Commit 4c9c6f68 authored by Florian Kaltenberger's avatar Florian Kaltenberger

Merge remote-tracking branch 'origin/develop-nr' into ocp_nrsimulator

parents 9021be8c 98541813
......@@ -94,14 +94,21 @@ function build_on_vm {
echo "############################################################"
echo "Creating VM ($VM_NAME) on Ubuntu Cloud Image base"
echo "############################################################"
acquire_vm_create_lock
uvt-kvm create $VM_NAME release=xenial --memory $VM_MEMORY --cpu $VM_CPU --unsafe-caching --template ci-scripts/template-host.xml
fi
echo "Waiting for VM to be started"
uvt-kvm wait $VM_NAME --insecure
VM_IP_ADDR=`uvt-kvm ip $VM_NAME`
echo "$VM_NAME has for IP addr = $VM_IP_ADDR"
release_vm_create_lock
else
echo "Waiting for VM to be started"
uvt-kvm wait $VM_NAME --insecure
VM_IP_ADDR=`uvt-kvm ip $VM_NAME`
echo "$VM_NAME has for IP addr = $VM_IP_ADDR"
fi
echo "############################################################"
echo "Copying GIT repo into VM ($VM_NAME)"
......
......@@ -49,6 +49,35 @@ function create_usage {
echo ""
}
function acquire_vm_create_lock {
local FlockFile="/tmp/vmclone.lck"
local unlocked="0"
touch ${FlockFile} 2>/dev/null
if [[ $? -ne 0 ]]
then
echo "Cannot access lock file ${FlockFile}"
exit 2
fi
while [ $unlocked -eq 0 ]
do
exec 5>${FlockFile}
flock -nx 5
if [[ $? -ne 0 ]]
then
echo "Another instance of VM creation is running"
sleep 10
else
unlocked="1"
fi
done
chmod 666 ${FlockFile} 2>/dev/null
}
function release_vm_create_lock {
local FlockFile="/tmp/vmclone.lck"
rm -Rf ${FlockFile}
}
function create_vm {
echo "############################################################"
echo "OAI CI VM script"
......@@ -60,10 +89,12 @@ function create_vm {
echo "############################################################"
echo "Creating VM ($VM_NAME) on Ubuntu Cloud Image base"
echo "############################################################"
acquire_vm_create_lock
uvt-kvm create $VM_NAME release=xenial --memory $VM_MEMORY --cpu $VM_CPU --unsafe-caching --template ci-scripts/template-host.xml
echo "Waiting for VM to be started"
uvt-kvm wait $VM_NAME --insecure
VM_IP_ADDR=`uvt-kvm ip $VM_NAME`
echo "$VM_NAME has for IP addr = $VM_IP_ADDR"
release_vm_create_lock
}
......@@ -441,10 +441,16 @@ function run_test_on_vm {
echo "############################################################"
echo "Creating test EPC VM ($EPC_VM_NAME) on Ubuntu Cloud Image base"
echo "############################################################"
acquire_vm_create_lock
uvt-kvm create $EPC_VM_NAME release=xenial --unsafe-caching
echo "Waiting for VM to be started"
uvt-kvm wait $EPC_VM_NAME --insecure
release_vm_create_lock
else
echo "Waiting for VM to be started"
uvt-kvm wait $EPC_VM_NAME --insecure
fi
uvt-kvm wait $EPC_VM_NAME --insecure
EPC_VM_IP_ADDR=`uvt-kvm ip $EPC_VM_NAME`
echo "$EPC_VM_NAME has for IP addr = $EPC_VM_IP_ADDR"
scp -o StrictHostKeyChecking=no /etc/apt/apt.conf.d/01proxy ubuntu@$EPC_VM_IP_ADDR:/home/ubuntu
......
......@@ -2638,7 +2638,7 @@ if (${T_TRACER})
#all "add_executable" definitions (except tests, rb_tool, updatefw)
lte-softmodem lte-softmodem-nos1 lte-uesoftmodem lte-uesoftmodem-nos1
nr-softmodem nr-softmodem-nos1 nr-uesoftmodem nr-uesoftmodem-nos1
dlsim_tm4 dlsim dlsim_tm7 ulsim pbchsim scansim mbmssim
dlsim_tm4 nr_dlsim dlsim_tm7 ulsim pbchsim scansim mbmssim
pdcchsim pucchsim prachsim syncsim ulsim
ldpctest polartest
#all "add_library" definitions
......
......@@ -1057,8 +1057,8 @@
(Test2: PBCH and synchronization, 106PBR),
(Test3: PBCH-only, 217 PRB),
(Test4: PBCH and synchronization, 217 RPB),
(Test5: PBCH-only, 217 PRB),
(Test6: PBCH and synchronization, 217 PRB)</desc>
(Test5: PBCH-only, 273 PRB),
(Test6: PBCH and synchronization, 273 PRB)</desc>
<pre_compile_prog></pre_compile_prog>
<compile_prog>$OPENAIR_DIR/cmake_targets/build_oai</compile_prog>
<compile_prog_args> --phy_simulators -c </compile_prog_args>
......@@ -1071,12 +1071,51 @@
-s0 -S1 -n10 -I -R217
-s0 -S1 -n1000 -R273
-s0 -S1 -n10 -I -R273</main_exec_args>
<tags>nr_pbchsim.test1 nr_pbchsim.test2</tags>
<tags>nr_pbchsim.test1 nr_pbchsim.test2 nr_pbchsim.test3 nr_pbchsim.test4 nr_pbchsim.test5 nr_pbchsim.test6</tags>
<search_expr_true>PBCH test OK</search_expr_true>
<search_expr_false>segmentation fault|assertion|exiting|fatal</search_expr_false>
<nruns>3</nruns>
</testCase>
<testCase id="015105">
<class>execution</class>
<desc>nr_dlsim Test cases. (Test1: 106 PRB),
(Test2: 217 PRB),
(Test3: 273 PRB)</desc>
<pre_compile_prog></pre_compile_prog>
<compile_prog>$OPENAIR_DIR/cmake_targets/build_oai</compile_prog>
<compile_prog_args> --phy_simulators -c </compile_prog_args>
<pre_exec>$OPENAIR_DIR/cmake_targets/autotests/tools/free_mem.bash</pre_exec>
<pre_exec_args></pre_exec_args>
<main_exec> $OPENAIR_DIR/targets/bin/nr_dlsim.Rel15</main_exec>
<main_exec_args>-n100 -R106
-n100 -R217
-n100 -R273</main_exec_args>
<tags>nr_dlsim.test1 nr_dlsim.test2 nr_dlsim.test3</tags>
<search_expr_true>PDCCH test OK</search_expr_true>
<search_expr_false>segmentation fault|assertion|exiting|fatal</search_expr_false>
<nruns>3</nruns>
</testCase>
<testCase id="015106">
<class>execution</class>
<desc>nr_dlschsim Test cases. (Test1: 106 PRB),
(Test2: 217 PRB),
(Test3: 273 PRB)</desc>
<pre_compile_prog></pre_compile_prog>
<compile_prog>$OPENAIR_DIR/cmake_targets/build_oai</compile_prog>
<compile_prog_args> --phy_simulators -c </compile_prog_args>
<pre_exec>$OPENAIR_DIR/cmake_targets/autotests/tools/free_mem.bash</pre_exec>
<pre_exec_args></pre_exec_args>
<main_exec> $OPENAIR_DIR/targets/bin/nr_dlsim.Rel15</main_exec>
<main_exec_args>-R 106 -m9 -s13 -n100
-R 217 -m15 -s15 -n100
-R 273 -m19 -s20 -n100</main_exec_args>
<tags>nr_dlsim.test1 nr_dlsim.test2 nr_dlsim.test3</tags>
<search_expr_true>PDSCH test OK</search_expr_true>
<search_expr_false>segmentation fault|assertion|exiting|fatal</search_expr_false>
<nruns>3</nruns>
</testCase>
<testCase id="015110">
<class>execution</class>
......
#!/bin/sh
echo "building ctags for openair1 and openair2 ..."
ctags -e -R --exclude=openair1/DOCS/ --exclude=openair2/DOCS/ --exclude=openair2/RRC/CELLULAR/ --exclude=openair2/NAS/DRIVER/CELLULAR/ --exclude=openair2/SIMULATION/ --exclude=targets/DOCS/ --exclude=targets/PROJECTS/ openair1 openair2 openair3 targets cmake_targets common nfapi
ctags -e -R --exclude=openair1/DOCS/ --exclude=openair2/DOCS/ --exclude=openair1/SIMULATION/ --exclude=targets/DOCS/ --exclude=targets/PROJECTS/ openair1 openair2 openair3 targets cmake_targets common nfapi
......@@ -13,6 +13,9 @@
#define NFAPI_NR_MAX_NB_CCE_AGGREGATION_LEVELS 5
#define NFAPI_NR_MAX_NB_TCI_STATES_PDCCH 64
#define NFAPI_NR_MAX_NB_CORESETS 12
#define NFAPI_NR_MAX_NB_SEARCH_SPACES 40
// Extension to the generic structures for single tlv values
typedef struct {
......@@ -356,7 +359,8 @@ typedef enum {
typedef enum {
NFAPI_NR_CSET_CONFIG_MIB_SIB1=0,
NFAPI_NR_CSET_CONFIG_PDCCH_CONFIG
NFAPI_NR_CSET_CONFIG_PDCCH_CONFIG, // implicit assumption of coreset Id other than 0
NFAPI_NR_CSET_CONFIG_PDCCH_CONFIG_CSET_0
} nfapi_nr_coreset_config_type_e;
typedef enum {
......@@ -364,6 +368,31 @@ typedef enum {
NFAPI_NR_CSET_ALL_CONTIGUOUS_RBS
} nfapi_nr_coreset_precoder_granularity_type_e;
typedef enum {
NFAPI_NR_QCL_TYPE_A=0,
NFAPI_NR_QCL_TYPE_B,
NFAPI_NR_QCL_TYPE_C,
NFAPI_NR_QCL_TYPE_D
} nfapi_nr_qcl_type_e;
typedef enum {
NFAPI_NR_SS_PERIODICITY_SL1=1,
NFAPI_NR_SS_PERIODICITY_SL2=2,
NFAPI_NR_SS_PERIODICITY_SL4=4,
NFAPI_NR_SS_PERIODICITY_SL5=5,
NFAPI_NR_SS_PERIODICITY_SL8=8,
NFAPI_NR_SS_PERIODICITY_SL10=10,
NFAPI_NR_SS_PERIODICITY_SL16=16,
NFAPI_NR_SS_PERIODICITY_SL20=20,
NFAPI_NR_SS_PERIODICITY_SL40=40,
NFAPI_NR_SS_PERIODICITY_SL80=80,
NFAPI_NR_SS_PERIODICITY_SL160=160,
NFAPI_NR_SS_PERIODICITY_SL320=320,
NFAPI_NR_SS_PERIODICITY_SL640=640,
NFAPI_NR_SS_PERIODICITY_SL1280=1280,
NFAPI_NR_SS_PERIODICITY_SL2560=2560
} nfapi_nr_search_space_monitoring_periodicity_e;
typedef enum {
NFAPI_NR_PDSCH_TIME_DOMAIN_ALLOC_TYPE_DEFAULT_A=0,
NFAPI_NR_PDSCH_TIME_DOMAIN_ALLOC_TYPE_DEFAULT_B,
......@@ -496,9 +525,9 @@ typedef struct{
uint8_t css_format_2_2;
uint8_t css_format_2_3;
uint8_t uss_dci_formats;
uint8_t srs_monitoring_periodicity;
uint8_t slot_monitoring_periodicity;
uint8_t slot_monitoring_offset;
uint16_t srs_monitoring_periodicity;
uint16_t slot_monitoring_periodicity;
uint16_t slot_monitoring_offset;
uint16_t monitoring_symbols_in_slot;
uint16_t number_of_candidates[NFAPI_NR_MAX_NB_CCE_AGGREGATION_LEVELS];
} nfapi_nr_search_space_t;
......@@ -516,7 +545,7 @@ typedef struct {
uint8_t aggregation_level;
uint8_t n_rb;
uint8_t n_symb;
uint8_t rb_offset;
int8_t rb_offset;
uint8_t cr_mapping_type;
uint8_t reg_bundle_size;
uint8_t interleaver_size;
......
......@@ -1160,7 +1160,6 @@ uint32_t polar_decoder_int16(int16_t *input,
out[0]=Ar;
return(crc^rxcrc);
......
......@@ -54,13 +54,19 @@ int nr_slot_fep(PHY_VARS_NR_UE *ue,
//int i;
unsigned int frame_length_samples = frame_parms->samples_per_subframe * 10;
unsigned int rx_offset;
NR_UE_PDCCH *pdcch_vars = ue->pdcch_vars[ue->current_thread_id[Ns>>1]][0];
uint16_t coreset_start_subcarrier = frame_parms->first_carrier_offset+((int)floor(frame_parms->ssb_start_subcarrier/NR_NB_SC_PER_RB)+pdcch_vars->coreset[0].rb_offset)*NR_NB_SC_PER_RB;
uint16_t nb_rb_coreset = 24;
uint16_t bwp_start_subcarrier = frame_parms->first_carrier_offset+516;
NR_UE_PDCCH *pdcch_vars = ue->pdcch_vars[ue->current_thread_id[Ns]][0];
uint16_t coreset_start_subcarrier = frame_parms->first_carrier_offset;//+((int)floor(frame_parms->ssb_start_subcarrier/NR_NB_SC_PER_RB)+pdcch_vars->coreset[0].rb_offset)*NR_NB_SC_PER_RB;
uint16_t nb_rb_coreset = 0;
uint16_t bwp_start_subcarrier = frame_parms->first_carrier_offset;//+516;
uint16_t nb_rb_pdsch = 50;
uint8_t p=0;
uint8_t l0 = 2;
uint8_t l0 = pdcch_vars->coreset[0].duration;
uint64_t coreset_freq_dom = pdcch_vars->coreset[0].frequencyDomainResources;
for (int i = 0; i < 45; i++) {
if (((coreset_freq_dom & 0x1FFFFFFFFFFF) >> i) & 0x1) nb_rb_coreset++;
}
nb_rb_coreset = 6 * nb_rb_coreset;
//printf("corset duration %d nb_rb_coreset %d\n", l0, nb_rb_coreset);
void (*dft)(int16_t *,int16_t *, int);
int tmp_dft_in[8192] __attribute__ ((aligned (32))); // This is for misalignment issues for 6 and 15 PRBs
......@@ -104,9 +110,9 @@ int nr_slot_fep(PHY_VARS_NR_UE *ue,
}
if (no_prefix) {
slot_offset = frame_parms->ofdm_symbol_size * (frame_parms->symbols_per_slot*frame_parms->slots_per_subframe) * (Ns>>1);
slot_offset = frame_parms->ofdm_symbol_size * (frame_parms->symbols_per_slot) * (Ns);
} else {
slot_offset = (frame_parms->samples_per_subframe) * (Ns>>1);
slot_offset = (frame_parms->samples_per_slot) * (Ns);
}
/*if (l<0 || l>=7-frame_parms->Ncp) {
......@@ -122,7 +128,7 @@ int nr_slot_fep(PHY_VARS_NR_UE *ue,
for (aa=0; aa<frame_parms->nb_antennas_rx; aa++) {
memset(&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],0,frame_parms->ofdm_symbol_size*sizeof(int));
memset(&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],0,frame_parms->ofdm_symbol_size*sizeof(int));
rx_offset = sample_offset + slot_offset + nb_prefix_samples0 - SOFFSET;
// Align with 256 bit
......@@ -130,7 +136,7 @@ int nr_slot_fep(PHY_VARS_NR_UE *ue,
#ifdef DEBUG_FEP
// if (ue->frame <100)
/*LOG_I(PHY,*/printf("slot_fep: frame %d: slot %d, symbol %d, nb_prefix_samples %d, nb_prefix_samples0 %d, slot_offset %d, sample_offset %d,rx_offset %d, frame_length_samples %d\n", ue->proc.proc_rxtx[(Ns>>1)&1].frame_rx,Ns, symbol,
/*LOG_I(PHY,*/printf("slot_fep: frame %d: slot %d, symbol %d, nb_prefix_samples %d, nb_prefix_samples0 %d, slot_offset %d, sample_offset %d,rx_offset %d, frame_length_samples %d\n", ue->proc.proc_rxtx[(Ns)&1].frame_rx,Ns, symbol,
nb_prefix_samples,nb_prefix_samples0,slot_offset,sample_offset,rx_offset,frame_length_samples);
#endif
......@@ -146,14 +152,14 @@ int nr_slot_fep(PHY_VARS_NR_UE *ue,
(void *)&common_vars->rxdata[aa][rx_offset % frame_length_samples],
frame_parms->ofdm_symbol_size*sizeof(int));
dft((int16_t *)tmp_dft_in,
(int16_t *)&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],1);
(int16_t *)&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],1);
} else { // use dft input from RX buffer directly
#if UE_TIMING_TRACE
start_meas(&ue->rx_dft_stats);
#endif
dft((int16_t *)&common_vars->rxdata[aa][(rx_offset) % frame_length_samples],
(int16_t *)&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],1);
(int16_t *)&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],1);
#if UE_TIMING_TRACE
stop_meas(&ue->rx_dft_stats);
#endif
......@@ -175,11 +181,11 @@ int nr_slot_fep(PHY_VARS_NR_UE *ue,
(void *)&common_vars->rxdata[aa][(rx_offset) % frame_length_samples],
frame_parms->ofdm_symbol_size*sizeof(int));
dft((int16_t *)tmp_dft_in,
(int16_t *)&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],1);
(int16_t *)&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],1);
} else { // use dft input from RX buffer directly
dft((int16_t *)&common_vars->rxdata[aa][(rx_offset) % frame_length_samples],
(int16_t *)&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],1);
(int16_t *)&common_vars->common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],1);
}
#if UE_TIMING_TRACE
stop_meas(&ue->rx_dft_stats);
......
......@@ -32,6 +32,7 @@
//#define NR_PBCH_DMRS_LENGTH_DWORD 5
//#define NR_PBCH_DMRS_LENGTH 144
//#define DEBUG_PDCCH
#include "refsig_defs_ue.h"
#include "PHY/defs_nr_UE.h"
......
......@@ -20,7 +20,7 @@
*/
/*! \file PHY/NR_TRANSPORT/nr_dci.c
* \brief Implements DCI encoding and PDCCH TX procedures (38.212/38.213/38.214). V15.2.0 2018-06.
* \brief Implements DCI encoding and PDCCH TX procedures (38.212/38.213/38.214). V15.4.0 2019-01.
* \author Guy De Souza
* \date 2018
* \version 0.1
......@@ -35,7 +35,6 @@
//#define DEBUG_PDCCH_DMRS
//#define DEBUG_DCI
//#define DEBUG_CHANNEL_CODING
#define PDCCH_TEST_POLAR_TEMP_FIX
extern short nr_mod_table[NR_MOD_TABLE_SIZE_SHORT];
......@@ -154,7 +153,7 @@ void nr_pdcch_scrambling(uint32_t *in,
}
}
(*out) ^= ((((*in)>>(i&0x1f))&1) ^ ((s>>(i&0x1f))&1))<<(i&0x1f);
// printf("nr_pdcch_scrambling: in %d => out %d\n",((*in)>>(i&0x1f))&1,((*out)>>(i&0x1f))&1);
//printf("nr_pdcch_scrambling: in %d seq 0x%08x => out %d\n",((*in)>>(i&0x1f))&1,s,((*out)>>(i&0x1f))&1);
}
}
......@@ -169,8 +168,10 @@ uint8_t nr_generate_dci_top(NR_gNB_PDCCH pdcch_vars,
{
int16_t mod_dmrs[NR_MAX_CSET_DURATION][NR_MAX_PDCCH_DMRS_LENGTH>>1]; // 3 for the max coreset duration
uint8_t idx=0;
//uint16_t a;
uint32_t dmrs_seq[NR_MAX_PDCCH_DMRS_INIT_LENGTH_DWORD];
uint16_t dmrs_offset=0;
uint16_t cset_start_sc;
uint8_t cset_start_symb, cset_nsymb;
int k,l,k_prime,dci_idx, dmrs_idx;
nr_cce_t cce;
nr_reg_t reg;
......@@ -179,62 +180,88 @@ uint8_t nr_generate_dci_top(NR_gNB_PDCCH pdcch_vars,
/*First iteration: single DCI*/
NR_gNB_DCI_ALLOC_t dci_alloc = pdcch_vars.dci_alloc[0];
nfapi_nr_dl_config_pdcch_parameters_rel15_t pdcch_params = dci_alloc.pdcch_params;
uint16_t dmrs_length = dci_alloc.L*36; //2(QPSK)*3(per RB)*6(REG per CCE)
uint16_t encoded_length = dci_alloc.L*108; //2(QPSK)*9(per RB)*6(REG per CCE)
/*The coreset is initialised
* in frequency: the first subcarrier is obtained by adding the first CRB overlapping the SSB and the rb_offset
* in frequency: the first subcarrier is obtained by adding the first CRB overlapping the SSB and the rb_offset for coreset 0
* or the rb_offset for other coresets
* in time: by its first slot and its first symbol*/
uint16_t cset_start_sc = frame_parms.first_carrier_offset + ((int)floor(frame_parms.ssb_start_subcarrier/NR_NB_SC_PER_RB)+pdcch_params.rb_offset)*NR_NB_SC_PER_RB;
// uint8_t cset_start_symb = pdcch_params.first_slot*frame_parms.symbols_per_slot + pdcch_params.first_symbol;
uint8_t cset_start_symb = pdcch_params.first_symbol;
uint8_t cset_nsymb = pdcch_params.n_symb;
if (pdcch_params.config_type == NFAPI_NR_CSET_CONFIG_MIB_SIB1){
cset_start_sc = frame_parms.first_carrier_offset + (frame_parms.ssb_start_subcarrier/NR_NB_SC_PER_RB +
pdcch_params.rb_offset)*NR_NB_SC_PER_RB;
}
else
cset_start_sc = frame_parms.first_carrier_offset + pdcch_params.rb_offset*NR_NB_SC_PER_RB;
cset_start_symb = pdcch_params.first_symbol;
cset_nsymb = pdcch_params.n_symb;
dci_idx = 0;
LOG_I(PHY, "Coreset starting subcarrier %d on symbol %d (%d symbols)\n", cset_start_sc, cset_start_symb, cset_nsymb);
// DMRS length is per OFDM symbol
uint16_t dmrs_length = (pdcch_params.precoder_granularity == NFAPI_NR_CSET_ALL_CONTIGUOUS_RBS)?
(pdcch_params.n_rb*6) : (dci_alloc.L*36/cset_nsymb); //2(QPSK)*3(per RB)*6(REG per CCE)
uint16_t encoded_length = dci_alloc.L*108; //2(QPSK)*9(per RB)*6(REG per CCE)
LOG_I(PHY, "DMRS length per symbol %d\t DCI encoded length %d\n", dmrs_length, encoded_length);
/// DMRS QPSK modulation
/*There is a need to shift from which index the pregenerated DMRS sequence is used
* see 38211 r15.2.0 section 7.4.1.3.2: assumption is the reference point for k refers to the DMRS sequence*/
if (pdcch_params.config_type == NFAPI_NR_CSET_CONFIG_PDCCH_CONFIG)
gold_pdcch_dmrs += ((int)floor(frame_parms.ssb_start_subcarrier/NR_NB_SC_PER_RB)+pdcch_params.rb_offset)*3/32;
if (pdcch_params.config_type == NFAPI_NR_CSET_CONFIG_PDCCH_CONFIG) {
for (int symb=cset_start_symb; symb<cset_start_symb + pdcch_params.n_symb; symb++)
gold_pdcch_dmrs[symb] += (pdcch_params.rb_offset*3)>>5;
dmrs_offset = (pdcch_params.rb_offset*3)&0x1f;
LOG_I(PHY, "PDCCH DMRS offset %d\n", dmrs_offset);
}
for (int symb=cset_start_symb; symb<cset_start_symb + pdcch_params.n_symb; symb++) {
for (int i=0; i<dmrs_length>>1; i++) {
idx = ((((gold_pdcch_dmrs[symb][(i<<1)>>5])>>((i<<1)&0x1f))&1)<<1) ^ (((gold_pdcch_dmrs[symb][((i<<1)+1)>>5])>>(((i<<1)+1)&0x1f))&1);
mod_dmrs[symb][i<<1] = nr_mod_table[(NR_MOD_TABLE_QPSK_OFFSET + idx)<<1];
mod_dmrs[symb][(i<<1)+1] = nr_mod_table[((NR_MOD_TABLE_QPSK_OFFSET + idx)<<1) + 1];
#ifdef DEBUG_PDCCH_DMRS
printf("symb %d i %d idx %d gold seq %u b0-b1 %d-%d mod_dmrs %d %d\n", symb, i, idx, gold_pdcch_dmrs[symb][(i<<1)>>5],
(((gold_pdcch_dmrs[symb][(i<<1)>>5])>>((i<<1)&0x1f))&1), (((gold_pdcch_dmrs[symb][((i<<1)+1)>>5])>>(((i<<1)+1)&0x1f))&1),
mod_dmrs[symb][(i<<1)], mod_dmrs[symb][(i<<1)+1]);
#endif
if (dmrs_offset) {
// a non zero offset requires the DMRS sequence to be rearranged
memset(dmrs_seq,0, NR_MAX_PDCCH_DMRS_INIT_LENGTH_DWORD*sizeof(uint32_t));
for (int i=0; i<dmrs_length; i++) {
dmrs_seq[(i>>5)] |= ((gold_pdcch_dmrs[symb][(i+dmrs_offset)>>5]>>((i+dmrs_offset)&0x1f))&1)<<(i&0x1f);
#ifdef DEBUG_PDCCH_DMRS
//printf("out 0x%08x in 0x%08x \n", dmrs_seq[(i>>5)], gold_pdcch_dmrs[symb][(i+dmrs_offset)>>5]);
#endif
}
nr_modulation(dmrs_seq, dmrs_length, MOD_QPSK, mod_dmrs[symb]);
}
else
nr_modulation(gold_pdcch_dmrs[symb], dmrs_length, MOD_QPSK, mod_dmrs[symb]);
#ifdef DEBUG_PDCCH_DMRS
for (int i=0; i<dmrs_length>>1; i++)
if (dmrs_offset)
printf("symb %d i %d gold seq 0x%08x mod_dmrs %d %d\n", symb, i, dmrs_seq[i>>5],
mod_dmrs[symb][i<<1], mod_dmrs[symb][(i<<1)+1] );
else
printf("symb %d i %d gold seq 0x%08x mod_dmrs %d %d\n", symb, i,
gold_pdcch_dmrs[symb][i>>5], mod_dmrs[symb][i<<1], mod_dmrs[symb][(i<<1)+1] );
#endif
}
/// DCI payload processing
// CRC attachment + Scrambling + Channel coding + Rate matching
uint32_t encoder_output[NR_MAX_DCI_SIZE_DWORD];
uint16_t n_RNTI = (pdcch_params.search_space_type == NFAPI_NR_SEARCH_SPACE_TYPE_UE_SPECIFIC)? ((pdcch_params.scrambling_id)?pdcch_params.rnti:0) : 0;
uint16_t Nid = (pdcch_params.search_space_type == NFAPI_NR_SEARCH_SPACE_TYPE_UE_SPECIFIC)? pdcch_params.scrambling_id : config.sch_config.physical_cell_id.value;
//#ifdef PDCCH_TEST_POLAR_TEMP_FIX
// nr_polar_init(&currentPtr, NR_POLAR_DCI_MESSAGE_TYPE, dci_alloc.size, dci_alloc.L);
// t_nrPolar_paramsPtr currentPtr = nr_polar_params(*nrPolar_params, NR_POLAR_DCI_MESSAGE_TYPE, dci_alloc.size, dci_alloc.L);
//#else
uint16_t n_RNTI = (pdcch_params.search_space_type == NFAPI_NR_SEARCH_SPACE_TYPE_UE_SPECIFIC)? pdcch_params.rnti:0;
uint16_t Nid = (pdcch_params.search_space_type == NFAPI_NR_SEARCH_SPACE_TYPE_UE_SPECIFIC)?
