Commit 752cb8a7 authored by Lionel Gauthier's avatar Lionel Gauthier

git-svn-id: http://svn.eurecom.fr/openair4G/trunk@5492 818b1a75-f10b-46b9-bf7c-635c3b92a50f
parent 26f1f645
/* Rijndael S-box SR */
u8 SR[256] = {
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
};
/* S-box SQ */
u8 SQ[256] = {
0x25,0x24,0x73,0x67,0xD7,0xAE,0x5C,0x30,0xA4,0xEE,0x6E,0xCB,0x7D,0xB5,0x82,0xDB,
0xE4,0x8E,0x48,0x49,0x4F,0x5D,0x6A,0x78,0x70,0x88,0xE8,0x5F,0x5E,0x84,0x65,0xE2,
0xD8,0xE9,0xCC,0xED,0x40,0x2F,0x11,0x28,0x57,0xD2,0xAC,0xE3,0x4A,0x15,0x1B,0xB9,
0xB2,0x80,0x85,0xA6,0x2E,0x02,0x47,0x29,0x07,0x4B,0x0E,0xC1,0x51,0xAA,0x89,0xD4,
0xCA,0x01,0x46,0xB3,0xEF,0xDD,0x44,0x7B,0xC2,0x7F,0xBE,0xC3,0x9F,0x20,0x4C,0x64,
0x83,0xA2,0x68,0x42,0x13,0xB4,0x41,0xCD,0xBA,0xC6,0xBB,0x6D,0x4D,0x71,0x21,0xF4,
0x8D,0xB0,0xE5,0x93,0xFE,0x8F,0xE6,0xCF,0x43,0x45,0x31,0x22,0x37,0x36,0x96,0xFA,
0xBC,0x0F,0x08,0x52,0x1D,0x55,0x1A,0xC5,0x4E,0x23,0x69,0x7A,0x92,0xFF,0x5B,0x5A,
0xEB,0x9A,0x1C,0xA9,0xD1,0x7E,0x0D,0xFC,0x50,0x8A,0xB6,0x62,0xF5,0x0A,0xF8,0xDC,
0x03,0x3C,0x0C,0x39,0xF1,0xB8,0xF3,0x3D,0xF2,0xD5,0x97,0x66,0x81,0x32,0xA0,0x00,
0x06,0xCE,0xF6,0xEA,0xB7,0x17,0xF7,0x8C,0x79,0xD6,0xA7,0xBF,0x8B,0x3F,0x1F,0x53,
0x63,0x75,0x35,0x2C,0x60,0xFD,0x27,0xD3,0x94,0xA5,0x7C,0xA1,0x05,0x58,0x2D,0xBD,
0xD9,0xC7,0xAF,0x6B,0x54,0x0B,0xE0,0x38,0x04,0xC8,0x9D,0xE7,0x14,0xB1,0x87,0x9C,
0xDF,0x6F,0xF9,0xDA,0x2A,0xC4,0x59,0x16,0x74,0x91,0xAB,0x26,0x61,0x76,0x34,0x2B,
0xAD,0x99,0xFB,0x72,0xEC,0x33,0x12,0xDE,0x98,0x3B,0xC0,0x9B,0x3E,0x18,0x10,0x3A,
0x56,0xE1,0x77,0xC9,0x1E,0x9E,0x95,0xA3,0x90,0x19,0xA8,0x6C,0x09,0xD0,0xF0,0x86
};
#ifndef RIJNDAEL_H_
#define RIJNDAEL_H_
/* Rijndael S-box SR */
extern uint8_t SR[256];
/* S-box SQ */
extern uint8_t SQ[256];
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "rijndael.h"
#include "snow3g.h"
static uint8_t _MULx(uint8_t V, uint8_t c);
static uint8_t _MULxPOW(uint8_t V, uint8_t i, uint8_t c);
static uint32_t _MULalpha(uint8_t c);
static uint32_t _DIValpha(uint8_t c);
static uint32_t _S1(uint32_t w);
static uint32_t _S2(uint32_t w);
static void _snow3g_clock_LFSR_initialization_mode(uint32_t F, snow_3g_context_t *s3g_ctx_pP);
static void _snow3g_clock_LFSR_key_stream_mode(snow_3g_context_t *snow_3g_context_pP);
static uint32_t _snow3g_clock_fsm(snow_3g_context_t *snow_3g_context_pP);
void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP);
void snow3g_generate_key_stream(uint32_t n, uint32_t *ks, snow_3g_context_t *snow_3g_context_pP);
/* _MULx.
* Input V: an 8-bit input.
* Input c: an 8-bit input.
* Output : an 8-bit input.
* MULx maps 16 bits to 8 bits
*/
static uint8_t _MULx(uint8_t V, uint8_t c)
{
//If the leftmost (i.e. the most significant) bit of V equals 1
if ( V & 0x80 )
return ( (V << 1) ^ c);
else
return ( V << 1);
}
/* _MULxPOW.
* Input V: an 8-bit input.
* Input i: a positive integer.
* Input c: an 8-bit input.
* Output : an 8-bit output.
* MULxPOW maps 16 bits and a positive integer i to 8 bit.
*/
static uint8_t _MULxPOW(uint8_t V, uint8_t i, uint8_t c)
{
if ( i == 0)
return V;
else
return _MULx( _MULxPOW( V, i-1, c ), c);
}
/* The function _MULalpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* maps 8 bits to 32 bits.
*/
static uint32_t _MULalpha(uint8_t c)
{
return ( ( ((uint32_t)_MULxPOW(c,23, 0xa9)) << 24 ) |
( ((uint32_t)_MULxPOW(c, 245, 0xa9)) << 16 ) |
( ((uint32_t)_MULxPOW(c, 48, 0xa9)) << 8 ) |
( ((uint32_t)_MULxPOW(c, 239, 0xa9)) ) ) ;
}
/* The function DIV alpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* maps 8 bits to 32 bit.
*/
static uint32_t _DIValpha(uint8_t c)
{
return ( ( ((uint32_t)_MULxPOW(c, 16, 0xa9)) << 24 ) |
( ((uint32_t)_MULxPOW(c, 39, 0xa9)) << 16 ) |
( ((uint32_t)_MULxPOW(c, 6, 0xa9)) << 8 ) |
( ((uint32_t)_MULxPOW(c, 64, 0xa9)) ) ) ;
}
/* The 32x32-bit S-Box S1
* Input: a 32-bit input.
* Output: a 32-bit output of S1 box.
* The S-Box S1 maps a 32-bit input to a 32-bit output.
* w = w0 || w1 || w2 || w3 the 32-bit input with w0 the most and w3 the least significant byte.
* S1(w)= r0 || r1 || r2 || r3 with r0 the most and r3 the least significant byte.
*/
static uint32_t _S1(uint32_t w)
{
uint8_t r0=0, r1=0, r2=0, r3=0;
uint8_t srw0 = SR[ (uint8_t)((w >> 24) & 0xff) ];
uint8_t srw1 = SR[ (uint8_t)((w >> 16) & 0xff) ];
uint8_t srw2 = SR[ (uint8_t)((w >> 8) & 0xff) ];
uint8_t srw3 = SR[ (uint8_t)((w) & 0xff) ];
r0 = ( ( _MULx( srw0 , 0x1b) ) ^
( srw1 ) ^
( srw2 ) ^
( (_MULx( srw3, 0x1b)) ^ srw3 )
);
r1 = ( ( ( _MULx( srw0 , 0x1b) ) ^ srw0 ) ^
( _MULx(srw1, 0x1b) ) ^
( srw2 ) ^
( srw3 )
);
r2 = ( ( srw0 ) ^
( ( _MULx( srw1 , 0x1b) ) ^ srw1 ) ^
( _MULx(srw2, 0x1b) ) ^
( srw3 )
);
r3 = ( ( srw0 ) ^
( srw1 ) ^
( ( _MULx( srw2 , 0x1b) ) ^ srw2 ) ^
( _MULx( srw3, 0x1b) )
);
return ( ( ((uint32_t)r0) << 24 ) | ( ((uint32_t)r1) << 16 ) | ( ((uint32_t)r2) << 8 ) | ( ((uint32_t)r3) ) );
}
/* The 32x32-bit S-Box S2
* Input: a 32-bit input.
* Output: a 32-bit output of S2 box.
* The S-Box S2 maps a 32-bit input to a 32-bit output.
* Let w = w0 || w1 || w2 || w3 the 32-bit input with w0 the most and w3 the least significant byte.
* Let S2(w)= r0 || r1 || r2 || r3 with r0 the most and r3 the least significant byte.
*/
static uint32_t _S2(uint32_t w)
{
uint8_t r0=0, r1=0, r2=0, r3=0;
uint8_t sqw0 = SQ[ (uint8_t)((w >> 24) & 0xff) ];
uint8_t sqw1 = SQ[ (uint8_t)((w >> 16) & 0xff) ];
uint8_t sqw2 = SQ[ (uint8_t)((w >> 8) & 0xff) ];
uint8_t sqw3 = SQ[ (uint8_t)((w) & 0xff) ];
r0 = ( ( _MULx( sqw0 , 0x69) ) ^
( sqw1 ) ^
( sqw2 ) ^
( (_MULx( sqw3, 0x69)) ^ sqw3 )
);
r1 = ( ( ( _MULx( sqw0 , 0x69) ) ^ sqw0 ) ^
( _MULx(sqw1, 0x69) ) ^
( sqw2 ) ^
( sqw3 )
);
r2 = ( ( sqw0 ) ^
( ( _MULx( sqw1 , 0x69) ) ^ sqw1 ) ^
( _MULx(sqw2, 0x69) ) ^
( sqw3 )
);
r3 = ( ( sqw0 ) ^
( sqw1 ) ^
( ( _MULx( sqw2 , 0x69) ) ^ sqw2 ) ^
( _MULx( sqw3, 0x69) )
);
return ( ( ((uint32_t)r0) << 24 ) | ( ((uint32_t)r1) << 16 ) | ( ((uint32_t)r2) << 8 ) | ( ((uint32_t)r3) ) );
}
/* Clocking LFSR in initialization mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* Input F: a 32-bit word comes from output of FSM.
* See section 3.4.4.
*/
static void _snow3g_clock_LFSR_initialization_mode(uint32_t F, snow_3g_context_t *s3g_ctx_pP)
{
uint32_t v = ( ( (s3g_ctx_pP->LFSR_S0 << 8) & 0xffffff00 ) ^
( _MULalpha( (uint8_t)((s3g_ctx_pP->LFSR_S0>>24) & 0xff) ) ) ^
( s3g_ctx_pP->LFSR_S2 ) ^
( (s3g_ctx_pP->LFSR_S11 >> 8) & 0x00ffffff ) ^
( _DIValpha( (uint8_t)( ( s3g_ctx_pP->LFSR_S11) & 0xff ) ) ) ^
( F )
);
s3g_ctx_pP->LFSR_S0 = s3g_ctx_pP->LFSR_S1;
s3g_ctx_pP->LFSR_S1 = s3g_ctx_pP->LFSR_S2;
s3g_ctx_pP->LFSR_S2 = s3g_ctx_pP->LFSR_S3;
s3g_ctx_pP->LFSR_S3 = s3g_ctx_pP->LFSR_S4;
s3g_ctx_pP->LFSR_S4 = s3g_ctx_pP->LFSR_S5;
s3g_ctx_pP->LFSR_S5 = s3g_ctx_pP->LFSR_S6;
s3g_ctx_pP->LFSR_S6 = s3g_ctx_pP->LFSR_S7;
s3g_ctx_pP->LFSR_S7 = s3g_ctx_pP->LFSR_S8;
s3g_ctx_pP->LFSR_S8 = s3g_ctx_pP->LFSR_S9;
s3g_ctx_pP->LFSR_S9 = s3g_ctx_pP->LFSR_S10;
s3g_ctx_pP->LFSR_S10 = s3g_ctx_pP->LFSR_S11;
s3g_ctx_pP->LFSR_S11 = s3g_ctx_pP->LFSR_S12;
s3g_ctx_pP->LFSR_S12 = s3g_ctx_pP->LFSR_S13;
s3g_ctx_pP->LFSR_S13 = s3g_ctx_pP->LFSR_S14;
s3g_ctx_pP->LFSR_S14 = s3g_ctx_pP->LFSR_S15;
s3g_ctx_pP->LFSR_S15 = v;
}
/* Clocking LFSR in keystream mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* See section 3.4.5.
*/
static void _snow3g_clock_LFSR_key_stream_mode(snow_3g_context_t *snow_3g_context_pP)
{
uint32_t v = ( ( (snow_3g_context_pP->LFSR_S0 << 8) & 0xffffff00 ) ^
( _MULalpha( (uint8_t)((snow_3g_context_pP->LFSR_S0>>24) & 0xff) ) ) ^
( snow_3g_context_pP->LFSR_S2 ) ^
( (snow_3g_context_pP->LFSR_S11 >> 8) & 0x00ffffff ) ^
( _DIValpha( (uint8_t)( ( snow_3g_context_pP->LFSR_S11) & 0xff ) ) )
);
snow_3g_context_pP->LFSR_S0 = snow_3g_context_pP->LFSR_S1;
snow_3g_context_pP->LFSR_S1 = snow_3g_context_pP->LFSR_S2;
snow_3g_context_pP->LFSR_S2 = snow_3g_context_pP->LFSR_S3;
snow_3g_context_pP->LFSR_S3 = snow_3g_context_pP->LFSR_S4;
snow_3g_context_pP->LFSR_S4 = snow_3g_context_pP->LFSR_S5;
snow_3g_context_pP->LFSR_S5 = snow_3g_context_pP->LFSR_S6;
snow_3g_context_pP->LFSR_S6 = snow_3g_context_pP->LFSR_S7;
snow_3g_context_pP->LFSR_S7 = snow_3g_context_pP->LFSR_S8;
snow_3g_context_pP->LFSR_S8 = snow_3g_context_pP->LFSR_S9;
snow_3g_context_pP->LFSR_S9 = snow_3g_context_pP->LFSR_S10;
snow_3g_context_pP->LFSR_S10 = snow_3g_context_pP->LFSR_S11;
snow_3g_context_pP->LFSR_S11 = snow_3g_context_pP->LFSR_S12;
snow_3g_context_pP->LFSR_S12 = snow_3g_context_pP->LFSR_S13;
snow_3g_context_pP->LFSR_S13 = snow_3g_context_pP->LFSR_S14;
snow_3g_context_pP->LFSR_S14 = snow_3g_context_pP->LFSR_S15;
snow_3g_context_pP->LFSR_S15 = v;
}
/* Clocking FSM.
* Produces a 32-bit word F.
* Updates FSM registers R1, R2, R3.
* See Section 3.4.6.
*/
static uint32_t _snow3g_clock_fsm(snow_3g_context_t *snow_3g_context_pP)
{
uint32_t F = ( ( snow_3g_context_pP->LFSR_S15 + snow_3g_context_pP->FSM_R1 ) & 0xffffffff ) ^ snow_3g_context_pP->FSM_R2 ;
uint32_t r = ( snow_3g_context_pP->FSM_R2 + ( snow_3g_context_pP->FSM_R3 ^ snow_3g_context_pP->LFSR_S5 ) ) & 0xffffffff ;
snow_3g_context_pP->FSM_R3 = _S2(snow_3g_context_pP->FSM_R2);
snow_3g_context_pP->FSM_R2 = _S1(snow_3g_context_pP->FSM_R1);
snow_3g_context_pP->FSM_R1 = r;
return F;
}
/* Initialization.
* Input k[4]: Four 32-bit words making up 128-bit key.
* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
* Output: All the LFSRs and FSM are initialized for key generation.
* See Section 4.1.
*/
void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP)
{
uint8_t i = 0;
uint32_t F = 0x0;
snow_3g_context_pP->LFSR_S15 = k[3] ^ IV[0];
snow_3g_context_pP->LFSR_S14 = k[2];
snow_3g_context_pP->LFSR_S13 = k[1];
snow_3g_context_pP->LFSR_S12 = k[0] ^ IV[1];
snow_3g_context_pP->LFSR_S11 = k[3] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2];
snow_3g_context_pP->LFSR_S9 = k[1] ^ 0xffffffff ^ IV[3];
snow_3g_context_pP->LFSR_S8 = k[0] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S7 = k[3];
snow_3g_context_pP->LFSR_S6 = k[2];
snow_3g_context_pP->LFSR_S5 = k[1];
snow_3g_context_pP->LFSR_S4 = k[0];
snow_3g_context_pP->LFSR_S3 = k[3] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S2 = k[2] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S1 = k[1] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S0 = k[0] ^ 0xffffffff;
snow_3g_context_pP->FSM_R1 = 0x0;
snow_3g_context_pP->FSM_R2 = 0x0;
snow_3g_context_pP->FSM_R3 = 0x0;
for(i=0;i<32;i++)
{
F = _snow3g_clock_fsm(snow_3g_context_pP);
_snow3g_clock_LFSR_initialization_mode(F, snow_3g_context_pP);
}
}
/* Generation of Keystream.
* input n: number of 32-bit words of keystream.
* input z: space for the generated keystream, assumes
* memory is allocated already.
* output: generated keystream which is filled in z
* See section 4.2.
*/
void snow3g_generate_key_stream(uint32_t n, uint32_t *ks, snow_3g_context_t *snow_3g_context_pP)
{
uint32_t t = 0;
uint32_t F = 0x0;
_snow3g_clock_fsm(snow_3g_context_pP); /* Clock FSM once. Discard the output. */
_snow3g_clock_LFSR_key_stream_mode(snow_3g_context_pP); /* Clock LFSR in keystream mode once. */
for ( t=0; t<n; t++)
{
F = _snow3g_clock_fsm(snow_3g_context_pP); /* STEP 1 */
ks[t] = F ^ snow_3g_context_pP->LFSR_S0; /* STEP 2 */
/* Note that ks[t] corresponds to z_{t+1} in section 4.2*/
_snow3g_clock_LFSR_key_stream_mode(snow_3g_context_pP); /* STEP 3 */
}
}
/*******************************************************************************
Eurecom OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information
Openair Admin: openair_admin@eurecom.fr
Openair Tech : openair_tech@eurecom.fr
Forums : http://forums.eurecom.fr/openairinterface
Address : EURECOM, Campus SophiaTech, 450 Route des Chappes
06410 Biot FRANCE
*******************************************************************************/
/*! \file snow3g.h
* \brief
* \author Open source Adapted from Specification of the 3GPP Confidentiality and
* Integrity Algorithms UEA2 & UIA2. Document 2: SNOW 3G Specification
* \integrators Kharbach Othmane, GAUTHIER Lionel.
* \date 2014
* \version
* \note
* \bug
* \warning
*/
#ifndef SNOW3G_H_
#define SNOW3G_H_
typedef struct snow_3g_context_s {
uint32_t LFSR_S0;
uint32_t LFSR_S1;
uint32_t LFSR_S2;
uint32_t LFSR_S3;
uint32_t LFSR_S4;
uint32_t LFSR_S5;
uint32_t LFSR_S6;
uint32_t LFSR_S7;
uint32_t LFSR_S8;
uint32_t LFSR_S9;
uint32_t LFSR_S10;
uint32_t LFSR_S11;
uint32_t LFSR_S12;
uint32_t LFSR_S13;
uint32_t LFSR_S14;
uint32_t LFSR_S15;
/* FSM : The Finite State Machine has three 32-bit registers R1, R2 and R3.
*/
uint32_t FSM_R1;
uint32_t FSM_R2;
uint32_t FSM_R3;
}snow_3g_context_t;
/* Initialization.
* Input k[4]: Four 32-bit words making up 128-bit key.
* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
* Output: All the LFSRs and FSM are initialized for key generation.
*/
void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP);
/* Generation of Keystream.
* input n: number of 32-bit words of keystream.
* input z: space for the generated keystream, assumes
* memory is allocated already.
* output: generated keystream which is filled in z
*/
void snow3g_generate_keystream(uint32_t n, uint32_t *z, snow_3g_context_t *snow_3g_context_pP);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment