Commit 10d7fe9c authored by laurent's avatar laurent Committed by Raymond Knopp

fix regressions in cuda ldpc

parent 697a7871
/*! \file PHY/CODING/nrLDPC_decoder_LYC/nrLDPC_decoder_LYC.cu
/*! \file PHY/CODING/nrLDPC_decoder_LYC/nrLDPC_decoder_LYC.cu
* \brief LDPC cuda support BG1 all length
* \author NCTU OpinConnect Terng-Yin Hsu,WEI-YING,LIN
* \email tyhsu@cs.nctu.edu.tw
* \date 13-05-2020
* \version
* \version
* \note
* \warning
*/
......@@ -31,17 +31,17 @@
#include "bgs/BG2_I5"
#include "bgs/BG2_I6"
#include "bgs/BG2_I7"
#define MAX_ITERATION 2
#define MC 1
typedef void decode_abort_t;
#define cudaCheck(ans) { cudaAssert((ans), __FILE__, __LINE__); }
inline void cudaAssert(cudaError_t code, const char *file, int line)
{
if (code != cudaSuccess){
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
exit(code);
}
if (code != cudaSuccess) {
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
exit(code);
}
}
typedef struct{
......@@ -66,540 +66,505 @@ __device__ h_element dev_h_compact2[68*30]; // used in kernel 2
// __device__ __constant__ h_element dev_h_compact2[68*30]; // used in kernel 2
// row and col element count
__device__ __constant__ char h_ele_row_bg1_count[46] = {
19, 19, 19, 19, 3, 8, 9, 7, 10, 9,
7, 8, 7, 6, 7, 7, 6, 6, 6, 6,
6, 6, 5, 5, 6, 5, 5, 4, 5, 5,
5, 5, 5, 5, 5, 5, 5, 4, 5, 5,
4, 5, 4, 5, 5, 4};
__device__ __constant__ char h_ele_row_bg1_count[46] = {19, 19, 19, 19, 3, 8, 9, 7, 10, 9, 7, 8, 7, 6, 7, 7, 6, 6, 6, 6, 6, 6, 5,
5, 6, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 4, 5, 5, 4};
__device__ __constant__ char h_ele_col_bg1_count[68] = {
30, 28, 7, 11, 9, 4, 8, 12, 8, 7,
12, 10, 12, 11, 10, 7, 10, 10, 13, 7,
8, 11, 12, 5, 6, 6, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1};
__device__ __constant__ char h_ele_row_bg2_count[42] = {
8, 10, 8, 10, 4, 6, 6, 6, 4, 5,
5, 5, 4, 5, 5, 4, 5, 5, 4, 4,
4, 4, 3, 4, 4, 3, 5, 3, 4, 3,
5, 3, 4, 4, 4, 4, 4, 3, 4, 4,
4, 4};
__device__ __constant__ char h_ele_col_bg2_count[52] = {
22, 23, 10, 5, 5, 14, 7, 13, 6, 8,
9, 16, 9, 12, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1};
30, 28, 7, 11, 9, 4, 8, 12, 8, 7, 12, 10, 12, 11, 10, 7, 10, 10, 13, 7, 8, 11, 12, 5, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
__device__ __constant__ char h_ele_row_bg2_count[42] = {8, 10, 8, 10, 4, 6, 6, 6, 4, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4, 4, 4,
4, 3, 4, 4, 3, 5, 3, 4, 3, 5, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4};
__device__ __constant__ char h_ele_col_bg2_count[52] = {22, 23, 10, 5, 5, 14, 7, 13, 6, 8, 9, 16, 9, 12, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
__global__ void warmup()
{
// warm up gpu for time measurement
// warm up gpu for time measurement
}
extern "C"
void warmup_for_GPU(){
warmup<<<20,1024 >>>();
warmup<<<20, 1024>>>();
}
extern "C"
void set_compact_BG(int Zc,short BG){
int row,col;
if(BG == 1){
row = 46;
col = 68;
}
else{
row = 42;
col = 52;
}
int compact_row = 30;
int compact_col = 19;
if(BG==2){compact_row = 10, compact_col = 23;}
int memorySize_h_compact1 = row * compact_col * sizeof(h_element);
int memorySize_h_compact2 = compact_row * col * sizeof(h_element);
int lift_index = 0;
short lift_set[][9] = {
{2,4,8,16,32,64,128,256},
{3,6,12,24,48,96,192,384},
{5,10,20,40,80,160,320},
{7,14,28,56,112,224},
{9,18,36,72,144,288},
{11,22,44,88,176,352},
{13,26,52,104,208},
{15,30,60,120,240},
{0}
};
for(int i = 0; lift_set[i][0] != 0; i++){
for(int j = 0; lift_set[i][j] != 0; j++){
if(Zc == lift_set[i][j]){
lift_index = i;
break;
}
}
}
printf("\nZc = %d BG = %d\n",Zc,BG);
switch(lift_index){
case 0:
cudaCheck( cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I0, memorySize_h_compact1) );
cudaCheck( cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I0, memorySize_h_compact2) );
break;
case 1:
cudaCheck( cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I1, memorySize_h_compact1) );
cudaCheck( cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I1, memorySize_h_compact2) );
break;
case 2:
cudaCheck( cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I2, memorySize_h_compact1) );
cudaCheck( cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I2, memorySize_h_compact2) );
break;
case 3:
cudaCheck( cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I3, memorySize_h_compact1) );
cudaCheck( cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I3, memorySize_h_compact2) );
break;
case 4:
cudaCheck( cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I4, memorySize_h_compact1) );
cudaCheck( cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I4, memorySize_h_compact2) );
break;
case 5:
cudaCheck( cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I5, memorySize_h_compact1) );
cudaCheck( cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I5, memorySize_h_compact2) );
break;
case 6:
cudaCheck( cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I6, memorySize_h_compact1) );
cudaCheck( cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I6, memorySize_h_compact2) );
break;
case 7:
cudaCheck( cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I7, memorySize_h_compact1) );
cudaCheck( cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I7, memorySize_h_compact2) );
break;
}
// return 0;
int row, col;
if (BG == 1) {
row = 46;
col = 68;
} else {
row = 42;
col = 52;
}
int compact_row = 30;
int compact_col = 19;
if (BG == 2) {
compact_row = 10, compact_col = 23;
}
int memorySize_h_compact1 = row * compact_col * sizeof(h_element);
int memorySize_h_compact2 = compact_row * col * sizeof(h_element);
int lift_index = 0;
short lift_set[][9] = {{2, 4, 8, 16, 32, 64, 128, 256},
{3, 6, 12, 24, 48, 96, 192, 384},
{5, 10, 20, 40, 80, 160, 320},
{7, 14, 28, 56, 112, 224},
{9, 18, 36, 72, 144, 288},
{11, 22, 44, 88, 176, 352},
{13, 26, 52, 104, 208},
{15, 30, 60, 120, 240},
{0}};
for (int i = 0; lift_set[i][0] != 0; i++) {
for (int j = 0; lift_set[i][j] != 0; j++) {
if (Zc == lift_set[i][j]) {
lift_index = i;
break;
}
}
}
printf("\nZc = %d BG = %d\n", Zc, BG);
switch (lift_index) {
case 0:
cudaCheck(cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I0, memorySize_h_compact1));
cudaCheck(cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I0, memorySize_h_compact2));
break;
case 1:
cudaCheck(cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I1, memorySize_h_compact1));
cudaCheck(cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I1, memorySize_h_compact2));
break;
case 2:
cudaCheck(cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I2, memorySize_h_compact1));
cudaCheck(cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I2, memorySize_h_compact2));
break;
case 3:
cudaCheck(cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I3, memorySize_h_compact1));
cudaCheck(cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I3, memorySize_h_compact2));
break;
case 4:
cudaCheck(cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I4, memorySize_h_compact1));
cudaCheck(cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I4, memorySize_h_compact2));
break;
case 5:
cudaCheck(cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I5, memorySize_h_compact1));
cudaCheck(cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I5, memorySize_h_compact2));
break;
case 6:
cudaCheck(cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I6, memorySize_h_compact1));
cudaCheck(cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I6, memorySize_h_compact2));
break;
case 7:
cudaCheck(cudaMemcpyToSymbol(dev_h_compact1, host_h_compact1_I7, memorySize_h_compact1));
cudaCheck(cudaMemcpyToSymbol(dev_h_compact2, host_h_compact2_I7, memorySize_h_compact2));
break;
}
// return 0;
}
// Kernel 1
__global__ void ldpc_cnp_kernel_1st_iter(/*char * dev_llr,*/ int BG, int row, int col, int Zc)
{
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("cnp %d\n", threadIdx.x);
int iMCW = blockIdx.y; // codeword id
int iBlkRow = blockIdx.x; // block row in h_base
int iBlkCol; // block col in h_base
int iSubRow = threadIdx.x; // row index in sub_block of h_base
int iCol; // overall col index in h_base
int offsetR;
int shift_t;
// For 2-min algorithm.
int Q_sign = 0;
int sq;
int Q, Q_abs;
int R_temp;
int sign = 1;
int rmin1 = INT32_MAX;
int rmin2 = INT32_MAX;
char idx_min = 0;
h_element h_element_t;
int s = (BG==1)? h_ele_row_bg1_count[iBlkRow]:h_ele_row_bg2_count[iBlkRow];
offsetR = (iMCW * row*col*Zc) + iBlkRow * Zc + iSubRow; // row*col*Zc = size of dev_dt
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("s: %d, offset %d\n", s, offsetR);
// The 1st recursion
for(int i = 0; i < s; i++) // loop through all the ZxZ sub-blocks in a row
{
h_element_t = dev_h_compact1[i*row+iBlkRow]; // compact_col == row
iBlkCol = h_element_t.y;
shift_t = h_element_t.value;
shift_t = (iSubRow + shift_t) % Zc;
iCol = (iMCW * col*Zc) + iBlkCol * Zc + shift_t; // col*Zc = size of llr
Q = dev_llr[iCol];
Q_abs = (Q>0)? Q : -Q;
sq = Q < 0;
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("i %d, icol %d, Q: %d\n", i, iCol, Q);
// quick version
sign = sign * (1 - sq * 2);
Q_sign |= sq << i;
if (Q_abs < rmin1){
rmin2 = rmin1;
rmin1 = Q_abs;
idx_min = i;
} else if (Q_abs < rmin2){
rmin2 = Q_abs;
}
}
// if(blockIdx.x == 0 && threadIdx.x == 1)printf("min1 %d, min2 %d, min1_idx %d\n", rmin1, rmin2, idx_min);
// The 2nd recursion
for(int i = 0; i < s; i++){
// v0: Best performance so far. 0.75f is the value of alpha.
sq = 1 - 2 * ((Q_sign >> i) & 0x01);
R_temp = 0.75f * sign * sq * (i != idx_min ? rmin1 : rmin2);
// write results to global memory
h_element_t = dev_h_compact1[i*row+iBlkRow];
int addr_temp = offsetR + h_element_t.y * row * Zc;
dev_dt[addr_temp] = R_temp;
// if(blockIdx.x == 0 && threadIdx.x == 1)printf("R_temp %d, temp_addr %d\n", R_temp, addr_temp);
}
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("cnp %d\n", threadIdx.x);
int iMCW = blockIdx.y; // codeword id
int iBlkRow = blockIdx.x; // block row in h_base
int iBlkCol; // block col in h_base
int iSubRow = threadIdx.x; // row index in sub_block of h_base
int iCol; // overall col index in h_base
int offsetR;
int shift_t;
// For 2-min algorithm.
int Q_sign = 0;
int sq;
int Q, Q_abs;
int R_temp;
int sign = 1;
int rmin1 = INT32_MAX;
int rmin2 = INT32_MAX;
char idx_min = 0;
h_element h_element_t;
int s = (BG == 1) ? h_ele_row_bg1_count[iBlkRow] : h_ele_row_bg2_count[iBlkRow];
offsetR = (iMCW * row * col * Zc) + iBlkRow * Zc + iSubRow; // row*col*Zc = size of dev_dt
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("s: %d, offset %d\n", s, offsetR);
// The 1st recursion
for (int i = 0; i < s; i++) // loop through all the ZxZ sub-blocks in a row
{
h_element_t = dev_h_compact1[i * row + iBlkRow]; // compact_col == row
iBlkCol = h_element_t.y;
shift_t = h_element_t.value;
shift_t = (iSubRow + shift_t) % Zc;
iCol = (iMCW * col * Zc) + iBlkCol * Zc + shift_t; // col*Zc = size of llr
Q = dev_llr[iCol];
Q_abs = (Q > 0) ? Q : -Q;
sq = Q < 0;
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("i %d, icol %d, Q: %d\n", i, iCol, Q);
// quick version
sign = sign * (1 - sq * 2);
Q_sign |= sq << i;
if (Q_abs < rmin1) {
rmin2 = rmin1;
rmin1 = Q_abs;
idx_min = i;
} else if (Q_abs < rmin2) {
rmin2 = Q_abs;
}
}
// if(blockIdx.x == 0 && threadIdx.x == 1)printf("min1 %d, min2 %d, min1_idx %d\n", rmin1, rmin2, idx_min);
// The 2nd recursion
for (int i = 0; i < s; i++) {
// v0: Best performance so far. 0.75f is the value of alpha.
sq = 1 - 2 * ((Q_sign >> i) & 0x01);
R_temp = 0.75f * sign * sq * (i != idx_min ? rmin1 : rmin2);
// write results to global memory
h_element_t = dev_h_compact1[i * row + iBlkRow];
int addr_temp = offsetR + h_element_t.y * row * Zc;
dev_dt[addr_temp] = R_temp;
// if(blockIdx.x == 0 && threadIdx.x == 1)printf("R_temp %d, temp_addr %d\n", R_temp, addr_temp);
}
}
// Kernel_1
__global__ void ldpc_cnp_kernel(/*char * dev_llr, char * dev_dt,*/ int BG, int row, int col, int Zc)
{
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("cnp\n");
int iMCW = blockIdx.y;
int iBlkRow = blockIdx.x; // block row in h_base
int iBlkCol; // block col in h_base
int iSubRow = threadIdx.x; // row index in sub_block of h_base
int iCol; // overall col index in h_base
int offsetR;
int shift_t;
// For 2-min algorithm.
int Q_sign = 0;
int sq;
int Q, Q_abs;
int R_temp;
int sign = 1;
int rmin1 = INT32_MAX;
int rmin2 = INT32_MAX;
char idx_min = 0;
h_element h_element_t;
int s = (BG==1)? h_ele_row_bg1_count[iBlkRow]: h_ele_row_bg2_count[iBlkRow];
offsetR = (iMCW *row*col*Zc) + iBlkRow * Zc + iSubRow; // row * col * Zc = size of dev_dt
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("s: %d, offset %d\n", s, offsetR);
// The 1st recursion
for(int i = 0; i < s; i++) // loop through all the ZxZ sub-blocks in a row
{
h_element_t = dev_h_compact1[i*row+iBlkRow];
iBlkCol = h_element_t.y;
shift_t = h_element_t.value;
shift_t = (iSubRow + shift_t) % Zc;
iCol = iBlkCol * Zc + shift_t;
R_temp = dev_dt[offsetR + iBlkCol * row * Zc];
Q = dev_llr[iMCW * (col*Zc) + iCol] - R_temp;
Q_abs = (Q>0)? Q : -Q;
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("i %d, icol %d, Q: %d\n", i, iCol, Q);
sq = Q < 0;
sign = sign * (1 - sq * 2);
Q_sign |= sq << i;
if (Q_abs < rmin1){
rmin2 = rmin1;
rmin1 = Q_abs;
idx_min = i;
} else if (Q_abs < rmin2){
rmin2 = Q_abs;
}
}
// if(blockIdx.x == 0 && threadIdx.x == 1)printf("min1 %d, min2 %d, min1_idx %d\n", rmin1, rmin2, idx_min);
// The 2nd recursion
for(int i = 0; i < s; i ++){
sq = 1 - 2 * ((Q_sign >> i) & 0x01);
R_temp = 0.75f * sign * sq * (i != idx_min ? rmin1 : rmin2);
// write results to global memory
h_element_t = dev_h_compact1[i*row+iBlkRow];
int addr_temp = h_element_t.y * row * Zc + offsetR;
dev_dt[addr_temp] = R_temp;
// if(blockIdx.x == 0 && threadIdx.x == 1)printf("R_temp %d, temp_addr %d\n", R_temp, addr_temp);
}
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("cnp\n");
int iMCW = blockIdx.y;
int iBlkRow = blockIdx.x; // block row in h_base
int iBlkCol; // block col in h_base
int iSubRow = threadIdx.x; // row index in sub_block of h_base
int iCol; // overall col index in h_base
int offsetR;
int shift_t;
// For 2-min algorithm.
int Q_sign = 0;
int sq;
int Q, Q_abs;
int R_temp;
int sign = 1;
int rmin1 = INT32_MAX;
int rmin2 = INT32_MAX;
char idx_min = 0;
h_element h_element_t;
int s = (BG == 1) ? h_ele_row_bg1_count[iBlkRow] : h_ele_row_bg2_count[iBlkRow];
offsetR = (iMCW * row * col * Zc) + iBlkRow * Zc + iSubRow; // row * col * Zc = size of dev_dt
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("s: %d, offset %d\n", s, offsetR);
// The 1st recursion
for (int i = 0; i < s; i++) // loop through all the ZxZ sub-blocks in a row
{
h_element_t = dev_h_compact1[i * row + iBlkRow];
iBlkCol = h_element_t.y;
shift_t = h_element_t.value;
shift_t = (iSubRow + shift_t) % Zc;
iCol = iBlkCol * Zc + shift_t;
R_temp = dev_dt[offsetR + iBlkCol * row * Zc];
Q = dev_llr[iMCW * (col * Zc) + iCol] - R_temp;
Q_abs = (Q > 0) ? Q : -Q;
// if(blockIdx.x == 0 && threadIdx.x == 1) printf("i %d, icol %d, Q: %d\n", i, iCol, Q);
sq = Q < 0;
sign = sign * (1 - sq * 2);
Q_sign |= sq << i;
if (Q_abs < rmin1) {
rmin2 = rmin1;
rmin1 = Q_abs;
idx_min = i;
} else if (Q_abs < rmin2) {
rmin2 = Q_abs;
}
}
// if(blockIdx.x == 0 && threadIdx.x == 1)printf("min1 %d, min2 %d, min1_idx %d\n", rmin1, rmin2, idx_min);
// The 2nd recursion
for (int i = 0; i < s; i++) {
sq = 1 - 2 * ((Q_sign >> i) & 0x01);
R_temp = 0.75f * sign * sq * (i != idx_min ? rmin1 : rmin2);
// write results to global memory
h_element_t = dev_h_compact1[i * row + iBlkRow];
int addr_temp = h_element_t.y * row * Zc + offsetR;
dev_dt[addr_temp] = R_temp;
// if(blockIdx.x == 0 && threadIdx.x == 1)printf("R_temp %d, temp_addr %d\n", R_temp, addr_temp);
}
}
// Kernel 2: VNP processing
__global__ void
ldpc_vnp_kernel_normal(/*char * dev_llr, char * dev_dt, char * dev_const_llr,*/ int BG, int row, int col, int Zc)
{
int iMCW = blockIdx.y;
int iBlkCol = blockIdx.x;
int iBlkRow;
int iSubCol = threadIdx.x;
int iRow;
int iCol;
int shift_t, sf;
int APP;
h_element h_element_t;
// update all the llr values
iCol = iBlkCol * Zc + iSubCol;
APP = dev_const_llr[iMCW *col*Zc + iCol];
int offsetDt = iMCW *row*col*Zc + iBlkCol * row * Zc;
int s = (BG==1)? h_ele_col_bg1_count[iBlkCol]:h_ele_col_bg2_count[iBlkCol];
for(int i = 0; i < s; i++)
{
h_element_t = dev_h_compact2[i*col+iBlkCol];
shift_t = h_element_t.value%Zc;
iBlkRow = h_element_t.x;
sf = iSubCol - shift_t;
sf = (sf + Zc) % Zc;
iRow = iBlkRow * Zc + sf;
APP = APP + dev_dt[offsetDt + iRow];
}
if(APP > SCHAR_MAX) APP = SCHAR_MAX;
if(APP < SCHAR_MIN) APP = SCHAR_MIN;
// write back to device global memory
dev_llr[iMCW *col*Zc + iCol] = APP;
{
int iMCW = blockIdx.y;
int iBlkCol = blockIdx.x;
int iBlkRow;
int iSubCol = threadIdx.x;
int iRow;
int iCol;
int shift_t, sf;
int APP;
h_element h_element_t;
// update all the llr values
iCol = iBlkCol * Zc + iSubCol;
APP = dev_const_llr[iMCW * col * Zc + iCol];
int offsetDt = iMCW * row * col * Zc + iBlkCol * row * Zc;
int s = (BG == 1) ? h_ele_col_bg1_count[iBlkCol] : h_ele_col_bg2_count[iBlkCol];
for (int i = 0; i < s; i++) {
h_element_t = dev_h_compact2[i * col + iBlkCol];
shift_t = h_element_t.value % Zc;
iBlkRow = h_element_t.x;
sf = iSubCol - shift_t;
sf = (sf + Zc) % Zc;
iRow = iBlkRow * Zc + sf;
APP = APP + dev_dt[offsetDt + iRow];
}
if (APP > SCHAR_MAX)
APP = SCHAR_MAX;
if (APP < SCHAR_MIN)
APP = SCHAR_MIN;
// write back to device global memory
dev_llr[iMCW * col * Zc + iCol] = APP;
}
__global__ void pack_decoded_bit(/*char *dev, unsigned char *host,*/ int col, int Zc)
{
__shared__ unsigned char tmp[128];
int iMCW = blockIdx.y;
int tid = iMCW * col*Zc + blockIdx.x*128 + threadIdx.x;
int btid = threadIdx.x;
tmp[btid] = 0;
if(dev_llr[tid] < 0){
tmp[btid] = 1 << (7-(btid&7));
}
__syncthreads();
if(threadIdx.x < 16){
dev_tmp[iMCW * col*Zc + blockIdx.x*16+threadIdx.x] = 0;
for(int i = 0; i < 8; i++){
dev_tmp[iMCW * col*Zc + blockIdx.x*16+threadIdx.x] += tmp[threadIdx.x*8+i];
}
}
__shared__ unsigned char tmp[128];
int iMCW = blockIdx.y;
int tid = iMCW * col * Zc + blockIdx.x * 128 + threadIdx.x;
int btid = threadIdx.x;
tmp[btid] = 0;
if (dev_llr[tid] < 0) {
tmp[btid] = 1 << (7 - (btid & 7));
}
__syncthreads();
if (threadIdx.x < 16) {
dev_tmp[iMCW * col * Zc + blockIdx.x * 16 + threadIdx.x] = 0;
for (int i = 0; i < 8; i++) {
dev_tmp[iMCW * col * Zc + blockIdx.x * 16 + threadIdx.x] += tmp[threadIdx.x * 8 + i];
}
}
}
void read_BG(int BG, int *h, int row, int col)
{
int compact_row = 30, compact_col = 19;
if(BG==2){compact_row = 10, compact_col = 23;}
h_element h_element_temp;
// init the compact matrix
for(int i = 0; i < compact_col; i++){
for(int j = 0; j < row; j++){
h_element_temp.x = 0;
h_element_temp.y = 0;
h_element_temp.value = -1;
h_compact1[i*row+j] = h_element_temp; // h[i][0-11], the same column
}
int compact_row = 30, compact_col = 19;
if (BG == 2) {
compact_row = 10, compact_col = 23;
}
h_element h_element_temp;
// init the compact matrix
for (int i = 0; i < compact_col; i++) {
for (int j = 0; j < row; j++) {
h_element_temp.x = 0;
h_element_temp.y = 0;
h_element_temp.value = -1;
h_compact1[i * row + j] = h_element_temp; // h[i][0-11], the same column
}
}
// scan the h matrix, and gengerate compact mode of h
for (int i = 0; i < row; i++) {
int k = 0;
for (int j = 0; j < col; j++) {
if (h[i * col + j] != -1) {
h_element_temp.x = i;
h_element_temp.y = j;
h_element_temp.value = h[i * col + j];
h_compact1[k * row + i] = h_element_temp;
k++;
}
}
}
// h_compact2
// init the compact matrix
for (int i = 0; i < compact_row; i++) {
for (int j = 0; j < col; j++) {
h_element_temp.x = 0;
h_element_temp.y = 0;
h_element_temp.value = -1;
h_compact2[i * col + j] = h_element_temp;
}
// scan the h matrix, and gengerate compact mode of h
for(int i = 0; i < row; i++){
int k = 0;
for(int j = 0; j < col; j++){
if(h[i*col+j] != -1){
h_element_temp.x = i;
h_element_temp.y = j;
h_element_temp.value = h[i*col+j];
h_compact1[k*row+i] = h_element_temp;
k++;
}
}
}
for (int j = 0; j < col; j++) {
int k = 0;
for (int i = 0; i < row; i++) {
if (h[i * col + j] != -1) {
// although h is transposed, the (x,y) is still (iBlkRow, iBlkCol)
h_element_temp.x = i;
h_element_temp.y = j;
h_element_temp.value = h[i * col + j];
h_compact2[k * col + j] = h_element_temp;
k++;
}
}
// h_compact2
// init the compact matrix
for(int i = 0; i < compact_row; i++){
for(int j = 0; j < col; j++){
h_element_temp.x = 0;
h_element_temp.y = 0;
h_element_temp.value = -1;
h_compact2[i*col+j] = h_element_temp;
}
}
/*
for(int i = 0; i < compact_col; i++){
for(int j = 0; j < row; j++){
printf("%3d, ", h_compact1[i*row+j].value);
}
printf("\n");
}
for(int j = 0; j < col; j++){
int k=0;
for(int i = 0; i < row; i++){
if(h[i*col+j] != -1){
// although h is transposed, the (x,y) is still (iBlkRow, iBlkCol)
h_element_temp.x = i;
h_element_temp.y = j;
h_element_temp.value = h[i*col+j];
h_compact2[k*col+j] = h_element_temp;
k++;
}
}
}
/*
for(int i = 0; i < compact_col; i++){
for(int j = 0; j < row; j++){
printf("%3d, ", h_compact1[i*row+j].value);
}
printf("\n");
}
for(int i = 0; i < compact_row; i++){
for(int j = 0; j < col; j++){
printf("%3d,", h_compact2[i*col+j].value);
}
printf("\n");
}
*/
for(int i = 0; i < compact_row; i++){
for(int j = 0; j < col; j++){
printf("%3d,", h_compact2[i*col+j].value);
}
printf("\n");
}
*/
}
extern "C"
void init_LLR_DMA(t_nrLDPC_dec_params* p_decParams, int8_t* p_llr, int8_t* p_out){
uint16_t Zc = p_decParams->Z;
uint8_t BG = p_decParams->BG;
int block_length = p_decParams->block_length;
uint8_t row,col;
if(BG == 1){
row = 46;
col = 68;
}
else{
row = 42;
col = 52;
}
unsigned char *hard_decision = (unsigned char*)p_out;
int memorySize_llr_cuda = col * Zc * sizeof(char) * MC;
cudaCheck( cudaMemcpyToSymbol(dev_const_llr, p_llr, memorySize_llr_cuda) );
cudaCheck( cudaMemcpyToSymbol(dev_llr, p_llr, memorySize_llr_cuda) );
cudaDeviceSynchronize();
uint16_t Zc = p_decParams->Z;
uint8_t BG = p_decParams->BG;
uint8_t col;
if (BG == 1) {
col = 68;
} else {
col = 52;
}
int memorySize_llr_cuda = col * Zc * sizeof(char) * MC;
cudaCheck(cudaMemcpyToSymbol(dev_const_llr, p_llr, memorySize_llr_cuda));
cudaCheck(cudaMemcpyToSymbol(dev_llr, p_llr, memorySize_llr_cuda));
cudaDeviceSynchronize();
}
using namespace std ;
/* from here: entry points in decoder shared lib */
extern "C"
int ldpc_autoinit(void) { // called by the library loader
/*int devices = 0;
int ldpc_autoinit(void) { // called by the library loader
/*int devices = 0;
cudaError_t err = cudaGetDeviceCount(&devices);
AssertFatal(devices>0,"\nNo cuda GPU found\n\n");
cudaError_t err = cudaGetDeviceCount(&devices);
AssertFatal(devices>0,"\nNo cuda GPU found\n\n");
const int kb = 1024;
const int mb = kb * kb;
wcout << "NBody.GPU" << endl << "=========" << endl << endl;
wcout << "CUDA version: v" << CUDART_VERSION << endl;
wcout << "CUDA version: v" << CUDART_VERSION << endl;
wcout << "CUDA Devices: " << endl << endl;
for(int i = 0; i < devices; ++i)
{
cudaDeviceProp props;
cudaGetDeviceProperties(&props, i);
wcout << i << ": " << props.name << ": " << props.major << "." << props.minor << endl;
wcout << " Global memory: " << props.totalGlobalMem / mb << "mb" << endl;
wcout << " Shared memory: " << props.sharedMemPerBlock / kb << "kb" << endl;
wcout << " Constant memory: " << props.totalConstMem / kb << "kb" << endl;
wcout << " Block registers: " << props.regsPerBlock << endl << endl;
wcout << " Warp size: " << props.warpSize << endl;
wcout << " Threads per block: " << props.maxThreadsPerBlock << endl;
wcout << " Max block dimensions: [ " << props.maxThreadsDim[0] << ", " << props.maxThreadsDim[1] << ", " << props.maxThreadsDim[2] << " ]" << endl;
wcout << " Max grid dimensions: [ " << props.maxGridSize[0] << ", " << props.maxGridSize[1] << ", " << props.maxGridSize[2] << " ]" << endl;
wcout << endl;
cudaDeviceProp props;
cudaGetDeviceProperties(&props, i);
wcout << i << ": " << props.name << ": " << props.major << "." << props.minor << endl;
wcout << " Global memory: " << props.totalGlobalMem / mb << "mb" << endl;
wcout << " Shared memory: " << props.sharedMemPerBlock / kb << "kb" << endl;
wcout << " Constant memory: " << props.totalConstMem / kb << "kb" << endl;
wcout << " Block registers: " << props.regsPerBlock << endl << endl;
wcout << " Warp size: " << props.warpSize << endl;
wcout << " Threads per block: " << props.maxThreadsPerBlock << endl;
wcout << " Max block dimensions: [ " << props.maxThreadsDim[0] << ", " << props.maxThreadsDim[1] << ", " <<
props.maxThreadsDim[2] << " ]" << endl; wcout << " Max grid dimensions: [ " << props.maxGridSize[0] << ", " <<
props.maxGridSize[1] << ", " << props.maxGridSize[2] << " ]" << endl; wcout << endl;
}
*/
*/
warmup_for_GPU();
return 0;
}
extern "C" void LDPCinit(t_nrLDPC_dec_params* p_decParams, int8_t* p_llr, int8_t* p_out)
extern "C" int32_t LDPCinit()
{
set_compact_BG(p_decParams->Z, p_decParams->BG);
init_LLR_DMA(p_decParams, p_llr, p_out);
return 0;
}
extern "C" void LDPCshutdown()
{
}
extern "C" int32_t LDPCdecoder(t_nrLDPC_dec_params* p_decParams,
int8_t* p_llr,
int8_t* p_out,
t_nrLDPC_procBuf* p_procBuf,
t_nrLDPC_time_stats* time_decoder)
extern "C" int32_t LDPCdecoder(t_nrLDPC_dec_params *p_decParams,
uint8_t harq_pid,
uint8_t ulsch_id,
uint8_t C,
int8_t *p_llr,
int8_t *p_out,
t_nrLDPC_time_stats *,
decode_abort_t *ab)
{
uint16_t Zc = p_decParams->Z;
uint8_t BG = p_decParams->BG;
uint8_t numMaxIter = p_decParams->numMaxIter;
int block_length = p_decParams->block_length;
e_nrLDPC_outMode outMode = p_decParams->outMode;
cudaError_t cudaStatus;
uint8_t row,col;
if(BG == 1){
row = 46;
col = 68;
}
else{
row = 42;
col = 52;
}
// alloc memory
unsigned char *hard_decision = (unsigned char*)p_out;
// gpu
int memorySize_llr_cuda = col * Zc * sizeof(char) * MC;
cudaCheck( cudaMemcpyToSymbol(dev_const_llr, p_llr, memorySize_llr_cuda) );
cudaCheck( cudaMemcpyToSymbol(dev_llr, p_llr, memorySize_llr_cuda) );
// Define CUDA kernel dimension
int blockSizeX = Zc;
dim3 dimGridKernel1(row, MC, 1); // dim of the thread blocks
dim3 dimBlockKernel1(blockSizeX, 1, 1);
dim3 dimGridKernel2(col, MC, 1);
dim3 dimBlockKernel2(blockSizeX, 1, 1);
cudaDeviceSynchronize();
// lauch kernel
for(int ii = 0; ii < MAX_ITERATION; ii++){
// first kernel
if(ii == 0){
ldpc_cnp_kernel_1st_iter
<<<dimGridKernel1, dimBlockKernel1>>>
(/*dev_llr,*/ BG, row, col, Zc);
}else{
ldpc_cnp_kernel
<<<dimGridKernel1, dimBlockKernel1>>>
(/*dev_llr,*/ BG, row, col, Zc);
}
// second kernel
ldpc_vnp_kernel_normal
<<<dimGridKernel2, dimBlockKernel2>>>
// (dev_llr, dev_const_llr,BG, row, col, Zc);
(BG, row, col, Zc);
}
int pack = (block_length/128)+1;
dim3 pack_block(pack, MC, 1);
pack_decoded_bit<<<pack_block,128>>>(/*dev_llr,*/ /*dev_tmp,*/ col, Zc);
cudaCheck( cudaMemcpyFromSymbol((void*)hard_decision, (const void*)dev_tmp, (block_length/8)*sizeof(unsigned char)) );
cudaDeviceSynchronize();
return MAX_ITERATION;
set_compact_BG(p_decParams->Z, p_decParams->BG);
init_LLR_DMA(p_decParams, p_llr, p_out);
uint16_t Zc = p_decParams->Z;
uint8_t BG = p_decParams->BG;
int block_length = p_decParams->block_length;
uint8_t row, col;
if (BG == 1) {
row = 46;
col = 68;
} else {
row = 42;
col = 52;
}
// alloc memory
unsigned char* hard_decision = (unsigned char*)p_out;
// gpu
int memorySize_llr_cuda = col * Zc * sizeof(char) * MC;
cudaCheck(cudaMemcpyToSymbol(dev_const_llr, p_llr, memorySize_llr_cuda));
cudaCheck(cudaMemcpyToSymbol(dev_llr, p_llr, memorySize_llr_cuda));
// Define CUDA kernel dimension
int blockSizeX = Zc;
dim3 dimGridKernel1(row, MC, 1); // dim of the thread blocks
dim3 dimBlockKernel1(blockSizeX, 1, 1);
dim3 dimGridKernel2(col, MC, 1);
dim3 dimBlockKernel2(blockSizeX, 1, 1);
cudaDeviceSynchronize();
// lauch kernel
for (int ii = 0; ii < MAX_ITERATION; ii++) {
// first kernel
if (ii == 0) {
ldpc_cnp_kernel_1st_iter<<<dimGridKernel1, dimBlockKernel1>>>(/*dev_llr,*/ BG, row, col, Zc);
} else {
ldpc_cnp_kernel<<<dimGridKernel1, dimBlockKernel1>>>(/*dev_llr,*/ BG, row, col, Zc);
}
// second kernel
ldpc_vnp_kernel_normal<<<dimGridKernel2, dimBlockKernel2>>>
// (dev_llr, dev_const_llr,BG, row, col, Zc);
(BG, row, col, Zc);
}
int pack = (block_length / 128) + 1;
dim3 pack_block(pack, MC, 1);
pack_decoded_bit<<<pack_block, 128>>>(/*dev_llr,*/ /*dev_tmp,*/ col, Zc);
cudaCheck(cudaMemcpyFromSymbol((void*)hard_decision, (const void*)dev_tmp, (block_length / 8) * sizeof(unsigned char)));
cudaDeviceSynchronize();
return MAX_ITERATION;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment