Commit 992b32a9 authored by Florian Kaltenberger's avatar Florian Kaltenberger

Merge branch 'feature-59-tm4' of...

Merge branch 'feature-59-tm4' of https://gitlab.eurecom.fr/oai/openairinterface5g into feature-59-tm4

Conflicts:
	openair1/PHY/LTE_TRANSPORT/proto.h
parents 6143779c 0c5a731f
......@@ -119,6 +119,7 @@ endmacro(add_list_string_option)
####################################################
# compilation flags
#############################################
set (CMAKE_BUILD_TYPE "Debug")
if (CMAKE_BUILD_TYPE STREQUAL "")
set(CMAKE_BUILD_TYPE "RelWithDebInfo")
endif()
......
......@@ -872,7 +872,8 @@ int generate_eNB_dlsch_params_from_dci(int frame,
uint16_t si_rnti,
uint16_t ra_rnti,
uint16_t p_rnti,
uint16_t DL_pmi_single)
uint16_t DL_pmi_single
)
{
uint8_t harq_pid = UINT8_MAX;
......@@ -1545,7 +1546,8 @@ int generate_eNB_dlsch_params_from_dci(int frame,
dlsch0_harq->mimo_mode = DUALSTREAM_UNIFORM_PRECODINGj;
dlsch1_harq->mimo_mode = DUALSTREAM_UNIFORM_PRECODINGj;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1,1);
dlsch1_harq->pmi_alloc = pmi_extend(frame_parms,1,1);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1,1);
break;
case 2: // PUSCH precoding
dlsch0_harq->mimo_mode = DUALSTREAM_PUSCH_PRECODING;
......@@ -2108,12 +2110,13 @@ int generate_eNB_dlsch_params_from_dci(int frame,
rballoc,
frame_parms->N_RB_DL,
dlsch0_harq->rb_alloc);
dlsch1_harq->rb_alloc[0] = dlsch0_harq->rb_alloc[0];
dlsch1_harq->rb_alloc[0] = dlsch0_harq->rb_alloc[0];
dlsch0_harq->nb_rb = conv_nprb(rah,
rballoc,
frame_parms->N_RB_DL);
dlsch1_harq->nb_rb = dlsch0_harq->nb_rb;
dlsch0_harq->nb_rb = conv_nprb(rah,
rballoc,
frame_parms->N_RB_DL);
dlsch1_harq->nb_rb = dlsch0_harq->nb_rb;
dlsch0_harq->mcs = mcs1;
dlsch1_harq->mcs = mcs2;
......@@ -2557,27 +2560,30 @@ int generate_eNB_dlsch_params_from_dci(int frame,
case 1:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING11;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,0,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,0, 0);
break;
case 2:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1m1;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1, 0);
break;
case 3:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1j;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,2,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,2, 0);
break;
case 4:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1mj;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,3,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,3, 0);
break;
case 5:
dlsch0_harq->mimo_mode = PUSCH_PRECODING0;
dlsch0_harq->pmi_alloc = DL_pmi_single;
dlsch0_harq->pmi_alloc = DL_pmi_single;
break;
case 6:
......@@ -4795,20 +4801,20 @@ int generate_ue_dlsch_params_from_dci(int frame,
case 0:
dlsch0_harq->mimo_mode = DUALSTREAM_UNIFORM_PRECODING1;
dlsch1_harq->mimo_mode = DUALSTREAM_UNIFORM_PRECODING1;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,0,1);
dlsch1_harq->pmi_alloc = pmi_extend(frame_parms,0,1);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,0, 1);
dlsch1_harq->pmi_alloc = pmi_extend(frame_parms,0, 1);
break;
case 1:
dlsch0_harq->mimo_mode = DUALSTREAM_UNIFORM_PRECODINGj;
dlsch1_harq->mimo_mode = DUALSTREAM_UNIFORM_PRECODINGj;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1,1);
dlsch1_harq->pmi_alloc = pmi_extend(frame_parms,1,1);
dlsch1_harq->pmi_alloc = pmi_extend(frame_parms,1, 1);
break;
case 2: // PUSCH precoding
dlsch0_harq->mimo_mode = DUALSTREAM_PUSCH_PRECODING;
dlsch0_harq->pmi_alloc = 0; //TODO: DL_pmi_single;
dlsch0_harq->pmi_alloc = dlsch0->pmi_alloc;
dlsch1_harq->mimo_mode = DUALSTREAM_PUSCH_PRECODING;
dlsch1_harq->pmi_alloc = 0; //TODO: DL_pmi_single;
dlsch1_harq->pmi_alloc = dlsch0->pmi_alloc^0x1555;
break;
default:
break;
......@@ -4822,19 +4828,19 @@ int generate_ue_dlsch_params_from_dci(int frame,
break;
case 1:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING11;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,0,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,0, 0);
break;
case 2:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1m1;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1, 0);
break;
case 3:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1j;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,2,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,2, 0);
break;
case 4:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1mj;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,3,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,3, 0);
break;
case 5:
dlsch0_harq->mimo_mode = PUSCH_PRECODING0;
......@@ -5528,23 +5534,24 @@ int generate_ue_dlsch_params_from_dci(int frame,
case 2:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1m1;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,1, 0);
break;
case 3:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1j;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,2,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,2, 0);
break;
case 4:
dlsch0_harq->mimo_mode = UNIFORM_PRECODING1mj;
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,3,0);
dlsch0_harq->pmi_alloc = pmi_extend(frame_parms,3, 0);
break;
case 5:
dlsch0_harq->mimo_mode = PUSCH_PRECODING0;
// pmi stored from ulsch allocation routine
dlsch0_harq->pmi_alloc = dlsch0->pmi_alloc;
dlsch0_harq->pmi_alloc = dlsch0->pmi_alloc;
//LOG_I(PHY,"XXX using PMI %x\n",pmi2hex_2Ar1(dlsch0_harq->pmi_alloc));
break;
......@@ -5774,14 +5781,33 @@ uint32_t pdcch_alloc2ul_frame(LTE_DL_FRAME_PARMS *frame_parms,uint32_t frame, ui
}
uint16_t quantize_subband_pmi(PHY_MEASUREMENTS *meas,uint8_t eNB_id,int nb_subbands)
uint16_t quantize_subband_pmi(PHY_MEASUREMENTS *meas,uint8_t eNB_id,int nb_rb)
{
int i, aarx;
uint16_t pmiq=0;
uint16_t pmivect = 0;
uint32_t pmivect = 0; // work with tyoe
uint8_t rank = meas->rank[eNB_id];
int pmi_re,pmi_im;
int nb_subbands=0;
switch (nb_rb) {
case 6:
nb_subbands = 6;
break;
default:
case 25:
nb_subbands = 7;
break;
case 50:
nb_subbands = 9;
break;
case 100:
nb_subbands = 13;
break;
}
for (i=0; i<nb_subbands; i++) {
pmi_re = 0;
......@@ -5808,7 +5834,23 @@ uint16_t quantize_subband_pmi(PHY_MEASUREMENTS *meas,uint8_t eNB_id,int nb_subba
// printf("subband %d, pmi%d \n",i,pmiq);
pmivect |= (pmiq<<(2*i));
} else {
}
else if (rank==1) {
for (aarx=0; aarx<meas->nb_antennas_rx; aarx++) {
pmi_re += meas->subband_pmi_re[eNB_id][i][aarx];
pmi_im += meas->subband_pmi_im[eNB_id][i][aarx];
}
if (pmi_re > pmi_im)
pmiq = PMI_2A_R1_11;
else if (pmi_re < pmi_im)
pmiq = PMI_2A_R1_1j;
printf("subband %d, pmi%d \n",i,pmiq);
//According to Section 7.2.4 of 36.213
pmivect |= ((pmiq-1)<<(i)); //shift 1 since only one bit
printf("subband %d pmivect %d \n",i, pmivect);
}
else {
// This needs to be done properly!!!
msg("PMI feedback for rank>1 not supported!\n");
pmivect = 0;
......@@ -6249,7 +6291,8 @@ void reset_cba_uci(void *o)
((HLC_subband_cqi_mcs_CBA_5MHz *)o)->crnti = 0x0;
}
uint32_t pmi_extend(LTE_DL_FRAME_PARMS *frame_parms,uint8_t wideband_pmi, unit8_t rank)
uint32_t pmi_extend(LTE_DL_FRAME_PARMS *frame_parms,uint8_t wideband_pmi, uint8_t rank)
{
uint8_t i,wideband_pmi2;
......
......@@ -87,11 +87,17 @@
#if !defined(C_RNTI)
#define C_RNTI (rnti_t)0x1234
#endif
#define PMI_2A_11 0
// These are the codebook indexes according to Table 6.3.4.2.3-1 of 36.211
//1 layer
#define PMI_2A_11 0
#define PMI_2A_1m1 1
#define PMI_2A_1j 2
#define PMI_2A_1j 2
#define PMI_2A_1mj 3
//2 layers
#define PMI_2A_R1_10 0
#define PMI_2A_R1_11 1
#define PMI_2A_R1_1j 2
typedef enum {
SCH_IDLE,
......
......@@ -51,6 +51,9 @@
#define NOCYGWIN_STATIC
#endif
//#undef LOG_D
//#define LOG_D LOG_I
//#define DEBUG_PHY 1
//#define DEBUG_DLSCH_DEMOD 1
......@@ -107,6 +110,8 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
int32_t **rxdataF_comp_ptr;
int32_t **dl_ch_mag_ptr;
switch (type) {
case SI_PDSCH:
lte_ue_pdsch_vars = &phy_vars_ue->lte_ue_pdsch_vars_SI[eNB_id];
......@@ -167,10 +172,13 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
else
rballoc = dlsch0_harq->rb_alloc_even;
if (dlsch0_harq->mimo_mode>DUALSTREAM_UNIFORM_PRECODINGj) {
if (dlsch0_harq->mimo_mode>DUALSTREAM_PUSCH_PRECODING) {
LOG_E(PHY,"This transmission mode is not yet supported!\n");
return(-1);
}
if ((dlsch0_harq->mimo_mode==LARGE_CDD) || ((dlsch0_harq->mimo_mode>=DUALSTREAM_UNIFORM_PRECODING1) && (dlsch0_harq->mimo_mode<=DUALSTREAM_PUSCH_PRECODING))) {
DevAssert(dlsch1_harq);
if (eNB_id!=eNB_id_i) {
......@@ -182,9 +190,9 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
//printf("rx_pdsch: harq_pid=%d, round=%d\n",harq_pid,round);
if (frame_parms->nb_antennas_tx_eNB>1) {
#ifdef DEBUG_DLSCH_MOD
LOG_I(PHY,"dlsch: using pmi %x (%p), rb_alloc %x\n",pmi2hex_2Ar1(dlsch0_harq->pmi_alloc),dlsch_ue[0],dlsch0_harq->rb_alloc_even[0]);
#endif
//#ifdef DEBUG_DLSCH_MOD
//printf("dlsch: using pmi %x (%p), rb_alloc %x\n",pmi2hex_2Ar1(dlsch0_harq->pmi_alloc),dlsch_ue[0],dlsch0_harq->rb_alloc_even[0]);
//#endif
nb_rb = dlsch_extract_rbs_dual(lte_ue_common_vars->rxdataF,
lte_ue_common_vars->dl_ch_estimates[eNB_id],
lte_ue_pdsch_vars[eNB_id]->rxdataF_ext,
......@@ -195,7 +203,8 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
symbol,
subframe,
phy_vars_ue->high_speed_flag,
frame_parms);
frame_parms,
dlsch0_harq->mimo_mode);
if (rx_type==rx_IC_single_stream) {
if (eNB_id_i<phy_vars_ue->n_connected_eNB) // we are in TM5
......@@ -209,7 +218,8 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
symbol,
subframe,
phy_vars_ue->high_speed_flag,
frame_parms);
frame_parms,
dlsch0_harq->mimo_mode);
else
nb_rb = dlsch_extract_rbs_dual(lte_ue_common_vars->rxdataF,
lte_ue_common_vars->dl_ch_estimates[eNB_id],
......@@ -221,7 +231,8 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
symbol,
subframe,
phy_vars_ue->high_speed_flag,
frame_parms);
frame_parms,
dlsch0_harq->mimo_mode);
}
} // if n_tx>1
else {
......@@ -406,7 +417,8 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
if (first_symbol_flag==1) {
// effective channel of desired user is always stronger than interfering eff. channel
dlsch_channel_level_TM34(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
frame_parms,
frame_parms,
lte_ue_pdsch_vars[eNB_id]->pmi_ext,
avg,
symbol,
nb_rb,
......@@ -418,8 +430,6 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
lte_ue_pdsch_vars[eNB_id]->log2_maxh = log2_approx(avg[0]) - 13 + offset_mumimo_llr_drange[dlsch0_harq->mcs][(get_Qm(dlsch1_harq->mcs)>>1)-1];
}
else
lte_ue_pdsch_vars[eNB_id]->log2_maxh = log2_approx(avg[0])/2;
}
......@@ -488,7 +498,12 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
if (first_symbol_flag==1) {
// effective channel of desired user is always stronger than interfering eff. channel
dlsch_channel_level_TM56(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext, frame_parms, lte_ue_pdsch_vars[eNB_id]->pmi_ext, avg, symbol, nb_rb);
dlsch_channel_level_TM56(lte_ue_pdsch_vars[eNB_id]->dl_ch_estimates_ext,
frame_parms,
lte_ue_pdsch_vars[eNB_id]->pmi_ext,
avg,
symbol,
nb_rb);
// LOG_D(PHY,"llr_offset = %d\n",offset_mumimo_llr_drange[dlsch0_harq->mcs][(i_mod>>1)-1]);
avg[0] = log2_approx(avg[0]) - 13 + offset_mumimo_llr_drange[dlsch0_harq->mcs][(i_mod>>1)-1];
......@@ -949,7 +964,7 @@ int rx_pdsch(PHY_VARS_UE *phy_vars_ue,
LOG_W(PHY,"rx_dlsch.c : Unknown mod_order!!!!\n");
return(-1);
break;
}
}
return(0);
}
......@@ -1388,7 +1403,8 @@ void prec2A_TM4_128(int pmi,__m128i *ch0,__m128i *ch1) {
ch0[0] = _mm_srai_epi16(ch0[0],1); //divide by 2
ch1[0] = _mm_srai_epi16(ch1[0],1); //divide by 2
_mm_empty();
_m_empty();
// print_shorts("prec2A_TM4 ch0 (end):",ch0);
//print_shorts("prec2A_TM4 ch1 (end):",ch1);
}
......@@ -1814,6 +1830,7 @@ void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
int **dl_ch_magb1 = lte_ue_pdsch_vars->dl_ch_magb1;
int **rxdataF_comp0 = lte_ue_pdsch_vars->rxdataF_comp0;
int **rxdataF_comp1 = lte_ue_pdsch_vars->rxdataF_comp1[harq_pid][round];
unsigned char **pmi_ext = lte_ue_pdsch_vars->pmi_ext;
__m128i mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3,QAM_amp0_128,QAM_amp0_128b,QAM_amp1_128,QAM_amp1_128b;
symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
......@@ -1884,6 +1901,17 @@ void dlsch_channel_compensation_TM34(LTE_DL_FRAME_PARMS *frame_parms,
prec2A_TM4_128(1,&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING) {
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[0],&dl_ch1_128[0]);
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[1],&dl_ch1_128[1]);
if (pilots==0) {
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128[2],&dl_ch1_128[2]);
}
}
else {
LOG_E(PHY,"Unknown MIMO mode\n");
return;
......@@ -2984,9 +3012,12 @@ void dlsch_channel_level(int **dl_ch_estimates_ext,
#endif
}
//compute average channel_level of effective (precoded) channel
//compute average channel_level of effective (precoded) channel
void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
unsigned char *pmi_ext,
int *avg,
uint8_t symbol,
unsigned short nb_rb,
......@@ -3029,6 +3060,8 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
prec2A_TM4_128(0,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj)
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING)
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128_tmp,&dl_ch1_128_tmp);
// mmtmpD0 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg128D = _mm_add_epi32(avg128D,_mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp));
......@@ -3042,6 +3075,8 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
prec2A_TM4_128(0,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj)
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING)
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128_tmp,&dl_ch1_128_tmp);
// mmtmpD1 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg128D = _mm_add_epi32(avg128D,_mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp));
......@@ -3060,7 +3095,8 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
prec2A_TM4_128(0,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj)
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_PUSCH_PRECODING)
prec2A_TM4_128(pmi_ext[rb],&dl_ch0_128_tmp,&dl_ch1_128_tmp);
// mmtmpD2 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg128D = _mm_add_epi32(avg128D,_mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp));
......@@ -3086,6 +3122,109 @@ void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
#endif
}
/*void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
int *avg,
uint8_t symbol,
unsigned short nb_rb,
MIMO_mode_t mimo_mode){
#if defined(__x86_64__)||defined(__i386__)
short rb;
unsigned char aarx,nre=12,symbol_mod;
__m128i *dl_ch0_128,*dl_ch1_128, dl_ch0_128_tmp, dl_ch1_128_tmp,avg128D;
symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
//clear average level
avg128D = _mm_setzero_si128();
avg[0] = 0;
avg[1] = 0;
// 5 is always a symbol with no pilots for both normal and extended prefix
if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->mode1_flag==0))
nre=8;
else if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->mode1_flag==1))
nre=10;
else
nre=12;
for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
dl_ch0_128 = (__m128i *)&dl_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
dl_ch1_128 = (__m128i *)&dl_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_DL*12];
for (rb=0; rb<nb_rb; rb++) {
dl_ch0_128_tmp = _mm_load_si128(&dl_ch0_128[0]);
dl_ch1_128_tmp = _mm_load_si128(&dl_ch1_128[0]);
if (mimo_mode==LARGE_CDD)
prec2A_TM3_128(&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1)
prec2A_TM4_128(0,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj)
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
// mmtmpD0 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg128D = _mm_add_epi32(avg128D,_mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp));
dl_ch0_128_tmp = _mm_load_si128(&dl_ch0_128[1]);
dl_ch1_128_tmp = _mm_load_si128(&dl_ch1_128[1]);
if (mimo_mode==LARGE_CDD)
prec2A_TM3_128(&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1)
prec2A_TM4_128(0,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj)
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
// mmtmpD1 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg128D = _mm_add_epi32(avg128D,_mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp));
if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->mode1_flag==0)) {
dl_ch0_128+=2;
dl_ch1_128+=2;
}
else {
dl_ch0_128_tmp = _mm_load_si128(&dl_ch0_128[2]);
dl_ch1_128_tmp = _mm_load_si128(&dl_ch1_128[2]);
if (mimo_mode==LARGE_CDD)
prec2A_TM3_128(&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODING1)
prec2A_TM4_128(0,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
else if (mimo_mode==DUALSTREAM_UNIFORM_PRECODINGj)
prec2A_TM4_128(1,&dl_ch0_128_tmp,&dl_ch1_128_tmp);
// mmtmpD2 = _mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp);
avg128D = _mm_add_epi32(avg128D,_mm_madd_epi16(dl_ch0_128_tmp,dl_ch0_128_tmp));
dl_ch0_128+=3;
dl_ch1_128+=3;
}
}
avg[aarx] = (((int*)&avg128D)[0])/(nb_rb*nre) +
(((int*)&avg128D)[1])/(nb_rb*nre) +
(((int*)&avg128D)[2])/(nb_rb*nre) +
(((int*)&avg128D)[3])/(nb_rb*nre);
}
// choose maximum of the 2 effective channels
avg[0] = cmax(avg[0],avg[1]);
_mm_empty();
_m_empty();
#elif defined(__arm__)
#endif
}*/
//compute average channel_level of effective (precoded) channel
void dlsch_channel_level_TM56(int **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
......@@ -3874,9 +4013,16 @@ unsigned short dlsch_extract_rbs_dual(int **rxdataF,
unsigned char symbol,
unsigned char subframe,
uint32_t high_speed_flag,
LTE_DL_FRAME_PARMS *frame_parms) {
LTE_DL_FRAME_PARMS *frame_parms,
MIMO_mode_t mimo_mode) {
/*uint8_t get_pmi(uint8_t N_RB_DL,LTE_DL_eNB_HARQ_t *dlsch_harq,uint16_t rb)
{
MIMO_mode_t mode = dlsch_harq->mimo_mode;*/
//PHY_VARS_UE *phy_vars_ue,
int prb,nb_rb=0;
int prb_off,prb_off2;
......@@ -3885,7 +4031,7 @@ unsigned short dlsch_extract_rbs_dual(int **rxdataF,
int32_t *dl_ch0,*dl_ch0p,*dl_ch0_ext,*dl_ch1,*dl_ch1p,*dl_ch1_ext,*rxF,*rxF_ext;
int symbol_mod,pilots=0,j=0;
unsigned char *pmi_loc;
symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;
// printf("extract_rbs: symbol_mod %d\n",symbol_mod);
......@@ -3999,7 +4145,12 @@ unsigned short dlsch_extract_rbs_dual(int **rxdataF,
rxF = &rxdataF[aarx][prb_off2+
(symbol*(frame_parms->ofdm_symbol_size))];
}
if (mimo_mode <= PUSCH_PRECODING1)
*pmi_loc = (pmi>>((prb>>2)<<1))&3;
else
*pmi_loc=(pmi>>prb)&1;
pmi_loc++;
......@@ -4136,8 +4287,11 @@ unsigned short dlsch_extract_rbs_dual(int **rxdataF,
#ifdef DEBUG_DLSCH_DEMOD
printf("symbol %d / rb %d: alloc %d skip_half %d (rxF %p, rxF_ext %p) prb_off (%d,%d)\n",symbol,prb,rb_alloc_ind,skip_half,rxF,rxF_ext,prb_off,prb_off2);
#endif
*pmi_loc = (pmi>>((prb>>2)<<1))&3;
// printf("symbol_mod %d (pilots %d) rb %d, sb %d, pmi %d (pmi_loc %p,rxF %p, ch00 %p, ch01 %p, rxF_ext %p dl_ch0_ext %p dl_ch1_ext %p)\n",symbol_mod,pilots,rb,rb>>2,*pmi_loc,pmi_loc,rxF,dl_ch0, dl_ch1, rxF_ext,dl_ch0_ext,dl_ch1_ext);
if (mimo_mode <= PUSCH_PRECODING1)
*pmi_loc = (pmi>>((prb>>2)<<1))&3;
else
*pmi_loc=(pmi>>prb)&1;
// printf("symbol_mod %d (pilots %d) rb %d, sb %d, pmi %d (pmi_loc %p,rxF %p, ch00 %p, ch01 %p, rxF_ext %p dl_ch0_ext %p dl_ch1_ext %p)\n",symbol_mod,pilots,prb,prb>>2,*pmi_loc,pmi_loc,rxF,dl_ch0, dl_ch1, rxF_ext,dl_ch0_ext,dl_ch1_ext);
pmi_loc++;
......
......@@ -786,7 +786,7 @@ int allocate_REs_in_RB(LTE_DL_FRAME_PARMS *frame_parms,
precoder_index1 = 3; //[1 -j]
}
else {
LOG_E(PHY,"problem with precoder in TM4\n");
printf("problem with precoder in TM4\n");
return(-1);
}
......@@ -1254,7 +1254,7 @@ uint8_t get_pmi(uint8_t N_RB_DL,LTE_DL_eNB_HARQ_t *dlsch_harq,uint16_t rb)
MIMO_mode_t mode = dlsch_harq->mimo_mode;
uint32_t pmi_alloc = dlsch_harq->pmi_alloc;
// printf("Getting pmi for RB %d => %d\n",rb,(pmi_alloc>>((rb>>2)<<1))&3);
printf("Getting pmi for RB %d => %d\n",rb,((pmi_alloc>>rb)&1));
switch (N_RB_DL) {
case 6: // 1 PRB per subband
if (mode <= PUSCH_PRECODING1) //single layer
......@@ -1369,10 +1369,10 @@ int dlsch_modulation(mod_sym_t **txdataF,
for (l=num_pdcch_symbols; l<nsymb; l++) {
#ifdef DEBUG_DLSCH_MODULATION
msg("Generating DLSCH (harq_pid %d,mimo %d, pmi_alloc0 %llx, mod0 %d, mod1 %d, rb_alloc[0] %d) in %d\n",
printf("Generating DLSCH (harq_pid %d,mimo %d, pmi_alloc0 %llx, mod0 %d, mod1 %d, rb_alloc[0] %d) in %d\n",
harq_pid,
dlsch0_harq->mimo_mode,
pmi2hex_2Ar1(dlsch0_harq->pmi_alloc),
pmi2hex_2Ar2(dlsch0_harq->pmi_alloc),
mod_order0,
mod_order1,
rb_alloc[0],
......
......@@ -909,7 +909,8 @@ uint16_t dlsch_extract_rbs_dual(int32_t **rxdataF,
uint8_t symbol,
uint8_t subframe,
uint32_t high_speed_flag,
LTE_DL_FRAME_PARMS *frame_parms);
LTE_DL_FRAME_PARMS *frame_parms,
MIMO_mode_t mimo_mode);
/** \brief This function performs channel compensation (matched filtering) on the received RBs for this allocation. In addition, it computes the squared-magnitude of the channel with weightings for 16QAM/64QAM detection as well as dual-stream detection (cross-correlation)
@param rxdataF_ext Frequency-domain received signal in RBs to be demodulated
......@@ -994,6 +995,7 @@ void dlsch_channel_level(int32_t **dl_ch_estimates_ext,
void dlsch_channel_level_TM34(int **dl_ch_estimates_ext,
LTE_DL_FRAME_PARMS *frame_parms,
unsigned char *pmi_ext,
int *avg,
uint8_t symbol,
unsigned short nb_rb,
......
......@@ -450,7 +450,7 @@ int main(int argc, char **argv)
case 'w':
snr_int = atof(optarg);
break;
case 'f':
input_snr_step= atof(optarg);
break;
......@@ -1529,7 +1529,7 @@ n(tikz_fname,"w");
((DCI1A_5MHz_TDD_1_6_t *)&DLSCH_alloc_pdu_1[k])->harq_pid = 0;
((DCI1A_5MHz_TDD_1_6_t *)&DLSCH_alloc_pdu_1[k])->mcs = mcs1;
((DCI1A_5MHz_TDD_1_6_t *)&DLSCH_alloc_pdu_1[k])->ndi = 0;
((DCI1A_5MHz_TDD_1_6_t *)&DLSCH_alloc_pdu_1[k])->rv = 1;
((DCI1A_5MHz_TDD_1_6_t *)&DLSCH_alloc_pdu_1[k])->rv = 0;
break;
case 50:
dci_length = sizeof_DCI1A_10MHz_TDD_1_6_t;
......@@ -1662,7 +1662,7 @@ n(tikz_fname,"w");
((DCI2_1_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->ndi2 = 1;
((DCI2_1_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->rv2 = 0;
((DCI2_1_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tb_swap = 0;
((DCI2_1_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi = 0;
((DCI2_1_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi = 2;
break;
case 25:
dci_length = sizeof_DCI2_5MHz_2A_TDD_t;
......@@ -1679,7 +1679,7 @@ n(tikz_fname,"w");
((DCI2_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->ndi2 = 1;
((DCI2_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->rv2 = 0;
((DCI2_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tb_swap = 0;
((DCI2_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi = 0;
((DCI2_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi = 2;
break;
case 50:
......@@ -1697,7 +1697,7 @@ n(tikz_fname,"w");
((DCI2_10MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->ndi2 = 1;
((DCI2_10MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->rv2 = 0;
((DCI2_10MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tb_swap = 0;
((DCI2_10MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi = 0;
((DCI2_10MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi = 2;
break;
case 100:
......@@ -1713,7 +1713,7 @@ n(tikz_fname,"w");
((DCI2_20MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->ndi2 = 1;
((DCI2_20MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->rv2 = 0;
((DCI2_10MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tb_swap = 0;
((DCI2_10MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi = 0;
((DCI2_10MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi = 2;
dci_length = sizeof_DCI2_20MHz_2A_TDD_t;
dci_length_bytes = sizeof(DCI2_20MHz_2A_TDD_t);
break;
......@@ -1791,6 +1791,12 @@ n(tikz_fname,"w");
else if (PHY_vars_eNB->lte_frame_parms.nb_antennas_tx == 4) {
}
if (((DCI2_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi == 2) { // not a nice way to do it, fix later
PHY_vars_eNB->eNB_UE_stats[0].DL_pmi_single = (unsigned short)(taus()&0xffff);
}
memcpy(&dci_alloc[num_dci].dci_pdu[0],&DLSCH_alloc_pdu_1[k],dci_length_bytes);
dci_alloc[num_dci].dci_length = dci_length;
......@@ -2765,6 +2771,14 @@ n(tikz_fname,"w");
}
*/
}
if (transmission_mode==4 && (((DCI2_5MHz_2A_TDD_t *)&DLSCH_alloc_pdu_1[k])->tpmi == 2)){
PHY_vars_eNB->dlsch_eNB[0][0]->harq_processes[0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0,PHY_vars_eNB->lte_frame_parms.N_RB_DL);
PHY_vars_UE->dlsch_ue[0][0]->pmi_alloc = quantize_subband_pmi(&PHY_vars_UE->PHY_measurements,0,PHY_vars_UE->lte_frame_parms.N_RB_DL);
}
start_meas(&PHY_vars_eNB->dlsch_encoding_stats);
......@@ -2929,10 +2943,6 @@ n(tikz_fname,"w");
// r_re[1][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[eNB_id][1]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)]);
// r_im[1][i] = ((double)(((short *)PHY_vars_eNB->lte_eNB_common_vars.txdata[eNB_id][1]))[(2*subframe*PHY_vars_UE->lte_frame_parms.samples_per_tti) +(i<<1)+1]);
// printf("r_re0 = %d\n",r_re[0][i]);
// printf("r_im0 = %d\n",r_im[0][i]);
// printf("r_re1 = %d\n",r_re[1][i]);
// printf("r_im1 = %d\n",r_im[1][i]);
}
else {
......@@ -3165,7 +3175,7 @@ n(tikz_fname,"w");
PHY_vars_UE->PHY_measurements.wideband_cqi_avg[0]);
*/
if (transmission_mode==5 || transmission_mode==6) {
if (transmission_mode == 4 || transmission_mode == 5 || transmission_mode == 6) {
if (pmi_feedback == 1) {
pmi_feedback = 0;
hold_channel = 1;
......
/*******************************************************************************
OpenAirInterface
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
......@@ -14,15 +14,15 @@
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
......@@ -42,29 +42,28 @@
extern void print_shorts(char *s,__m128i *x);
void fill_channel_desc(channel_desc_t *chan_desc,
uint8_t nb_tx,
uint8_t nb_rx,
uint8_t nb_taps,
uint8_t channel_length,
double *amps,
double *delays,
struct complex** R_sqrt,
double Td,
double BW,
double ricean_factor,
double aoa,
double forgetting_factor,
double max_Doppler,
int32_t channel_offset,
double path_loss_dB,
uint8_t random_aoa)
{
uint8_t nb_tx,
uint8_t nb_rx,
uint8_t nb_taps,
uint8_t channel_length,
double *amps,
double *delays,
struct complex** R_sqrt,
double Td,
double BW,
double ricean_factor,
double aoa,
double forgetting_factor,
double max_Doppler,
int32_t channel_offset,
double path_loss_dB,
uint8_t random_aoa) {
uint16_t i,j;
double delta_tau;
LOG_I(OCM,"[CHANNEL] Getting new channel descriptor, nb_tx %d, nb_rx %d, nb_taps %d, channel_length %d\n",
nb_tx,nb_rx,nb_taps,channel_length);
nb_tx,nb_rx,nb_taps,channel_length);
chan_desc->nb_tx = nb_tx;
chan_desc->nb_rx = nb_rx;
......@@ -72,14 +71,13 @@ void fill_channel_desc(channel_desc_t *chan_desc,
chan_desc->channel_length = channel_length;
chan_desc->amps = amps;
LOG_D(OCM,"[CHANNEL] Doing delays ...\n");
if (delays==NULL) {
chan_desc->delays = (double*) malloc(nb_taps*sizeof(double));
delta_tau = Td/nb_taps;
for (i=0; i<nb_taps; i++)
chan_desc->delays[i] = ((double)i)*delta_tau;
} else
}
else
chan_desc->delays = delays;
chan_desc->Td = Td;
......@@ -99,30 +97,26 @@ void fill_channel_desc(channel_desc_t *chan_desc,
LOG_D(OCM,"[CHANNEL] Filling ch \n");
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex)); // allocate for up to 100 RBs, 12 samples per RB
LOG_D(OCM,"[CHANNEL] Filling a (nb_taps %d)\n",nb_taps);
for (i = 0; i<nb_taps; i++) {
LOG_D(OCM,"tap %d (%p,%d)\n",i,&chan_desc->a[i],nb_tx*nb_rx * sizeof(struct complex));
chan_desc->a[i] = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
}
LOG_D(OCM,"[CHANNEL] Doing R_sqrt ...\n");
if (R_sqrt == NULL) {
chan_desc->R_sqrt = (struct complex**) calloc(nb_taps,sizeof(struct complex*));
chan_desc->R_sqrt = (struct complex**) calloc(nb_taps,sizeof(struct complex*));
for (i = 0; i<nb_taps; i++) {
chan_desc->R_sqrt[i] = (struct complex*) calloc(nb_tx*nb_rx*nb_tx*nb_rx,sizeof(struct complex));
chan_desc->R_sqrt[i] = (struct complex*) calloc(nb_tx*nb_rx*nb_tx*nb_rx,sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
}
}
......@@ -142,8 +136,7 @@ void fill_channel_desc(channel_desc_t *chan_desc,
}
LOG_D(OCM,"[CHANNEL] RF %f\n",chan_desc->ricean_factor);
for (i=0; i<chan_desc->nb_taps; i++)
for (i=0;i<chan_desc->nb_taps;i++)
LOG_D(OCM,"[CHANNEL] tap %d: amp %f, delay %f\n",i,chan_desc->amps[i],chan_desc->delays[i]);
chan_desc->nb_paths=10;
......@@ -181,23 +174,21 @@ struct complex R_sqrt_22_corr_tap[16] = {{0.70711,0}, {0.0, 0.0}, {0.70711,0}, {
{0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {0.70711,0},
{0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
{0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {0.70711,0}};
struct complex *R_sqrt_22_corr[1] = {R_sqrt_22_corr_tap};
//correlation matrix for a fully correlated 2x1 channel (h1==h2)
struct complex R_sqrt_21_corr_tap[4] = {{0.70711,0}, {0.70711,0}, {0.70711,0}, {0.70711,0}};
struct complex R_sqrt_21_corr_tap[4] = {{0.70711,0}, {0.70711,0}, {0.70711,0}, {0.70711,0}};
struct complex *R_sqrt_21_corr[1] = {R_sqrt_21_corr_tap};
//correlation matrix for a 2x2 channel with full Tx anti-correlation
struct complex R_sqrt_22_anticorr_tap[16] = {{0.70711,0}, {0.0, 0.0}, {-0.70711,0}, {0.0, 0.0},
{0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {-0.70711,0},
{-0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
{0.0, 0.0}, {-0.70711,0}, {0.0, 0.0}, {0.70711,0}
};
//correlation matrix for a 2x2 channel with full Tx anti-correlation
struct complex R_sqrt_22_anticorr_tap[16] = {{0.70711,0}, {0.0, 0.0}, {-0.70711,0}, {0.0, 0.0},
{0.0, 0.0}, {0.70711,0}, {0.0, 0.0}, {-0.70711,0},
{-0.70711,0}, {0.0, 0.0}, {0.70711,0}, {0.0, 0.0},
{0.0, 0.0}, {-0.70711,0}, {0.0, 0.0}, {0.70711,0}};
struct complex *R_sqrt_22_anticorr[1] = {R_sqrt_22_anticorr_tap};
//correlation matrix for a fully anti-correlated 2x1 channel (h1==-h2)
struct complex R_sqrt_21_anticorr_tap[4] = {{0.70711,0}, {-0.70711,0}, {-0.70711,0}, {0.70711,0}};
struct complex R_sqrt_21_anticorr_tap[4] = {{0.70711,0}, {-0.70711,0}, {-0.70711,0}, {0.70711,0}};
struct complex *R_sqrt_21_anticorr[1] = {R_sqrt_21_anticorr_tap};
struct complex **R_sqrt_ptr2;
......@@ -233,14 +224,13 @@ struct complex *R_sqrt_22_orth_eff_ch_TM4_prec_imag[1] = {R_sqrt_22_orth_eff
//Rayleigh1_orth_eff_ch_TM4
channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
uint8_t nb_rx,
SCM_t channel_model,
double BW,
double forgetting_factor,
int32_t channel_offset,
double path_loss_dB)
{
channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
uint8_t nb_rx,
SCM_t channel_model,
double BW,
double forgetting_factor,
int32_t channel_offset,
double path_loss_dB) {
channel_desc_t *chan_desc = (channel_desc_t *)malloc(sizeof(channel_desc_t));
uint16_t i,j;
......@@ -264,27 +254,22 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
LOG_W(OCM,"channel model not yet supported\n");
free(chan_desc);
return(NULL);
case SCM_B:
LOG_W(OCM,"channel model not yet supported\n");
free(chan_desc);
return(NULL);
case SCM_C:
chan_desc->nb_taps = 18;
chan_desc->Td = 4.625;
chan_desc->channel_length = (int) (2*chan_desc->BW*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->BW*chan_desc->Td));
sum_amps = 0;
chan_desc->amps = (double*) malloc(chan_desc->nb_taps*sizeof(double));
for (i = 0; i<chan_desc->nb_taps; i++) {
chan_desc->amps[i] = pow(10,.1*scm_c_amps_dB[i]);
chan_desc->amps[i] = pow(10,.1*scm_c_amps_dB[i]);
sum_amps += chan_desc->amps[i];
}
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->amps[i] /= sum_amps;
chan_desc->delays = scm_c_delays;
chan_desc->ricean_factor = 1;
chan_desc->aoa = 0;
......@@ -292,42 +277,37 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
chan_desc->ch = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->chF = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->a = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->a[i] = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex**));
if (nb_tx==2 && nb_rx==2) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
} else if (nb_tx==2 && nb_rx==1) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R21_sqrt[i][0];
} else if (nb_tx==1 && nb_rx==2) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R12_sqrt[i][0];
} else {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
}
else if (nb_tx==2 && nb_rx==1) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R21_sqrt[i][0];
}
else if (nb_tx==1 && nb_rx==2) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R12_sqrt[i][0];
}
else {
for (i = 0; i<6; i++) {
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix not implemented for nb_tx==%d and nb_rx==%d, using identity\n", nb_tx, nb_rx);
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix not implemented for nb_tx==%d and nb_rx==%d, using identity\n", nb_tx, nb_rx);
}
}
break;
case SCM_D:
LOG_W(OCM,"This is not the real SCM-D model! It is just SCM-C with an additional Rice factor!\n");
chan_desc->nb_taps = 18;
......@@ -335,15 +315,12 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
chan_desc->channel_length = (int) (2*chan_desc->BW*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->BW*chan_desc->Td));
sum_amps = 0;
chan_desc->amps = (double*) malloc(chan_desc->nb_taps*sizeof(double));
for (i = 0; i<chan_desc->nb_taps; i++) {
chan_desc->amps[i] = pow(10,.1*scm_c_amps_dB[i]);
chan_desc->amps[i] = pow(10,.1*scm_c_amps_dB[i]);
sum_amps += chan_desc->amps[i];
}
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->amps[i] /= sum_amps;
chan_desc->delays = scm_c_delays;
chan_desc->ricean_factor = 0.1;
chan_desc->aoa = 0;
......@@ -351,57 +328,49 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
chan_desc->ch = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->chF = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->a = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->a[i] = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex**));
if (nb_tx==2 && nb_rx==2) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
} else if (nb_tx==2 && nb_rx==1) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R21_sqrt[i][0];
} else if (nb_tx==1 && nb_rx==2) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R12_sqrt[i][0];
} else {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
}
else if (nb_tx==2 && nb_rx==1) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R21_sqrt[i][0];
}
else if (nb_tx==1 && nb_rx==2) {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R12_sqrt[i][0];
}
else {
for (i = 0; i<6; i++) {
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix not implemented for nb_tx==%d and nb_rx==%d, using identity\n", nb_tx, nb_rx);
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix not implemented for nb_tx==%d and nb_rx==%d, using identity\n", nb_tx, nb_rx);
}
}
break;
case EPA:
chan_desc->nb_taps = 7;
chan_desc->Td = .410;
chan_desc->channel_length = (int) (2*chan_desc->BW*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->BW*chan_desc->Td));
sum_amps = 0;
chan_desc->amps = (double*) malloc(chan_desc->nb_taps*sizeof(double));
for (i = 0; i<chan_desc->nb_taps; i++) {
chan_desc->amps[i] = pow(10,.1*epa_amps_dB[i]);
chan_desc->amps[i] = pow(10,.1*epa_amps_dB[i]);
sum_amps += chan_desc->amps[i];
}
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->amps[i] /= sum_amps;
chan_desc->delays = epa_delays;
chan_desc->ricean_factor = 1;
chan_desc->aoa = 0;
......@@ -409,53 +378,41 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
chan_desc->ch = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->chF = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->a = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->a[i] = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
if (nb_tx==2 && nb_rx==2) {
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex**));
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
} else {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
}
else {
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex**));
for (i = 0; i<6; i++) {
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
}
}
break;
case EVA:
chan_desc->nb_taps = 9;
chan_desc->Td = 2.51;
chan_desc->channel_length = (int) (2*chan_desc->BW*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->BW*chan_desc->Td));
sum_amps = 0;
chan_desc->amps = (double*) malloc(chan_desc->nb_taps*sizeof(double));
for (i = 0; i<chan_desc->nb_taps; i++) {
chan_desc->amps[i] = pow(10,.1*eva_amps_dB[i]);
chan_desc->amps[i] = pow(10,.1*eva_amps_dB[i]);
sum_amps += chan_desc->amps[i];
}
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->amps[i] /= sum_amps;
chan_desc->delays = eva_delays;
chan_desc->ricean_factor = 1;
chan_desc->aoa = 0;
......@@ -463,53 +420,41 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
chan_desc->ch = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->chF = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->a = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->a[i] = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
if (nb_tx==2 && nb_rx==2) {
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex**));
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
} else {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
}
else {
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex**));
for (i = 0; i<6; i++) {
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
}
}
break;
case ETU:
chan_desc->nb_taps = 9;
chan_desc->Td = 5.0;
chan_desc->channel_length = (int) (2*chan_desc->BW*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->BW*chan_desc->Td));
sum_amps = 0;
chan_desc->amps = (double*) malloc(chan_desc->nb_taps*sizeof(double));
for (i = 0; i<chan_desc->nb_taps; i++) {
chan_desc->amps[i] = pow(10,.1*etu_amps_dB[i]);
chan_desc->amps[i] = pow(10,.1*etu_amps_dB[i]);
sum_amps += chan_desc->amps[i];
}
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->amps[i] /= sum_amps;
chan_desc->delays = etu_delays;
chan_desc->ricean_factor = 1;
chan_desc->aoa = 0;
......@@ -517,53 +462,41 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
chan_desc->ch = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->chF = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->a = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->a[i] = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
if (nb_tx==2 && nb_rx==2) {
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex**));
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
} else {
for (i = 0; i<6; i++)
chan_desc->R_sqrt[i] = (struct complex*) &R22_sqrt[i][0];
}
else {
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex**));
for (i = 0; i<6; i++) {
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
}
}
break;
case MBSFN:
chan_desc->nb_taps = 18;
chan_desc->Td = 28.58;
chan_desc->channel_length = (int) (2*chan_desc->BW*chan_desc->Td + 1 + 2/(M_PI*M_PI)*log(4*M_PI*chan_desc->BW*chan_desc->Td));
sum_amps = 0;
chan_desc->amps = (double*) malloc(chan_desc->nb_taps*sizeof(double));
for (i = 0; i<chan_desc->nb_taps; i++) {
chan_desc->amps[i] = pow(10,.1*mbsfn_amps_dB[i]);
chan_desc->amps[i] = pow(10,.1*mbsfn_amps_dB[i]);
sum_amps += chan_desc->amps[i];
}
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->amps[i] /= sum_amps;
chan_desc->delays = mbsfn_delays;
chan_desc->ricean_factor = 1;
chan_desc->aoa = 0;
......@@ -571,168 +504,162 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
chan_desc->ch = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->chF = (struct complex**) malloc(nb_tx*nb_rx*sizeof(struct complex*));
chan_desc->a = (struct complex**) malloc(chan_desc->nb_taps*sizeof(struct complex*));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->ch[i] = (struct complex*) malloc(chan_desc->channel_length * sizeof(struct complex));
for (i = 0; i<nb_tx*nb_rx; i++)
chan_desc->chF[i] = (struct complex*) malloc(1200 * sizeof(struct complex));
for (i = 0; i<chan_desc->nb_taps; i++)
chan_desc->a[i] = (struct complex*) malloc(nb_tx*nb_rx * sizeof(struct complex));
chan_desc->R_sqrt = (struct complex**) malloc(6*sizeof(struct complex*));
for (i = 0; i<6; i++) {
chan_desc->R_sqrt[i] = (struct complex*) malloc(nb_tx*nb_rx*nb_tx*nb_rx * sizeof(struct complex));
for (j = 0; j<nb_tx*nb_rx*nb_tx*nb_rx; j+=(nb_tx*nb_rx+1)) {
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
chan_desc->R_sqrt[i][j].x = 1.0;
chan_desc->R_sqrt[i][j].y = 0.0;
}
LOG_W(OCM,"correlation matrix only implemented for nb_tx==2 and nb_rx==2, using identity\n");
}
break;
case Rayleigh8:
nb_taps = 8;
Td = 0.8;
channel_length = (int)11+2*BW*Td;
ricean_factor = 1;
aoa = .03;
maxDoppler = 0;
fill_channel_desc(chan_desc,
nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amps_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
nb_taps = 8;
Td = 0.8;
channel_length = (int)11+2*BW*Td;
ricean_factor = 1;
aoa = .03;
maxDoppler = 0;
fill_channel_desc(chan_desc,
nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amps_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
case Rice8:
nb_taps = 8;
Td = 0.8;
channel_length = (int)11+2*BW*Td;
ricean_factor = 0.1;
aoa = .03;
maxDoppler = 0;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amps_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
1);
break;
nb_taps = 8;
Td = 0.8;
channel_length = (int)11+2*BW*Td;
ricean_factor = 0.1;
aoa = .03;
maxDoppler = 0;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amps_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
1);
break;
case Rayleigh1:
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 1;
aoa = .03;
maxDoppler = 0;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 1;
aoa = .03;
maxDoppler = 0;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
case Rayleigh1_800:
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 1;
aoa = .03;
maxDoppler = 800;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 1;
aoa = .03;
maxDoppler = 800;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
case Rayleigh1_corr:
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 1;
aoa = .03;
maxDoppler = 0;
if ((nb_tx==2) && (nb_rx==1)) {
R_sqrt_ptr2 = R_sqrt_21_corr;
} else if ((nb_tx==2) && (nb_rx==2)) {
R_sqrt_ptr2 = R_sqrt_22_corr;
} else
R_sqrt_ptr2 = NULL;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
R_sqrt_ptr2,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 1;
aoa = .03;
maxDoppler = 0;
if ((nb_tx==2) && (nb_rx==1)) {
R_sqrt_ptr2 = R_sqrt_21_corr;
}
else if ((nb_tx==2) && (nb_rx==2)) {
R_sqrt_ptr2 = R_sqrt_22_corr;
}
else
R_sqrt_ptr2 = NULL;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
R_sqrt_ptr2,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
case Rayleigh1_anticorr:
nb_taps = 1;
......@@ -770,58 +697,58 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
break;
case Rice1:
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 0.1;
aoa = .03;
maxDoppler = 0;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 0.1;
aoa = .03;
maxDoppler = 0;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
break;
case AWGN:
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 0.0;
aoa = 0.0;
maxDoppler = 0;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
printf("AWGN: ricean_factor %f\n",chan_desc->ricean_factor);
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 0.0;
aoa = 0.0;
maxDoppler = 0;
break;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
NULL,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
0);
printf("AWGN: ricean_factor %f\n",chan_desc->ricean_factor);
break;
case TS_SHIFT:
nb_taps = 2;
......@@ -852,40 +779,41 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
break;
case Rice1_corr:
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 0.1;
aoa = .03;
maxDoppler = 0;
if ((nb_tx==2) && (nb_rx==1)) {
R_sqrt_ptr2 = R_sqrt_21_corr;
} else if ((nb_tx==2) && (nb_rx==2)) {
R_sqrt_ptr2 = R_sqrt_22_corr;
} else
R_sqrt_ptr2 = NULL;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
R_sqrt_ptr2,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
1);
break;
nb_taps = 1;
Td = 0;
channel_length = 1;
ricean_factor = 0.1;
aoa = .03;
maxDoppler = 0;
case Rice1_anticorr:
if ((nb_tx==2) && (nb_rx==1)) {
R_sqrt_ptr2 = R_sqrt_21_corr;
}
else if ((nb_tx==2) && (nb_rx==2)) {
R_sqrt_ptr2 = R_sqrt_22_corr;
}
else
R_sqrt_ptr2 = NULL;
fill_channel_desc(chan_desc,nb_tx,
nb_rx,
nb_taps,
channel_length,
default_amp_lin,
NULL,
R_sqrt_ptr2,
Td,
BW,
ricean_factor,
aoa,
forgetting_factor,
maxDoppler,
channel_offset,
path_loss_dB,
1);
break;
case Rice1_anticorr:
nb_taps = 1;
Td = 0;
channel_length = 1;
......@@ -1094,10 +1022,8 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
free(chan_desc);
return(NULL);
}
LOG_D(OCM,"[CHANNEL] RF %f\n",chan_desc->ricean_factor);
for (i=0; i<chan_desc->nb_taps; i++)
for (i=0;i<chan_desc->nb_taps;i++)
LOG_D(OCM,"[CHANNEL] tap %d: amp %f, delay %f\n",i,chan_desc->amps[i],chan_desc->delays[i]);
chan_desc->nb_paths = 10;
......@@ -1106,46 +1032,43 @@ channel_desc_t *new_channel_desc_scm(uint8_t nb_tx,
}
int random_channel(channel_desc_t *desc, uint8_t abstraction_flag)
{
int random_channel(channel_desc_t *desc, uint8_t abstraction_flag) {
double s;
int i,k,l,aarx,aatx;
struct complex anew[NB_ANTENNAS_TX*NB_ANTENNAS_RX],acorr[NB_ANTENNAS_TX*NB_ANTENNAS_RX];
struct complex phase, alpha, beta;
if ((desc->nb_tx>NB_ANTENNAS_TX) || (desc->nb_rx > NB_ANTENNAS_RX)) {
msg("random_channel.c: Error: temporary buffer for channel not big enough (%d,%d)\n",desc->nb_tx,desc->nb_rx);
return(-1);
}
start_meas(&desc->random_channel);
for (i=0;i<(int)desc->nb_taps;i++) {
for (aarx=0;aarx<desc->nb_rx;aarx++) {
for (aatx=0;aatx<desc->nb_tx;aatx++) {
for (i=0; i<(int)desc->nb_taps; i++) {
for (aarx=0; aarx<desc->nb_rx; aarx++) {
for (aatx=0; aatx<desc->nb_tx; aatx++) {
anew[aarx+(aatx*desc->nb_rx)].x = sqrt(desc->ricean_factor*desc->amps[i]/2) * gaussdouble(0.0,1.0);
anew[aarx+(aatx*desc->nb_rx)].y = sqrt(desc->ricean_factor*desc->amps[i]/2) * gaussdouble(0.0,1.0);
if ((i==0) && (desc->ricean_factor != 1.0)) {
if (desc->random_aoa==1) {
desc->aoa = uniformrandom()*2*M_PI;
}
// this assumes that both RX and TX have linear antenna arrays with lambda/2 antenna spacing.
// Furhter it is assumed that the arrays are parallel to each other and that they are far enough apart so
// that we can safely assume plane wave propagation.
phase.x = cos(M_PI*((aarx-aatx)*sin(desc->aoa)));
phase.y = sin(M_PI*((aarx-aatx)*sin(desc->aoa)));
anew[aarx+(aatx*desc->nb_rx)].x = sqrt(desc->ricean_factor*desc->amps[i]/2) * gaussdouble(0.0,1.0);
anew[aarx+(aatx*desc->nb_rx)].y = sqrt(desc->ricean_factor*desc->amps[i]/2) * gaussdouble(0.0,1.0);
anew[aarx+(aatx*desc->nb_rx)].x += phase.x * sqrt(1.0-desc->ricean_factor);
anew[aarx+(aatx*desc->nb_rx)].y += phase.y * sqrt(1.0-desc->ricean_factor);
}
if ((i==0) && (desc->ricean_factor != 1.0)) {
if (desc->random_aoa==1) {
desc->aoa = uniformrandom()*2*M_PI;
}
// this assumes that both RX and TX have linear antenna arrays with lambda/2 antenna spacing.
// Furhter it is assumed that the arrays are parallel to each other and that they are far enough apart so
// that we can safely assume plane wave propagation.
phase.x = cos(M_PI*((aarx-aatx)*sin(desc->aoa)));
phase.y = sin(M_PI*((aarx-aatx)*sin(desc->aoa)));
anew[aarx+(aatx*desc->nb_rx)].x += phase.x * sqrt(1.0-desc->ricean_factor);
anew[aarx+(aatx*desc->nb_rx)].y += phase.y * sqrt(1.0-desc->ricean_factor);
}
#ifdef DEBUG_CH
printf("(%d,%d,%d) %f->(%f,%f) (%f,%f) phase (%f,%f)\n",aarx,aatx,i,desc->amps[i],anew[aarx+(aatx*desc->nb_rx)].x,anew[aarx+(aatx*desc->nb_rx)].y,desc->aoa,desc->ricean_factor,phase.x,phase.y);
#endif
printf("(%d,%d,%d) %f->(%f,%f) (%f,%f) phase (%f,%f)\n",aarx,aatx,i,desc->amps[i],anew[aarx+(aatx*desc->nb_rx)].x,anew[aarx+(aatx*desc->nb_rx)].y,desc->aoa,desc->ricean_factor,phase.x,phase.y);
#endif
} //aatx
} //aarx
......@@ -1153,9 +1076,9 @@ int random_channel(channel_desc_t *desc, uint8_t abstraction_flag)
// for debugging set a=anew;
for (aarx=0;aarx<desc->nb_rx;aarx++) {
for (aatx=0;aatx<desc->nb_tx;aatx++) {
desc->a[i][aarx+(aatx*desc->nb_rx)].x = anew[aarx+(aatx*desc->nb_rx)].x;
desc->a[i][aarx+(aatx*desc->nb_rx)].y = anew[aarx+(aatx*desc->nb_rx)].y;
printf("anew(%d,%d) = %f+1j*%f\n",aatx,aarx,anew[aarx+(aatx*desc->nb_rx)].x, anew[aarx+(aatx*desc->nb_rx)].y);
desc->a[i][aarx+(aatx*desc->nb_rx)].x = anew[aarx+(aatx*desc->nb_rx)].x;
desc->a[i][aarx+(aatx*desc->nb_rx)].y = anew[aarx+(aatx*desc->nb_rx)].y;
printf("anew(%d,%d) = %f+1j*%f\n",aatx,aarx,anew[aarx+(aatx*desc->nb_rx)].x, anew[aarx+(aatx*desc->nb_rx)].y);
}
}
*/
......@@ -1166,23 +1089,24 @@ int random_channel(channel_desc_t *desc, uint8_t abstraction_flag)
beta.x = 0.0;
beta.y = 0.0;
cblas_zgemv(CblasRowMajor, CblasNoTrans, desc->nb_tx*desc->nb_rx, desc->nb_tx*desc->nb_rx,
(void*) &alpha, (void*) desc->R_sqrt[i/3], desc->nb_rx*desc->nb_tx,
(void*) anew, 1, (void*) &beta, (void*) acorr, 1);
cblas_zgemv(CblasRowMajor, CblasNoTrans, desc->nb_tx*desc->nb_rx, desc->nb_tx*desc->nb_rx,
(void*) &alpha, (void*) desc->R_sqrt[i/3], desc->nb_rx*desc->nb_tx,
(void*) anew, 1, (void*) &beta, (void*) acorr, 1);
/*
for (aarx=0;aarx<desc->nb_rx;aarx++) {
for (aatx=0;aatx<desc->nb_tx;aatx++) {
desc->a[i][aarx+(aatx*desc->nb_rx)].x = acorr[aarx+(aatx*desc->nb_rx)].x;
desc->a[i][aarx+(aatx*desc->nb_rx)].y = acorr[aarx+(aatx*desc->nb_rx)].y;
printf("tap %d, acorr1(%d,%d) = %f+1j*%f\n",i,aatx,aarx,acorr[aarx+(aatx*desc->nb_rx)].x, acorr[aarx+(aatx*desc->nb_rx)].y);
desc->a[i][aarx+(aatx*desc->nb_rx)].x = acorr[aarx+(aatx*desc->nb_rx)].x;
desc->a[i][aarx+(aatx*desc->nb_rx)].y = acorr[aarx+(aatx*desc->nb_rx)].y;
printf("tap %d, acorr1(%d,%d) = %f+1j*%f\n",i,aatx,aarx,acorr[aarx+(aatx*desc->nb_rx)].x, acorr[aarx+(aatx*desc->nb_rx)].y);
}
}
*/
if (desc->first_run==1) {
if (desc->first_run==1){
cblas_zcopy(desc->nb_tx*desc->nb_rx, (void*) acorr, 1, (void*) desc->a[i], 1);
} else {
}
else {
// a = alpha*acorr+beta*a
// a = beta*a
// a = a+alpha*acorr
......@@ -1200,19 +1124,18 @@ int random_channel(channel_desc_t *desc, uint8_t abstraction_flag)
/*
for (aarx=0;aarx<desc->nb_rx;aarx++) {
for (aatx=0;aatx<desc->nb_tx;aatx++) {
//desc->a[i][aarx+(aatx*desc->nb_rx)].x = acorr[aarx+(aatx*desc->nb_rx)].x;
//desc->a[i][aarx+(aatx*desc->nb_rx)].y = acorr[aarx+(aatx*desc->nb_rx)].y;
printf("tap %d, a(%d,%d) = %f+1j*%f\n",i,aatx,aarx,desc->a[i][aarx+(aatx*desc->nb_rx)].x, desc->a[i][aarx+(aatx*desc->nb_rx)].y);
//desc->a[i][aarx+(aatx*desc->nb_rx)].x = acorr[aarx+(aatx*desc->nb_rx)].x;
//desc->a[i][aarx+(aatx*desc->nb_rx)].y = acorr[aarx+(aatx*desc->nb_rx)].y;
printf("tap %d, a(%d,%d) = %f+1j*%f\n",i,aatx,aarx,desc->a[i][aarx+(aatx*desc->nb_rx)].x, desc->a[i][aarx+(aatx*desc->nb_rx)].y);
}
}
*/
} //nb_taps
} //nb_taps
stop_meas(&desc->random_channel);
//memset((void *)desc->ch[aarx+(aatx*desc->nb_rx)],0,(int)(desc->channel_length)*sizeof(struct complex));
if (abstraction_flag==0) {
start_meas(&desc->interp_time);
for (aarx=0;aarx<desc->nb_rx;aarx++) {
......@@ -1243,16 +1166,14 @@ int random_channel(channel_desc_t *desc, uint8_t abstraction_flag)
// printf("l %d : desc->ch.x %f\n",l,desc->a[l][aarx+(aatx*desc->nb_rx)].x);
} //nb_taps
#ifdef DEBUG_CH
printf("(%d,%d,%d)->(%f,%f)\n",k,aarx,aatx,desc->ch[aarx+(aatx*desc->nb_rx)][k].x,desc->ch[aarx+(aatx*desc->nb_rx)][k].y);
printf("(%d,%d,%d)->(%f,%f)\n",k,aarx,aatx,desc->ch[aarx+(aatx*desc->nb_rx)][k].x,desc->ch[aarx+(aatx*desc->nb_rx)][k].y);
#endif
}
} //channel_length
} //aatx
} //aarx
stop_meas(&desc->interp_time);
}
} //channel_length
} //aatx
} //aarx
stop_meas(&desc->interp_time);
}
if (desc->first_run==1)
......@@ -1264,13 +1185,12 @@ int random_channel(channel_desc_t *desc, uint8_t abstraction_flag)
#ifdef RANDOM_CHANNEL_MAIN
#define BW 5.0
#define Td 2.0
main(int argc,char **argv)
{
main(int argc,char **argv) {
double amps[8] = {.8,.2,.1,.04,.02,.01,.005};
struct complex ch[(int)(1+2*BW*Td)],phase;
int i;
randominit();
phase.x = 1.0;
phase.y = 0;
......@@ -1282,4 +1202,4 @@ main(int argc,char **argv)
*/
}
#endif
#endif
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment