mcs[actual_payload+shift]; else if(nr_bit==2) mcs=table2_mcs[actual_payload+shift]; else AssertFatal(1==0,"Either nr_bit %d or sr_flag %d must be non-zero\n", nr_bit, sr_flag); } else if (format == 2 && nr_bit > 11) gNB->uci_polarParams = nr_polar_params(2, nr_bit, nrofPRB, 1, NULL); for(SNR=snr0;SNR<=snr1;SNR=SNR+1){ ack_nack_errors=0; sr_errors=0; n_errors = 0; for (trial=0; trial<n_trials; trial++) { bzero(txdataF[aa],frame_parms->ofdm_symbol_size*sizeof(int)); if(format==0){ nr_generate_pucch0(UE,txdataF,frame_parms,PUCCH_GroupHopping,hopping_id,amp,nr_slot_tx,m0,mcs,nrofSymbols,startingSymbolIndex,startingPRB); } else if (format == 1){ nr_generate_pucch1(UE,txdataF,frame_parms,UE->pucch_config_dedicated,actual_payload,amp,nr_slot_tx,m0,nrofSymbols,startingSymbolIndex,startingPRB,startingPRB_intraSlotHopping,0,nr_bit); } else { nr_generate_pucch2(UE,0x1234,dmrs_scrambling_id,data_scrambling_id,txdataF,frame_parms,UE->pucch_config_dedicated,actual_payload,amp,nr_slot_tx,nrofSymbols,startingSymbolIndex,nrofPRB,startingPRB,nr_bit); } int txlev = signal_energy(&txdataF[aa][startingSymbolIndex*frame_parms->ofdm_symbol_size], frame_parms->ofdm_symbol_size); // printf("txlev %d (%d dB), offset %d\n",txlev,dB_fixed(txlev),startingSymbolIndex*frame_parms->ofdm_symbol_size); // note : this scaling int nb_re = (format == 0 || format == 1)? 12 : 12*nrofPRB; sigma2_dB = 10*log10((double)txlev*UE->frame_parms.ofdm_symbol_size/nb_re)-SNR; sigma2 = pow(10,sigma2_dB/10); for(i=startingSymbolIndex*frame_parms->ofdm_symbol_size; i<(startingSymbolIndex+1)*frame_parms->ofdm_symbol_size; i++) { ((int16_t*)rxdataF[aa])[i<<1] = (int16_t)(100.0*((double)(((int16_t *)txdataF[aa])[(i<<1)]) + sqrt(sigma2/2)*gaussdouble(0.0,1.0))/sqrt((double)txlev)); ((int16_t*)rxdataF[aa])[1+(i<<1)]=(int16_t)(100.0*((double)(((int16_t *)txdataF[aa])[(i<<1)+1])+ sqrt(sigma2/2)*gaussdouble(0.0,1.0))/sqrt((double)txlev)); } int rxlev = signal_energy(&rxdataF[aa][startingSymbolIndex*frame_parms->ofdm_symbol_size], frame_parms->ofdm_symbol_size); // noise measurement gNB->ulmask_symb = startingSymbolIndex; for (int rb=0; rb<nrofPRB; rb++) { int rb2 = rb+startingPRB; gNB->rb_mask_ul[rb2>>5] |= (1<<(rb2&31)); } gNB_I0_measurements(gNB); if (n_trials==1) printf("rxlev %d (%d dB), sigma2 %f dB, SNR %f, TX %f\n",rxlev,dB_fixed(rxlev),sigma2_dB,SNR,10*log10((double)txlev*UE->frame_parms.ofdm_symbol_size/12)); if(format==0){ nfapi_nr_uci_pucch_pdu_format_0_1_t uci_pdu; nfapi_nr_pucch_pdu_t pucch_pdu; pucch_pdu.subcarrier_spacing = 1; pucch_pdu.group_hop_flag = PUCCH_GroupHopping&1; pucch_pdu.sequence_hop_flag = (PUCCH_GroupHopping>>1)&1; pucch_pdu.bit_len_harq = nr_bit; pucch_pdu.bit_len_csi_part1 = 0; pucch_pdu.bit_len_csi_part2 = 0; pucch_pdu.sr_flag = sr_flag; pucch_pdu.nr_of_symbols = nrofSymbols; pucch_pdu.hopping_id = hopping_id; pucch_pdu.initial_cyclic_shift = 0; pucch_pdu.start_symbol_index = startingSymbolIndex; pucch_pdu.prb_start = startingPRB; nr_decode_pucch0(gNB,nr_slot_tx,&uci_pdu,&pucch_pdu); if(sr_flag==1){ if (uci_pdu.sr->sr_indication == 0 || uci_pdu.sr->sr_confidence_level == 1) sr_errors+=1; } if(nr_bit>0){ if(nr_bit==1) ack_nack_errors+=(actual_payload^uci_pdu.harq->harq_list[0].harq_value); else ack_nack_errors+=(((actual_payload&1)^uci_pdu.harq->harq_list[0].harq_value)+((actual_payload>>1)^uci_pdu.harq->harq_list[1].harq_value)); free(uci_pdu.harq->harq_list); } } else if (format==1) { nr_decode_pucch1(rxdataF,PUCCH_GroupHopping,hopping_id, &(payload_received),frame_parms,amp,nr_slot_tx, m0,nrofSymbols,startingSymbolIndex,startingPRB, startingPRB_intraSlotHopping,timeDomainOCC,nr_bit); if(nr_bit==1) ack_nack_errors+=((actual_payload^payload_received)&1); else ack_nack_errors+=((actual_payload^payload_received)&1) + (((actual_payload^payload_received)&2)>>1); } else if (format==2) { nfapi_nr_uci_pucch_pdu_format_2_3_4_t uci_pdu; nfapi_nr_pucch_pdu_t pucch_pdu; pucch_pdu.rnti = 0x1234; pucch_pdu.subcarrier_spacing = 1; pucch_pdu.group_hop_flag = PUCCH_GroupHopping&1; pucch_pdu.sequence_hop_flag = (PUCCH_GroupHopping>>1)&1; pucch_pdu.bit_len_csi_part1 = nr_bit; pucch_pdu.bit_len_harq = 0; pucch_pdu.bit_len_csi_part2 = 0; pucch_pdu.sr_flag = 0; pucch_pdu.nr_of_symbols = nrofSymbols; pucch_pdu.hopping_id = hopping_id; pucch_pdu.initial_cyclic_shift = 0; pucch_pdu.start_symbol_index = startingSymbolIndex; pucch_pdu.prb_size = nrofPRB; pucch_pdu.prb_start = startingPRB; pucch_pdu.dmrs_scrambling_id = dmrs_scrambling_id; pucch_pdu.data_scrambling_id = data_scrambling_id; nr_decode_pucch2(gNB,nr_slot_tx,&uci_pdu,&pucch_pdu); int csi_part1_bytes=pucch_pdu.bit_len_csi_part1>>3; if ((pucch_pdu.bit_len_csi_part1&7) > 0) csi_part1_bytes++; for (int i=0;i<csi_part1_bytes;i++) { if (uci_pdu.csi_part1.csi_part1_payload[i] != ((uint8_t*)&actual_payload)[i]) { ack_nack_errors++; break; } } free(uci_pdu.csi_part1.csi_part1_payload); } n_errors=((actual_payload^payload_received)&1)+(((actual_payload^payload_received)&2)>>1)+(((actual_payload^payload_received)&4)>>2)+n_errors; } if (sr_flag == 1) printf("SR: SNR=%f, n_trials=%d, n_bit_errors=%d\n",SNR,n_trials,sr_errors); if(nr_bit > 0) printf("ACK/NACK: SNR=%f, n_trials=%d, n_bit_errors=%d\n",SNR,n_trials,ack_nack_errors); if((float)(ack_nack_errors+sr_errors)/(float)(n_trials)<=target_error_rate){ printf("PUCCH test OK\n"); break; } } for (i=0; i<2; i++) { free(s_re[i]); free(s_im[i]); free(r_re[i]); free(r_im[i]); free(txdataF[i]); free(rxdataF[i]); } free(s_re); free(s_im); free(r_re); free(r_im); free(txdataF); free(rxdataF); if (output_fd) fclose(output_fd); if (input_fd) fclose(input_fd); return(n_errors); }