pdcch_params.scrambling_id : config.sch_config.physical_cell_id.value;
nr_polar_init(nrPolar_params, NR_POLAR_DCI_MESSAGE_TYPE, dci_alloc.size, dci_alloc.L);
t_nrPolar_paramsPtr currentPtr = nr_polar_params(*nrPolar_params, NR_POLAR_DCI_MESSAGE_TYPE, dci_alloc.size, dci_alloc.L);
//#endif
//polar_encoder_dci(dci_alloc.dci_pdu, encoder_output, currentPtr, pdcch_params.rnti);
polar_encoder_fast(dci_alloc.dci_pdu, encoder_output, pdcch_params.rnti,currentPtr);
#ifdef DEBUG_CHANNEL_CODING
printf("polar rnti %d\n",pdcch_params.rnti);
for (int i=0;i<54;i++) printf("Encoded Payload: [%d]->0x%08x \n", i,encoder_output[i]);
printf("DCI PDU: [0]->0x%08x \t [1]->0x%08x \t [2]->0x%08x \t [3]->0x%08x\n",
dci_alloc.dci_pdu[0], dci_alloc.dci_pdu[1], dci_alloc.dci_pdu[2], dci_alloc.dci_pdu[3]);
printf("Encoded Payload: [0]->0x%08x \t [1]->0x%08x \t [2]->0x%08x \t [3]->0x%08x\n",
encoder_output[0], encoder_output[1], encoder_output[2], encoder_output[3]);
printf("DCI PDU: [0]->0x%lx \t [1]->0x%lx\n",
dci_alloc.dci_pdu[0], dci_alloc.dci_pdu[1]);
printf("Encoded Payload (length:%d dwords):\n", encoded_length>>5);
for (int i=0;i<encoded_length>>5;i++)
printf("[%d]->0x%08x \t", i,encoder_output[i]);
printf("\n");
#endif
/// Scrambling
......@@ -247,17 +274,13 @@ printf("scrambled output: [0]->0x%08x \t [1]->0x%08x \t [2]->0x%08x \t [3]->0x%0
scrambled_output[6], scrambled_output[7], scrambled_output[8], scrambled_output[9], scrambled_output[10],scrambled_output[11] );
#endif
// QPSK modulation
/// QPSK modulation
int16_t mod_dci[NR_MAX_DCI_SIZE>>1];
for (int i=0; i<encoded_length>>1; i++) {
idx = ((((scrambled_output[(i<<1)>>5])>>((i<<1)&0x1f))&1)<<1) ^ (((scrambled_output[((i<<1)+1)>>5])>>(((i<<1)+1)&0x1f))&1);
mod_dci[i<<1] = nr_mod_table[(NR_MOD_TABLE_QPSK_OFFSET + idx)<<1];
mod_dci[(i<<1)+1] = nr_mod_table[((NR_MOD_TABLE_QPSK_OFFSET + idx)<<1) + 1];
nr_modulation(scrambled_output, encoded_length, MOD_QPSK, mod_dci);
#ifdef DEBUG_DCI
printf("i %d idx %d b0-b1 %d-%d mod_dci %d %d\n", i, idx, (((scrambled_output[(i<<1)>>5])>>((i<<1)&0x1f))&1),
(((scrambled_output[((i<<1)+1)>>5])>>(((i<<1)+1)&0x1f))&1), mod_dci[(i<<1)], mod_dci[(i<<1)+1]);
for (int i=0; i<encoded_length>>1; i++)
printf("i %d mod_dci %d %d\n", i, mod_dci[i<<1], mod_dci[(i<<1)+1] );
#endif
}
/// Resource mapping
......@@ -289,10 +312,11 @@ printf("scrambled output: [0]->0x%08x \t [1]->0x%08x \t [2]->0x%08x \t [3]->0x%0
dmrs_idx = 0;
k = cset_start_sc + 1;
while (dmrs_idx<3*pdcch_params.n_rb) {
((int16_t*)txdataF)[(l*frame_parms.ofdm_symbol_size + k)<<1] = (amp * mod_dmrs[l][dmrs_idx<<1]) >> 15;
((int16_t*)txdataF)[((l*frame_parms.ofdm_symbol_size + k)<<1) + 1] = (amp * mod_dmrs[l][(dmrs_idx<<1) + 1]) >> 15;
((int16_t*)txdataF)[(l*frame_parms.ofdm_symbol_size + k)<<1] = ((amp>>1) * mod_dmrs[l][dmrs_idx<<1]) >> 15;
((int16_t*)txdataF)[((l*frame_parms.ofdm_symbol_size + k)<<1) + 1] = ((amp>>1) * mod_dmrs[l][(dmrs_idx<<1) + 1]) >> 15;
#ifdef DEBUG_PDCCH_DMRS
printf("symbol %d position %d => (%d,%d)\n",l,k,((int16_t*)txdataF[aa])[(l*frame_parms.ofdm_symbol_size + k)<<1] , ((int16_t*)txdataF[aa])[((l*frame_parms.ofdm_symbol_size + k)<<1)+1]);
printf("symbol %d position %d => (%d,%d)\n",l,k,((int16_t*)txdataF)[(l*frame_parms.ofdm_symbol_size + k)<<1] ,
((int16_t*)txdataF)[((l*frame_parms.ofdm_symbol_size + k)<<1)+1]);
#endif
k+=4;
if (k >= frame_parms.ofdm_symbol_size)
......@@ -315,19 +339,23 @@ printf("scrambled output: [0]->0x%08x \t [1]->0x%08x \t [2]->0x%08x \t [3]->0x%0
for (int m=0; m<NR_NB_SC_PER_RB; m++) {
if ( m == (k_prime<<2)+1) { // DMRS if not already mapped
if (pdcch_params.precoder_granularity == NFAPI_NR_CSET_SAME_AS_REG_BUNDLE) {
((int16_t*)txdataF)[(l*frame_parms.ofdm_symbol_size + k)<<1] = (amp * mod_dmrs[l][dmrs_idx<<1]) >> 15;
((int16_t*)txdataF)[((l*frame_parms.ofdm_symbol_size + k)<<1) + 1] = (amp * mod_dmrs[l][(dmrs_idx<<1) + 1]) >> 15;
((int16_t*)txdataF)[(l*frame_parms.ofdm_symbol_size + k)<<1] = ((amp>>1) * mod_dmrs[l][dmrs_idx<<1]) >> 15;
((int16_t*)txdataF)[((l*frame_parms.ofdm_symbol_size + k)<<1) + 1] = ((amp>>1) * mod_dmrs[l][(dmrs_idx<<1) + 1]) >> 15;
#ifdef DEBUG_PDCCH_DMRS
printf("l %d position %d => (%d,%d)\n",l,k,((int16_t*)txdataF[aa])[(l*frame_parms.ofdm_symbol_size + k)<<1] , ((int16_t*)txdataF[aa])[((l*frame_parms.ofdm_symbol_size + k)<<1)+1]);
printf("l %d position %d => (%d,%d)\n",l,k,((int16_t*)txdataF)[(l*frame_parms.ofdm_symbol_size + k)<<1] ,
((int16_t*)txdataF)[((l*frame_parms.ofdm_symbol_size + k)<<1)+1]);
#endif
k_prime++;
dmrs_idx++;
}
k_prime++;
}
else { // DCI payload
((int16_t*)txdataF)[(l*frame_parms.ofdm_symbol_size + k)<<1] = (amp * mod_dci[dci_idx<<1]) >> 15;
((int16_t*)txdataF)[((l*frame_parms.ofdm_symbol_size + k)<<1) + 1] = (amp * mod_dci[(dci_idx<<1) + 1]) >> 15;
//printf("dci output %d %d\n",(a * mod_dci[dci_idx<<1]) >> 15, (a * mod_dci[(dci_idx<<1) + 1]) >> 15);
#ifdef DEBUG_DCI
printf("l %d position %d => (%d,%d)\n",l,k,((int16_t*)txdataF)[(l*frame_parms.ofdm_symbol_size + k)<<1] ,
((int16_t*)txdataF)[((l*frame_parms.ofdm_symbol_size + k)<<1)+1]);
#endif
dci_idx++;
}
k++;
......
......@@ -61,11 +61,13 @@ void nr_fill_cce_list(NR_gNB_DCI_ALLOC_t* dci_alloc, uint16_t n_shift, uint8_t m
else { //NFAPI_NR_SEARCH_SPACE_TYPE_UE_SPECIFIC
}
uint8_t cond = N_reg%(bsize*R);
AssertFatal(cond==0, "CCE to REG interleaving: Invalid configuration leading to non integer C\n");
if (pdcch_params->cr_mapping_type == NFAPI_NR_CCE_REG_MAPPING_INTERLEAVED) {
AssertFatal((N_reg%(bsize*R))==0, "CCE to REG interleaving: Invalid configuration leading to non integer C (N_reg %d, bsize %d R %d)\n",
N_reg, bsize, R);
C = N_reg/(bsize*R);
}
tmp = L * (( Y + (m*N_cce)/(L*M_s_max) + n_CI ) % (N_cce/L));
tmp = L * (( Y + (m*N_cce)/(L*M_s_max) + n_CI ) % CEILIDIV(N_cce,L));
LOG_I(PHY, "CCE list generation for candidate %d: bundle size %d ilv size %d tmp %d\n", m, bsize, R, tmp);
for (uint8_t cce_idx=0; cce_idx<L; cce_idx++) {
......@@ -190,9 +192,11 @@ void nr_fill_dci_and_dlsch(PHY_VARS_gNB *gNB,
break;
case NFAPI_NR_RNTI_C:
// indicating a DL DCI format 1bit
pos++;
*dci_pdu |= (pdu_rel15->format_indicator&1)<<(dci_alloc->size-pos);
// Freq domain assignment (275rb >> fsize = 16)
fsize = (int)ceil( log2( (N_RB*(N_RB+1))>>1 ) );
pos+=fsize;
......@@ -225,7 +229,6 @@ void nr_fill_dci_and_dlsch(PHY_VARS_gNB *gNB,
pos+=4;
*dci_pdu |= ((pdu_rel15->time_domain_assignment&0xf) << (dci_alloc->size-pos));
// VRB to PRB mapping 1bit
pos++;
*dci_pdu |= (pdu_rel15->vrb_to_prb_mapping&1)<<(dci_alloc->size-pos);
......
......@@ -28,6 +28,7 @@
#include "PHY/NR_REFSIG/refsig_defs_ue.h"
#include "filt16a_32.h"
#include "T.h"
//#define DEBUG_PDSCH
//#define DEBUG_PDCCH
......@@ -271,8 +272,8 @@ int nr_pdcch_channel_estimation(PHY_VARS_NR_UE *ue,
//uint16_t Nid_cell = (eNB_offset == 0) ? ue->frame_parms.Nid_cell : ue->measurements.adj_cell_id[eNB_offset-1];
uint8_t nushift;
int **dl_ch_estimates =ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].dl_ch_estimates[eNB_offset];
int **rxdataF=ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF;
int **dl_ch_estimates =ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].dl_ch_estimates[eNB_offset];
int **rxdataF=ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].rxdataF;
nushift = 1;
ue->frame_parms.nushift = nushift;
......@@ -287,7 +288,7 @@ int nr_pdcch_channel_estimation(PHY_VARS_NR_UE *ue,
k = coreset_start_subcarrier;
#ifdef DEBUG_PDCCH
printf("PDCCH Channel Estimation : ThreadId %d, eNB_offset %d ch_offset %d, OFDM size %d, Ncp=%d, l=%d, Ns=%d, k=%d symbol %d\n",ue->current_thread_id[Ns>>1], eNB_offset,ch_offset,ue->frame_parms.ofdm_symbol_size,
printf("PDCCH Channel Estimation : ThreadId %d, eNB_offset %d ch_offset %d, OFDM size %d, Ncp=%d, l=%d, Ns=%d, k=%d symbol %d\n",ue->current_thread_id[Ns], eNB_offset,ch_offset,ue->frame_parms.ofdm_symbol_size,
ue->frame_parms.Ncp,l,Ns,k, symbol);
#endif
......@@ -297,7 +298,7 @@ int nr_pdcch_channel_estimation(PHY_VARS_NR_UE *ue,
// generate pilot
nr_pdcch_dmrs_rx(ue,eNB_offset,Ns,ue->nr_gold_pdcch[eNB_offset][Ns>>1][symbol], &pilot[0],2000,nb_rb_coreset);
nr_pdcch_dmrs_rx(ue,eNB_offset,Ns,ue->nr_gold_pdcch[eNB_offset][Ns][symbol], &pilot[0],2000,nb_rb_coreset);
for (aarx=0; aarx<ue->frame_parms.nb_antennas_rx; aarx++) {
......@@ -459,16 +460,16 @@ int nr_pdcch_channel_estimation(PHY_VARS_NR_UE *ue,
break;
}
//if( (Ns== 2) && (l == 0))
if( (Ns== 1) && (l == 0))
{
// do ifft of channel estimate
for (aarx=0; aarx<ue->frame_parms.nb_antennas_rx; aarx++)
for (p=0; p<ue->frame_parms.nb_antenna_ports_eNB; p++) {
if (ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].dl_ch_estimates[eNB_offset][(p<<1)+aarx])
if (ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].dl_ch_estimates[eNB_offset][(p<<1)+aarx])
{
LOG_D(PHY,"Channel Impulse Computation Slot %d ThreadId %d Symbol %d \n", Ns, ue->current_thread_id[Ns>>1], l);
idft((int16_t*) &ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].dl_ch_estimates[eNB_offset][(p<<1)+aarx][0],
(int16_t*) ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].dl_ch_estimates_time[eNB_offset][(p<<1)+aarx],1);
LOG_D(PHY,"Channel Impulse Computation Slot %d ThreadId %d Symbol %d \n", Ns, ue->current_thread_id[Ns], l);
idft((int16_t*) &ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].dl_ch_estimates[eNB_offset][(p<<1)+aarx][0],
(int16_t*) ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].dl_ch_estimates_time[eNB_offset][(p<<1)+aarx],1);
}
}
}
......@@ -496,8 +497,8 @@ int nr_pdsch_channel_estimation(PHY_VARS_NR_UE *ue,
//uint16_t Nid_cell = (eNB_offset == 0) ? ue->frame_parms.Nid_cell : ue->measurements.adj_cell_id[eNB_offset-1];
uint8_t nushift;
int **dl_ch_estimates =ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].dl_ch_estimates[eNB_offset];
int **rxdataF=ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns>>1]].rxdataF;
int **dl_ch_estimates =ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].dl_ch_estimates[eNB_offset];
int **rxdataF=ue->common_vars.common_vars_rx_data_per_thread[ue->current_thread_id[Ns]].rxdataF;
nushift = (p>>1)&1;
ue->frame_parms.nushift = nushift;
......
......@@ -806,7 +806,7 @@ int32_t nr_rx_pdcch(PHY_VARS_NR_UE *ue,
// For each BWP the number of CORESETs is limited to 3 (including initial CORESET Id=0 -> ControlResourceSetId (0..maxNrofControlReourceSets-1) (0..12-1)
//uint32_t n_BWP_start = 0;
//uint32_t n_rb_offset = 0;
uint32_t n_rb_offset = pdcch_vars2->coreset[nb_coreset_active].rb_offset+(int)floor(frame_parms->ssb_start_subcarrier/NR_NB_SC_PER_RB);
uint32_t n_rb_offset = pdcch_vars2->coreset[nb_coreset_active].rb_offset/*+(int)floor(frame_parms->ssb_start_subcarrier/NR_NB_SC_PER_RB)*/;
// start time position for CORESET
// parameter symbol_mon is a 14 bits bitmap indicating monitoring symbols within a slot
uint8_t start_symbol = 0;
......@@ -1049,7 +1049,7 @@ void nr_pdcch_unscrambling(uint16_t crnti, NR_DL_FRAME_PARMS *frame_parms, uint8
x2 = (((1<<16)*n_rnti)+n_id); //mod 2^31 is implicit //this is c_init in 38.211 v15.1.0 Section 7.3.2.3
// x2 = (nr_tti_rx << 9) + frame_parms->Nid_cell; //this is c_init in 36.211 Sec 6.8.2
#ifdef NR_PDCCH_DCI_DEBUG
printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_unscrambling)-> (c_init=%d, n_id=%d, n_rnti=%d, length=%d)\n",x2,n_id,n_rnti,length);
//printf("\t\t<-NR_PDCCH_DCI_DEBUG (nr_pdcch_unscrambling)-> (c_init=%d, n_id=%d, n_rnti=%d, length=%d)\n",x2,n_id,n_rnti,length);
#endif
for (i = 0; i < length; i++) {
if ((i & 0x1f) == 0) {
......@@ -1119,13 +1119,13 @@ void nr_dci_decoding_procedure0(int s,
uint32_t *CCEmap1,
uint32_t *CCEmap2) {
uint16_t crc, CCEind, nCCE[3];
uint32_t crc, CCEind, nCCE[3];
uint32_t *CCEmap = NULL, CCEmap_mask = 0;
uint8_t L2 = (1 << L);
unsigned int Yk, nb_candidates = 0, i, m;
unsigned int CCEmap_cand;
int8_t decoderState=0;
uint32_t decoderState=0;
// A[p], p is the current active CORESET
uint16_t A[3]={39827,39829,39839};
......@@ -1362,17 +1362,17 @@ void nr_dci_decoding_procedure0(int s,
#endif
*/
uint32_t dci_estimation[4]={0};
uint64_t dci_estimation[2]={0};
nr_polar_init(&nrPolar_params, 1, sizeof_bits, L2);
t_nrPolar_paramsPtr currentPtrDCI=nr_polar_params(nrPolar_params, 1, sizeof_bits, L2);
decoderState = polar_decoder_int16(&pdcch_vars[eNB_id]->e_rx[CCEind*9*6*2],
(uint64_t*)dci_estimation,
dci_estimation,
currentPtrDCI);
crc = decoderState;
//crc = (crc16(&dci_decoded_output[current_thread_id][0], sizeof_bits) >> 16) ^ extract_crc(&dci_decoded_output[current_thread_id][0], sizeof_bits);
#ifdef NR_PDCCH_DCI_DEBUG
printf ("\t\t<-NR_PDCCH_DCI_DEBUG (nr_dci_decoding_procedure0)-> ... we end function dci_decoding() with crc=%x\n",crc);
......@@ -1452,12 +1452,12 @@ void nr_dci_decoding_procedure0(int s,
dci_alloc[*dci_cnt].dci_pdu[1] = dci_estimation[1];
dci_alloc[*dci_cnt].dci_pdu[2] = dci_estimation[2];
dci_alloc[*dci_cnt].dci_pdu[3] = dci_estimation[3];
#ifdef NR_PDCCH_DCI_DEBUG
//#ifdef NR_PDCCH_DCI_DEBUG
printf ("\t\t<-NR_PDCCH_DCI_DEBUG (nr_dci_decoding_procedure0)-> rnti matches -> DCI FOUND !!! crc =>%x, sizeof_bits %d, sizeof_bytes %d \n",
dci_alloc[*dci_cnt].rnti, dci_alloc[*dci_cnt].dci_length, sizeof_bytes);
printf ("\t\t<-NR_PDCCH_DCI_DEBUG (nr_dci_decoding_procedure0)-> dci_cnt %d (format_css %d crc_scrambled %d) L %d, firstCCE %d pdu[0] %x pdu[1] %x pdu[2] %x pdu[3] %x \n",
*dci_cnt, format_css,*crc_scrambled,dci_alloc[*dci_cnt].L, dci_alloc[*dci_cnt].firstCCE,dci_alloc[*dci_cnt].dci_pdu[0],dci_alloc[*dci_cnt].dci_pdu[1],dci_alloc[*dci_cnt].dci_pdu[2],dci_alloc[*dci_cnt].dci_pdu[3]);
#endif
//#endif
if ((format_css == cformat0_0_and_1_0) || (format_uss == uformat0_0_and_1_0)){
if ((*crc_scrambled == _p_rnti) || (*crc_scrambled == _si_rnti) || (*crc_scrambled == _ra_rnti)){
dci_alloc[*dci_cnt].format = format1_0;
......@@ -2676,7 +2676,7 @@ uint8_t nr_dci_decoding_procedure(int s,
printf("\t<-NR_PDCCH_DCI_DEBUG (nr_dci_decoding_procedure)-> calculating dci format size for common searchSpaces with format css_dci_format=%d, format_0_0_1_0_size_bits=%d, format_0_0_1_0_size_bytes=%d\n",
css_dci_format,format_0_0_1_0_size_bits,format_0_0_1_0_size_bytes);
#endif
for (int aggregationLevel = 3; aggregationLevel<4 ; aggregationLevel++) { // We fix aggregationLevel to 3 for testing=> nbr of CCE=8
for (int aggregationLevel = 0; aggregationLevel<5 ; aggregationLevel++) { // We fix aggregationLevel to 3 for testing=> nbr of CCE=8
//for (int aggregationLevel = 2; aggregationLevel<5 ; aggregationLevel++) {
// for aggregation level aggregationLevel. The number of candidates (for L2= 2^aggregationLevel) will be calculated in function nr_dci_decoding_procedure0
#ifdef NR_PDCCH_DCI_DEBUG
......
......@@ -52,7 +52,7 @@
//#define DEBUG_DCI
#define NR_PDCCH_DCI_TOOLS
#define NR_PDCCH_DCI_TOOLS_DEBUG
//#define NR_PDCCH_DCI_TOOLS_DEBUG
typedef unsigned __int128 uint128_t;
......
......@@ -618,7 +618,7 @@ int nr_rx_pbch( PHY_VARS_NR_UE *ue,
#ifdef DEBUG_PBCH
printf("xtra_byte %x payload %x\n", xtra_byte, payload);
for (i=0; i<(NR_POLAR_PBCH_PAYLOAD_BITS>>3); i++){
for (int i=0; i<(NR_POLAR_PBCH_PAYLOAD_BITS>>3); i++){
// printf("unscrambling pbch_a[%d] = %x \n", i,pbch_a[i]);
printf("[PBCH] decoder payload[%d] = %x\n",i,decoded_output[i]);
}
......
......@@ -56,7 +56,7 @@ void nr_group_sequence_hopping (//pucch_GroupHopping_t ue->pucch_config_common_n
int nr_tti_tx,
uint8_t *u,
uint8_t *v) {
/*
/*
* Implements TS 38.211 subclause 6.3.2.2.1 Group and sequence hopping
* The following variables are set by higher layers:
* - PUCCH_GroupHopping:
......@@ -75,43 +75,66 @@ void nr_group_sequence_hopping (//pucch_GroupHopping_t ue->pucch_config_common_n
// Cell-Specific scrambling ID for group hoppping and sequence hopping if enabled
// Corresponds to L1 parameter 'HoppingID' (see 38.211, section 6.3.2.2) BIT STRING (SIZE (10))
uint16_t n_id = ue->pucch_config_common_nr->hoppingId; // from higher layers FIXME!!!
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
// initialization to be removed
PUCCH_GroupHopping=neither;
n_id=10;
printf("\t\t [nr_group_sequence_hopping] initialization PUCCH_GroupHopping=%d, n_id=%d -> variable initializations TO BE REMOVED\n",PUCCH_GroupHopping,n_id);
#endif
#endif
uint8_t f_ss=0,f_gh=0;
*u=0;
*v=0;
uint32_t c_init = (1<<5)*floor(n_id/30)+(n_id%30); // we initialize c_init to calculate u,v
uint32_t x1,s = lte_gold_generic(&x1, &c_init, 1); // TS 38.211 Subclause 5.2.1
#ifdef DEBUG_NR_PUCCH_TX
int l = 32, minShift = ((2*nr_tti_tx+n_hop)<<3);
int tmpShift =0;
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t [nr_group_sequence_hopping] calculating u,v -> ");
#endif
#endif
if (PUCCH_GroupHopping == neither){ // PUCCH_GroupHopping 'neither'
if (PUCCH_GroupHopping == neither) { // PUCCH_GroupHopping 'neither'
f_ss = n_id%30;
}
if (PUCCH_GroupHopping == enable){ // PUCCH_GroupHopping 'enabled'
for (int m=0; m<8; m++){
f_gh = f_gh + ((1<<m)*((uint8_t)((s>>(8*(2*nr_tti_tx+n_hop)+m))&1))); // Not sure we have to use nr_tti_tx FIXME!!!
if (PUCCH_GroupHopping == enable) { // PUCCH_GroupHopping 'enabled'
for (int m=0; m<8; m++) {
while(minShift >= l) {
s = lte_gold_generic(&x1, &c_init, 0);
l = l+32;
}
tmpShift = (minShift&((1<<5)-1)); //minShift%32;
f_gh = f_gh + ((1<<m)*((uint8_t)((s>>tmpShift)&1)));
minShift ++;
}
f_gh = f_gh%30;
f_ss = n_id%30;
/* for (int m=0; m<8; m++){
f_gh = f_gh + ((1<<m)*((uint8_t)((s>>(8*(2*nr_tti_tx+n_hop)+m))&1))); // Not sure we have to use nr_tti_tx FIXME!!!
}
f_gh = f_gh%30;
f_ss = n_id%30;*/
}
if (PUCCH_GroupHopping == disable){ // PUCCH_GroupHopping 'disabled'
if (PUCCH_GroupHopping == disable) { // PUCCH_GroupHopping 'disabled'
f_ss = n_id%30;
*v = (uint8_t)((s>>(2*nr_tti_tx+n_hop))&1); // Not sure we have to use nr_tti_tx FIXME!!!
l = 32, minShift = (2*nr_tti_tx+n_hop);
while(minShift >= l) {
s = lte_gold_generic(&x1, &c_init, 0);
l = l+32;
}
tmpShift = (minShift&((1<<5)-1)); //minShift%32;
*v = (uint8_t)((s>>tmpShift)&1);
// *v = (uint8_t)((s>>(2*nr_tti_tx+n_hop))&1); // Not sure we have to use nr_tti_tx FIXME!!!
}
*u = (f_gh+f_ss)%30;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("%d,%d\n",*u,*v);
#endif
#endif
}
double nr_cyclic_shift_hopping(PHY_VARS_NR_UE *ue,
......@@ -120,7 +143,7 @@ double nr_cyclic_shift_hopping(PHY_VARS_NR_UE *ue,
uint8_t lnormal,
uint8_t lprime,
int nr_tti_tx) {
/*
/*
* Implements TS 38.211 subclause 6.3.2.2.2 Cyclic shift hopping
* - n_id: higher-layer parameter hoppingId
* - m0: provided by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift of PUCCH-F0-resource-config
......@@ -131,26 +154,36 @@ double nr_cyclic_shift_hopping(PHY_VARS_NR_UE *ue,
// alpha_init initialized to 2*PI/12=0.5235987756
double alpha = 0.5235987756;
uint32_t c_init = ue->pucch_config_common_nr->hoppingId; // we initialize c_init again to calculate n_cs
#ifdef DEBUG_NR_PUCCH_TX
// initialization to be removed
#ifdef DEBUG_NR_PUCCH_TX
// initialization to be remo.ved
c_init=10;
printf("\t\t [nr_cyclic_shift_hopping] initialization c_init=%d -> variable initialization TO BE REMOVED\n",c_init);
#endif
#endif
uint32_t x1,s = lte_gold_generic(&x1, &c_init, 1); // TS 38.211 Subclause 5.2.1
uint8_t n_cs=0;
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t [nr_cyclic_shift_hopping] calculating alpha (cyclic shift) using c_init=%d -> ",c_init);
#endif
for (int m=0; m<8; m++){
int l = 32, minShift = (14*8*nr_tti_tx )+ 8*(lnormal+lprime);
int tmpShift =0;
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t [nr_cyclic_shift_hopping] calculating alpha (cyclic shift) using c_init=%d -> \n",c_init);
#endif
for (int m=0; m<8; m++) {
while(minShift >= l) {
s = lte_gold_generic(&x1, &c_init, 0);
l = l+32;
}
tmpShift = (minShift&((1<<5)-1)); //minShift%32;
minShift ++;
n_cs = n_cs+((1<<m)*((uint8_t)((s>>tmpShift)&1)));
// calculating n_cs (Not sure we have to use nr_tti_tx FIXME!!!)
n_cs = n_cs+((1<<m)*((uint8_t)((s>>((14*8*nr_tti_tx) + 8*(lnormal+lprime) + m))&1)));
// n_cs = n_cs+((1<<m)*((uint8_t)((s>>((14*8*nr_tti_tx) + 8*(lnormal+lprime) + m))&1)));
}
alpha = (alpha * (double)((m0+mcs+n_cs)%12));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("n_cs=%d -> %lf\n",n_cs,alpha);
#endif
#endif
return(alpha);
}
void nr_generate_pucch0(PHY_VARS_NR_UE *ue,
......@@ -164,18 +197,16 @@ void nr_generate_pucch0(PHY_VARS_NR_UE *ue,
uint8_t nrofSymbols,
uint8_t startingSymbolIndex,
uint16_t startingPRB) {
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch0] start function at slot(nr_tti_tx)=%d\n",nr_tti_tx);
#endif
#endif
/*
* Implement TS 38.211 Subclause 6.3.2.3.1 Sequence generation
*
*/
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch0] sequence generation\n");
#endif
#endif
/*
* Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
*/
......@@ -187,13 +218,11 @@ void nr_generate_pucch0(PHY_VARS_NR_UE *ue,
//uint8_t lprime;
// mcs is provided by TC 38.213 subclauses 9.2.3, 9.2.4, 9.2.5 FIXME!
//uint8_t mcs;
/*
* in TS 38.213 Subclause 9.2.1 it is said that:
* for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
* is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
*/
/*
* Implementing TS 38.211 Subclause 6.3.2.3.1, the sequence x(n) shall be generated according to:
* x(l*12+n) = r_u_v_alpha_delta(n)
......@@ -207,70 +236,78 @@ void nr_generate_pucch0(PHY_VARS_NR_UE *ue,
// n_hop = 1 for second hop
uint8_t n_hop = 0;
//uint8_t PUCCH_Frequency_Hopping; // from higher layers FIXME!!
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch0] sequence generation: variable initialization for test\n");
#endif
// x_n contains the sequence r_u_v_alpha_delta(n)
int16_t x_n_re[24],x_n_im[24];
// we proceed to calculate alpha according to TS 38.211 Subclause 6.3.2.2.2
for (int l=0; l<nrofSymbols; l++){
for (int l=0; l<nrofSymbols; l++) {
// if frequency hopping is enabled n_hop = 1 for second hop. Not sure frequency hopping concerns format 0. FIXME!!!
// if ((PUCCH_Frequency_Hopping == 1)&&(l == (nrofSymbols-1))) n_hop = 1;
nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,startingSymbolIndex,nr_tti_tx);
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch0] sequence generation \tu=%d \tv=%d \talpha=%lf \t(for symbol l=%d)\n",u,v,alpha,l);
#endif
for (int n=0; n<12; n++){
#endif
for (int n=0; n<12; n++) {
x_n_re[(12*l)+n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
- (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
x_n_im[(12*l)+n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
+ (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15))); // Im part of base sequence shifted by alpha
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch0] sequence generation \tu=%d \tv=%d \talpha=%lf \tx_n(l=%d,n=%d)=(%d,%d)\n",
u,v,alpha,l,n,x_n_re[(12*l)+n],x_n_im[(12*l)+n]);
#endif
#endif
}
}
/*
* Implementing TS 38.211 Subclause 6.3.2.3.2 Mapping to physical resources FIXME!
*/
//int32_t *txptr;
uint32_t re_offset=0;
for (int l=0; l<nrofSymbols; l++) {
if ((startingPRB < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
}
if ((startingPRB < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
if ((startingPRB > (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
}
if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB contains DC
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
//txptr = &txdataF[0][re_offset];
for (int n=0; n<12; n++){
for (int n=0; n<12; n++) {
if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
// if number RBs in bandwidth is odd and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
}
((int16_t *)&txdataF[0][re_offset])[0] = (int16_t)(((int32_t)(amp) * x_n_re[(12*l)+n])>>15);
((int16_t *)&txdataF[0][re_offset])[1] = (int16_t)(((int32_t)(amp) * x_n_im[(12*l)+n])>>15);
//((int16_t *)txptr[0][re_offset])[0] = (int16_t)((int32_t)amp * x_n_re[(12*l)+n])>>15;
//((int16_t *)txptr[0][re_offset])[1] = (int16_t)((int32_t)amp * x_n_im[(12*l)+n])>>15;
//txptr[re_offset] = (x_n_re[(12*l)+n]<<16) + x_n_im[(12*l)+n];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch0] mapping to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \ttxptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
re_offset++;
}
}
......@@ -294,39 +331,43 @@ void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
printf("\t [nr_generate_pucch1] start function at slot(nr_tti_tx)=%d payload=%d m0=%d nrofSymbols=%d startingSymbolIndex=%d startingPRB=%d startingPRB_intraSlotHopping=%d timeDomainOCC=%d nr_bit=%d\n",
nr_tti_tx,payload,m0,nrofSymbols,startingSymbolIndex,startingPRB,startingPRB_intraSlotHopping,timeDomainOCC,nr_bit);
#endif
/*
* Implement TS 38.211 Subclause 6.3.2.4.1 Sequence modulation
*
*/
// complex-valued symbol d_re, d_im containing complex-valued symbol d(0):
int16_t d_re=0, d_im=0;
if (nr_bit == 1) { // using BPSK if M_bit=1 according to TC 38.211 Subclause 5.1.2
d_re = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (nr_bit == 2) { // using QPSK if M_bit=2 according to TC 38.211 Subclause 5.1.2
if (((payload&1)==0) && (((payload>>1)&1)==0)) {
d_re = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15); // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
d_im = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((payload&1)==0) && (((payload>>1)&1)==1)) {
d_re = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((payload&1)==1) && (((payload>>1)&1)==0)) {
d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((payload&1)==1) && (((payload>>1)&1)==1)) {
d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
}
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] sequence modulation: payload=%x \tde_re=%d \tde_im=%d\n",payload,d_re,d_im);
#endif
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] sequence modulation: payload=%x \tde_re=%d \tde_im=%d\n",payload,d_re,d_im);
#endif
/*
* Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
*/
......@@ -346,7 +387,6 @@ void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
* for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
* is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
*/
/*
* the complex-valued symbol d_0 shall be multiplied with a sequence r_u_v_alpha_delta(n): y(n) = d_0 * r_u_v_alpha_delta(n)
*/
......@@ -363,37 +403,42 @@ void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
// otherwise no intra-slot frequency hopping shall be assumed
//uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
uint8_t intraSlotFrequencyHopping = 0;
if (startingPRB != startingPRB_intraSlotHopping){
if (startingPRB != startingPRB_intraSlotHopping) {
intraSlotFrequencyHopping=1;
}
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] intraSlotFrequencyHopping = %d \n",intraSlotFrequencyHopping);
#endif
/*
/*
* Implementing TS 38.211 Subclause 6.3.2.4.2 Mapping to physical resources
*/
//int32_t *txptr;
uint32_t re_offset=0;
int i=0;
#define MAX_SIZE_Z 168 // this value has to be calculated from mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n
#define MAX_SIZE_Z 168 // this value has to be calculated from mprime*12*table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[pucch_symbol_length]+m*12+n
int16_t z_re[MAX_SIZE_Z],z_im[MAX_SIZE_Z];
int16_t z_dmrs_re[MAX_SIZE_Z],z_dmrs_im[MAX_SIZE_Z];
for (int l=0; l<nrofSymbols; l++) {
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] for symbol l=%d, lprime=%d\n",
l,lprime);
#endif
#endif
// y_n contains the complex value d multiplied by the sequence r_u_v
int16_t y_n_re[12],y_n_im[12];
if ((intraSlotFrequencyHopping == 1) && (l >= (int)floor(nrofSymbols/2))) n_hop = 1; // n_hop = 1 for second hop
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] entering function nr_group_sequence_hopping with n_hop=%d, nr_tti_tx=%d\n",
n_hop,nr_tti_tx);
#endif
#endif
nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,lprime,nr_tti_tx);
for (int n=0; n<12; n++){
for (int n=0; n<12; n++) {
r_u_v_alpha_delta_re[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
- (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
r_u_v_alpha_delta_im[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
......@@ -409,11 +454,12 @@ void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
- (((int32_t)(r_u_v_alpha_delta_im[n])*d_im)>>15))); // Re part of y(n)
y_n_im[n] = (int16_t)(((((int32_t)(r_u_v_alpha_delta_re[n])*d_im)>>15)
+ (((int32_t)(r_u_v_alpha_delta_im[n])*d_re)>>15))); // Im part of y(n)
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] sequence generation \tu=%d \tv=%d \talpha=%lf \tr_u_v_alpha_delta[n=%d]=(%d,%d) \ty_n[n=%d]=(%d,%d)\n",
u,v,alpha,n,r_u_v_alpha_delta_re[n],r_u_v_alpha_delta_im[n],n,y_n_re[n],y_n_im[n]);
#endif
#endif
}
/*
* The block of complex-valued symbols y(n) shall be block-wise spread with the orthogonal sequence wi(m)
* (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
......@@ -439,67 +485,72 @@ void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
uint8_t N_SF_mprime0_PUCCH_DMRS_1;
// mprime is 0 if no intra-slot hopping / mprime is {0,1} if intra-slot hopping
uint8_t mprime = 0;
if (intraSlotFrequencyHopping == 0) { // intra-slot hopping disabled
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d, intra-slot hopping disabled\n",
intraSlotFrequencyHopping);
#endif
#endif
N_SF_mprime_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (PUCCH)
N_SF_mprime_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (DM-RS)
N_SF_mprime0_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (PUCCH)
N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (DM-RS)
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] w_index = %d, N_SF_mprime_PUCCH_1 = %d, N_SF_mprime_PUCCH_DMRS_1 = %d, N_SF_mprime0_PUCCH_1 = %d, N_SF_mprime0_PUCCH_DMRS_1 = %d\n",
w_index, N_SF_mprime_PUCCH_1,N_SF_mprime_PUCCH_DMRS_1,N_SF_mprime0_PUCCH_1,N_SF_mprime0_PUCCH_DMRS_1);
#endif
for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
for (int n=0; n<12 ; n++){
#endif
for (int m=0; m < N_SF_mprime_PUCCH_1; m++) {
for (int n=0; n<12 ; n++) {
z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
- (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
+ (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] block-wise spread with wi(m) (mprime=%d, m=%d, n=%d) z[%d] = ((%d * %d - %d * %d), (%d * %d + %d * %d)) = (%d,%d)\n",
mprime, m, n, (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],
table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],
z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
#endif
#endif
}
}
for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
for (int n=0; n<12 ; n++){
for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++) {
for (int n=0; n<12 ; n++) {
z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_re[n])>>15)
- (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_im[n])>>15));
z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_im[n])>>15)
+ (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_re[n])>>15));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] block-wise spread with wi(m) (mprime=%d, m=%d, n=%d) z[%d] = ((%d * %d - %d * %d), (%d * %d + %d * %d)) = (%d,%d)\n",
mprime, m, n, (mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_im[n],
table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],r_u_v_alpha_delta_dmrs_re[n],
z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
#endif
#endif
}
}
}
if (intraSlotFrequencyHopping == 1) { // intra-slot hopping enabled
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d, intra-slot hopping enabled\n",
intraSlotFrequencyHopping);
#endif
#endif
N_SF_mprime_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
N_SF_mprime_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
N_SF_mprime0_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] w_index = %d, N_SF_mprime_PUCCH_1 = %d, N_SF_mprime_PUCCH_DMRS_1 = %d, N_SF_mprime0_PUCCH_1 = %d, N_SF_mprime0_PUCCH_DMRS_1 = %d\n",
w_index, N_SF_mprime_PUCCH_1,N_SF_mprime_PUCCH_DMRS_1,N_SF_mprime0_PUCCH_1,N_SF_mprime0_PUCCH_DMRS_1);
#endif
for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
for (mprime = 0; mprime<2; mprime++){ // mprime can get values {0,1}
for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
for (int n=0; n<12 ; n++){
#endif
for (int m=0; m < N_SF_mprime_PUCCH_1; m++) {
for (mprime = 0; mprime<2; mprime++) { // mprime can get values {0,1}
for (int m=0; m < N_SF_mprime_PUCCH_1; m++) {
for (int n=0; n<12 ; n++) {
z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
- (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
......@@ -513,8 +564,9 @@ void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
#endif
}
}
for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
for (int n=0; n<12 ; n++){
for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++) {
for (int n=0; n<12 ; n++) {
z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_re[n])>>15)
- (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_im[n])>>15));
z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_dmrs_im[n])>>15)
......@@ -528,57 +580,67 @@ void nr_generate_pucch1(PHY_VARS_NR_UE *ue,
#endif
}
}
N_SF_mprime_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (PUCCH)
N_SF_mprime_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (DM-RS)
}
}
}
if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new offset PRB
startingPRB = startingPRB + startingPRB_intraSlotHopping;
}
if ((startingPRB < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
}
if ((startingPRB < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
if ((startingPRB > (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
}
if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB contains DC
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
//txptr = &txdataF[0][re_offset];
for (int n=0; n<12; n++){
for (int n=0; n<12; n++) {
if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
// if number RBs in bandwidth is odd and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
}
if (l%2 == 1) { // mapping PUCCH according to TS38.211 subclause 6.4.1.3.1
((int16_t *)&txdataF[0][re_offset])[0] = z_re[i+n];
((int16_t *)&txdataF[0][re_offset])[1] = z_im[i+n];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
}
if (l%2 == 0) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.1
((int16_t *)&txdataF[0][re_offset])[0] = z_dmrs_re[i+n];
((int16_t *)&txdataF[0][re_offset])[1] = z_dmrs_im[i+n];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
}
re_offset++;
}
if (l%2 == 1) i+=12;
}
}
......@@ -602,39 +664,43 @@ void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
printf("\t [nr_generate_pucch1] start function at slot(nr_tti_tx)=%d payload=%d m0=%d nrofSymbols=%d startingSymbolIndex=%d startingPRB=%d startingPRB_intraSlotHopping=%d timeDomainOCC=%d nr_bit=%d\n",
nr_tti_tx,payload,m0,nrofSymbols,startingSymbolIndex,startingPRB,startingPRB_intraSlotHopping,timeDomainOCC,nr_bit);
#endif
/*
* Implement TS 38.211 Subclause 6.3.2.4.1 Sequence modulation
*
*/
// complex-valued symbol d_re, d_im containing complex-valued symbol d(0):
int16_t d_re, d_im;
if (nr_bit == 1) { // using BPSK if M_bit=1 according to TC 38.211 Subclause 5.1.2
d_re = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im = (payload&1)==0 ? (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15) : -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (nr_bit == 2) { // using QPSK if M_bit=2 according to TC 38.211 Subclause 5.1.2
if (((payload&1)==0) && (((payload>>1)&1)==0)) {
d_re = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15); // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
d_im = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((payload&1)==0) && (((payload>>1)&1)==1)) {
d_re = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((payload&1)==1) && (((payload>>1)&1)==0)) {
d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((payload&1)==1) && (((payload>>1)&1)==1)) {
d_re = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
}
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] sequence modulation: payload=%x \tde_re=%d \tde_im=%d\n",payload,d_re,d_im);
#endif
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] sequence modulation: payload=%x \tde_re=%d \tde_im=%d\n",payload,d_re,d_im);
#endif
/*
* Defining cyclic shift hopping TS 38.211 Subclause 6.3.2.2.2
*/
......@@ -654,7 +720,6 @@ void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
* for PUCCH format 0 or PUCCH format 1, the index of the cyclic shift
* is indicated by higher layer parameter PUCCH-F0-F1-initial-cyclic-shift
*/
/*
* the complex-valued symbol d_0 shall be multiplied with a sequence r_u_v_alpha_delta(n): y(n) = d_0 * r_u_v_alpha_delta(n)
*/
......@@ -671,11 +736,12 @@ void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
// otherwise no intra-slot frequency hopping shall be assumed
//uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
uint8_t intraSlotFrequencyHopping = 0;
if (startingPRB != startingPRB_intraSlotHopping){
if (startingPRB != startingPRB_intraSlotHopping) {
intraSlotFrequencyHopping=1;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] intraSlotFrequencyHopping=%d \n",intraSlotFrequencyHopping);
#endif
#endif
// n_hop = 1 for second hop;
// FIXME
// When hopping will be activated we have to implement this function differently as PUCH signal generation depends on n_hop value for u,v calculation
......@@ -683,13 +749,14 @@ void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
// y_n contains the complex value d multiplied by the sequence r_u_v
int16_t y_n_re[12],y_n_im[12];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] entering function nr_group_sequence_hopping with n_hop=%d, nr_tti_tx=%d\n",
n_hop,nr_tti_tx);
#endif
#endif
nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
alpha = nr_cyclic_shift_hopping(ue,m0,mcs,lnormal,lprime,nr_tti_tx);
for (int n=0; n<12; n++){
for (int n=0; n<12; n++) {
r_u_v_alpha_delta_re[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Re[u][n])>>15)
- (((int32_t)(round(32767*sin(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15))); // Re part of base sequence shifted by alpha
r_u_v_alpha_delta_im[n] = (int16_t)(((((int32_t)(round(32767*cos(alpha*n))) * table_5_2_2_2_2_Im[u][n])>>15)
......@@ -702,11 +769,12 @@ void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
// DM-RS sequence
r_u_v_alpha_delta_re[n] = (int16_t)(((int32_t)amp*r_u_v_alpha_delta_re[n])>>15);
r_u_v_alpha_delta_im[n] = (int16_t)(((int32_t)amp*r_u_v_alpha_delta_im[n])>>15);
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] sequence generation \tu=%d \tv=%d \talpha=%lf \tr_u_v_alpha_delta[n=%d]=(%d,%d) \ty_n[n=%d]=(%d,%d)\n",
u,v,alpha,n,r_u_v_alpha_delta_re[n],r_u_v_alpha_delta_im[n],n,y_n_re[n],y_n_im[n]);
#endif
#endif
}
/*
* The block of complex-valued symbols y(n) shall be block-wise spread with the orthogonal sequence wi(m)
* (defined in table_6_3_2_4_1_2_Wi_Re and table_6_3_2_4_1_2_Wi_Im)
......@@ -736,124 +804,144 @@ void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
uint8_t N_SF_mprime0_PUCCH_DMRS_1;
// mprime is 0 if no intra-slot hopping / mprime is {0,1} if intra-slot hopping
uint8_t mprime = 0;
if (intraSlotFrequencyHopping == 0) { // intra-slot hopping disabled
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d\n",
intraSlotFrequencyHopping);
#endif
#endif
N_SF_mprime_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (PUCCH)
N_SF_mprime_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled (DM-RS)
N_SF_mprime0_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (PUCCH)
N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_noHop[nrofSymbols-1]; // only if intra-slot hopping not enabled mprime = 0 (DM-RS)
for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
for (int n=0; n<12 ; n++){
for (int m=0; m < N_SF_mprime_PUCCH_1; m++) {
for (int n=0; n<12 ; n++) {
z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
- (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
+ (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t z_pucch[%d] \t= ((%d \t* %d \t-%d \t* %d), (%d \t* %d \t+%d \t*%d)) = (%d,%d)\n",
(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n,
table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],
table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m],y_n_im[n],table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m],y_n_re[n],
z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
#endif
#endif
}
}
for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
for (int n=0; n<12 ; n++){
for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++) {
for (int n=0; n<12 ; n++) {
z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15)
- (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15));
z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15)
+ (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t z_dm-rs[%d] = ((),()) =(%d,%d)\n",
(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n,z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n],z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n]);
#endif
#endif
}
}
}
if (intraSlotFrequencyHopping == 1) { // intra-slot hopping enabled
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] block-wise spread with the orthogonal sequence wi(m) if intraSlotFrequencyHopping = %d\n",
intraSlotFrequencyHopping);
#endif
#endif
N_SF_mprime_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
N_SF_mprime_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
N_SF_mprime0_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (PUCCH)
N_SF_mprime0_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m0Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 0 (DM-RS)
for (mprime = 0; mprime<2; mprime++){ // mprime can get values {0,1}
for (int m=0; m < N_SF_mprime_PUCCH_1; m++){
for (int n=0; n<12 ; n++){
for (mprime = 0; mprime<2; mprime++) { // mprime can get values {0,1}
for (int m=0; m < N_SF_mprime_PUCCH_1; m++) {
for (int n=0; n<12 ; n++) {
z_re[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15)
- (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15));
z_im[(mprime*12*N_SF_mprime0_PUCCH_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*y_n_im[n])>>15)
+ (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*y_n_re[n])>>15));
}
}
for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++){
for (int n=0; n<12 ; n++){
for (int m=0; m < N_SF_mprime_PUCCH_DMRS_1; m++) {
for (int n=0; n<12 ; n++) {
z_dmrs_re[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15)
- (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15));
z_dmrs_im[(mprime*12*N_SF_mprime0_PUCCH_DMRS_1)+(m*12)+n] = (int16_t)((((int32_t)(table_6_3_2_4_1_2_Wi_Re[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_im[n])>>15)
+ (((int32_t)(table_6_3_2_4_1_2_Wi_Im[N_SF_mprime_PUCCH_1][w_index][m])*r_u_v_alpha_delta_re[n])>>15));
}
}
N_SF_mprime_PUCCH_1 = table_6_3_2_4_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (PUCCH)
N_SF_mprime_PUCCH_DMRS_1 = table_6_4_1_3_1_1_1_N_SF_mprime_PUCCH_1_m1Hop[nrofSymbols-1]; // only if intra-slot hopping enabled mprime = 1 (DM-RS)
}
}
/*
/*
* Implementing TS 38.211 Subclause 6.3.2.4.2 Mapping to physical resources
*/
int32_t *txptr;
uint32_t re_offset;
int i=0;
for (int l=0; l<nrofSymbols; l++) {
if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new PRB, FIXME!!!
startingPRB = startingPRB + startingPRB_intraSlotHopping;
}
if ((startingPRB < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
if ((startingPRB >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1)));
}
if ((startingPRB < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
if ((startingPRB > (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(startingPRB-(frame_parms->N_RB_DL>>1))) + 6;
}
if ((startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB contains DC
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*startingPRB) + frame_parms->first_carrier_offset;
}
txptr = &txdataF[0][re_offset];
for (int n=0; n<12; n++){
for (int n=0; n<12; n++) {
if ((n==6) && (startingPRB == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
// if number RBs in bandwidth is odd and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
}
if (l%2 == 1) { // mapping PUCCH according to TS38.211 subclause 6.4.1.3.1
((int16_t *)&txdataF[0][re_offset])[0] = z_re[i+n];
((int16_t *)&txdataF[0][re_offset])[1] = z_im[i+n];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
}
if (l%2 == 0) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.1
((int16_t *)&txdataF[0][re_offset])[0] = z_dmrs_re[i+n];
((int16_t *)&txdataF[0][re_offset])[1] = z_dmrs_im[i+n];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch1] mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+n,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
}
re_offset++;
}
if (l%2 == 1) i+=12;
}
}
......@@ -861,7 +949,6 @@ void nr_generate_pucch1_old(PHY_VARS_NR_UE *ue,
inline void nr_pucch2_3_4_scrambling(uint16_t M_bit,uint16_t rnti,uint16_t n_id,uint32_t B,uint8_t *btilde) __attribute__((always_inline));
inline void nr_pucch2_3_4_scrambling(uint16_t M_bit,uint16_t rnti,uint16_t n_id,uint32_t B,uint8_t *btilde) {
uint32_t x1, x2, s=0;
int i;
uint8_t c;
......@@ -869,20 +956,21 @@ inline void nr_pucch2_3_4_scrambling(uint16_t M_bit,uint16_t rnti,uint16_t n_id,
//x2 = (rnti) + ((uint32_t)(1+nr_tti_tx)<<16)*(1+(fp->Nid_cell<<1));
x2 = ((rnti)<<15)+n_id;
s = lte_gold_generic(&x1, &x2, 1);
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t [nr_pucch2_3_4_scrambling] gold sequence s=%lx\n",s);
#endif
for (i=0;i<M_bit;i++) {
#endif
for (i=0; i<M_bit; i++) {
c = (uint8_t)((s>>i)&1);
btilde[i] = (((B>>i)&1) ^ c);
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
//printf("\t\t\t btilde[%d]=%lx from scrambled bit %d\n",i,btilde[i],((B>>i)&1));
#endif
#endif
}
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t [nr_pucch2_3_4_scrambling] scrambling M_bit=%d bits\n", M_bit);
#endif
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t [nr_pucch2_3_4_scrambling] scrambling M_bit=%d bits\n", M_bit);
#endif
}
void nr_uci_encoding(uint64_t payload,
uint8_t nr_bit,
......@@ -899,79 +987,90 @@ void nr_uci_encoding(uint64_t payload,
* Implementing TS 38.212 Subclause 6.3.1.2
*
*/
// A is the payload size, to be provided in function call
uint8_t A = nr_bit;
// L is the CRC size
uint8_t L;
// E is the rate matching output sequence length as given in TS 38.212 subclause 6.3.1.4.1
uint16_t E=0,E_init;
if (fmt == pucch_format2_nr) E = 16*nrofSymbols*nrofPRB;
if (fmt == pucch_format3_nr){
if (fmt == pucch_format3_nr) {
E_init = (is_pi_over_2_bpsk_enabled == 0) ? 24:12;
if (nrofSymbols == 4) {
E = (intraSlotFrequencyHopping == 0)?(E_init*(nrofSymbols-1)*nrofPRB):((E_init*(nrofSymbols-1)*nrofPRB));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("format 3 nrofSymbols =4 and E_init=%d,E=%d\n",E_init,E);
#endif
#endif
}
if (nrofSymbols > 4) {
E = E_init*(nrofSymbols-2)*nrofPRB;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("format 3 nrofSymbols >4 and E_init=%d,E = %d\n",E_init,E);
#endif
#endif
}
if (nrofSymbols > 9) {
E = (add_dmrs == 0)?(E_init*(nrofSymbols-2)*nrofPRB):((E_init*(nrofSymbols-4)*nrofPRB));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("format 3 nrofSymbols >9 and E_init=%d,E = %d\n",E_init,E);
#endif
#endif
}
}
if (fmt == pucch_format4_nr){
if (fmt == pucch_format4_nr) {
E_init = (is_pi_over_2_bpsk_enabled == 0) ? 24:12;
if (nrofSymbols == 4) {
E = (intraSlotFrequencyHopping == 0)?(E_init*(nrofSymbols-1)/n_SF_PUCCH_s):((E_init*(nrofSymbols-1)/n_SF_PUCCH_s));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("format 4 nrofSymbols =4 and E_init=%d,E=%d\n",E_init,E);
#endif
#endif
}
if (nrofSymbols > 4) {
E = E_init*(nrofSymbols-2)/n_SF_PUCCH_s;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("format 4 nrofSymbols >4 and E_init=%d,E = %d\n",E_init,E);
#endif
#endif
}
if (nrofSymbols > 9) {
E = (add_dmrs == 0)?(E_init*(nrofSymbols-2)/n_SF_PUCCH_s):((E_init*(nrofSymbols-4)/n_SF_PUCCH_s));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("format 4 nrofSymbols >9 and E_init=%d,E = %d\n",E_init,E);
#endif
#endif
}
}
*M_bit = E;
int I_seg;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t\t [nr_uci_encoding] start function with fmt=%d, encoding A=%d bits into M_bit=%d (where nrofSymbols=%d,nrofPRB=%d)\n",fmt,A,*M_bit,nrofSymbols,nrofPRB);
#endif
#endif
if (A<=11){
if (A<=11) {
// procedure in subclause 6.3.1.2.2 (UCI encoded by channel coding of small block lengths -> subclause 6.3.1.3.2)
// CRC bits are not attached, and coding small block lengths (subclause 5.3.3)
} else if (A>=12){
} else if (A>=12) {
// procedure in subclause 6.3.1.2.1 (UCI encoded by Polar code -> subclause 6.3.1.3.1)
if ((A>=360 && E>=1088)||(A>=1013)){
if ((A>=360 && E>=1088)||(A>=1013)) {
I_seg = 1;
} else {
I_seg = 0;
}
if (A>=20){
if (A>=20) {
// parity bits (subclause 5.2.1) computed by setting L=11 and using generator polynomial gCRC11(D) (subclause 5.1)
L=11;
} else if (A<=19){
} else if (A<=19) {
// parity bits (subclause 5.2.1) computed by setting L=6 and using generator polynomial gCRC6(D) (subclause 5.1)
L=6;
}
// code block segmentation and CRC attachment is performed according to subclause 5.2.1
// polar coding subclause 5.3.1
}
......@@ -990,15 +1089,14 @@ void nr_generate_pucch2(PHY_VARS_NR_UE *ue,
uint8_t nrofPRB,
uint16_t startingPRB,
uint8_t nr_bit) {
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch2] start function at slot(nr_tti_tx)=%d with payload=%d and nr_bit=%d\n",nr_tti_tx, payload, nr_bit);
#endif
#endif
// b is the block of bits transmitted on the physical channel after payload coding
uint64_t b;
// M_bit is the number of bits of block b (payload after encoding)
uint16_t M_bit;
nr_uci_encoding(payload,nr_bit,pucch_format2_nr,0,nrofSymbols,nrofPRB,1,0,0,&b,&M_bit);
/*
* Implementing TS 38.211
* Subclauses 6.3.2.5.1 Scrambling (PUCCH format 2)
......@@ -1011,54 +1109,53 @@ void nr_generate_pucch2(PHY_VARS_NR_UE *ue,
* n_id = {0,1,...,1023} equals the higher-layer parameter Data-scrambling-Identity if configured
* n_id = N_ID_cell if higher layer parameter not configured
*/
uint8_t *btilde = malloc(sizeof(int8_t)*M_bit);
// rnti is given by the C-RNTI
uint16_t rnti=crnti, n_id=0;
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch2] rnti = %d ,\n",rnti);
#endif
/*
* Implementing TS 38.211 Subclause 6.3.2.5.1 scrambling format 2
*/
nr_pucch2_3_4_scrambling(M_bit,rnti,n_id,b,btilde);
/*
* Implementing TS 38.211 Subclause 6.3.2.5.2 modulation format 2
* btilde shall be modulated as described in subclause 5.1 using QPSK
* resulting in a block of complex-valued modulation symbols d(0),...,d(m_symbol) where m_symbol=M_bit/2
*/
//#define ONE_OVER_SQRT2_S 23171 // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
//#define ONE_OVER_SQRT2_S 23171 // 32767/sqrt(2) = 23170 (ONE_OVER_SQRT2)
// complex-valued symbol d(0)
int16_t *d_re = malloc(sizeof(int16_t)*M_bit);
int16_t *d_im = malloc(sizeof(int16_t)*M_bit);
uint16_t m_symbol = (M_bit%2==0) ? M_bit/2 : floor(M_bit/2)+1;
for (int i=0; i < m_symbol; i++){ // QPSK modulation subclause 5.1.3
for (int i=0; i < m_symbol; i++) { // QPSK modulation subclause 5.1.3
if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==0)) {
d_re[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==1)) {
d_re[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==0)) {
d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==1)) {
d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch2] modulation of bit pair btilde(%d,%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[2*i]&1),(btilde[(2*i)+1]&1),m_symbol,i,d_re[i],d_im[i]);
#endif
#endif
}
/*
* Implementing TS 38.211 Subclause 6.3.2.5.3 Mapping to physical resources
*/
......@@ -1067,58 +1164,76 @@ void nr_generate_pucch2(PHY_VARS_NR_UE *ue,
uint32_t x1, x2, s=0;
int i=0;
int m=0;
for (int l=0; l<nrofSymbols; l++) {
x2 = (((1<<17)*((14*nr_tti_tx) + (l+startingSymbolIndex) + 1)*((2*n_id) + 1)) + (2*n_id))%(1<<31); // c_init calculation according to TS38.211 subclause
s = lte_gold_generic(&x1, &x2, 1);
for (int rb=0; rb<nrofPRB; rb++){
m = 0;
for (int rb=0; rb<nrofPRB; rb++) {
//startingPRB = startingPRB + rb;
if (((rb+startingPRB) < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
}
if (((rb+startingPRB) >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1)));
}
if (((rb+startingPRB) < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
}
if (((rb+startingPRB) > (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1))) + 6;
}
if (((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB contains DC
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
}
//txptr = &txdataF[0][re_offset];
int k=0;
int kk=0;
for (int n=0; n<12; n++){
for (int n=0; n<12; n++) {
if ((n==6) && ((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
// if number RBs in bandwidth is odd and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
}
if (n%3 != 1) { // mapping PUCCH according to TS38.211 subclause 6.3.2.5.3
((int16_t *)&txdataF[0][re_offset])[0] = d_re[i+k];
((int16_t *)&txdataF[0][re_offset])[1] = d_im[i+k];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch2] (n=%d,i=%d) mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
n,i,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+k,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
k++;
}
if (n%3 == 1) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.2
((int16_t *)&txdataF[0][re_offset])[0] = (int16_t)((int32_t)(amp*ONE_OVER_SQRT2*(1-(2*((uint8_t)((s>>(2*m))&1)))))>>15);
((int16_t *)&txdataF[0][re_offset])[1] = (int16_t)((int32_t)(amp*ONE_OVER_SQRT2*(1-(2*((uint8_t)((s>>((2*m)+1))&1)))))>>15);
m++;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch2] (n=%d,i=%d) mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(x_n(l=%d,n=%d)=(%d,%d))\n",
n,i,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,i+kk,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
kk++;
}
re_offset++;
}
i+=8;
if ((m&((1<<4)-1))==0) {
s = lte_gold_generic(&x1, &x2, 0);
m = 0;
}
}
}
}
......@@ -1140,10 +1255,9 @@ void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
uint8_t nr_bit,
uint8_t occ_length_format4,
uint8_t occ_index_format4) {
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] start function at slot(nr_tti_tx)=%d with payload=%d and nr_bit=%d\n", nr_tti_tx, payload, nr_bit);
#endif
#endif
// b is the block of bits transmitted on the physical channel after payload coding
uint64_t b;
// M_bit is the number of bits of block b (payload after encoding)
......@@ -1156,19 +1270,21 @@ void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
// otherwise no intra-slot frequency hopping shall be assumed
//uint8_t PUCCH_Frequency_Hopping = 0 ; // from higher layers
uint8_t intraSlotFrequencyHopping = 0;
if (startingPRB != startingPRB_intraSlotHopping){
if (startingPRB != startingPRB_intraSlotHopping) {
intraSlotFrequencyHopping=1;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] intraSlotFrequencyHopping=%d \n",intraSlotFrequencyHopping);
#endif
#endif
}
// add_dmrs indicates if we are using or not Additional DM-RS for formats 3 and 4. From higher layers. FIXME!!!
uint8_t add_dmrs = 0;
//nrofPRB = 2; // only for test purposes
if (fmt == pucch_format4_nr) nrofPRB = 1;
nr_uci_encoding(payload,nr_bit,fmt,is_pi_over_2_bpsk_enabled,nrofSymbols,nrofPRB,n_SF_PUCCH_s,intraSlotFrequencyHopping,add_dmrs,&b,&M_bit);
/*
* Implementing TS 38.211
* Subclauses 6.3.2.6.1 Scrambling (PUCCH formats 3 and 4)
......@@ -1181,19 +1297,16 @@ void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
* n_id = {0,1,...,1023} equals the higher-layer parameter Data-scrambling-Identity if configured
* n_id = N_ID_cell if higher layer parameter not configured
*/
uint8_t *btilde = malloc(sizeof(int8_t)*M_bit);
// rnti is given by the C-RNTI
uint16_t rnti=crnti, n_id=0;
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] rnti = %d ,\n",rnti);
#endif
/*
* Implementing TS 38.211 Subclause 6.3.2.6.1 scrambling formats 3 and 4
*/
nr_pucch2_3_4_scrambling(M_bit,rnti,n_id,b,btilde);
/*
* Implementing TS 38.211 Subclause 6.3.2.6.2 modulation formats 3 and 4
*
......@@ -1204,53 +1317,64 @@ void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
int16_t *d_re = malloc(sizeof(int16_t)*M_bit);
int16_t *d_im = malloc(sizeof(int16_t)*M_bit);
uint16_t m_symbol = (M_bit%2==0) ? M_bit/2 : floor(M_bit/2)+1;
if (is_pi_over_2_bpsk_enabled == 0){
if (is_pi_over_2_bpsk_enabled == 0) {
// using QPSK if PUCCH format 3,4 and pi/2-BPSK is not configured, according to subclause 6.3.2.6.2
for (int i=0; i < m_symbol; i++){ // QPSK modulation subclause 5.1.3
for (int i=0; i < m_symbol; i++) { // QPSK modulation subclause 5.1.3
if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==0)) {
d_re[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[2*i]&1)==0) && ((btilde[(2*i)+1]&1)==1)) {
d_re[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==0)) {
d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[2*i]&1)==1) && ((btilde[(2*i)+1]&1)==1)) {
d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] modulation QPSK of bit pair btilde(%d,%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[2*i]&1),(btilde[(2*i)+1]&1),m_symbol,i,d_re[i],d_im[i]);
#endif
#endif
}
}
if (is_pi_over_2_bpsk_enabled == 1){
if (is_pi_over_2_bpsk_enabled == 1) {
// using PI/2-BPSK if PUCCH format 3,4 and pi/2-BPSK is configured, according to subclause 6.3.2.6.2
m_symbol = M_bit;
for (int i=0; i<m_symbol; i++){ // PI/2-BPSK modulation subclause 5.1.1
if (((btilde[i]&1)==0) && (i%2 == 0)){
for (int i=0; i<m_symbol; i++) { // PI/2-BPSK modulation subclause 5.1.1
if (((btilde[i]&1)==0) && (i%2 == 0)) {
d_re[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[i]&1)==0) && (i%2 == 1)){
if (((btilde[i]&1)==0) && (i%2 == 1)) {
d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[i]&1)==1) && (i%2 == 0)){
if (((btilde[i]&1)==1) && (i%2 == 0)) {
d_re[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
if (((btilde[i]&1)==1) && (i%2 == 1)){
if (((btilde[i]&1)==1) && (i%2 == 1)) {
d_re[i] = (int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
d_im[i] = -(int16_t)(((int32_t)amp*ONE_OVER_SQRT2)>>15);
}
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] modulation PI/2-BPSK of bit btilde(%d), m_symbol=%d, d(%d)=(%d,%d)\n",(btilde[i]&1),m_symbol,i,d_re[i],d_im[i]);
#endif
#endif
}
}
......@@ -1270,66 +1394,75 @@ void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
// k={0,..11} n={0,1,2,3}
// parameter PUCCH-F4-preDFT-OCC-index set of {0,1,2,3} -> n
uint16_t table_6_3_2_6_3_1_Wn_Re[2][12] = {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1,-1}};
{1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1,-1}
};
// Im part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 2 (Table 6.3.2.6.3-1)
// k={0,..11} n={0,1}
uint16_t table_6_3_2_6_3_1_Wn_Im[2][12] = {{0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0}};
{0,0,0,0,0,0,0,0,0,0,0,0}
};
// Re part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 4 (Table 6.3.2.6.3-2)
// k={0,..11} n={0,1,2.3}
uint16_t table_6_3_2_6_3_2_Wn_Re[4][12] = {{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 0, 0, 0,-1,-1,-1, 0, 0, 0},
{1, 1, 1,-1,-1,-1, 1, 1, 1,-1,-1,-1},
{1, 1, 1, 0, 0, 0,-1,-1,-1, 0, 0, 0}};
{1, 1, 1, 0, 0, 0,-1,-1,-1, 0, 0, 0}
};
// Im part orthogonal sequences w_n(k) for PUCCH format 4 when N_SF_PUCCH4 = 4 (Table 6.3.2.6.3-2)
// k={0,..11} n={0,1,2,3}
uint16_t table_6_3_2_6_3_2_Wn_Im[4][12] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0,-1,-1,-1, 0, 0, 0, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 1, 1, 0, 0, 0,-1,-1,-1}};
{0, 0, 0, 1, 1, 1, 0, 0, 0,-1,-1,-1}
};
//uint8_t occ_Length = occ_length_format4; // higher layer parameter occ-Length
uint8_t occ_Index = occ_index_format4; // higher layer parameter occ-Index
//occ_Index = 1; //only for testing purposes; to be removed FIXME!!!
if (fmt == pucch_format3_nr){ // no block-wise spreading for format 3
//occ_Index = 1; //only for testing purposes; to be removed FIXME!!!
if (fmt == pucch_format3_nr) { // no block-wise spreading for format 3
n_SF_PUCCH_s = 1;
for (int l=0; l < floor(m_symbol/(12*nrofPRB)); l++){
for (int k=0; k < (12*nrofPRB); k++){
for (int l=0; l < floor(m_symbol/(12*nrofPRB)); l++) {
for (int k=0; k < (12*nrofPRB); k++) {
y_n_re[l*(12*nrofPRB)+k] = d_re[l*(12*nrofPRB)+k];
y_n_im[l*(12*nrofPRB)+k] = d_im[l*(12*nrofPRB)+k];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] block-wise spreading for format 3 (no block-wise spreading): (l,k)=(%d,%d)\ty_n(%d) = \t(d_re=%d, d_im=%d)\n",
l,k,l*(12*nrofPRB)+k,d_re[l*(12*nrofPRB)+k],d_im[l*(12*nrofPRB)+k]);
#endif
#endif
}
}
}
if (fmt == pucch_format4_nr){
if (fmt == pucch_format4_nr) {
nrofPRB = 1;
for (int l=0; l < floor((n_SF_PUCCH_s*m_symbol)/(12*nrofPRB)); l++){
for (int k=0; k < (12*nrofPRB); k++){
if (n_SF_PUCCH_s == 2){
for (int l=0; l < floor((n_SF_PUCCH_s*m_symbol)/(12*nrofPRB)); l++) {
for (int k=0; k < (12*nrofPRB); k++) {
if (n_SF_PUCCH_s == 2) {
y_n_re[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wn_Re[occ_Index][k])
- ((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wn_Im[occ_Index][k]));
y_n_im[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wn_Re[occ_Index][k])
+ ((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_1_Wn_Im[occ_Index][k]));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] block-wise spreading for format 4 (n_SF_PUCCH_s 2) (occ_Index=%d): (l,k)=(%d,%d)\ty_n(%d) = \t(d_re=%d, d_im=%d)\n",
occ_Index,l,k,l*(12*nrofPRB)+k,y_n_re[l*(12*nrofPRB)+k],y_n_im[l*(12*nrofPRB)+k]);
// printf("\t\t d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] = %d\n",d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)]);
// printf("\t\t d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] = %d\n",d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)]);
// printf("\t\t table_6_3_2_6_3_1_Wn_Re[%d][%d] = %d\n",occ_Index,k,table_6_3_2_6_3_1_Wn_Re[occ_Index][k]);
// printf("\t\t table_6_3_2_6_3_1_Wn_Im[%d][%d] = %d\n",occ_Index,k,table_6_3_2_6_3_1_Wn_Im[occ_Index][k]);
#endif
// printf("\t\t d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] = %d\n",d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)]);
// printf("\t\t d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] = %d\n",d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)]);
// printf("\t\t table_6_3_2_6_3_1_Wn_Re[%d][%d] = %d\n",occ_Index,k,table_6_3_2_6_3_1_Wn_Re[occ_Index][k]);
// printf("\t\t table_6_3_2_6_3_1_Wn_Im[%d][%d] = %d\n",occ_Index,k,table_6_3_2_6_3_1_Wn_Im[occ_Index][k]);
#endif
}
if (n_SF_PUCCH_s == 4){
if (n_SF_PUCCH_s == 4) {
y_n_re[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wn_Re[occ_Index][k])
- ((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wn_Im[occ_Index][k]));
y_n_im[l*(12*nrofPRB)+k] = (uint16_t)(((uint32_t)d_im[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wn_Re[occ_Index][k])
+ ((uint32_t)d_re[l*(12*nrofPRB/n_SF_PUCCH_s)+k%(12*nrofPRB/n_SF_PUCCH_s)] * table_6_3_2_6_3_2_Wn_Im[occ_Index][k]));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] block-wise spreading for format 4 (n_SF_PUCCH_s 4) (occ_Index=%d): (l,k)=(%d,%d)\ty_n(%d) = \t(d_re=%d, d_im=%d)\n",
occ_Index,l,k,l*(12*nrofPRB)+k,y_n_re[l*(12*nrofPRB)+k],y_n_im[l*(12*nrofPRB)+k]);
#endif
#endif
}
}
}
......@@ -1340,37 +1473,40 @@ void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
*/
int16_t *z_re = malloc(sizeof(int16_t)*4*M_bit); // 4 is the maximum number n_SF_PUCCH_s
int16_t *z_im = malloc(sizeof(int16_t)*4*M_bit);
#define M_PI 3.14159265358979323846 // pi
#define M_PI 3.14159265358979323846 // pi
//int16_t inv_sqrt_nrofPRBs = (int16_t)round(32767/sqrt(12*nrofPRB));
for (int l=0; l<floor((n_SF_PUCCH_s*m_symbol)/(12*nrofPRB)); l++){
for (int k=0; k<(12*nrofPRB); k++){
for (int l=0; l<floor((n_SF_PUCCH_s*m_symbol)/(12*nrofPRB)); l++) {
for (int k=0; k<(12*nrofPRB); k++) {
z_re[l*(12*nrofPRB)+k] = 0;
z_im[l*(12*nrofPRB)+k] = 0;
// int16_t z_re_tmp[240] = {0};
// int16_t z_im_tmp[240] = {0};
for (int m=0; m<(12*nrofPRB); m++){
// int16_t z_re_tmp[240] = {0};
// int16_t z_im_tmp[240] = {0};
for (int m=0; m<(12*nrofPRB); m++) {
//z_re[l*(12*nrofPRB)+k] = y_n_re[l*(12*nrofPRB)+m] * (int16_t)(round(32767*cos((2*M_PI*m*k)/(12*nrofPRB))));
// z_re_tmp[m] = (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
// + (((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
// z_im_tmp[m] = (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
// - (((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
// z_re_tmp[m] = (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
// + (((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
// z_im_tmp[m] = (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
// - (((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
z_re[l*(12*nrofPRB)+k] = z_re[l*(12*nrofPRB)+k]
+ (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
+ (((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
z_im[l*(12*nrofPRB)+k] = z_im[l*(12*nrofPRB)+k]
+ (int16_t)(((int32_t)round(32767/sqrt(12*nrofPRB))*(int16_t)((((int32_t)y_n_im[l*(12*nrofPRB)+m] * (int16_t)round(32767 * cos(2*M_PI*m*k/(12*nrofPRB))))>>15)
- (((int32_t)y_n_re[l*(12*nrofPRB)+m] * (int16_t)round(32767 * sin(2*M_PI*m*k/(12*nrofPRB))))>>15)))>>15);
#ifdef DEBUG_NR_PUCCH_TX
// printf("\t\t z_re_tmp[%d] = %d\n",m,z_re_tmp[m]);
// printf("\t\t z_im_tmp[%d] = %d\n",m,z_im_tmp[m]);
// printf("\t [nr_generate_pucch3_4] transform precoding for formats 3 and 4: (l,k,m)=(%d,%d,%d)\tz(%d) = \t(%d, %d)\n",
// l,k,m,l*(12*nrofPRB)+k,z_re[l*(12*nrofPRB)+k],z_im[l*(12*nrofPRB)+k]);
#endif
}
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
// printf("\t\t z_re_tmp[%d] = %d\n",m,z_re_tmp[m]);
// printf("\t\t z_im_tmp[%d] = %d\n",m,z_im_tmp[m]);
// printf("\t [nr_generate_pucch3_4] transform precoding for formats 3 and 4: (l,k,m)=(%d,%d,%d)\tz(%d) = \t(%d, %d)\n",
// l,k,m,l*(12*nrofPRB)+k,z_re[l*(12*nrofPRB)+k],z_im[l*(12*nrofPRB)+k]);
#endif
}
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] transform precoding for formats 3 and 4: (l,k)=(%d,%d)\tz(%d) = \t(%d, %d)\n",
l,k,l*(12*nrofPRB)+k,z_re[l*(12*nrofPRB)+k],z_im[l*(12*nrofPRB)+k]);
#endif
#endif
}
}
......@@ -1392,29 +1528,32 @@ void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
// m0 is the cyclic shift index calculated depending on the Orthogonal sequence index n, according to table 6.4.1.3.3.1-1 from TS 38.211 subclause 6.4.1.3.3.1
uint8_t m0;
uint8_t mcs=0;
if (fmt == pucch_format3_nr) m0 = 0;
if (fmt == pucch_format4_nr) {
if (n_SF_PUCCH_s == 2) {
m0 = (occ_Index == 0) ? 0 : 6;
}
if (n_SF_PUCCH_s == 4) {
m0 = (occ_Index == 3) ? 9 : ((occ_Index == 2) ? 3 : ((occ_Index == 1) ? 6 : 0));
}
}
double alpha;
uint8_t N_ZC = 12*nrofPRB;
int16_t *r_u_v_base_re = malloc(sizeof(int16_t)*12*nrofPRB);
int16_t *r_u_v_base_im = malloc(sizeof(int16_t)*12*nrofPRB);
//int16_t *r_u_v_alpha_delta_re = malloc(sizeof(int16_t)*12*nrofPRB);
//int16_t *r_u_v_alpha_delta_im = malloc(sizeof(int16_t)*12*nrofPRB);
// Next we proceed to mapping to physical resources according to TS 38.211, subclause 6.3.2.6.5 dor PUCCH formats 3 and 4 and subclause 6.4.1.3.3.2 for DM-RS
//int32_t *txptr;
uint32_t re_offset=0;
//uint32_t x1, x2, s=0;
// intraSlotFrequencyHopping
// uint8_t intraSlotFrequencyHopping = 0;
uint8_t table_6_4_1_3_3_2_1_dmrs_positions[11][14] ={
uint8_t table_6_4_1_3_3_2_1_dmrs_positions[11][14] = {
{(intraSlotFrequencyHopping==0)?0:1,(intraSlotFrequencyHopping==0)?1:0,(intraSlotFrequencyHopping==0)?0:1,0,0,0,0,0,0,0,0,0,0,0}, // PUCCH length = 4
{1,0,0,1,0,0,0,0,0,0,0,0,0,0}, // PUCCH length = 5
{0,1,0,0,1,0,0,0,0,0,0,0,0,0}, // PUCCH length = 6
......@@ -1428,124 +1567,139 @@ void nr_generate_pucch3_4(PHY_VARS_NR_UE *ue,
{0,(add_dmrs==0?0:1),0,(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0,0,(add_dmrs==0?0:1),0,(add_dmrs==0?1:0),0,(add_dmrs==0?0:1),0} // PUCCH length = 14
};
uint16_t k=0;
for (int l=0; l<nrofSymbols; l++) {
for (int l=0; l<nrofSymbols; l++) {
if ((intraSlotFrequencyHopping == 1) && (l >= (int)floor(nrofSymbols/2))) n_hop = 1; // n_hop = 1 for second hop
nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
nr_group_sequence_hopping(ue,n_hop,nr_tti_tx,&u,&v); // calculating u and v value
// Next we proceed to calculate base sequence for DM-RS signal, according to TS 38.211 subclause 6.4.1.33
if (nrofPRB >= 3) { // TS 38.211 subclause 5.2.2.1 (Base sequences of length 36 or larger) applies
int i = 4;
while (list_of_prime_numbers[i] < (12*nrofPRB)) i++;
N_ZC = list_of_prime_numbers[i+1]; // N_ZC is given by the largest prime number such that N_ZC < (12*nrofPRB)
double q_base = (N_ZC*(u+1))/31;
int8_t q = (uint8_t)floor(q_base + (1/2));
q = ((uint8_t)floor(2*q_base)%2 == 0 ? q+v : q-v);
for (int n=0; n<(12*nrofPRB); n++){
for (int n=0; n<(12*nrofPRB); n++) {
r_u_v_base_re[n] = (int16_t)(((int32_t)amp*(int16_t)(32767*cos(M_PI*q*(n%N_ZC)*((n%N_ZC)+1)/N_ZC)))>>15);
r_u_v_base_im[n] = -(int16_t)(((int32_t)amp*(int16_t)(32767*sin(M_PI*q*(n%N_ZC)*((n%N_ZC)+1)/N_ZC)))>>15);
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d >= 3: r_u_v_base[n=%d]=(%d,%d)\n",
nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
#endif
#endif
}
}
if (nrofPRB == 2) { // TS 38.211 subclause 5.2.2.2 (Base sequences of length less than 36 using table 5.2.2.2-4) applies
for (int n=0; n<(12*nrofPRB); n++){
for (int n=0; n<(12*nrofPRB); n++) {
r_u_v_base_re[n] = (int16_t)(((int32_t)amp*table_5_2_2_2_4_Re[u][n])>>15);
r_u_v_base_im[n] = (int16_t)(((int32_t)amp*table_5_2_2_2_4_Im[u][n])>>15);
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d == 2: r_u_v_base[n=%d]=(%d,%d)\n",
nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
#endif
#endif
}
}
if (nrofPRB == 1) { // TS 38.211 subclause 5.2.2.2 (Base sequences of length less than 36 using table 5.2.2.2-2) applies
for (int n=0; n<(12*nrofPRB); n++){
for (int n=0; n<(12*nrofPRB); n++) {
r_u_v_base_re[n] = (int16_t)(((int32_t)amp*table_5_2_2_2_2_Re[u][n])>>15);
r_u_v_base_im[n] = (int16_t)(((int32_t)amp*table_5_2_2_2_2_Im[u][n])>>15);
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] generation DM-RS base sequence when nrofPRB=%d == 1: r_u_v_base[n=%d]=(%d,%d)\n",
nrofPRB,n,r_u_v_base_re[n],r_u_v_base_im[n]);
#endif
#endif
}
}
uint16_t j=0;
alpha = nr_cyclic_shift_hopping(ue,m0,mcs,l,startingSymbolIndex,nr_tti_tx);
for (int rb=0; rb<nrofPRB; rb++){
for (int rb=0; rb<nrofPRB; rb++) {
if ((intraSlotFrequencyHopping == 1) && (l<floor(nrofSymbols/2))) { // intra-slot hopping enabled, we need to calculate new offset PRB
startingPRB = startingPRB + startingPRB_intraSlotHopping;
}
//startingPRB = startingPRB + rb;
if (((rb+startingPRB) < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("1 ");
#endif
#endif
}
if (((rb+startingPRB) >= (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 0)) { // if number RBs in bandwidth is even and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1)));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("2 ");
#endif
#endif
}
if (((rb+startingPRB) < (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is lower band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("3 ");
#endif
#endif
}
if (((rb+startingPRB) > (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB is upper band
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*((rb+startingPRB)-(frame_parms->N_RB_DL>>1))) + 6;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("4 ");
#endif
#endif
}
if (((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) { // if number RBs in bandwidth is odd and current PRB contains DC
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size) + (12*(rb+startingPRB)) + frame_parms->first_carrier_offset;
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("5 ");
#endif
#endif
}
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("re_offset=%d,(rb+startingPRB)=%d\n",re_offset,(rb+startingPRB));
#endif
#endif
//txptr = &txdataF[0][re_offset];
for (int n=0; n<12; n++){
for (int n=0; n<12; n++) {
if ((n==6) && ((rb+startingPRB) == (frame_parms->N_RB_DL>>1)) && ((frame_parms->N_RB_DL & 1) == 1)) {
// if number RBs in bandwidth is odd and current PRB contains DC, we need to recalculate the offset when n=6 (for second half PRB)
re_offset = ((l+startingSymbolIndex)*frame_parms->ofdm_symbol_size);
}
if (table_6_4_1_3_3_2_1_dmrs_positions[nrofSymbols-4][l] == 0) { // mapping PUCCH according to TS38.211 subclause 6.3.2.5.3
((int16_t *)&txdataF[0][re_offset])[0] = z_re[n+k];
((int16_t *)&txdataF[0][re_offset])[1] = z_im[n+k];
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] (l=%d,rb=%d,n=%d,k=%d) mapping PUCCH to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_pucch[%d]=txptr(%d)=(z(l=%d,n=%d)=(%d,%d))\n",
l,rb,n,k,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,n+k,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
}
if (table_6_4_1_3_3_2_1_dmrs_positions[nrofSymbols-4][l] == 1) { // mapping DM-RS signal according to TS38.211 subclause 6.4.1.3.2
((int16_t *)&txdataF[0][re_offset])[0] = (int16_t)((((int32_t)(32767*cos(alpha*((n+j)%N_ZC)))*r_u_v_base_re[n+j])>>15)
- (((int32_t)(32767*sin(alpha*((n+j)%N_ZC)))*r_u_v_base_im[n+j])>>15));
((int16_t *)&txdataF[0][re_offset])[1] = (int16_t)((((int32_t)(32767*cos(alpha*((n+j)%N_ZC)))*r_u_v_base_im[n+j])>>15)
+ (((int32_t)(32767*sin(alpha*((n+j)%N_ZC)))*r_u_v_base_re[n+j])>>15));
#ifdef DEBUG_NR_PUCCH_TX
#ifdef DEBUG_NR_PUCCH_TX
printf("\t [nr_generate_pucch3_4] (l=%d,rb=%d,n=%d,j=%d) mapping DM-RS to RE \t amp=%d \tofdm_symbol_size=%d \tN_RB_DL=%d \tfirst_carrier_offset=%d \tz_dm-rs[%d]=txptr(%d)=(r_u_v(l=%d,n=%d)=(%d,%d))\n",
l,rb,n,j,amp,frame_parms->ofdm_symbol_size,frame_parms->N_RB_DL,frame_parms->first_carrier_offset,n+j,re_offset,
l,n,((int16_t *)&txdataF[0][re_offset])[0],((int16_t *)&txdataF[0][re_offset])[1]);
#endif
#endif
}
re_offset++;
}
if (table_6_4_1_3_3_2_1_dmrs_positions[nrofSymbols-4][l] == 0) k+=12;
if (table_6_4_1_3_3_2_1_dmrs_positions[nrofSymbols-4][l] == 1) j+=12;
}
}
}
......@@ -1032,7 +1032,7 @@ typedef struct {
fapi_nr_dci_indication_t dci_ind;
// point to the current rxTx thread index
uint8_t current_thread_id[10];
uint8_t current_thread_id[40];
NR_UE_PDSCH *pdsch_vars[RX_NB_TH_MAX][NUMBER_OF_CONNECTED_eNB_MAX+1]; // two RxTx Threads
NR_UE_PDSCH_FLP *pdsch_vars_flp[NUMBER_OF_CONNECTED_eNB_MAX+1];
......
......@@ -736,7 +736,7 @@ typedef struct {
-- Corresponds to L1 parameter 'HoppingID' (see 38.211, section 6.3.2.2)
hoppingId BIT STRING (SIZE (10)) OPTIONAL, -- Need R
*/
uint16_t hoppingId;
uint32_t hoppingId;
/*
-- Power control parameter P0 for PUCCH transmissions. Value in dBm. Only even values (step size 2) allowed.
-- Corresponds to L1 parameter 'p0-nominal-pucch' (see 38.213, section 7.2)
......
File mode changed from 100644 to 100755
......@@ -49,6 +49,9 @@ void nr_configure_css_dci_initial(nfapi_nr_dl_config_pdcch_parameters_rel15_t* p
nr_frequency_range_e freq_range,
uint8_t rmsi_pdcch_config,
uint8_t ssb_idx,
uint8_t k_ssb,
uint16_t sfn_ssb,
uint8_t n_ssb,
uint16_t nb_slots_per_frame,
uint16_t N_RB);
......
......@@ -48,11 +48,13 @@ int8_t nr_ue_scheduled_response(nr_scheduled_response_t *scheduled_response){
/// component carrier id
uint8_t cc_id = scheduled_response->CC_id;
uint32_t i;
int slot = scheduled_response->slot;
uint8_t thread_id = PHY_vars_UE_g[module_id][cc_id]->current_thread_id[slot];
if(scheduled_response != NULL){
// Note: we have to handle the thread IDs for this. To be revisited completely.
NR_UE_PDCCH *pdcch_vars2 = PHY_vars_UE_g[module_id][cc_id]->pdcch_vars[0][0];
NR_UE_DLSCH_t *dlsch0 = PHY_vars_UE_g[module_id][cc_id]->dlsch[0][0][0];
NR_UE_PDCCH *pdcch_vars2 = PHY_vars_UE_g[module_id][cc_id]->pdcch_vars[thread_id][0];
NR_UE_DLSCH_t *dlsch0 = PHY_vars_UE_g[module_id][cc_id]->dlsch[thread_id][0][0];
NR_UE_ULSCH_t *ulsch0 = PHY_vars_UE_g[module_id][cc_id]->ulsch[0];
NR_DL_FRAME_PARMS frame_parms = PHY_vars_UE_g[module_id][cc_id]->frame_parms;
PRACH_RESOURCES_t *prach_resources = PHY_vars_UE_g[module_id][cc_id]->prach_resources[0];
......@@ -88,8 +90,8 @@ int8_t nr_ue_scheduled_response(nr_scheduled_response_t *scheduled_response){
pdcch_vars2->coreset[i].cce_reg_mappingType.interleaversize = dci_config->coreset.cce_reg_interleaved_interleaver_size;
}else{ //CCE_REG_MAPPING_TYPE_NON_INTERLEAVED
pdcch_vars2->coreset[i].cce_reg_mappingType.shiftIndex = 0;
pdcch_vars2->coreset[i].cce_reg_mappingType.reg_bundlesize = 0;
pdcch_vars2->coreset[i].cce_reg_mappingType.interleaversize = 0;
pdcch_vars2->coreset[i].cce_reg_mappingType.reg_bundlesize = 6;
pdcch_vars2->coreset[i].cce_reg_mappingType.interleaversize = 1;
}
pdcch_vars2->coreset[i].precoderGranularity = dci_config->coreset.precoder_granularity;
......
......@@ -56,7 +56,7 @@
//#define DEBUG_PHY_PROC
#define NR_PDCCH_SCHED
#define NR_PDCCH_SCHED_DEBUG
//#define NR_PDCCH_SCHED_DEBUG
//#define NR_PUCCH_SCHED
//#define NR_PUCCH_SCHED_DEBUG
......@@ -3078,6 +3078,8 @@ int nr_ue_pdcch_procedures(uint8_t eNB_id,PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *
// Higher layers have updated the number of searchSpaces with are active in the current slot and this value is stored in variable nb_searchspace_total
int nb_searchspace_total = pdcch_vars2->nb_search_space;
pdcch_vars[eNB_id]->crnti = 0x1234; //to be check how to set when using loop memory
uint16_t c_rnti=pdcch_vars[eNB_id]->crnti;
uint16_t cs_rnti=0,new_rnti=0,tc_rnti;
uint16_t p_rnti=P_RNTI;
......@@ -3153,7 +3155,7 @@ int nr_ue_pdcch_procedures(uint8_t eNB_id,PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *
// FIXME! A table of five enum elements
// searchSpaceType indicates whether this is a common search space or a UE-specific search space
//int searchSpaceType = pdcch_vars2->searchSpace[nb_searchspace_active].searchSpaceType.type;
NR_SEARCHSPACE_TYPE_t searchSpaceType = common;
NR_SEARCHSPACE_TYPE_t searchSpaceType = ue_specific;//common;
#ifdef NR_PDCCH_SCHED_DEBUG
printf("<-NR_PDCCH_PHY_PROCEDURES_LTE_UE (nr_ue_pdcch_procedures)-> searchSpaceType=%d is hardcoded THIS HAS TO BE FIXED!!!\n",
searchSpaceType);
......@@ -4964,95 +4966,20 @@ int phy_procedures_nrUE_RX(PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *proc,uint8_t eN
int frame_rx = proc->frame_rx;
int nr_tti_rx = proc->nr_tti_rx;
NR_UE_PDCCH *pdcch_vars = ue->pdcch_vars[ue->current_thread_id[nr_tti_rx]][0];
uint16_t nb_symb_sch = 8; // to be updated by higher layer
uint8_t nb_symb_pdcch =2;
//proc->decoder_switch = 0;
//int counter_decoder = 0;
uint8_t nb_symb_pdcch = pdcch_vars->coreset[0].duration;
LOG_D(PHY," ****** start RX-Chain for AbsSubframe %d.%d ****** \n", frame_rx%1024, nr_tti_rx);
LOG_D(PHY," ****** start RX-Chain for Frame.Slot %d.%d ****** \n", frame_rx%1024, nr_tti_rx);
uint8_t next1_thread_id = ue->current_thread_id[nr_tti_rx]== (RX_NB_TH-1) ? 0:(ue->current_thread_id[nr_tti_rx]+1);
uint8_t next2_thread_id = next1_thread_id== (RX_NB_TH-1) ? 0:(next1_thread_id+1);
#if 0
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PHY_PROCEDURES_UE_RX, VCD_FUNCTION_IN);
#if T_TRACER
T(T_UE_PHY_DL_TICK, T_INT(ue->Mod_id), T_INT(frame_rx%1024), T_INT(nr_tti_rx));
T(T_UE_PHY_INPUT_SIGNAL, T_INT(ue->Mod_id), T_INT(frame_rx%1024), T_INT(nr_tti_rx), T_INT(0),
T_BUFFER(&ue->common_vars.rxdata[0][nr_tti_rx*ue->frame_parms.samples_per_subframe],
ue->frame_parms.samples_per_subframe * 4));
#endif
// start timers
//#ifdef UE_DEBUG_TRACE
LOG_I(PHY," ****** start RX-Chain for AbsSubframe %d.%d ****** \n", frame_rx%1024, nr_tti_rx);
//#endif
#if UE_TIMING_TRACE
start_meas(&ue->phy_proc_rx[ue->current_thread_id[nr_tti_rx]]);
start_meas(&ue->generic_stat);
#endif
if (do_pdcch_flag) {
// deactivate reception until we scan pdcch
if (ue->dlsch[ue->current_thread_id[nr_tti_rx]][eNB_id][0])
ue->dlsch[ue->current_thread_id[nr_tti_rx]][eNB_id][0]->active = 0;
if (ue->dlsch[ue->current_thread_id[nr_tti_rx]][eNB_id][1])
ue->dlsch[ue->current_thread_id[nr_tti_rx]][eNB_id][1]->active = 0;
if (ue->dlsch_SI[eNB_id])
ue->dlsch_SI[eNB_id]->active = 0;
if (ue->dlsch_p[eNB_id])
ue->dlsch_p[eNB_id]->active = 0;
if (ue->dlsch_ra[eNB_id])
ue->dlsch_ra[eNB_id]->active = 0;
}
#ifdef DEBUG_PHY_PROC
LOG_D(PHY,"[%s %d] Frame %d nr_tti_rx %d: Doing phy_procedures_UE_RX\n",
(r_type == multicast_relay) ? "RN/UE" : "UE",
ue->Mod_id,frame_rx, nr_tti_rx);
#endif
if (ue->frame_parms.Ncp == 0) { // normal prefix
pilot1 = 4;
} else { // extended prefix
pilot1 = 3;
}
/*
if (nr_subframe_select(&ue->frame_parms,nr_tti_rx) == SF_S) { // S-subframe, do first 5 symbols only
l2 = 5;
} else */
{ // normal nr_tti_rx, last symbol to be processed is the first of the second slot
l2 = (ue->frame_parms.symbols_per_tti/2)-1;
}
int prev_nr_tti_rx = (nr_tti_rx - 1)<0? 9: (nr_tti_rx - 1);/*
if (nr_subframe_select(&ue->frame_parms,prev_nr_tti_rx) != SF_DL) {
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// RX processing of symbols l=0...l2
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
l=0;
} else */
{
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// RX processing of symbols l=1...l2 (l=0 is done in last scheduling epoch)
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
l=1;
}
LOG_D(PHY," ------ slot 0 Processing: AbsSubframe %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
LOG_D(PHY," ------ --> FFT/ChannelEst/PDCCH slot 0: AbsSubframe %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
#endif
#ifdef NR_PDCCH_SCHED
//nr_gold_pdcch(ue,0, 2);
nr_gold_pdcch(ue,0, 2);
if (nr_tti_rx==1){
//if (nr_tti_rx==1){
LOG_D(PHY," ------ --> PDCCH ChannelComp/LLR Frame.slot %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
for (uint16_t l=0; l<nb_symb_pdcch; l++) {
#if UE_TIMING_TRACE
......@@ -5061,7 +4988,7 @@ int phy_procedures_nrUE_RX(PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *proc,uint8_t eN
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SLOT_FEP, VCD_FUNCTION_IN);
nr_slot_fep(ue,
l,
nr_tti_rx<<1,
nr_tti_rx,
0,
0,
1,
......@@ -5072,7 +4999,7 @@ int phy_procedures_nrUE_RX(PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *proc,uint8_t eN
#endif
//printf("phy procedure pdcch start measurement l =%d\n",l);
nr_ue_measurement_procedures(l,ue,proc,eNB_id,(nr_tti_rx<<1),mode);
nr_ue_measurement_procedures(l,ue,proc,eNB_id,(nr_tti_rx),mode);
}
......@@ -5080,19 +5007,19 @@ int phy_procedures_nrUE_RX(PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *proc,uint8_t eN
LOG_E(PHY,"[UE %d] Frame %d, nr_tti_rx %d: Error in pdcch procedures\n",ue->Mod_id,frame_rx,nr_tti_rx);
return(-1);
}
}
//}
#endif //NR_PDCCH_SCHED
LOG_D(PHY," ------ --> PDSCH ChannelComp/LLR slot 0: AbsSubframe %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
if (nr_tti_rx==1){
LOG_D(PHY," ------ --> PDSCH ChannelComp/LLR Frame.slot %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
//to update from pdsch config
nr_gold_pdsch(ue,nb_symb_pdcch,0, 1);
for (uint16_t m=nb_symb_pdcch;m<=(nb_symb_sch+nb_symb_pdcch-1) ; m++){
nr_slot_fep(ue,
m, //to be updated from higher layer
nr_tti_rx<<1,
nr_tti_rx,
0,
0,
1,
......@@ -5126,7 +5053,6 @@ int phy_procedures_nrUE_RX(PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *proc,uint8_t eN
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PDSCH_PROC, VCD_FUNCTION_OUT);
}
LOG_D(PHY," ------ end PDSCH ChannelComp/LLR slot 0: AbsSubframe %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
// do procedures for SI-RNTI
if ((ue->dlsch_SI[eNB_id]) && (ue->dlsch_SI[eNB_id]->active == 1)) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PDSCH_PROC_SI, VCD_FUNCTION_IN);
......@@ -5168,62 +5094,12 @@ int phy_procedures_nrUE_RX(PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *proc,uint8_t eN
ue->frame_parms.symbols_per_tti>>1);
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PDSCH_PROC_RA, VCD_FUNCTION_OUT);
}
//#if 0
LOG_D(PHY," ------ slot 1 Processing: AbsSubframe %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
LOG_D(PHY," ------ --> FFT/ChannelEst/PDCCH slot 1: AbsSubframe %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
/*if (nr_subframe_select(&ue->frame_parms,nr_tti_rx) != SF_S)*/
{ // do front-end processing for second slot, and first symbol of next nr_tti_rx
for (l=1; l<ue->frame_parms.symbols_per_tti>>1; l++) {
#if UE_TIMING_TRACE
start_meas(&ue->ofdm_demod_stats);
#endif
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SLOT_FEP, VCD_FUNCTION_IN);
/*nr_slot_fep(ue,
l,
1+(nr_tti_rx<<1),
0,
0,
0,
NR_PDSCH_EST);*/
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SLOT_FEP, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
stop_meas(&ue->ofdm_demod_stats);
#endif
//ue_measurement_procedures(l-1,ue,proc,eNB_id,1+(nr_tti_rx<<1),abstraction_flag,mode);
} // for l=1..l2
// do first symbol of next downlink nr_tti_rx for channel estimation
int next_nr_tti_rx = (1+nr_tti_rx)%10;
/* if (nr_subframe_select(&ue->frame_parms,next_nr_tti_rx) != SF_UL)*/
{
/*nr_slot_fep(ue,
0,
(next_nr_tti_rx<<1),
0,
0,
0,
NR_PDSCH_EST);*/
}
} // not an S-subframe
#if UE_TIMING_TRACE
stop_meas(&ue->generic_stat);
#if DISABLE_LOG_X
printf("[SFN %d] Slot1: FFT + Channel Estimate + Pdsch Proc Slot0 %5.2f \n",nr_tti_rx,ue->generic_stat.p_time/(cpuf*1000.0));
#else
LOG_D(PHY, "[SFN %d] Slot1: FFT + Channel Estimate + Pdsch Proc Slot0 %5.2f \n",nr_tti_rx,ue->generic_stat.p_time/(cpuf*1000.0));
#endif
#endif
//LOG_D(PHY," ------ end FFT/ChannelEst/PDCCH slot 1: AbsSubframe %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
if ( (nr_tti_rx == 0) && (ue->decode_MIB == 1))
{
LOG_D(PHY," ------ PBCH ChannelComp/LLR: frame.slot %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
for (int i=0; i<3; i++)
nr_slot_fep(ue,
(5+i), //mu=1 case B
......@@ -5237,7 +5113,6 @@ int phy_procedures_nrUE_RX(PHY_VARS_NR_UE *ue,UE_nr_rxtx_proc_t *proc,uint8_t eN
}
// do procedures for C-RNTI
LOG_D(PHY," ------ --> PDSCH ChannelComp/LLR slot 0: AbsSubframe %d.%d ------ \n", frame_rx%1024, nr_tti_rx);
if (ue->dlsch[ue->current_thread_id[nr_tti_rx]][eNB_id][0]->active == 1) {
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME(VCD_SIGNAL_DUMPER_FUNCTIONS_PDSCH_PROC, VCD_FUNCTION_IN);
......
......@@ -144,7 +144,7 @@ int main(int argc, char **argv) {
//char input_val_str[50],input_val_str2[50];
//uint16_t NB_RB=25;
SCM_t channel_model = AWGN; //Rayleigh1_anticorr;
uint8_t N_RB_DL = 106, mu = 1;
uint16_t N_RB_DL = 106, mu = 1;
unsigned char frame_type = 0;
unsigned char pbch_phase = 0;
int frame = 0, subframe = 0;
......@@ -362,7 +362,8 @@ int main(int argc, char **argv) {
if (snr1set == 0)
snr1 = snr0 + 10;
gNB2UE = new_channel_desc_scm(n_tx, n_rx, channel_model, 61.44e6, //N_RB2sampling_rate(N_RB_DL),
gNB2UE = new_channel_desc_scm(n_tx, n_rx, channel_model,
61.44e6, //N_RB2sampling_rate(N_RB_DL),
40e6, //N_RB2channel_bandwidth(N_RB_DL),
0, 0, 0);
......@@ -599,9 +600,11 @@ int main(int argc, char **argv) {
(float) n_errors / (float) n_trials,
(float) n_false_positive / (float) n_trials);
if ((float) n_errors / (float) n_trials < target_error_rate)
if ((float) n_errors / (float) n_trials < target_error_rate) {
printf("PDSCH test OK\n");
break;
}
}
/*LOG_M("txsigF0.m","txsF0", gNB->common_vars.txdataF[0],frame_length_complex_samples_no_prefix,1,1);
if (gNB->frame_parms.nb_antennas_tx>1)
......
......@@ -157,6 +157,7 @@ int main(int argc, char **argv)
int frame=0,slot=1;
int frame_length_complex_samples;
int frame_length_complex_samples_no_prefix;
int slot_length_complex_samples_no_prefix;
NR_DL_FRAME_PARMS *frame_parms;
nfapi_nr_config_request_t *gNB_config;
gNB_L1_rxtx_proc_t gNB_proc;
......@@ -399,7 +400,7 @@ int main(int argc, char **argv)
// call MAC to configure common parameters
phy_init_nr_gNB(gNB,0,0);
mac_top_init_gNB();
double fs,bw;
......@@ -437,7 +438,8 @@ int main(int argc, char **argv)
}
frame_length_complex_samples = frame_parms->samples_per_subframe*NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
frame_length_complex_samples_no_prefix = frame_parms->samples_per_subframe_wCP;
frame_length_complex_samples_no_prefix = frame_parms->samples_per_subframe_wCP*NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
slot_length_complex_samples_no_prefix = frame_parms->samples_per_slot_wCP;
s_re = malloc(2*sizeof(double*));
s_im = malloc(2*sizeof(double*));
......@@ -480,6 +482,7 @@ int main(int argc, char **argv)
else {UE->is_synchronized = 1; UE->UE_mode[0]=PUSCH;}
UE->perfect_ce = 0;
for (i=0;i<10;i++) UE->current_thread_id[i] = 0;
if (init_nr_ue_signal(UE, 1, 0) != 0)
{
......@@ -502,6 +505,8 @@ int main(int argc, char **argv)
nr_l2_init_ue();
UE_mac = get_mac_inst(0);
UE->pdcch_vars[0][0]->crnti = 0x1234;
UE->if_inst = nr_ue_if_module_init(0);
UE->if_inst->scheduled_response = nr_ue_scheduled_response;
UE->if_inst->phy_config_request = nr_ue_phy_config_request;
......@@ -517,7 +522,7 @@ int main(int argc, char **argv)
gNB->pbch_configured = 1;
for (int i=0;i<4;i++) gNB->pbch_pdu[i]=i+1;
nr_schedule_css_dlsch_phytest(0,frame,slot);
nr_schedule_uss_dlsch_phytest(0,frame,slot);
Sched_INFO.module_id = 0;
Sched_INFO.CC_id = 0;
Sched_INFO.frame = frame;
......@@ -538,18 +543,20 @@ int main(int argc, char **argv)
if (gNB->frame_parms.nb_antennas_tx>1)
LOG_M("txsigF1.m","txsF1", gNB->common_vars.txdataF[1],frame_length_complex_samples_no_prefix,1,1);
int tx_offset = slot*frame_parms->samples_per_slot;
//TODO: loop over slots
for (aa=0; aa<gNB->frame_parms.nb_antennas_tx; aa++) {
if (gNB_config->subframe_config.dl_cyclic_prefix_type.value == 1) {
PHY_ofdm_mod(gNB->common_vars.txdataF[aa],
txdata[aa],
&txdata[aa][tx_offset],
frame_parms->ofdm_symbol_size,
12,
frame_parms->nb_prefix_samples,
CYCLIC_PREFIX);
} else {
nr_normal_prefix_mod(gNB->common_vars.txdataF[aa],
txdata[aa],
&txdata[aa][tx_offset],
14,
frame_parms);
}
......@@ -562,7 +569,7 @@ int main(int argc, char **argv)
frame_length_complex_samples,
input_fd) != frame_length_complex_samples) {
printf("error reading from file\n");
exit(-1);
//exit(-1);
}
}
......@@ -598,7 +605,7 @@ int main(int argc, char **argv)
// Type0 PDCCH search space
dl_config.number_pdus = 1;
dl_config.dl_config_list[0].pdu_type = FAPI_NR_DL_CONFIG_TYPE_DCI;
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.rnti = 3; // to be set
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.rnti = 0x1234; // to be set
uint64_t mask = 0x0;
uint16_t num_rbs=24;
......@@ -613,9 +620,9 @@ int main(int argc, char **argv)
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.rb_offset = rb_offset; // additional parameter other than coreset
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.duration = num_symbols;
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_mapping_type =CCE_REG_MAPPING_TYPE_INTERLEAVED;
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_reg_bundle_size = 6; // L 38.211 7.3.2.2
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_interleaver_size = 2; // R 38.211 7.3.2.2
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_mapping_type =CCE_REG_MAPPING_TYPE_NON_INTERLEAVED;
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_reg_bundle_size = 0; // L 38.211 7.3.2.2
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_interleaver_size = 0; // R 38.211 7.3.2.2
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_shift_index = cell_id;
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.precoder_granularity = PRECODER_GRANULARITY_SAME_AS_REG_BUNDLE;
dl_config.dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.pdcch_dmrs_scrambling_id = cell_id;
......@@ -663,7 +670,7 @@ int main(int argc, char **argv)
if (n_trials==1) {
LOG_M("rxsig0.m","rxs0", UE->common_vars.rxdata[0],frame_length_complex_samples,1,1);
if (gNB->frame_parms.nb_antennas_tx>1)
if (UE->frame_parms.nb_antennas_rx>1)
LOG_M("rxsig1.m","rxs1", UE->common_vars.rxdata[1],frame_length_complex_samples,1,1);
}
if (UE->is_synchronized == 0) {
......@@ -689,6 +696,11 @@ int main(int argc, char **argv)
do_pdcch_flag,
normal_txrx);
if (n_trials==1) {
LOG_M("rxsigF0.m","rxsF0", UE->common_vars.common_vars_rx_data_per_thread[0].rxdataF[0],slot_length_complex_samples_no_prefix,1,1);
if (UE->frame_parms.nb_antennas_rx>1)
LOG_M("rxsigF1.m","rxsF1", UE->common_vars.common_vars_rx_data_per_thread[0].rxdataF[1],slot_length_complex_samples_no_prefix,1,1);
}
if (UE->dci_ind.number_of_dcis==0) n_errors++;
}
......
......@@ -96,3 +96,8 @@ target_link_libraries(pucch_uci_test
-Wl,--start-group UTIL SCHED_NR_UE_LIB PHY PHY_COMMON PHY_UE PHY_NR_UE -Wl,--end-group
pthread m ${ATLAS_LIBRARIES}
)
add_executable(pucch_uci_generator_test ${OPENAIR1_DIR}/SIMULATION/NR_UE_PHY/unit_tests/src/pucch_uci_generator_test.c ${SRC_UNIT_TESTS} )
target_link_libraries(pucch_uci_generator_test
-Wl,--start-group UTIL SCHED_NR_UE_LIB PHY PHY_COMMON PHY_UE PHY_NR_UE -Wl,--end-group
pthread m ${ATLAS_LIBRARIES}
)
\ No newline at end of file
......@@ -192,11 +192,10 @@ int load_module_shlib(char *modname,loader_shlibfunc_t *farray, int numf) { retu
void * get_shlibmodule_fptr(char *modname, char *fname) { return(NULL) ; }
void exit_fun(const char* s)
{
/*void exit_fun (const char *s) {
VOID_PARAMETER s;
undefined_function(__FUNCTION__);
}
}*/
uint32_t ue_get_SR(module_id_t module_idP, int CC_id, frame_t frameP,
uint8_t eNB_id, rnti_t rnti, sub_frame_t subframe){
......
......@@ -66,7 +66,7 @@
/*************** LOCAL VARIABLES***********************************/
static nfapi_config_request_t config_t;
static nfapi_config_request_t* config =&config_t;
static nfapi_config_request_t *config =&config_t;
/*************** FUNCTIONS ****************************************/
......@@ -86,8 +86,7 @@ int init_nr_ue_signal(PHY_VARS_NR_UE *ue, int nb_connected_eNB, uint8_t abstract
*
*********************************************************************/
void phase_shift_samples(int16_t *samples, int length, int16_t phase_shift_re, int16_t phase_shift_im)
{
void phase_shift_samples(int16_t *samples, int length, int16_t phase_shift_re, int16_t phase_shift_im) {
int16_t sample_re, sample_im;
for (int i = 0; i < length; i++) {
......@@ -112,22 +111,23 @@ void phase_shift_samples(int16_t *samples, int length, int16_t phase_shift_re, i
*
*********************************************************************/
void display_data(int pss_sequence_number, int16_t *rxdata, int position)
{
void display_data(int pss_sequence_number, int16_t *rxdata, int position) {
#ifdef DEBUG_TEST_PSS
int16_t *pss_sequence[NUMBER_PSS_SEQUENCE] = {primary_synch0_time, primary_synch1_time, primary_synch2_time};
int16_t *pss_sequence_time = pss_sequence[pss_sequence_number];
printf(" pss %6d data \n", pss_sequence_number);
for (int i = 0; i < 4; i++) {
if (pss_sequence_number < NUMBER_PSS_SEQUENCE) {
printf("[i %6d] : %4d [i %6d] : %8i at address : %p \n", i, pss_sequence_time[2*i], (i + position), rxdata[2*i + (position*2)], &(rxdata[2*i + (position*2)]));
printf("[q %6d] : %4d [q %6d] : %8i at address : %p \n", i, pss_sequence_time[2*i+1], (i + position), rxdata[2*i + 1 + (position*2)], &(rxdata[2*i + 1 + (position*2)]));
}
else {
} else {
printf("[i %6d] : Undef [i %6d] : %8i at address : %p \n", i, (i + position), rxdata[2*i + (position*2)], &(rxdata[2*i + (position*2)]));
printf("[q %6d] : Undef [q %6d] : %8i at address : %p \n", i, (i + position), rxdata[2*i + 1 + (position*2)], &(rxdata[2*i + 1 + (position*2)]));
}
}nr_init_frame_parms
}
nr_init_frame_parms
printf(" ... ... \n");
#else
(void) pss_sequence_number;
......@@ -149,11 +149,9 @@ void display_data(int pss_sequence_number, int16_t *rxdata, int position)
*
*********************************************************************/
void display_test_configuration_pss(int position, int pss_sequence_number)
{
void display_test_configuration_pss(int position, int pss_sequence_number) {
const char next_test_text[] = "------------------------------------------------\n";
const char test_text_pss[] = "Test nr pss with Nid2 %i at position %i \n";
printf(next_test_text);
printf(test_text_pss, pss_sequence_number, position);
}
......@@ -171,8 +169,7 @@ void display_test_configuration_pss(int position, int pss_sequence_number)
*
*********************************************************************/
void display_test_configuration_sss(int sss_sequence_number)
{
void display_test_configuration_sss(int sss_sequence_number) {
const char test_text_sss[] = "Test nr sss with Nid1 %i \n";
printf(test_text_sss, sss_sequence_number);
}
......@@ -191,8 +188,7 @@ void display_test_configuration_sss(int sss_sequence_number)
*
*********************************************************************/
void undefined_function(const char *function)
{
void undefined_function(const char *function) {
printf("%s undefined \n", function);
printf("Warning: function \"%s\" has been replaced by an empty function for avoiding undefined function error at build \n", function);
}
......@@ -210,34 +206,22 @@ void undefined_function(const char *function)
*********************************************************************/
int init_test(unsigned char N_tx, unsigned char N_rx, unsigned char transmission_mode,
unsigned char extended_prefix_flag, uint8_t frame_type, uint16_t Nid_cell, uint8_t N_RB_DL)
{
unsigned char extended_prefix_flag, uint8_t frame_type, uint16_t Nid_cell, uint8_t N_RB_DL) {
(void) transmission_mode;
NR_DL_FRAME_PARMS *frame_parms;
int log_level = OAILOG_TRACE;
logInit();
// enable these lines if you need debug info
//set_comp_log(PHY,LOG_DEBUG,LOG_HIGH,1);
set_glog(log_level);
#ifndef NR_UNIT_TEST
cpuf = get_cpu_freq_GHz();
LOG_I(PHY, "[CONFIG] Test of UE synchronisation \n");
//LOG_I(PHY, "[CONFIG] Test of UE synchronisation \n");
set_component_filelog(USIM); // file located in /tmp/testSynchroue.txt
#endif
//randominit(0);
//set_taus_seed(0);
printf("Start lte_param_init, frame_type %d, extended_prefix %d\n",frame_type,extended_prefix_flag);
PHY_vars_UE = malloc(sizeof(PHY_VARS_NR_UE));
bzero(PHY_vars_UE, sizeof(PHY_VARS_NR_UE));
......@@ -245,7 +229,6 @@ int init_test(unsigned char N_tx, unsigned char N_rx, unsigned char transmission
return(-1);
frame_parms = &(PHY_vars_UE->frame_parms);
frame_parms->N_RB_DL = N_RB_DL; //50 for 10MHz and 25 for 5 MHz
frame_parms->N_RB_UL = N_RB_DL;
frame_parms->Ncp = extended_prefix_flag;
......@@ -257,33 +240,30 @@ int init_test(unsigned char N_tx, unsigned char N_rx, unsigned char transmission
frame_parms->nb_antenna_ports_eNB = 1;
frame_parms->threequarter_fs = 0;
frame_parms->numerology_index = NUMEROLOGY_INDEX_MAX_NR;
nr_init_frame_parms_ue(frame_parms);
int mu = 1;
int n_ssb_crb = 0;
int ssb_subcarrier_offset = 0;
nr_init_frame_parms_ue(frame_parms, mu, extended_prefix_flag, N_RB_DL, n_ssb_crb, ssb_subcarrier_offset);
PHY_vars_UE->frame_parms.Nid_cell = (3 * N_ID_1_NUMBER) + N_ID_2_NUMBER; /* set to unvalid value */
//phy_init_nr_top(frame_parms);
if (init_nr_ue_signal(PHY_vars_UE, 1, 0) != 0)
{
if (init_nr_ue_signal(PHY_vars_UE, 1, 0) != 0) {
LOG_E(PHY,"Error at UE NR initialisation : at line %d in function %s of file %s \n", LINE_FILE , __func__, FILE_NAME);
return (0);
}
/* dummy initialisation of global structure PHY_vars_UE_g */
/* dummy initialisation of global structure PHY_vars_UE_g */
unsigned char NB_UE_INST=1;
PHY_vars_UE_g = (PHY_VARS_NR_UE***)calloc( NB_UE_INST, sizeof(PHY_VARS_NR_UE**));
PHY_vars_UE_g = (PHY_VARS_NR_UE ** *)calloc( NB_UE_INST, sizeof(PHY_VARS_NR_UE **));
for (int UE_id=0; UE_id<NB_UE_INST; UE_id++) {
PHY_vars_UE_g[UE_id] = (PHY_VARS_NR_UE**) calloc( MAX_NUM_CCs, sizeof(PHY_VARS_NR_UE*));
PHY_vars_UE_g[UE_id] = (PHY_VARS_NR_UE **) calloc( MAX_NUM_CCs, sizeof(PHY_VARS_NR_UE *));
for (int CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
//(frame_parms[CC_id])->nb_antennas_tx = 1;
//(frame_parms[CC_id])->nb_antennas_rx = nb_antennas_rx_ue;
// PHY_vars_UE_g[UE_id][CC_id] = init_lte_UE(frame_parms[CC_id], UE_id,abstraction_flag);
PHY_vars_UE_g[UE_id][CC_id] = calloc(1, sizeof(PHY_VARS_NR_UE));
PHY_vars_UE_g[UE_id][CC_id]->Mod_id=UE_id;
PHY_vars_UE_g[UE_id][CC_id]->CC_id=CC_id;
......@@ -318,73 +298,66 @@ typedef enum {
#define FREQUENCY_15_MHZ (15360000L)
#define FREQUENCY (FREQUENCY_15_MHZ) /* to generate a frequency with a sampling of 30,72 MHz 5 gives 770 KHz, 20 gives 1,5 MHz, 40 gives 3 MHz */
void set_random_rx_buffer(PHY_VARS_NR_UE *PHY_vars_UE, int amp)
{
NR_DL_FRAME_PARMS *frame_parms = &(PHY_vars_UE->frame_parms);
int samples_for_frame = (LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*frame_parms->samples_per_tti);
int16_t random;
int16_t *data_p;
random_data_format_t data_format = SINUSOIDAL_DATA;
void set_random_rx_buffer(PHY_VARS_NR_UE *PHY_vars_UE, int amp) {
NR_DL_FRAME_PARMS *frame_parms = &(PHY_vars_UE->frame_parms);
int samples_for_frame = (LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*frame_parms->samples_per_tti);
int16_t random;
int16_t *data_p;
random_data_format_t data_format = SINUSOIDAL_DATA;
/* reinitialise random for always getting same data */
srand(0);
double n = 0;
for (int aa=0;aa<PHY_vars_UE->frame_parms.nb_antennas_rx;aa++) {
for (int aa=0; aa<PHY_vars_UE->frame_parms.nb_antennas_rx; aa++) {
data_p = (int16_t *) &(PHY_vars_UE->common_vars.rxdata[aa][0]);
int frequency_switch = samples_for_frame/LTE_NUMBER_OF_SUBFRAMES_PER_FRAME;
int frequency_step = 0;
double beat = (2*M_PI*FREQUENCY_15_MHZ)/(SAMPLING_RATE);
for (int i=0; i< samples_for_frame; i++) {
switch(data_format) {
case ZERO_DATA:
{
case ZERO_DATA: {
/* all data are forced to zero */
random = 0;
break;
}
case SINUSOIDAL_DATA:
{
case SINUSOIDAL_DATA: {
/* sinusoidal signal */
n = cos(beat*i);
random = n * (amp * SCALING_SINUSOIDAL_DATA);
frequency_step++;
if (frequency_step == frequency_switch) {
beat = beat/2; /* frequency is divided by 2 */
//printf("frequency %f at %d\n", (beat/2*M_PI), i);
frequency_step = 0;
}
//printf("%d : cos %d %d \n", i, n, random);
break;
}
case RANDOM_DATA:
{
case RANDOM_DATA: {
/* random data can take any value between -SHRT_MAX and SHRT_MAX */
/* in this case one can use maxim value for uint16 because there is no saturation */
#define SCALING_RANDOM_DATA (24) /* 48 is max value without decimation */
#define RANDOM_MAX_AMP (amp * SCALING_RANDOM_DATA)
#define SCALING_RANDOM_DATA (24) /* 48 is max value without decimation */
#define RANDOM_MAX_AMP (amp * SCALING_RANDOM_DATA)
random = ((rand() % RANDOM_MAX_AMP) - RANDOM_MAX_AMP/2);
break;
}
case RANDOM_MAX_DATA:
{
case RANDOM_MAX_DATA: {
/* random data can take only two value (-RANDOM_MAX) or RANDOM_MAX */
/* In this case saturation can occur with value of scaling_value greater than 23 */
#define SCALING_RANDOM_MAX_DATA (8)
#define RANDOM_VALUE (amp * SCALING_RANDOM_DATA)
#define SCALING_RANDOM_MAX_DATA (8)
#define RANDOM_VALUE (amp * SCALING_RANDOM_DATA)
const int random_number[2] = {-1,+1};
random = random_number[rand()%2] * RANDOM_VALUE;
break;
}
default:
{
default: {
printf("Format of data is undefined \n");
assert(0);
break;
......@@ -393,12 +366,13 @@ random_data_format_t data_format = SINUSOIDAL_DATA;
data_p[2*i] = random;
data_p[2*i+1] = random;
#if 0
if (i < 10) {
printf("random %d \n", random);
printf("data[%d] : %d %d at address %p \n", i, data_p[2*i], data_p[2*i+1], &data_p[2*i]);
}
#endif
}
}
......@@ -418,23 +392,22 @@ random_data_format_t data_format = SINUSOIDAL_DATA;
*
*********************************************************************/
int set_pss_in_rx_buffer_from_external_buffer(PHY_VARS_NR_UE *PHY_vars_UE, short *input_buffer)
{
int set_pss_in_rx_buffer_from_external_buffer(PHY_VARS_NR_UE *PHY_vars_UE, short *input_buffer) {
NR_DL_FRAME_PARMS *frame_parms = &(PHY_vars_UE->frame_parms);
int samples_for_frame = LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*frame_parms->samples_per_subframe; /* both i and q */
for (int aa=0;aa<PHY_vars_UE->frame_parms.nb_antennas_rx;aa++) {
for (int aa=0; aa<PHY_vars_UE->frame_parms.nb_antennas_rx; aa++) {
for (int i = 0; i < samples_for_frame; i++) {
((int16_t*)PHY_vars_UE->common_vars.rxdata[aa])[2*i] = input_buffer[2*i]; /* real part */
((int16_t*)PHY_vars_UE->common_vars.rxdata[aa])[2*i+1] = input_buffer[2*i+1]; /* imaginary part */
((int16_t *)PHY_vars_UE->common_vars.rxdata[aa])[2*i] = input_buffer[2*i]; /* real part */
((int16_t *)PHY_vars_UE->common_vars.rxdata[aa])[2*i+1] = input_buffer[2*i+1]; /* imaginary part */
}
}
/* check that sequence has been properly copied */
for (int aa=0;aa<PHY_vars_UE->frame_parms.nb_antennas_rx;aa++) {
for (int aa=0; aa<PHY_vars_UE->frame_parms.nb_antennas_rx; aa++) {
for (int i=0; i<samples_for_frame; i++) {
if ((input_buffer[2*i] != ((int16_t*)PHY_vars_UE->common_vars.rxdata[aa])[2*i])
|| (input_buffer[2*i+1] != ((int16_t*)PHY_vars_UE->common_vars.rxdata[aa])[2*i+1])) {
if ((input_buffer[2*i] != ((int16_t *)PHY_vars_UE->common_vars.rxdata[aa])[2*i])
|| (input_buffer[2*i+1] != ((int16_t *)PHY_vars_UE->common_vars.rxdata[aa])[2*i+1])) {
printf("Sequence pss was not properly copied into received buffer at index %d \n", i);
exit(-1);
}
......@@ -466,15 +439,13 @@ int set_pss_in_rx_buffer_from_external_buffer(PHY_VARS_NR_UE *PHY_vars_UE, short
*
*********************************************************************/
int set_pss_in_rx_buffer(PHY_VARS_NR_UE *PHY_vars_UE, int position_symbol, int pss_sequence_number)
{
int set_pss_in_rx_buffer(PHY_VARS_NR_UE *PHY_vars_UE, int position_symbol, int pss_sequence_number) {
NR_DL_FRAME_PARMS *frame_parms = &(PHY_vars_UE->frame_parms);
int samples_for_frame = frame_parms->samples_per_frame;
int16_t *pss_sequence_time;
if ((position_symbol > samples_for_frame)
|| ((position_symbol + frame_parms->ofdm_symbol_size) > samples_for_frame))
{
|| ((position_symbol + frame_parms->ofdm_symbol_size) > samples_for_frame)) {
printf("This pss sequence can not be fully written in the received window \n");
return (-1);
}
......@@ -486,18 +457,18 @@ int set_pss_in_rx_buffer(PHY_VARS_NR_UE *PHY_vars_UE, int position_symbol, int p
pss_sequence_time = primary_synchro_time_nr[pss_sequence_number];
for (int aa=0;aa<PHY_vars_UE->frame_parms.nb_antennas_rx;aa++) {
for (int aa=0; aa<PHY_vars_UE->frame_parms.nb_antennas_rx; aa++) {
for (int i = 0; i < frame_parms->ofdm_symbol_size; i++) {
((int16_t*)PHY_vars_UE->common_vars.rxdata[aa])[(position_symbol*2) + (2*i)] = pss_sequence_time[2*i]; /* real part */
((int16_t*)PHY_vars_UE->common_vars.rxdata[aa])[(position_symbol*2) + (2*i+1)] = pss_sequence_time[2*i+1]; /* imaginary part */
((int16_t *)PHY_vars_UE->common_vars.rxdata[aa])[(position_symbol*2) + (2*i)] = pss_sequence_time[2*i]; /* real part */
((int16_t *)PHY_vars_UE->common_vars.rxdata[aa])[(position_symbol*2) + (2*i+1)] = pss_sequence_time[2*i+1]; /* imaginary part */
}
}
/* check that sequence has been properly copied */
for (int aa=0;aa<PHY_vars_UE->frame_parms.nb_antennas_rx;aa++) {
for (int aa=0; aa<PHY_vars_UE->frame_parms.nb_antennas_rx; aa++) {
for (int i=0; i<(frame_parms->ofdm_symbol_size); i++) {
if ((pss_sequence_time[2*i] != ((int16_t*)PHY_vars_UE->common_vars.rxdata[aa])[(position_symbol*2) + (2*i)])
|| (pss_sequence_time[2*i+1] != ((int16_t*)PHY_vars_UE->common_vars.rxdata[aa])[(position_symbol*2) + (2*i+1)])) {
if ((pss_sequence_time[2*i] != ((int16_t *)PHY_vars_UE->common_vars.rxdata[aa])[(position_symbol*2) + (2*i)])
|| (pss_sequence_time[2*i+1] != ((int16_t *)PHY_vars_UE->common_vars.rxdata[aa])[(position_symbol*2) + (2*i+1)])) {
printf("Sequence pss was not properly copied into received buffer at index %d \n", i);
exit(-1);
}
......@@ -525,11 +496,9 @@ int set_pss_in_rx_buffer(PHY_VARS_NR_UE *PHY_vars_UE, int position_symbol, int p
*
*********************************************************************/
void set_sequence_pss(PHY_VARS_NR_UE *PHY_vars_UE, int position_symbol, int pss_sequence_number)
{
void set_sequence_pss(PHY_VARS_NR_UE *PHY_vars_UE, int position_symbol, int pss_sequence_number) {
NR_DL_FRAME_PARMS *frame_parms = &(PHY_vars_UE->frame_parms);
int samples_for_frame = frame_parms->samples_per_frame;
/* initialise received ue data with random */
set_random_rx_buffer(PHY_vars_UE, AMP);
......@@ -543,6 +512,7 @@ void set_sequence_pss(PHY_VARS_NR_UE *PHY_vars_UE, int position_symbol, int pss_
printf("This position for pss sequence %d is not supported because it exceeds the frame length %d!\n", position_symbol, samples_for_frame);
exit(0);
}
if (set_pss_in_rx_buffer(PHY_vars_UE, position_symbol, pss_sequence_number) != 0)
printf("Warning: pss sequence can not be properly written into received buffer !\n");
}
......
#include "../../unit_tests/src/pss_util_test.h"
#include "PHY/defs_nr_UE.h"
#include "PHY/INIT/init_extern.h"
#include "PHY/phy_extern_nr_ue.h"
/*
#include "SCHED_NR_UE/defs.h"
#include "SCHED_NR/extern.h"
#include "SCHED_NR_UE/harq_nr.h"
*/
#include "SCHED_NR_UE/pucch_uci_ue_nr.h"
/**************** define **************************************/
#define TST_GNB_ID_0 (0) /* first index of gNB */
#define TST_THREAD_ID (0)
int test_pucch_generators(PHY_VARS_NR_UE *ue) {
int gNB_id = TST_GNB_ID_0;
int thread_number = TST_THREAD_ID;
int TB_identifier = 0;
int v_return = 0;
pucch_format_nr_t format = pucch_format2_nr;
uint8_t starting_symbol_index;
uint8_t nb_symbols_total = 4;
uint16_t starting_prb = 0;; /* it can be considered as first hop on case of pucch hopping */
uint16_t second_hop = 0; /* second part for pucch for hopping */
uint8_t nb_of_prbs = 1;
switch (format) {
case pucch_format0_nr:
nb_symbols_total = 2;
nb_of_prbs = 1;
starting_symbol_index = 0;
break;
case pucch_format1_nr:
nb_symbols_total = 5;
nb_of_prbs = 1;
starting_symbol_index = 0;
break;
case pucch_format2_nr:
nb_symbols_total = 2;
nb_of_prbs = 16;
starting_symbol_index = 0;
break;
}
int m_0 = 0; /* format 0 only */
int m_CS = 0; /* for all format except for format 0 */
int index_additional_dmrs = I_PUCCH_NO_ADDITIONAL_DMRS;
int index_hopping = I_PUCCH_NO_HOPPING;
int time_domain_occ = 0;
int occ_length = 0;
int occ_Index = 0;
uint64_t pucch_payload = 0;
int tx_amp = 512;
int nr_tti_tx = 0;
int N_UCI = 0; /* size in bits for Uplink Control Information */
switch(format) {
case pucch_format0_nr: {
nr_generate_pucch0(ue,ue->common_vars.txdataF,
&ue->frame_parms,
&ue->pucch_config_dedicated_nr[gNB_id],
tx_amp,
nr_tti_tx,
(uint8_t)m_0,
(uint8_t)m_CS,
nb_symbols_total,
starting_symbol_index,
starting_prb);
break;
}
case pucch_format1_nr: {
nr_generate_pucch1(ue,ue->common_vars.txdataF,
&ue->frame_parms,
&ue->pucch_config_dedicated_nr[gNB_id],
pucch_payload,
tx_amp,
nr_tti_tx,
(uint8_t)m_0,
nb_symbols_total,
starting_symbol_index,
starting_prb,
second_hop,
(uint8_t)time_domain_occ,
(uint8_t)N_UCI);
break;
}
case pucch_format2_nr: {
nr_generate_pucch2(ue,
ue->pdcch_vars[ue->current_thread_id[nr_tti_tx]][gNB_id]->crnti,
ue->common_vars.txdataF,
&ue->frame_parms,
&ue->pucch_config_dedicated_nr[gNB_id],
pucch_payload,
tx_amp,
nr_tti_tx,
nb_symbols_total,
starting_symbol_index,
nb_of_prbs,
starting_prb,
(uint8_t)N_UCI);
break;
}
case pucch_format3_nr:
case pucch_format4_nr: {
nr_generate_pucch3_4(ue,
ue->pdcch_vars[ue->current_thread_id[nr_tti_tx]][gNB_id]->crnti,
ue->common_vars.txdataF,
&ue->frame_parms,
format,
&ue->pucch_config_dedicated_nr[gNB_id],
pucch_payload,
tx_amp,
nr_tti_tx,
nb_symbols_total,
starting_symbol_index,
nb_of_prbs,
starting_prb,
second_hop,
(uint8_t)N_UCI,
(uint8_t)occ_length,
(uint8_t)occ_Index);
break;
}
}
return (v_return);
}
int main(int argc, char *argv[]) {
uint8_t transmission_mode = 1;
uint8_t nb_antennas_tx = 1;
uint8_t nb_antennas_rx = 1;
uint8_t frame_type = FDD;
uint8_t N_RB_DL=106;
lte_prefix_type_t extended_prefix_flag = NORMAL;
int Nid_cell[] = {(3*1+3)};
VOID_PARAMETER argc;
VOID_PARAMETER argv;
printf(" PUCCH TEST \n");
printf("-----------\n");
if (init_test(nb_antennas_tx, nb_antennas_rx, transmission_mode, extended_prefix_flag, frame_type, Nid_cell[0], N_RB_DL) != 0) {
printf("Initialisation problem for test \n");
exit(-1);;
}
if (test_pucch_generators(PHY_vars_UE) != 0) {
printf("\nTest PUCCH is fail \n");
} else {
printf("\nTest PUCCH is pass \n");
}
free_context_synchro_nr();
return(0);
}
......@@ -323,6 +323,16 @@ void gNB_dlsch_ulsch_scheduler(module_id_t module_idP,
nfapi_nr_config_request_t *cfg = &RC.nrmac[module_idP]->config[CC_id];
nfapi_nr_coreset_t coreset = RC.nrmac[module_idP]->coreset[CC_id][1];
nfapi_nr_search_space_t search_space = RC.nrmac[module_idP]->search_space[CC_id][1];
if (nr_is_dci_opportunity(search_space,
coreset,
frameP,
slotP,
*cfg))
nr_schedule_uss_dlsch_phytest(module_idP, frameP, slotP);
rnti = UE_RNTI(module_idP, i);
CC_id = UE_PCCID(module_idP, i);
int spf = get_spf(cfg);
......@@ -425,9 +435,11 @@ void gNB_dlsch_ulsch_scheduler(module_id_t module_idP,
// Phytest scheduling/ option not activated because of pending bug
if (slotP==2)
nr_schedule_css_dlsch_phytest(module_idP, frameP, slotP);
/*if (slotP==2)
nr_schedule_css_dlsch_phytest(module_idP, frameP, slotP);*/
if (slotP==1)
nr_schedule_uss_dlsch_phytest(module_idP, frameP, slotP);
/*
// Allocate CCEs for good after scheduling is done
......
......@@ -92,7 +92,8 @@ void nr_schedule_css_dlsch_phytest(module_id_t module_idP,
nr_configure_css_dci_initial(params_rel15,
scs, scs, nr_FR1, 0, 0,
scs, scs, nr_FR1, 0, 0, 0,
sfn_sf, slotP,
slots_per_frame,
dl_carrier_bandwidth);
......@@ -179,3 +180,145 @@ void nr_schedule_css_dlsch_phytest(module_id_t module_idP,
}
}
/*Scheduling of DLSCH with associated DCI in user specific search space
* current version has only a DCI for type 1 PDCCH for C_RNTI*/
void nr_schedule_uss_dlsch_phytest(module_id_t module_idP,
frame_t frameP,
sub_frame_t slotP)
{
uint8_t CC_id;
gNB_MAC_INST *nr_mac = RC.nrmac[module_idP];
//NR_COMMON_channels_t *cc = nr_mac->common_channels;
nfapi_nr_dl_config_request_body_t *dl_req;
nfapi_nr_dl_config_request_pdu_t *dl_config_dci_pdu;
nfapi_nr_dl_config_request_pdu_t *dl_config_dlsch_pdu;
nfapi_tx_request_pdu_t *TX_req;
nfapi_nr_config_request_t *cfg = &nr_mac->config[0];
uint16_t rnti = 0x1234;
uint16_t sfn_sf = frameP << 7 | slotP;
int dl_carrier_bandwidth = cfg->rf_config.dl_carrier_bandwidth.value;
// everything here is hard-coded to 30 kHz
int scs = get_dlscs(cfg);
int slots_per_frame = get_spf(cfg);
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
LOG_I(MAC, "Scheduling UE specific search space DCI type 1 for CC_id %d\n",CC_id);
nfapi_nr_coreset_t* coreset = &nr_mac->coreset[CC_id][1];
nfapi_nr_search_space_t* search_space = &nr_mac->search_space[CC_id][1];
dl_req = &nr_mac->DL_req[CC_id].dl_config_request_body;
dl_config_dci_pdu = &dl_req->dl_config_pdu_list[dl_req->number_pdu];
memset((void*)dl_config_dci_pdu,0,sizeof(nfapi_nr_dl_config_request_pdu_t));
dl_config_dci_pdu->pdu_type = NFAPI_NR_DL_CONFIG_DCI_DL_PDU_TYPE;
dl_config_dci_pdu->pdu_size = (uint8_t)(2+sizeof(nfapi_nr_dl_config_dci_dl_pdu));
dl_config_dlsch_pdu = &dl_req->dl_config_pdu_list[dl_req->number_pdu+1];
memset((void*)dl_config_dlsch_pdu,0,sizeof(nfapi_nr_dl_config_request_pdu_t));
dl_config_dlsch_pdu->pdu_type = NFAPI_NR_DL_CONFIG_DLSCH_PDU_TYPE;
dl_config_dlsch_pdu->pdu_size = (uint8_t)(2+sizeof(nfapi_nr_dl_config_dlsch_pdu));
nfapi_nr_dl_config_dci_dl_pdu_rel15_t *pdu_rel15 = &dl_config_dci_pdu->dci_dl_pdu.dci_dl_pdu_rel15;
nfapi_nr_dl_config_pdcch_parameters_rel15_t *params_rel15 = &dl_config_dci_pdu->dci_dl_pdu.pdcch_params_rel15;
nfapi_nr_dl_config_dlsch_pdu_rel15_t *dlsch_pdu_rel15 = &dl_config_dlsch_pdu->dlsch_pdu.dlsch_pdu_rel15;
dlsch_pdu_rel15->start_prb = 0;
dlsch_pdu_rel15->n_prb = 50;
dlsch_pdu_rel15->start_symbol = 2;
dlsch_pdu_rel15->nb_symbols = 8;
dlsch_pdu_rel15->rnti = rnti;
dlsch_pdu_rel15->nb_layers =1;
dlsch_pdu_rel15->nb_codewords = 1;
dlsch_pdu_rel15->mcs_idx = 9;
dlsch_pdu_rel15->ndi = 1;
dlsch_pdu_rel15->redundancy_version = 0;
nr_configure_dci_from_pdcch_config(params_rel15,
coreset,
search_space,
*cfg,
dl_carrier_bandwidth);
pdu_rel15->frequency_domain_assignment = get_RIV(dlsch_pdu_rel15->start_prb, dlsch_pdu_rel15->n_prb, cfg->rf_config.dl_carrier_bandwidth.value);
pdu_rel15->time_domain_assignment = get_SLIV(dlsch_pdu_rel15->start_symbol, dlsch_pdu_rel15->nb_symbols);
pdu_rel15->vrb_to_prb_mapping = 1;
pdu_rel15->mcs = 9;
pdu_rel15->tb_scaling = 1;
pdu_rel15->ra_preamble_index = 25;
pdu_rel15->format_indicator = 1;
pdu_rel15->ndi = 1;
pdu_rel15->rv = 0;
pdu_rel15->harq_pid = 0;
pdu_rel15->dai = 2;
pdu_rel15->tpc = 2;
pdu_rel15->pucch_resource_indicator = 7;
pdu_rel15->pdsch_to_harq_feedback_timing_indicator = 7;
LOG_I(MAC, "[gNB scheduler phytest] DCI type 1 payload: freq_alloc %d, time_alloc %d, vrb to prb %d, mcs %d tb_scaling %d ndi %d rv %d\n",
pdu_rel15->frequency_domain_assignment,
pdu_rel15->time_domain_assignment,
pdu_rel15->vrb_to_prb_mapping,
pdu_rel15->mcs,
pdu_rel15->tb_scaling,
pdu_rel15->ndi,
pdu_rel15->rv);
params_rel15->rnti = rnti;
params_rel15->rnti_type = NFAPI_NR_RNTI_C;
params_rel15->dci_format = NFAPI_NR_DL_DCI_FORMAT_1_0;
//params_rel15->aggregation_level = 1;
LOG_I(MAC, "DCI params: rnti %d, rnti_type %d, dci_format %d, config type %d\n \
coreset params: mux_pattern %d, n_rb %d, n_symb %d, rb_offset %d \n \
ss params : first symb %d, ss type %d\n",
params_rel15->rnti,
params_rel15->rnti_type,
params_rel15->config_type,
params_rel15->dci_format,
params_rel15->mux_pattern,
params_rel15->n_rb,
params_rel15->n_symb,
params_rel15->rb_offset,
params_rel15->first_symbol,
params_rel15->search_space_type);
nr_get_tbs(&dl_config_dlsch_pdu->dlsch_pdu, dl_config_dci_pdu->dci_dl_pdu, *cfg);
LOG_I(MAC, "DLSCH PDU: start PRB %d n_PRB %d start symbol %d nb_symbols %d nb_layers %d nb_codewords %d mcs %d\n",
dlsch_pdu_rel15->start_prb,
dlsch_pdu_rel15->n_prb,
dlsch_pdu_rel15->start_symbol,
dlsch_pdu_rel15->nb_symbols,
dlsch_pdu_rel15->nb_layers,
dlsch_pdu_rel15->nb_codewords,
dlsch_pdu_rel15->mcs_idx);
dl_req->number_dci++;
dl_req->number_pdsch_rnti++;
dl_req->number_pdu+=2;
TX_req = &nr_mac->TX_req[CC_id].tx_request_body.tx_pdu_list[nr_mac->TX_req[CC_id].tx_request_body.number_of_pdus];
TX_req->pdu_length = 6;
TX_req->pdu_index = nr_mac->pdu_index[CC_id]++;
TX_req->num_segments = 1;
TX_req->segments[0].segment_length = 8;
nr_mac->TX_req[CC_id].tx_request_body.number_of_pdus++;
nr_mac->TX_req[CC_id].sfn_sf = sfn_sf;
nr_mac->TX_req[CC_id].tx_request_body.tl.tag = NFAPI_TX_REQUEST_BODY_TAG;
nr_mac->TX_req[CC_id].header.message_id = NFAPI_TX_REQUEST;
TX_req = &nr_mac->TX_req[CC_id].tx_request_body.tx_pdu_list[nr_mac->TX_req[CC_id].tx_request_body.number_of_pdus+1];
TX_req->pdu_length = dlsch_pdu_rel15->transport_block_size;
TX_req->pdu_index = nr_mac->pdu_index[CC_id]++;
TX_req->num_segments = 1;
TX_req->segments[0].segment_length = 8;
nr_mac->TX_req[CC_id].tx_request_body.number_of_pdus++;
nr_mac->TX_req[CC_id].sfn_sf = sfn_sf;
nr_mac->TX_req[CC_id].tx_request_body.tl.tag = NFAPI_TX_REQUEST_BODY_TAG;
nr_mac->TX_req[CC_id].header.message_id = NFAPI_TX_REQUEST;
}
}
......@@ -21,11 +21,11 @@
/*! \file gNB_scheduler_primitives.c
* \brief primitives used by gNB for BCH, RACH, ULSCH, DLSCH scheduling
* \author Navid Nikaein and Raymond Knopp, WEI-TAI CHEN
* \date 2010 - 2014, 2018
* \email: navid.nikaein@eurecom.fr, kroempa@gmail.com
* \author Raymond Knopp, Guy De Souza
* \date 2018, 2019
* \email: knopp@eurecom.fr, desouza@eurecom.fr
* \version 1.0
* \company Eurecom, NTUST
* \company Eurecom
* @ingroup _mac
*/
......@@ -65,23 +65,64 @@ extern RAN_CONTEXT_t RC;
extern int n_active_slices;
// Note the 2 scs values in the table names represent resp. scs_common and pdcch_scs
/// LUT for the number of symbols in the coreset indexed by coreset index (4 MSB rmsi_pdcch_config)
uint8_t nr_coreset_nsymb_pdcch_type_0_b40Mhz[16] = {2,2,2,2,2,3,3,3,3,3,1,1,1,2,2,2}; // below 40Mhz bw
uint8_t nr_coreset_nsymb_pdcch_type_0_a40Mhz[10] = {2,2,3,3,1,1,2,2,3,3}; // above 40Mhz bw
uint8_t nr_coreset_nsymb_pdcch_type_0_scs_15_15[15] = {2,2,2,3,3,3,1,1,2,2,3,3,1,2,3};
uint8_t nr_coreset_nsymb_pdcch_type_0_scs_15_30[14] = {2,2,2,2,3,3,3,3,1,1,2,2,3,3};
uint8_t nr_coreset_nsymb_pdcch_type_0_scs_30_15_b40Mhz[9] = {1,1,2,2,3,3,1,2,3};
uint8_t nr_coreset_nsymb_pdcch_type_0_scs_30_15_a40Mhz[9] = {1,2,3,1,1,2,2,3,3};
uint8_t nr_coreset_nsymb_pdcch_type_0_scs_30_30_b40Mhz[16] = {2,2,2,2,2,3,3,3,3,3,1,1,1,2,2,2}; // below 40Mhz bw
uint8_t nr_coreset_nsymb_pdcch_type_0_scs_30_30_a40Mhz[10] = {2,2,3,3,1,1,2,2,3,3}; // above 40Mhz bw
uint8_t nr_coreset_nsymb_pdcch_type_0_scs_120_60[12] = {1,1,2,2,3,3,1,2,1,1,1,1};
/// LUT for the number of RBs in the coreset indexed by coreset index
uint8_t nr_coreset_rb_offset_pdcch_type_0_b40Mhz[16] = {0,1,2,3,4,0,1,2,3,4,12,14,16,12,14,16};
uint8_t nr_coreset_rb_offset_pdcch_type_0_a40Mhz[10] = {0,4,0,4,0,28,0,28,0,28};
uint8_t nr_coreset_rb_offset_pdcch_type_0_scs_15_15[15] = {0,2,4,0,2,4,12,16,12,16,12,16,38,38,38};
uint8_t nr_coreset_rb_offset_pdcch_type_0_scs_15_30[14] = {5,6,7,8,5,6,7,8,18,20,18,20,18,20};
uint8_t nr_coreset_rb_offset_pdcch_type_0_scs_30_15_b40Mhz[9] = {2,6,2,6,2,6,28,28,28};
uint8_t nr_coreset_rb_offset_pdcch_type_0_scs_30_15_a40Mhz[9] = {4,4,4,0,56,0,56,0,56};
uint8_t nr_coreset_rb_offset_pdcch_type_0_scs_30_30_b40Mhz[16] = {0,1,2,3,4,0,1,2,3,4,12,14,16,12,14,16};
uint8_t nr_coreset_rb_offset_pdcch_type_0_scs_30_30_a40Mhz[10] = {0,4,0,4,0,28,0,28,0,28};
int8_t nr_coreset_rb_offset_pdcch_type_0_scs_120_60[12] = {0,8,0,8,0,8,28,28,-1,49,-1,97};
int8_t nr_coreset_rb_offset_pdcch_type_0_scs_120_120[8] = {0,4,14,14,-1,24,-1,48};
int8_t nr_coreset_rb_offset_pdcch_type_0_scs_240_120[8] = {0,8,0,8,-1,25,-1,49};
/// LUT for monitoring occasions param O indexed by ss index (4 LSB rmsi_pdcch_config)
// Note: scaling is used to avoid decimal values for O and M, original values commented
uint8_t nr_ss_param_O_type_0_mux1_FR1[16] = {0,0,2,2,5,5,7,7,0,5,0,0,2,2,5,5};
uint8_t nr_ss_param_O_type_0_mux1_FR2[14] = {0,0,2.5,2.5,5,5,0,2.5,5,7.5,7.5,7.5,0,5};
uint8_t nr_ss_param_O_type_0_mux1_FR2[14] = {0,0,5,5,5,5,0,5,5,15,15,15,0,5}; //{0,0,2.5,2.5,5,5,0,2.5,5,7.5,7.5,7.5,0,5}
uint8_t nr_ss_scale_O_mux1_FR2[14] = {0,0,1,1,0,0,0,1,0,1,1,1,0,0};
/// LUT for number of SS sets per slot indexed by ss index
uint8_t nr_ss_sets_per_slot_type_0_FR1[16] = {1,2,1,2,1,2,1,2,1,1,1,1,1,1,1,1};
uint8_t nr_ss_sets_per_slot_type_0_FR2[14] = {1,2,1,2,1,2,2,2,2,1,2,2,1,1};
/// LUT for monitoring occasions param M indexed by ss index
uint8_t nr_ss_param_M_type_0_mux1_FR1[16] = {1,0.5,1,0.5,1,0.5,1,0.5,2,2,1,1,1,1,1,1};
uint8_t nr_ss_param_M_type_0_mux1_FR2[14] = {1,0.5,1,0.5,1,0.5,0.5,0.5,0.5,1,0.5,0.5,2,2};
uint8_t nr_ss_param_M_type_0_mux1_FR1[16] = {1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1}; //{1,0.5,1,0.5,1,0.5,1,0.5,2,2,1,1,1,1,1,1}
uint8_t nr_ss_scale_M_mux1_FR1[16] = {0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0};
uint8_t nr_ss_param_M_type_0_mux1_FR2[14] = {1,1,1,1,1,1,1,1,1,1,1,1,2,2}; //{1,0.5,1,0.5,1,0.5,0.5,0.5,0.5,1,0.5,0.5,2,2}
uint8_t nr_ss_scale_M_mux1_FR2[14] = {0,1,0,1,0,1,1,1,1,0,1,1,0,0};
/// LUT for SS first symbol index indexed by ss index
uint8_t nr_ss_first_symb_idx_type_0_mux1_FR1[8] = {0,0,1,2,1,2,1,2};
// Mux pattern type 2
uint8_t nr_ss_first_symb_idx_scs_120_60_mux2[4] = {0,1,6,7};
uint8_t nr_ss_first_symb_idx_scs_240_120_set1_mux2[6] = {0,1,2,3,0,1};
// Mux pattern type 3
uint8_t nr_ss_first_symb_idx_scs_120_120_mux3[4] = {4,8,2,6};
/// Search space max values indexed by scs
uint8_t nr_max_number_of_candidates_per_slot[4] = {44, 36, 22, 20};
uint8_t nr_max_number_of_cces_per_slot[4] = {56, 56, 48, 32};
static inline uint8_t get_max_candidates(uint8_t scs) {
AssertFatal(scs<4, "Invalid PDCCH subcarrier spacing %d\n", scs);
return (nr_max_number_of_candidates_per_slot[scs]);
}
static inline uint8_t get_max_cces(uint8_t scs) {
AssertFatal(scs<4, "Invalid PDCCH subcarrier spacing %d\n", scs);
return (nr_max_number_of_cces_per_slot[scs]);
}
int is_nr_UL_slot(NR_COMMON_channels_t * ccP, int slot){
......@@ -94,35 +135,63 @@ void nr_configure_css_dci_initial(nfapi_nr_dl_config_pdcch_parameters_rel15_t* p
nr_frequency_range_e freq_range,
uint8_t rmsi_pdcch_config,
uint8_t ssb_idx,
uint8_t k_ssb,
uint16_t sfn_ssb,
uint8_t n_ssb, /*slot index overlapping the corresponding SSB index*/
uint16_t nb_slots_per_frame,
uint16_t N_RB)
{
uint8_t O, M;
uint8_t ss_idx = rmsi_pdcch_config&0xf;
uint8_t cset_idx = (rmsi_pdcch_config>>4)&0xf;
uint8_t mu;
uint8_t mu = scs_common;
uint8_t O_scale=0, M_scale=0; // used to decide if the values of O and M need to be divided by 2
/// Coreset params
switch(scs_common) {
case kHz15:
mu = 0;
switch(pdcch_scs) {
case kHz15:
AssertFatal(cset_idx<15,"Coreset index %d reserved for scs kHz15/kHz15\n", cset_idx);
pdcch_params->mux_pattern = NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1;
pdcch_params->n_rb = (cset_idx < 6)? 24 : (cset_idx < 12)? 48 : 96;
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_scs_15_15[cset_idx];
pdcch_params->rb_offset = nr_coreset_rb_offset_pdcch_type_0_scs_15_15[cset_idx];
break;
case kHz30:
AssertFatal(cset_idx<14,"Coreset index %d reserved for scs kHz15/kHz30\n", cset_idx);
pdcch_params->mux_pattern = NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1;
pdcch_params->n_rb = (cset_idx < 8)? 24 : 48;
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_scs_15_30[cset_idx];
pdcch_params->rb_offset = nr_coreset_rb_offset_pdcch_type_0_scs_15_15[cset_idx];
break;
default:
AssertFatal(1==0,"Invalid scs_common/pdcch_scs combination %d/%d \n", scs_common, pdcch_scs);
}
break;
case kHz30:
mu = 1;
if (N_RB < 106) { // Minimum 40Mhz bandwidth not satisfied
switch(pdcch_scs) {
case kHz15:
AssertFatal(1==0,"kHz15 not supported yet\n");
AssertFatal(cset_idx<9,"Coreset index %d reserved for scs kHz30/kHz15\n", cset_idx);
pdcch_params->mux_pattern = NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1;
pdcch_params->n_rb = (cset_idx < 10)? 48 : 96;
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_scs_30_15_b40Mhz[cset_idx];
pdcch_params->rb_offset = nr_coreset_rb_offset_pdcch_type_0_scs_30_15_b40Mhz[cset_idx];
break;
case kHz30:
pdcch_params->mux_pattern = NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1;
pdcch_params->n_rb = (cset_idx < 10)? 24 : 48;
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_b40Mhz[cset_idx];
pdcch_params->rb_offset = nr_coreset_rb_offset_pdcch_type_0_b40Mhz[cset_idx];
pdcch_params->n_rb = (cset_idx < 6)? 24 : 48;
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_scs_30_30_b40Mhz[cset_idx];
pdcch_params->rb_offset = nr_coreset_rb_offset_pdcch_type_0_scs_30_30_b40Mhz[cset_idx];
break;
default:
......@@ -130,31 +199,77 @@ void nr_configure_css_dci_initial(nfapi_nr_dl_config_pdcch_parameters_rel15_t* p
}
}
else {
AssertFatal(ss_idx<10 ,"Invalid scs_common/pdcch_scs combination %d/%d \n", scs_common, pdcch_scs);
else { // above 40Mhz
switch(pdcch_scs) {
case kHz15:
AssertFatal(1==0,"15 kHz SCS not supported yet\n");
AssertFatal(cset_idx<9,"Coreset index %d reserved for scs kHz30/kHz15\n", cset_idx);
pdcch_params->mux_pattern = NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1;
pdcch_params->n_rb = (cset_idx < 3)? 48 : 96;
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_scs_30_15_a40Mhz[cset_idx];
pdcch_params->rb_offset = nr_coreset_rb_offset_pdcch_type_0_scs_30_15_a40Mhz[cset_idx];
break;
case kHz30:
AssertFatal(cset_idx<10,"Coreset index %d reserved for scs kHz30/kHz30\n", cset_idx);
pdcch_params->mux_pattern = NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1;
pdcch_params->n_rb = (cset_idx < 4)? 24 : 48;
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_b40Mhz[cset_idx];
pdcch_params->rb_offset = nr_coreset_rb_offset_pdcch_type_0_b40Mhz[cset_idx];
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_scs_30_30_a40Mhz[cset_idx];
pdcch_params->rb_offset = nr_coreset_rb_offset_pdcch_type_0_scs_30_30_a40Mhz[cset_idx];
break;
default:
AssertFatal(1==0,"Invalid scs_common/pdcch_scs combination %d/%d \n", scs_common, pdcch_scs);
}
}
break;
case kHz120:
switch(pdcch_scs) {
case kHz60:
mu = 2;
AssertFatal(cset_idx<12,"Coreset index %d reserved for scs kHz120/kHz60\n", cset_idx);
pdcch_params->mux_pattern = (cset_idx < 8)?NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1 : NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE2;
pdcch_params->n_rb = (cset_idx < 6)? 48 : (cset_idx < 8)? 96 : (cset_idx < 10)? 48 : 96;
pdcch_params->n_symb = nr_coreset_nsymb_pdcch_type_0_scs_120_60[cset_idx];
pdcch_params->rb_offset = (nr_coreset_rb_offset_pdcch_type_0_scs_120_60[cset_idx]>0)?nr_coreset_rb_offset_pdcch_type_0_scs_120_60[cset_idx] :
(k_ssb == 0)? -41 : -42;
break;
case kHz120:
mu = 3;
AssertFatal(cset_idx<8,"Coreset index %d reserved for scs kHz120/kHz120\n", cset_idx);
pdcch_params->mux_pattern = (cset_idx < 4)?NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1 : NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE3;
pdcch_params->n_rb = (cset_idx < 2)? 24 : (cset_idx < 4)? 48 : (cset_idx < 6)? 24 : 48;
pdcch_params->n_symb = (cset_idx == 2)? 1 : 2;
pdcch_params->rb_offset = (nr_coreset_rb_offset_pdcch_type_0_scs_120_120[cset_idx]>0)? nr_coreset_rb_offset_pdcch_type_0_scs_120_120[cset_idx] :
(k_ssb == 0)? -20 : -21;
break;
default:
AssertFatal(1==0,"Invalid scs_common/pdcch_scs combination %d/%d \n", scs_common, pdcch_scs);
}
break;
case kHz240:
switch(pdcch_scs) {
case kHz60:
AssertFatal(cset_idx<4,"Coreset index %d reserved for scs kHz240/kHz60\n", cset_idx);
pdcch_params->mux_pattern = NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1;
pdcch_params->n_rb = 96;
pdcch_params->n_symb = (cset_idx < 2)? 1 : 2;
pdcch_params->rb_offset = (cset_idx&1)? 16 : 0;
break;
case kHz120:
AssertFatal(cset_idx<8,"Coreset index %d reserved for scs kHz240/kHz120\n", cset_idx);
pdcch_params->mux_pattern = (cset_idx < 4)? NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE1 : NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE2;
pdcch_params->n_rb = (cset_idx < 4)? 48 : (cset_idx < 6)? 24 : 48;
pdcch_params->n_symb = ((cset_idx==2)||(cset_idx==3))? 2 : 1;
pdcch_params->rb_offset = (nr_coreset_rb_offset_pdcch_type_0_scs_240_120[cset_idx]>0)? nr_coreset_rb_offset_pdcch_type_0_scs_240_120[cset_idx] :
(k_ssb == 0)? -41 : -42;
break;
default:
AssertFatal(1==0,"Invalid scs_common/pdcch_scs combination %d/%d \n", scs_common, pdcch_scs);
}
break;
default:
......@@ -170,26 +285,49 @@ void nr_configure_css_dci_initial(nfapi_nr_dl_config_pdcch_parameters_rel15_t* p
O = nr_ss_param_O_type_0_mux1_FR1[ss_idx];
pdcch_params->nb_ss_sets_per_slot = nr_ss_sets_per_slot_type_0_FR1[ss_idx];
M = nr_ss_param_M_type_0_mux1_FR1[ss_idx];
pdcch_params->first_symbol = (ss_idx < 8)? ( (ss_idx&1)? pdcch_params->n_symb : 0 ) : nr_ss_first_symb_idx_type_0_mux1_FR1[ss_idx - 8];
M_scale = nr_ss_scale_M_mux1_FR1[ss_idx];
pdcch_params->first_symbol = (ss_idx < 8)? ( (ssb_idx&1)? pdcch_params->n_symb : 0 ) : nr_ss_first_symb_idx_type_0_mux1_FR1[ss_idx - 8];
}
else {
AssertFatal(ss_idx<14 ,"Invalid search space index for multiplexing type 1 and FR2 %d\n", ss_idx);
O = nr_ss_param_O_type_0_mux1_FR2[ss_idx];
O_scale = nr_ss_scale_O_mux1_FR2[ss_idx];
pdcch_params->nb_ss_sets_per_slot = nr_ss_sets_per_slot_type_0_FR2[ss_idx];
M = nr_ss_param_M_type_0_mux1_FR2[ss_idx];
M_scale = nr_ss_scale_M_mux1_FR2[ss_idx];
pdcch_params->first_symbol = (ss_idx < 12)? ( (ss_idx&1)? 7 : 0 ) : 0;
}
pdcch_params->nb_slots = 2;
pdcch_params->sfn_mod2 = ((uint8_t)(floor( (O*pow(2, mu) + floor(ssb_idx*M)) / nb_slots_per_frame )) & 1)? 1 : 0;
pdcch_params->first_slot = (uint8_t)(O*pow(2, mu) + floor(ssb_idx*M)) % nb_slots_per_frame;
pdcch_params->sfn_mod2 = (CEILIDIV( (((O<<mu)>>O_scale) + ((ssb_idx*M)>>M_scale)), nb_slots_per_frame ) & 1)? 1 : 0;
pdcch_params->first_slot = (((O<<mu)>>O_scale) + ((ssb_idx*M)>>M_scale)) % nb_slots_per_frame;
break;
case NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE2:
AssertFatal( ((scs_common==kHz120)&&(pdcch_scs==kHz60)) || ((scs_common==kHz240)&&(pdcch_scs==kHz120)),
"Invalid scs_common/pdcch_scs combination %d/%d for Mux type 2\n", scs_common, pdcch_scs );
AssertFatal(ss_idx==0, "Search space index %d reserved for scs_common/pdcch_scs combination %d/%d", ss_idx, scs_common, pdcch_scs);
pdcch_params->nb_slots = 1;
if ((scs_common==kHz120)&&(pdcch_scs==kHz60)) {
pdcch_params->first_symbol = nr_ss_first_symb_idx_scs_120_60_mux2[ssb_idx&3];
// Missing in pdcch_params sfn_C and n_C here and in else case
}
else {
pdcch_params->first_symbol = ((ssb_idx&7)==4)?12 : ((ssb_idx&7)==4)?13 : nr_ss_first_symb_idx_scs_240_120_set1_mux2[ssb_idx&7]; //???
}
break;
case NFAPI_NR_SSB_AND_CSET_MUX_PATTERN_TYPE3:
AssertFatal( (scs_common==kHz120)&&(pdcch_scs==kHz120),
"Invalid scs_common/pdcch_scs combination %d/%d for Mux type 3\n", scs_common, pdcch_scs );
AssertFatal(ss_idx==0, "Search space index %d reserved for scs_common/pdcch_scs combination %d/%d", ss_idx, scs_common, pdcch_scs);
pdcch_params->first_symbol = nr_ss_first_symb_idx_scs_120_120_mux3[ssb_idx&3];
break;
default:
......@@ -206,11 +344,179 @@ void nr_configure_css_dci_initial(nfapi_nr_dl_config_pdcch_parameters_rel15_t* p
}
void nr_configure_css_dci_from_pdcch_config(nfapi_nr_dl_config_pdcch_parameters_rel15_t* pdcch_params,
void nr_configure_dci_from_pdcch_config(nfapi_nr_dl_config_pdcch_parameters_rel15_t* pdcch_params,
nfapi_nr_coreset_t* coreset,
nfapi_nr_search_space_t* search_space) {
nfapi_nr_search_space_t* search_space,
nfapi_nr_config_request_t cfg,
uint16_t N_RB) {
/// coreset
//ControlResourceSetId
pdcch_params->config_type = NFAPI_NR_CSET_CONFIG_PDCCH_CONFIG;
//frequencyDomainResources
uint8_t count=0, start=0, start_set=0;
uint64_t bitmap = coreset->frequency_domain_resources;
for (int i=0; i<45; i++)
if ((bitmap>>(44-i))&1) {
count++;
if (!start_set) {
start = i;
start_set = 1;
}
}
pdcch_params->rb_offset = 6*start;
pdcch_params->n_rb = 6*count;
//duration
pdcch_params->n_symb = coreset->duration;
//cce-REG-MappingType
pdcch_params->cr_mapping_type = coreset->cce_reg_mapping_type;
if (pdcch_params->cr_mapping_type == NFAPI_NR_CCE_REG_MAPPING_INTERLEAVED) {
pdcch_params->reg_bundle_size = coreset->reg_bundle_size;
pdcch_params->interleaver_size = coreset->interleaver_size;
}
else {
pdcch_params->reg_bundle_size = 0;
pdcch_params->interleaver_size = 0;
}
//shift index
pdcch_params->shift_index = coreset->shift_index;
//precoderGranularity
pdcch_params->precoder_granularity = coreset->precoder_granularity;
//TCI states
// PDCCH params does not yet include information about TCI and QCL (needed for DCI 1.1 and 0.1)
//pdcch-DMRS-ScramblingID
pdcch_params->scrambling_id = coreset->dmrs_scrambling_id;
/// SearchSpace
// first symbol
//AssertFatal(pdcch_scs==kHz15, "PDCCH SCS above 15kHz not allowed if a symbol above 2 is monitored");
for (int i=0; i<get_symbolsperslot(&cfg); i++)
if ((search_space->monitoring_symbols_in_slot>>(15-i))&1) {
pdcch_params->first_symbol=i;
break;
}
//searchSpaceType
pdcch_params->search_space_type = search_space->search_space_type;
/*
//searchSpaceId
AssertFatal(search_space->search_space_id<40, "Search space index out of range %d\n", search_space->search_space_id);
//controlResourceSetId
//monitoringSlotPeriodicityAndOffset
//duration
pdcch_params->nb_ss_sets_per_slot = search_space->duration;
//monitoringSymbolsWithinSlot
pdcch_params->first_symbol = search_space->monitoring_symbols_in_slot;
//nrofCandidates
pdcch_params->aggregation_level = (uint8_t)number_of_candidates[NFAPI_NR_MAX_NB_CCE_AGGREGATION_LEVELS - 1];
//Common_CSS
if (pdcch_params->search_space_type == NFAPI_NR_SEARCH_SPACE_TYPE_COMMON){
switch(search_space->css_formats_0_0_and_1_0){
case NFAPI_NR_RNTI_C:
pdcch_params->rnti_type = NFAPI_NR_RNTI_C;
break;
case NFAPI_NR_RNTI_CS:
pdcch_params->rnti_type = NFAPI_NR_RNTI_CS;
break;
case NFAPI_NR_RNTI_SP_CSI:
pdcch_params->rnti_type = NFAPI_NR_RNTI_SP_CSI;
break;
case NFAPI_NR_RNTI_RA:
pdcch_params->rnti_type = NFAPI_NR_RNTI_RA;
break;
case NFAPI_NR_RNTI_TC:
pdcch_params->rnti_type = NFAPI_NR_RNTI_TC;
break;
case NFAPI_NR_RNTI_P:
pdcch_params->rnti_type = NFAPI_NR_RNTI_P;
break;
case NFAPI_NR_RNTI_SI:
pdcch_params->rnti_type = NFAPI_NR_RNTI_SI;
break;
}
switch (search_space->css_format_2_0){
case NFAPI_NR_RNTI_SFI:
pdcch_params->rnti_type = NFAPI_NR_RNTI_SFI;
break;
}
switch (search_space->css_format_2_1){
case NFAPI_NR_RNTI_INT:
pdcch_params->rnti_type = NFAPI_NR_RNTI_INT;
break;
}
switch (search_space->css_format_2_2){
case NFAPI_NR_RNTI_TPC_PUSCH:
pdcch_params->rnti_type = NFAPI_NR_RNTI_TPC_PUSCH;
break;
case NFAPI_NR_RNTI_TPC_PUCCH:
pdcch_params->rnti_type = NFAPI_NR_RNTI_TPC_PUCCH;
break;
}
switch (search_space->css_format_2_3){
case NFAPI_NR_RNTI_TPC_SRS:
pdcch_params->rnti_type = NFAPI_NR_RNTI_TPC_SRS;
break;
}
}
//Ue_Specific_USS
if (pdcch_params->search_space_type == NFAPI_NR_SEARCH_SPACE_TYPE_UE_SPECIFIC){
switch (search_space->uss_dci_formats){
case NFAPI_NR_RNTI_C:
pdcch_params->rnti_type = NFAPI_NR_RNTI_C;
break;
case NFAPI_NR_RNTI_CS:
pdcch_params->rnti_type = NFAPI_NR_RNTI_CS;
break;
case NFAPI_NR_RNTI_SP_CSI:
pdcch_params->rnti_type = NFAPI_NR_RNTI_SP_CSI;
break;
}
}
*/
pdcch_params->n_RB_BWP = N_RB;
}
int nr_is_dci_opportunity(nfapi_nr_search_space_t search_space,
nfapi_nr_coreset_t coreset,
uint16_t frame,
uint16_t slot,
nfapi_nr_config_request_t cfg) {
AssertFatal(search_space.coreset_id==coreset.coreset_id, "Invalid association of coreset(%d) and search space(%d)\n",
search_space.search_space_id, coreset.coreset_id);
uint8_t is_dci_opportunity=0;
uint16_t Ks=search_space.slot_monitoring_periodicity;
uint16_t Os=search_space.slot_monitoring_offset;
uint8_t Ts=search_space.duration;
if (((frame*get_spf(&cfg) + slot - Os)%Ks)<Ts)
is_dci_opportunity=1;
return is_dci_opportunity;
}
int get_dlscs(nfapi_nr_config_request_t *cfg) {
......@@ -237,3 +543,13 @@ int to_absslot(nfapi_nr_config_request_t *cfg,int frame,int slot) {
return(get_spf(cfg)*frame) + slot;
}
int get_symbolsperslot(nfapi_nr_config_request_t *cfg) {
return ((cfg->subframe_config.dl_cyclic_prefix_type.value==NFAPI_CP_EXTENDED)?12:14);
}
int nr_schedule_dci() {
}
......@@ -72,13 +72,23 @@ void nr_configure_css_dci_initial(nfapi_nr_dl_config_pdcch_parameters_rel15_t* p
nr_frequency_range_e freq_range,
uint8_t rmsi_pdcch_config,
uint8_t ssb_idx,
uint8_t k_ssb,
uint16_t sfn_ssb,
uint8_t n_ssb,
uint16_t nb_slots_per_frame,
uint16_t N_RB);
int nr_is_dci_opportunity(nfapi_nr_search_space_t search_space,
nfapi_nr_coreset_t coreset,
uint16_t frame,
uint16_t slot,
nfapi_nr_config_request_t cfg);
void nr_configure_css_dci_from_pdcch_config(nfapi_nr_dl_config_pdcch_parameters_rel15_t* pdcch_params,
void nr_configure_dci_from_pdcch_config(nfapi_nr_dl_config_pdcch_parameters_rel15_t* pdcch_params,
nfapi_nr_coreset_t* coreset,
nfapi_nr_search_space_t* search_space);
nfapi_nr_search_space_t* search_space,
nfapi_nr_config_request_t cfg,
uint16_t N_RB);
int get_dlscs(nfapi_nr_config_request_t *cfg);
......@@ -88,4 +98,6 @@ int get_spf(nfapi_nr_config_request_t *cfg);
int to_absslot(nfapi_nr_config_request_t *cfg,int frame,int slot);
int get_symbolsperslot(nfapi_nr_config_request_t *cfg);
#endif /*__LAYER2_NR_MAC_PROTO_H__*/
......@@ -44,6 +44,34 @@
extern RAN_CONTEXT_t RC;
void nr_init_coreset(nfapi_nr_coreset_t *coreset) {
coreset->coreset_id = 1;
coreset->frequency_domain_resources = 0x1E0000000000;//0x1FFFE0000000; // 96 RB starting from CRB0
coreset->duration = 2;
coreset->cce_reg_mapping_type = NFAPI_NR_CCE_REG_MAPPING_NON_INTERLEAVED;
coreset->reg_bundle_size = 6;
coreset->interleaver_size = 2;
coreset->precoder_granularity = NFAPI_NR_CSET_SAME_AS_REG_BUNDLE;
coreset->tci_present_in_dci = 0;
coreset->dmrs_scrambling_id = 0;
}
void nr_init_search_space(nfapi_nr_search_space_t *search_space) {
search_space->search_space_id = 1;
search_space->coreset_id = 1;
search_space->search_space_type = NFAPI_NR_SEARCH_SPACE_TYPE_UE_SPECIFIC;
search_space->duration = 5;
search_space->slot_monitoring_periodicity = NFAPI_NR_SS_PERIODICITY_SL10;
search_space->slot_monitoring_offset = 1;
search_space->monitoring_symbols_in_slot = 0xC0000000; // first 2 ofdm symbols
search_space->css_formats_0_0_and_1_0 = 1;
search_space->uss_dci_formats = 0; // enum to be defined-- formats 0.0 and 1.0
for (int i=0; i<NFAPI_NR_MAX_NB_CCE_AGGREGATION_LEVELS; i++)
search_space->number_of_candidates[i] = 4; // TODO
}
void mac_top_init_gNB(void)
{
module_id_t i,j;
......@@ -85,6 +113,10 @@ void mac_top_init_gNB(void)
RC.nrmac[i]->HI_DCI0_req[j].hi_dci0_request_body.hi_dci0_pdu_list = RC.nrmac[i]->hi_dci0_pdu_list[j];
RC.nrmac[i]->TX_req[j].tx_request_body.tx_pdu_list = RC.nrmac[i]->tx_request_pdu[j];
RC.nrmac[i]->ul_handle = 0;
// Init PDCCH structures
nr_init_coreset(&RC.nrmac[i]->coreset[j][1]);
nr_init_search_space(&RC.nrmac[i]->search_space[j][1]);
}
......
......@@ -138,6 +138,10 @@ typedef struct gNB_MAC_INST_s {
nfapi_tx_request_pdu_t tx_request_pdu[NFAPI_CC_MAX][MAX_NUM_TX_REQUEST_PDU];
/// NFAPI DL PDU structure
nfapi_tx_request_t TX_req[NFAPI_CC_MAX];
/// NFAPI coreset structure
nfapi_nr_coreset_t coreset[NFAPI_CC_MAX][NFAPI_NR_MAX_NB_CORESETS];
/// NFAPI search space structure
nfapi_nr_search_space_t search_space[NFAPI_CC_MAX][NFAPI_NR_MAX_NB_SEARCH_SPACES];
UE_list_t UE_list;
......
......@@ -283,9 +283,9 @@ int nr_ue_dcireq(nr_dcireq_t *dcireq) {
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.rb_offset = rb_offset; // additional parameter other than coreset
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.duration = num_symbols;
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_mapping_type =CCE_REG_MAPPING_TYPE_INTERLEAVED;
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_reg_bundle_size = 6; // L 38.211 7.3.2.2
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_interleaver_size = 2; // R 38.211 7.3.2.2
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_mapping_type =CCE_REG_MAPPING_TYPE_NON_INTERLEAVED;
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_reg_bundle_size = 0; // L 38.211 7.3.2.2
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_interleaver_size = 0; // R 38.211 7.3.2.2
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.cce_reg_interleaved_shift_index = cell_id;
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.precoder_granularity = PRECODER_GRANULARITY_SAME_AS_REG_BUNDLE;
dl_config->dl_config_list[0].dci_config_pdu.dci_config_rel15.coreset.pdcch_dmrs_scrambling_id = cell_id;
......
......@@ -322,9 +322,8 @@ int8_t nr_rrc_ue_decode_NR_BCCH_BCH_Message(
(const void *)bufferP,
buffer_len );
if(bcch_message->message.choice.mib->systemFrameNumber.buf != 0){
if ((dec_rval.code != RC_OK) || (dec_rval.consumed == 0)) {
printf("NR_CellGroupConfig decode error\n");
printf("NR_BCCH_BCH decode error\n");
for (i=0; i<buffer_len; i++){
printf("%02x ",bufferP[i]);
}
......@@ -333,7 +332,7 @@ int8_t nr_rrc_ue_decode_NR_BCCH_BCH_Message(
SEQUENCE_free( &asn_DEF_NR_BCCH_BCH_Message, (void *)bcch_message, 1 );
return -1;
}
else {
// link to rrc instance
mib = bcch_message->message.choice.mib;
//memcpy( (void *)mib,
......
......@@ -1333,7 +1333,7 @@ static void* ru_thread_tx( void* param ) {
{
for (i=0; i<ru->nb_tx; i++)
{
sprintf(filename,"tx%ddataF_frame%d_sf%d.m", i, print_frame, proc->tti_tx);
sprintf(filename,"tx%ddataF_frame%d_sl%d.m", i, print_frame, proc->tti_tx);
LOG_M(filename,"txdataF_frame",&ru->common.txdataF_BF[i][0],fp->samples_per_subframe_wCP, 1, 1);
if(proc->tti_tx == 9)
{
......@@ -1554,7 +1554,7 @@ static void* ru_thread( void* param ) {
{
for (i=0; i<ru->nb_tx; i++)
{
sprintf(filename,"tx%ddataF_frame%d_sf%d.m", i, print_frame, proc->tti_tx);
sprintf(filename,"tx%ddataF_frame%d_sl%d.m", i, print_frame, proc->tti_tx);
LOG_M(filename,"txdataF_frame",&ru->common.txdataF_BF[i][0],fp->samples_per_slot_wCP, 1, 1);
if(proc->tti_tx == 9)
{
......
......@@ -442,10 +442,10 @@ static void *UE_thread_synch(void *arg) {
#endif
if (nr_initial_sync( UE, UE->mode ) == 0) {
//write_output("txdata_sym.m", "txdata_sym", UE->common_vars.rxdata[0], (10*UE->frame_parms.samples_per_subframe), 1, 1);
//write_output("txdata_sym.m", "txdata_sym", UE->common_vars.rxdata[0], (10*UE->frame_parms.samples_per_slot), 1, 1);
freq_offset = UE->common_vars.freq_offset; // frequency offset computed with pss in initial sync
hw_slot_offset = (UE->rx_offset<<1) / UE->frame_parms.samples_per_subframe;
hw_slot_offset = (UE->rx_offset<<1) / UE->frame_parms.samples_per_slot;
printf("Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %d (DL %u, UL %u), UE_scan_carrier %d\n",
hw_slot_offset,
freq_offset,
......@@ -690,6 +690,7 @@ static void *UE_thread_rxn_txnp4(void *arg) {
NR_UE_MAC_INST_t *UE_mac = get_mac_inst(0);
UE_mac->scheduled_response.dl_config = &UE->dcireq.dl_config_req;
UE_mac->scheduled_response.slot = proc->nr_tti_rx;
nr_ue_scheduled_response(&UE_mac->scheduled_response);
#ifdef UE_SLOT_PARALLELISATION
......@@ -789,6 +790,8 @@ void *UE_thread(void *arg) {
UE->proc.proc_rxtx[i].counter_decoder = 0;
static uint8_t thread_idx = 0;
uint16_t table_sf_slot[20] = {0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9};
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
......@@ -809,7 +812,8 @@ void *UE_thread(void *arg) {
//itti_send_msg_to_task (TASK_NAS_UE, UE->Mod_id + NB_eNB_INST, message_p);
#endif
int subframe_nr=-1;
int nb_slot_frame = 10*UE->frame_parms.slots_per_subframe;
int slot_nr=-1;
//int cumulated_shift=0;
if ((oaisim_flag == 0) && (UE->mode != loop_through_memory))
AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");
......@@ -926,11 +930,13 @@ void *UE_thread(void *arg) {
if(thread_idx>=RX_NB_TH)
thread_idx = 0;
subframe_nr++;
subframe_nr %= NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
//printf("slot_nr %d nb slot frame %d\n",slot_nr, nb_slot_frame);
slot_nr++;
slot_nr %= nb_slot_frame;
UE_nr_rxtx_proc_t *proc = &UE->proc.proc_rxtx[thread_idx];
// update thread index for received subframe
UE->current_thread_id[subframe_nr] = thread_idx;
UE->current_thread_id[slot_nr] = thread_idx;
#if BASIC_SIMULATOR
{
......@@ -944,30 +950,30 @@ void *UE_thread(void *arg) {
}
#endif
LOG_D(PHY,"Process subframe %d thread Idx %d \n", subframe_nr, UE->current_thread_id[subframe_nr]);
LOG_D(PHY,"Process slot %d thread Idx %d \n", slot_nr, UE->current_thread_id[slot_nr]);
if (UE->mode != loop_through_memory) {
for (i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void*)&UE->common_vars.rxdata[i][UE->frame_parms.ofdm_symbol_size+
UE->frame_parms.nb_prefix_samples0+
subframe_nr*UE->frame_parms.samples_per_subframe];
slot_nr*UE->frame_parms.samples_per_slot];
for (i=0; i<UE->frame_parms.nb_antennas_tx; i++)
txp[i] = (void*)&UE->common_vars.txdata[i][((subframe_nr+2)%NR_NUMBER_OF_SUBFRAMES_PER_FRAME)*UE->frame_parms.samples_per_subframe];
txp[i] = (void*)&UE->common_vars.txdata[i][((slot_nr+2)%NR_NUMBER_OF_SUBFRAMES_PER_FRAME)*UE->frame_parms.samples_per_slot];
int readBlockSize, writeBlockSize;
if (subframe_nr<(NR_NUMBER_OF_SUBFRAMES_PER_FRAME - 1)) {
readBlockSize=UE->frame_parms.samples_per_subframe;
writeBlockSize=UE->frame_parms.samples_per_subframe;
if (slot_nr<(nb_slot_frame - 1)) {
readBlockSize=UE->frame_parms.samples_per_slot;
writeBlockSize=UE->frame_parms.samples_per_slot;
} else {
// set TO compensation to zero
UE->rx_offset_diff = 0;
// compute TO compensation that should be applied for this frame
if ( UE->rx_offset < 5*UE->frame_parms.samples_per_subframe &&
if ( UE->rx_offset < 5*UE->frame_parms.samples_per_slot &&
UE->rx_offset > 0 )
UE->rx_offset_diff = -1 ;
if ( UE->rx_offset > 5*UE->frame_parms.samples_per_subframe &&
UE->rx_offset < 10*UE->frame_parms.samples_per_subframe )
if ( UE->rx_offset > 5*UE->frame_parms.samples_per_slot &&
UE->rx_offset < 10*UE->frame_parms.samples_per_slot )
UE->rx_offset_diff = 1;
......@@ -977,11 +983,11 @@ void *UE_thread(void *arg) {
proc->frame_rx,subframe_nr,UE->rx_offset_diff,UE->rx_offset);
//UE->rx_offset_diff=0;
}
readBlockSize=UE->frame_parms.samples_per_subframe -
readBlockSize=UE->frame_parms.samples_per_slot -
UE->frame_parms.ofdm_symbol_size -
UE->frame_parms.nb_prefix_samples0 -
UE->rx_offset_diff;
writeBlockSize=UE->frame_parms.samples_per_subframe -
writeBlockSize=UE->frame_parms.samples_per_slot -
UE->rx_offset_diff;
}
......@@ -994,7 +1000,7 @@ void *UE_thread(void *arg) {
AssertFatal( writeBlockSize ==
UE->rfdevice.trx_write_func(&UE->rfdevice,
timestamp+
(2*UE->frame_parms.samples_per_subframe) -
(2*UE->frame_parms.samples_per_slot) -
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0 -
openair0_cfg[0].tx_sample_advance,
txp,
......@@ -1002,7 +1008,7 @@ void *UE_thread(void *arg) {
UE->frame_parms.nb_antennas_tx,
1),"");
if( subframe_nr==(NR_NUMBER_OF_SUBFRAMES_PER_FRAME-1)) {
if( slot_nr==(nb_slot_frame-1)) {
// read in first symbol of next frame and adjust for timing drift
int first_symbols=writeBlockSize-readBlockSize;
if ( first_symbols > 0 )
......@@ -1019,7 +1025,7 @@ void *UE_thread(void *arg) {
pickTime(gotIQs);
// operate on thread sf mod 2
AssertFatal(pthread_mutex_lock(&proc->mutex_rxtx) ==0,"");
if(subframe_nr == 0) {
if(slot_nr == 0) {
UE->proc.proc_rxtx[0].frame_rx++;
//UE->proc.proc_rxtx[1].frame_rx++;
for (th_id=1; th_id < RX_NB_TH; th_id++) {
......@@ -1041,18 +1047,18 @@ void *UE_thread(void *arg) {
UE->proc.proc_rxtx[th_id].gotIQs=readTime(gotIQs);
}
proc->nr_tti_rx=subframe_nr;
proc->subframe_rx=subframe_nr;
proc->nr_tti_rx=slot_nr;
proc->subframe_rx=table_sf_slot[slot_nr];
proc->frame_tx = proc->frame_rx;
proc->nr_tti_tx= subframe_nr + DURATION_RX_TO_TX;
if (proc->nr_tti_tx > NR_NUMBER_OF_SUBFRAMES_PER_FRAME) {
proc->nr_tti_tx= slot_nr + DURATION_RX_TO_TX;
if (proc->nr_tti_tx > nb_slot_frame) {
proc->frame_tx = (proc->frame_tx + 1)%MAX_FRAME_NUMBER;
proc->nr_tti_tx %= NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
proc->nr_tti_tx %= nb_slot_frame;
}
proc->subframe_tx=proc->nr_tti_rx;
proc->timestamp_tx = timestamp+
(DURATION_RX_TO_TX*UE->frame_parms.samples_per_subframe)-
(DURATION_RX_TO_TX*UE->frame_parms.samples_per_slot)-
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0;
proc->instance_cnt_rxtx++;
......@@ -1080,7 +1086,7 @@ void *UE_thread(void *arg) {
char exit_fun_string[256];
sprintf(exit_fun_string,"[SCHED][UE %d] !!! UE instance_cnt_rxtx > 2 (IC %d) (Proc %d)!!",
UE->Mod_id, proc->instance_cnt_rxtx,
UE->current_thread_id[subframe_nr]);
UE->current_thread_id[slot_nr]);
printf("%s\n",exit_fun_string);
fflush(stdout);
sleep(1);
......@@ -1096,20 +1102,20 @@ void *UE_thread(void *arg) {
// pickStaticTime(lastTime);
} //UE->mode != loop_through_memory
else {
proc->nr_tti_rx=subframe_nr;
proc->subframe_rx=subframe_nr;
if(subframe_nr == 0) {
proc->nr_tti_rx=slot_nr;
proc->subframe_rx=table_sf_slot[slot_nr];
if(slot_nr == 0) {
for (th_id=0; th_id < RX_NB_TH; th_id++) {
UE->proc.proc_rxtx[th_id].frame_rx++;
}
}
proc->frame_tx = proc->frame_rx;
proc->nr_tti_tx= subframe_nr + DURATION_RX_TO_TX;
if (proc->nr_tti_tx > NR_NUMBER_OF_SUBFRAMES_PER_FRAME) {
proc->nr_tti_tx= slot_nr + DURATION_RX_TO_TX;
if (proc->nr_tti_tx > nb_slot_frame) {
proc->frame_tx = (proc->frame_tx + 1)%MAX_FRAME_NUMBER;
proc->nr_tti_tx %= NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
proc->nr_tti_tx %= nb_slot_frame;
}
proc->subframe_tx=proc->nr_tti_tx;
proc->subframe_tx=table_sf_slot[proc->nr_tti_tx];
if (slot_select_nr(&UE->frame_parms, proc->frame_tx, proc->nr_tti_tx) & NR_DOWNLINK_SLOT) {
......@@ -1128,10 +1134,12 @@ void *UE_thread(void *arg) {
NR_UE_MAC_INST_t *UE_mac = get_mac_inst(0);
UE_mac->scheduled_response.dl_config = &UE->dcireq.dl_config_req;
UE_mac->scheduled_response.slot = proc->nr_tti_rx;
nr_ue_scheduled_response(&UE_mac->scheduled_response);
//write_output("uerxdata_frame.m", "uerxdata_frame", UE->common_vars.rxdata[0], UE->frame_parms.samples_per_frame, 1, 1);
printf("Processing subframe %d\n",proc->subframe_rx);
printf("Processing slot %d\n",proc->nr_tti_rx);
phy_procedures_nrUE_RX( UE, proc, 0, 1, UE->mode);
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment