Commit cfef9ef0 authored by Florian Kaltenberger's avatar Florian Kaltenberger

Merge branch 'nr-fix-ue-usrp' into 'develop-nr'

Nr fix ue usrp

See merge request oai/openairinterface5g!436
parents 02e8dac0 53417ed1
......@@ -2142,6 +2142,9 @@ if (${XFORMS})
set(XFORMS_SOURCE
${OPENAIR1_DIR}/PHY/TOOLS/lte_phy_scope.c
)
set(XFORMS_SOURCE_NR
${OPENAIR1_DIR}/PHY/TOOLS/nr_phy_scope.c
)
set(XFORMS_SOURCE_SOFTMODEM
${OPENAIR_TARGETS}/RT/USER/stats.c
)
......@@ -2444,7 +2447,7 @@ add_executable(nr-uesoftmodem
${OPENAIR3_DIR}/NAS/UE/nas_ue_task.c
${OPENAIR_DIR}/common/utils/utils.c
${OPENAIR_DIR}/common/utils/system.c
${XFORMS_SOURCE}
${XFORMS_SOURCE_NR}
${XFORMS_SOURCE_SOFTMODEM}
${T_SOURCE}
${CONFIG_SOURCES}
......@@ -2478,7 +2481,7 @@ add_executable(nr-uesoftmodem-nos1
${OPENAIR1_DIR}/SIMULATION/ETH_TRANSPORT/netlink_init.c
${OPENAIR_DIR}/common/utils/utils.c
${OPENAIR_DIR}/common/utils/system.c
${XFORMS_SOURCE}
${XFORMS_SOURCE_NR}
${XFORMS_SOURCE_SOFTMODEM}
${T_SOURCE}
${CONFIG_SOURCES}
......
......@@ -419,7 +419,7 @@ void nr_phy_config_request(NR_PHY_Config_t *phy_config)
gNB_config->rf_config.ul_carrier_bandwidth.value = phy_config->cfg->rf_config.ul_carrier_bandwidth.value;//106;
gNB_config->sch_config.half_frame_index.value = 0;
gNB_config->sch_config.ssb_subcarrier_offset.value = phy_config->cfg->sch_config.ssb_subcarrier_offset.value;//0;
gNB_config->sch_config.n_ssb_crb.value = 86;
gNB_config->sch_config.n_ssb_crb.value = (phy_config->cfg->rf_config.dl_carrier_bandwidth.value-20)>>1;
gNB_config->sch_config.physical_cell_id.value = phy_config->cfg->sch_config.physical_cell_id.value;
if (phy_config->cfg->subframe_config.duplex_mode.value == 0) {
......
......@@ -156,6 +156,7 @@ int nr_initial_sync(PHY_VARS_NR_UE *ue, runmode_t mode)
// FK: added N_RB_DL paramter here as this function shares code with the gNB where it is needed. We should rewrite this function for the UE.
nr_init_frame_parms_ue(fp,NR_MU_1,NORMAL,fp->N_RB_DL,n_ssb_crb,0);
LOG_D(PHY,"nr_initial sync ue RB_DL %d\n", fp->N_RB_DL);
/*
write_output("rxdata0.m","rxd0",ue->common_vars.rxdata[0],10*fp->samples_per_subframe,1,1);
exit(-1);
......@@ -196,7 +197,7 @@ int nr_initial_sync(PHY_VARS_NR_UE *ue, runmode_t mode)
#endif
/* check that SSS/PBCH block is continuous inside the received buffer */
if (sync_pos < (10*fp->slots_per_subframe*fp->samples_per_subframe - (NB_SYMBOLS_PBCH * fp->ofdm_symbol_size))) {
if (sync_pos < (NR_NUMBER_OF_SUBFRAMES_PER_FRAME*fp->samples_per_subframe - (NB_SYMBOLS_PBCH * fp->ofdm_symbol_size))) {
#ifdef DEBUG_INITIAL_SYNCH
LOG_I(PHY,"Calling sss detection (normal CP)\n");
......
......@@ -838,14 +838,15 @@ int pss_search_time_nr(int **rxdata, ///rx data in time domain
/* Search pss in the received buffer each 4 samples which ensures a memory alignment on 128 bits (32 bits x 4 ) */
/* This is required by SIMD (single instruction Multiple Data) Extensions of Intel processors. */
/* Correlation computation is based on a a dot product which is realized thank to SIMS extensions */
for (int pss_index = 0; pss_index < NUMBER_PSS_SEQUENCE; pss_index++) avg[pss_index]=0;
for (int pss_index = 0; pss_index < NUMBER_PSS_SEQUENCE; pss_index++) {
avg[pss_index]=0;
memset(pss_corr_ue[pss_index],0,length*sizeof(int64_t));
}
for (n=0; n < length; n+=4) {
for (n=0; n < length; n+=4) { //
for (int pss_index = 0; pss_index < NUMBER_PSS_SEQUENCE; pss_index++) {
pss_corr_ue[pss_index][n] = 0; /* clean correlation for position n */
if ( n < (length - frame_parms->ofdm_symbol_size)) {
/* calculate dot product of primary_synchro_time_nr and rxdata[ar][n] (ar=0..nb_ant_rx) and store the sum in temp[n]; */
......@@ -886,24 +887,19 @@ int pss_search_time_nr(int **rxdata, ///rx data in time domain
LOG_I(PHY,"[UE] nr_synchro_time: Sync source = %d, Peak found at pos %d, val = %llu (%d dB) avg %d dB\n", pss_source, peak_position, (unsigned long long)peak_value, dB_fixed64(peak_value),dB_fixed64(avg[pss_source]));
//#ifdef DEBUG_PSS_NR
#define PSS_DETECTION_FLOOR_NR (31)
if (peak_value < 5*avg[pss_source]) { //PSS_DETECTION_FLOOR_NR)
if (peak_value < 5*avg[pss_source])
return(-1);
}
//#endif
#ifdef DBG_PSS_NR
static debug_cnt = 0;
static int debug_cnt = 0;
if (debug_cnt == 0) {
/* LOG_M("pss_corr_ue0.m","pss_corr_ue0",pss_corr_ue[0],length,1,6);
LOG_M("pss_corr_ue0.m","pss_corr_ue0",pss_corr_ue[0],length,1,6);
LOG_M("pss_corr_ue1.m","pss_corr_ue1",pss_corr_ue[1],length,1,6);
LOG_M("pss_corr_ue2.m","pss_corr_ue2",pss_corr_ue[2],length,1,6);
LOG_M("rxdata0.m","rxd0",rxdata[0],length,1,1); */
LOG_M("rxdata0.m","rxd0",rxdata[0],length,1,1);
} else {
debug_cnt++;
}
......
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* Form definition file generated by fdesign */
#include <stdlib.h>
#include "nr_phy_scope.h"
#define TPUT_WINDOW_LENGTH 100
int otg_enabled;
FL_COLOR rx_antenna_colors[4] = {FL_RED,FL_BLUE,FL_GREEN,FL_YELLOW};
float tput_time_enb[NUMBER_OF_UE_MAX][TPUT_WINDOW_LENGTH] = {{0}};
float tput_enb[NUMBER_OF_UE_MAX][TPUT_WINDOW_LENGTH] = {{0}};
float tput_time_ue[NUMBER_OF_UE_MAX][TPUT_WINDOW_LENGTH] = {{0}};
float tput_ue[NUMBER_OF_UE_MAX][TPUT_WINDOW_LENGTH] = {{0}};
float tput_ue_max[NUMBER_OF_UE_MAX] = {0};
extern int64_t *pss_corr_ue[3];
static void ia_receiver_on_off( FL_OBJECT *button, long arg)
{
if (fl_get_button(button)) {
fl_set_object_label(button, "IA Receiver ON");
// PHY_vars_UE_g[0][0]->use_ia_receiver = 1;
fl_set_object_color(button, FL_GREEN, FL_GREEN);
} else {
fl_set_object_label(button, "IA Receiver OFF");
// PHY_vars_UE_g[0][0]->use_ia_receiver = 0;
fl_set_object_color(button, FL_RED, FL_RED);
}
}
static void dl_traffic_on_off( FL_OBJECT *button, long arg)
{
if (fl_get_button(button)) {
fl_set_object_label(button, "DL Traffic ON");
otg_enabled = 1;
fl_set_object_color(button, FL_GREEN, FL_GREEN);
} else {
fl_set_object_label(button, "DL Traffic OFF");
otg_enabled = 0;
fl_set_object_color(button, FL_RED, FL_RED);
}
}
FD_lte_phy_scope_enb *create_lte_phy_scope_enb( void )
{
FL_OBJECT *obj;
FD_lte_phy_scope_enb *fdui = fl_malloc( sizeof *fdui );
// Define form
fdui->lte_phy_scope_enb = fl_bgn_form( FL_NO_BOX, 800, 800 );
// This the whole UI box
obj = fl_add_box( FL_BORDER_BOX, 0, 0, 800, 800, "" );
fl_set_object_color( obj, FL_BLACK, FL_BLACK );
// Received signal
fdui->rxsig_t = fl_add_xyplot( FL_NORMAL_XYPLOT, 20, 20, 370, 100, "Received Signal (Time-Domain, dB)" );
fl_set_object_boxtype( fdui->rxsig_t, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->rxsig_t, FL_BLACK, FL_RED );
fl_set_object_lcolor( fdui->rxsig_t, FL_WHITE ); // Label color
fl_set_xyplot_ybounds(fdui->rxsig_t,10,70);
// Time-domain channel response
fdui->chest_t = fl_add_xyplot( FL_NORMAL_XYPLOT, 410, 20, 370, 100, "SRS Frequency Response (samples, abs)" );
fl_set_object_boxtype( fdui->chest_t, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->chest_t, FL_BLACK, FL_RED );
fl_set_object_lcolor( fdui->chest_t, FL_WHITE ); // Label color
// Frequency-domain channel response
fdui->chest_f = fl_add_xyplot( FL_IMPULSE_XYPLOT, 20, 140, 760, 100, "Channel Frequency Response (RE, dB)" );
fl_set_object_boxtype( fdui->chest_f, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->chest_f, FL_BLACK, FL_RED );
fl_set_object_lcolor( fdui->chest_f, FL_WHITE ); // Label color
fl_set_xyplot_ybounds( fdui->chest_f,30,70);
// LLR of PUSCH
fdui->pusch_llr = fl_add_xyplot( FL_POINTS_XYPLOT, 20, 260, 500, 200, "PUSCH Log-Likelihood Ratios (LLR, mag)" );
fl_set_object_boxtype( fdui->pusch_llr, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pusch_llr, FL_BLACK, FL_YELLOW );
fl_set_object_lcolor( fdui->pusch_llr, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pusch_llr,2);
// I/Q PUSCH comp
fdui->pusch_comp = fl_add_xyplot( FL_POINTS_XYPLOT, 540, 260, 240, 200, "PUSCH I/Q of MF Output" );
fl_set_object_boxtype( fdui->pusch_comp, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pusch_comp, FL_BLACK, FL_YELLOW );
fl_set_object_lcolor( fdui->pusch_comp, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pusch_comp,2);
fl_set_xyplot_xgrid( fdui->pusch_llr,FL_GRID_MAJOR);
// I/Q PUCCH comp (format 1)
fdui->pucch_comp1 = fl_add_xyplot( FL_POINTS_XYPLOT, 540, 480, 240, 100, "PUCCH1 Energy (SR)" );
fl_set_object_boxtype( fdui->pucch_comp1, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pucch_comp1, FL_BLACK, FL_YELLOW );
fl_set_object_lcolor( fdui->pucch_comp1, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pucch_comp1,2);
// fl_set_xyplot_xgrid( fdui->pusch_llr,FL_GRID_MAJOR);
// I/Q PUCCH comp (fromat 1a/b)
fdui->pucch_comp = fl_add_xyplot( FL_POINTS_XYPLOT, 540, 600, 240, 100, "PUCCH I/Q of MF Output" );
fl_set_object_boxtype( fdui->pucch_comp, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pucch_comp, FL_BLACK, FL_YELLOW );
fl_set_object_lcolor( fdui->pucch_comp, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pucch_comp,2);
// fl_set_xyplot_xgrid( fdui->pusch_llr,FL_GRID_MAJOR);
// Throughput on PUSCH
fdui->pusch_tput = fl_add_xyplot( FL_NORMAL_XYPLOT, 20, 480, 500, 100, "PUSCH Throughput [frame]/[kbit/s]" );
fl_set_object_boxtype( fdui->pusch_tput, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pusch_tput, FL_BLACK, FL_WHITE );
fl_set_object_lcolor( fdui->pusch_tput, FL_WHITE ); // Label color
// Generic eNB Button
fdui->button_0 = fl_add_button( FL_PUSH_BUTTON, 20, 600, 240, 40, "" );
fl_set_object_lalign(fdui->button_0, FL_ALIGN_CENTER );
fl_set_button(fdui->button_0,0);
otg_enabled = 0;
fl_set_object_label(fdui->button_0, "DL Traffic OFF");
fl_set_object_color(fdui->button_0, FL_RED, FL_RED);
fl_set_object_callback(fdui->button_0, dl_traffic_on_off, 0 );
fl_end_form( );
fdui->lte_phy_scope_enb->fdui = fdui;
return fdui;
}
/*
void phy_scope_eNB(FD_lte_phy_scope_enb *form,
PHY_VARS_eNB *phy_vars_enb,
int UE_id)
{
int eNB_id = 0;
int i,i2,arx,atx,ind,k;
LTE_DL_FRAME_PARMS *frame_parms = &phy_vars_enb->frame_parms;
int nsymb_ce = 12*frame_parms->N_RB_UL*frame_parms->symbols_per_tti;
uint8_t nb_antennas_rx = frame_parms->nb_antennas_rx;
uint8_t nb_antennas_tx = 1; // frame_parms->nb_antennas_tx; // in LTE Rel. 8 and 9 only a single transmit antenna is assumed at the UE
int16_t **rxsig_t;
int16_t **chest_t;
int16_t **chest_f;
int16_t *pusch_llr;
int32_t *pusch_comp;
int32_t *pucch1_comp;
int32_t *pucch1_thres;
int32_t *pucch1ab_comp;
float Re,Im,ymax;
float *llr, *bit;
float I[nsymb_ce*2], Q[nsymb_ce*2];
float I_pucch[10240],Q_pucch[10240],A_pucch[10240],B_pucch[10240],C_pucch[10240];
float rxsig_t_dB[nb_antennas_rx][FRAME_LENGTH_COMPLEX_SAMPLES];
float chest_t_abs[nb_antennas_rx][frame_parms->ofdm_symbol_size];
float *chest_f_abs;
float time[FRAME_LENGTH_COMPLEX_SAMPLES];
float time2[2048];
float freq[nsymb_ce*nb_antennas_rx*nb_antennas_tx];
int frame = phy_vars_enb->proc.proc_rxtx[0].frame_tx;
uint32_t total_dlsch_bitrate = phy_vars_enb->total_dlsch_bitrate;
int coded_bits_per_codeword = 0;
uint8_t harq_pid; // in TDD config 3 it is sf-2, i.e., can be 0,1,2
int Qm = 2;
// choose max MCS to compute coded_bits_per_codeword
if (phy_vars_enb->ulsch[UE_id]!=NULL) {
for (harq_pid=0; harq_pid<3; harq_pid++) {
Qm = cmax(phy_vars_enb->ulsch[UE_id]->harq_processes[harq_pid]->Qm,Qm);
}
}
coded_bits_per_codeword = frame_parms->N_RB_UL*12*Qm*frame_parms->symbols_per_tti;
chest_f_abs = (float*) calloc(nsymb_ce*nb_antennas_rx*nb_antennas_tx,sizeof(float));
llr = (float*) calloc(coded_bits_per_codeword,sizeof(float)); // init to zero
bit = malloc(coded_bits_per_codeword*sizeof(float));
rxsig_t = (int16_t**) phy_vars_enb->common_vars.rxdata[eNB_id];
//chest_t = (int16_t**) phy_vars_enb->pusch_vars[UE_id]->drs_ch_estimates_time[eNB_id];
chest_t = (int16_t**) phy_vars_enb->srs_vars[UE_id].srs_ch_estimates[eNB_id];
chest_f = (int16_t**) phy_vars_enb->pusch_vars[UE_id]->drs_ch_estimates[eNB_id];
pusch_llr = (int16_t*) phy_vars_enb->pusch_vars[UE_id]->llr;
pusch_comp = (int32_t*) phy_vars_enb->pusch_vars[UE_id]->rxdataF_comp[0];
pucch1_comp = (int32_t*) phy_vars_enb->pucch1_stats[UE_id];
pucch1_thres = (int32_t*) phy_vars_enb->pucch1_stats_thres[UE_id];
pucch1ab_comp = (int32_t*) phy_vars_enb->pucch1ab_stats[UE_id];
// Received signal in time domain of receive antenna 0
if (rxsig_t != NULL) {
if (rxsig_t[0] != NULL) {
for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++) {
rxsig_t_dB[0][i] = 10*log10(1.0+(float) ((rxsig_t[0][2*i])*(rxsig_t[0][2*i])+(rxsig_t[0][2*i+1])*(rxsig_t[0][2*i+1])));
time[i] = (float) i;
}
fl_set_xyplot_data(form->rxsig_t,time,rxsig_t_dB[0],FRAME_LENGTH_COMPLEX_SAMPLES,"","","");
}
for (arx=1; arx<nb_antennas_rx; arx++) {
if (rxsig_t[arx] != NULL) {
for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++) {
rxsig_t_dB[arx][i] = 10*log10(1.0+(float) ((rxsig_t[arx][2*i])*(rxsig_t[arx][2*i])+(rxsig_t[arx][2*i+1])*(rxsig_t[arx][2*i+1])));
}
fl_add_xyplot_overlay(form->rxsig_t,arx,time,rxsig_t_dB[arx],FRAME_LENGTH_COMPLEX_SAMPLES,rx_antenna_colors[arx]);
}
}
}
// Channel Impulse Response
if (chest_t != NULL) {
ymax = 0;
if (chest_t[0] !=NULL) {
for (i=0; i<(frame_parms->ofdm_symbol_size); i++) {
//i2 = (i+(frame_parms->ofdm_symbol_size>>1))%frame_parms->ofdm_symbol_size;
i2=i;
//time2[i] = (float)(i-(frame_parms->ofdm_symbol_size>>1));
time2[i] = (float)i;
chest_t_abs[0][i] = 10*log10((float) (1+chest_t[0][2*i2]*chest_t[0][2*i2]+chest_t[0][2*i2+1]*chest_t[0][2*i2+1]));
if (chest_t_abs[0][i] > ymax)
ymax = chest_t_abs[0][i];
}
fl_set_xyplot_data(form->chest_t,time2,chest_t_abs[0],(frame_parms->ofdm_symbol_size),"","","");
}
for (arx=1; arx<nb_antennas_rx; arx++) {
if (chest_t[arx] !=NULL) {
for (i=0; i<(frame_parms->ofdm_symbol_size>>3); i++) {
chest_t_abs[arx][i] = 10*log10((float) (1+chest_t[arx][2*i]*chest_t[arx][2*i]+chest_t[arx][2*i+1]*chest_t[arx][2*i+1]));
if (chest_t_abs[arx][i] > ymax)
ymax = chest_t_abs[arx][i];
}
fl_add_xyplot_overlay(form->chest_t,arx,time,chest_t_abs[arx],(frame_parms->ofdm_symbol_size>>3),rx_antenna_colors[arx]);
fl_set_xyplot_overlay_type(form->chest_t,arx,FL_DASHED_XYPLOT);
}
}
// Avoid flickering effect
// fl_get_xyplot_ybounds(form->chest_t,&ymin,&ymax);
fl_set_xyplot_ybounds(form->chest_t,0,ymax);
}
// Channel Frequency Response
if (chest_f != NULL) {
ind = 0;
for (atx=0; atx<nb_antennas_tx; atx++) {
for (arx=0; arx<nb_antennas_rx; arx++) {
if (chest_f[(atx<<1)+arx] != NULL) {
for (k=0; k<nsymb_ce; k++) {
freq[ind] = (float)ind;
Re = (float)(chest_f[(atx<<1)+arx][(2*k)]);
Im = (float)(chest_f[(atx<<1)+arx][(2*k)+1]);
chest_f_abs[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
ind++;
}
}
}
}
// tx antenna 0
fl_set_xyplot_xbounds(form->chest_f,0,nb_antennas_rx*nb_antennas_tx*nsymb_ce);
fl_set_xyplot_xtics(form->chest_f,nb_antennas_rx*nb_antennas_tx*frame_parms->symbols_per_tti,3);
fl_set_xyplot_xgrid(form->chest_f,FL_GRID_MAJOR);
fl_set_xyplot_data(form->chest_f,freq,chest_f_abs,nsymb_ce,"","","");
for (arx=1; arx<nb_antennas_rx; arx++) {
fl_add_xyplot_overlay(form->chest_f,1,&freq[arx*nsymb_ce],&chest_f_abs[arx*nsymb_ce],nsymb_ce,rx_antenna_colors[arx]);
}
// other tx antennas
if (nb_antennas_tx > 1) {
if (nb_antennas_rx > 1) {
for (atx=1; atx<nb_antennas_tx; atx++) {
for (arx=0; arx<nb_antennas_rx; arx++) {
fl_add_xyplot_overlay(form->chest_f,(atx<<1)+arx,&freq[((atx<<1)+arx)*nsymb_ce],&chest_f_abs[((atx<<1)+arx)*nsymb_ce],nsymb_ce,rx_antenna_colors[arx]);
}
}
} else { // 1 rx antenna
atx=1;
arx=0;
fl_add_xyplot_overlay(form->chest_f,atx,&freq[atx*nsymb_ce],&chest_f_abs[atx*nsymb_ce],nsymb_ce,rx_antenna_colors[arx]);
}
}
}
// PUSCH LLRs
if (pusch_llr != NULL) {
for (i=0; i<coded_bits_per_codeword; i++) {
llr[i] = (float) pusch_llr[i];
bit[i] = (float) i;
}
fl_set_xyplot_data(form->pusch_llr,bit,llr,coded_bits_per_codeword,"","","");
}
// PUSCH I/Q of MF Output
if (pusch_comp!=NULL) {
ind=0;
for (k=0; k<frame_parms->symbols_per_tti; k++) {
for (i=0; i<12*frame_parms->N_RB_UL; i++) {
I[ind] = pusch_comp[(2*frame_parms->N_RB_UL*12*k)+2*i];
Q[ind] = pusch_comp[(2*frame_parms->N_RB_UL*12*k)+2*i+1];
ind++;
}
}
fl_set_xyplot_data(form->pusch_comp,I,Q,ind,"","","");
}
// PUSCH I/Q of MF Output
if (pucch1ab_comp!=NULL) {
for (ind=0; ind<10240; ind++) {
I_pucch[ind] = (float)pucch1ab_comp[2*(ind)];
Q_pucch[ind] = (float)pucch1ab_comp[2*(ind)+1];
A_pucch[ind] = 10*log10(pucch1_comp[ind]);
B_pucch[ind] = ind;
C_pucch[ind] = (float)pucch1_thres[ind];
}
fl_set_xyplot_data(form->pucch_comp,I_pucch,Q_pucch,10240,"","","");
fl_set_xyplot_data(form->pucch_comp1,B_pucch,A_pucch,1024,"","","");
fl_add_xyplot_overlay(form->pucch_comp1,1,B_pucch,C_pucch,1024,FL_RED);
fl_set_xyplot_ybounds(form->pucch_comp,-5000,5000);
fl_set_xyplot_xbounds(form->pucch_comp,-5000,5000);
fl_set_xyplot_ybounds(form->pucch_comp1,0,80);
}
// PUSCH Throughput
memmove( tput_time_enb[UE_id], &tput_time_enb[UE_id][1], (TPUT_WINDOW_LENGTH-1)*sizeof(float) );
memmove( tput_enb[UE_id], &tput_enb[UE_id][1], (TPUT_WINDOW_LENGTH-1)*sizeof(float) );
tput_time_enb[UE_id][TPUT_WINDOW_LENGTH-1] = (float) frame;
tput_enb[UE_id][TPUT_WINDOW_LENGTH-1] = ((float) total_dlsch_bitrate)/1000.0;
fl_set_xyplot_data(form->pusch_tput,tput_time_enb[UE_id],tput_enb[UE_id],TPUT_WINDOW_LENGTH,"","","");
// fl_get_xyplot_ybounds(form->pusch_tput,&ymin,&ymax);
// fl_set_xyplot_ybounds(form->pusch_tput,0,ymax);
fl_check_forms();
free(llr);
free(bit);
free(chest_f_abs);
}
*/
FD_lte_phy_scope_ue *create_lte_phy_scope_ue( void )
{
FL_OBJECT *obj;
FD_lte_phy_scope_ue *fdui = fl_malloc( sizeof *fdui );
// Define form
fdui->lte_phy_scope_ue = fl_bgn_form( FL_NO_BOX, 800, 900 );
// This the whole UI box
obj = fl_add_box( FL_BORDER_BOX, 0, 0, 800, 900, "" );
fl_set_object_color( obj, FL_BLACK, FL_BLACK );
// Received signal
fdui->rxsig_t = fl_add_xyplot( FL_NORMAL_XYPLOT, 20, 20, 370, 100, "Received Signal (Time-Domain, dB)" );
fl_set_object_boxtype( fdui->rxsig_t, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->rxsig_t, FL_BLACK, FL_RED );
fl_set_object_lcolor( fdui->rxsig_t, FL_WHITE ); // Label color
fl_set_xyplot_ybounds(fdui->rxsig_t,10,70);
// Time-domain channel response
fdui->chest_t = fl_add_xyplot( FL_NORMAL_XYPLOT, 410, 20, 370, 100, "Channel Impulse Response (samples, abs)" );
fl_set_object_boxtype( fdui->chest_t, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->chest_t, FL_BLACK, FL_RED );
fl_set_object_lcolor( fdui->chest_t, FL_WHITE ); // Label color
// Frequency-domain channel response
fdui->chest_f = fl_add_xyplot( FL_IMPULSE_XYPLOT, 20, 140, 760, 100, "Channel Frequency Response (RE, dB)" );
fl_set_object_boxtype( fdui->chest_f, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->chest_f, FL_BLACK, FL_RED );
fl_set_object_lcolor( fdui->chest_f, FL_WHITE ); // Label color
fl_set_xyplot_ybounds( fdui->chest_f,30,70);
// LLR of PBCH
fdui->pbch_llr = fl_add_xyplot( FL_POINTS_XYPLOT, 20, 260, 500, 100, "PBCH Log-Likelihood Ratios (LLR, mag)" );
fl_set_object_boxtype( fdui->pbch_llr, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pbch_llr, FL_BLACK, FL_GREEN );
fl_set_object_lcolor( fdui->pbch_llr, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pbch_llr,2);
fl_set_xyplot_xgrid( fdui->pbch_llr,FL_GRID_MAJOR);
fl_set_xyplot_xbounds( fdui->pbch_llr,0,1920);
// I/Q PBCH comp
fdui->pbch_comp = fl_add_xyplot( FL_POINTS_XYPLOT, 540, 260, 240, 100, "PBCH I/Q of MF Output" );
fl_set_object_boxtype( fdui->pbch_comp, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pbch_comp, FL_BLACK, FL_GREEN );
fl_set_object_lcolor( fdui->pbch_comp, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pbch_comp,2);
// fl_set_xyplot_xbounds( fdui->pbch_comp,-100,100);
// fl_set_xyplot_ybounds( fdui->pbch_comp,-100,100);
// LLR of PDCCH
fdui->pdcch_llr = fl_add_xyplot( FL_POINTS_XYPLOT, 20, 380, 500, 100, "PDCCH Log-Likelihood Ratios (LLR, mag)" );
fl_set_object_boxtype( fdui->pdcch_llr, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pdcch_llr, FL_BLACK, FL_CYAN );
fl_set_object_lcolor( fdui->pdcch_llr, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pdcch_llr,2);
// I/Q PDCCH comp
fdui->pdcch_comp = fl_add_xyplot( FL_POINTS_XYPLOT, 540, 380, 240, 100, "PDCCH I/Q of MF Output" );
fl_set_object_boxtype( fdui->pdcch_comp, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pdcch_comp, FL_BLACK, FL_CYAN );
fl_set_object_lcolor( fdui->pdcch_comp, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pdcch_comp,2);
fl_set_xyplot_xgrid( fdui->pdcch_llr,FL_GRID_MAJOR);
// LLR of PDSCH
fdui->pdsch_llr = fl_add_xyplot( FL_POINTS_XYPLOT, 20, 500, 500, 200, "PDSCH Log-Likelihood Ratios (LLR, mag)" );
fl_set_object_boxtype( fdui->pdsch_llr, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pdsch_llr, FL_BLACK, FL_YELLOW );
fl_set_object_lcolor( fdui->pdsch_llr, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pdsch_llr,2);
fl_set_xyplot_xgrid( fdui->pdsch_llr,FL_GRID_MAJOR);
// I/Q PDSCH comp
fdui->pdsch_comp = fl_add_xyplot( FL_POINTS_XYPLOT, 540, 500, 240, 200, "PDSCH I/Q of MF Output" );
fl_set_object_boxtype( fdui->pdsch_comp, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pdsch_comp, FL_BLACK, FL_YELLOW );
fl_set_object_lcolor( fdui->pdsch_comp, FL_WHITE ); // Label color
fl_set_xyplot_symbolsize( fdui->pdsch_comp,2);
// Throughput on PDSCH
fdui->pdsch_tput = fl_add_xyplot( FL_NORMAL_XYPLOT, 20, 720, 500, 100, "PDSCH Throughput [frame]/[kbit/s]" );
fl_set_object_boxtype( fdui->pdsch_tput, FL_EMBOSSED_BOX );
fl_set_object_color( fdui->pdsch_tput, FL_BLACK, FL_WHITE );
fl_set_object_lcolor( fdui->pdsch_tput, FL_WHITE ); // Label color
// Generic UE Button
fdui->button_0 = fl_add_button( FL_PUSH_BUTTON, 540, 720, 240, 40, "" );
fl_set_object_lalign(fdui->button_0, FL_ALIGN_CENTER );
//openair_daq_vars.use_ia_receiver = 0;
fl_set_button(fdui->button_0,0);
fl_set_object_label(fdui->button_0, "IA Receiver OFF");
fl_set_object_color(fdui->button_0, FL_RED, FL_RED);
fl_set_object_callback(fdui->button_0, ia_receiver_on_off, 0 );
fl_hide_object(fdui->button_0);
fl_end_form( );
fdui->lte_phy_scope_ue->fdui = fdui;
return fdui;
}
void phy_scope_UE(FD_lte_phy_scope_ue *form,
PHY_VARS_NR_UE *phy_vars_ue,
int eNB_id,
int UE_id,
uint8_t subframe)
{
int i,arx,atx,ind,k;
NR_DL_FRAME_PARMS *frame_parms = &phy_vars_ue->frame_parms;
int nsymb_ce = frame_parms->ofdm_symbol_size;//*frame_parms->symbols_per_tti;
int samples_per_frame = frame_parms->samples_per_frame;
uint8_t nb_antennas_rx = frame_parms->nb_antennas_rx;
uint8_t nb_antennas_tx = frame_parms->nb_antenna_ports_eNB;
int16_t **rxsig_t;
float **rxsig_t_dB;
float *time;
float *corr;
/*
int16_t **chest_t;
int16_t **chest_f;
int16_t *pdsch_llr;
int16_t *pdsch_comp;
int16_t *pdsch_mag;
int8_t *pdcch_llr;
int16_t *pdcch_comp;
int8_t *pbch_llr;
int16_t *pbch_comp;
float Re,Im,ymax=1;
int num_pdcch_symbols=3;
float *llr, *bit, *chest_f_abs, llr_pbch[1920], bit_pbch[1920], *llr_pdcch, *bit_pdcch;
float *I, *Q;
float **chest_t_abs;
float freq[nsymb_ce*nb_antennas_rx*nb_antennas_tx];
int frame = phy_vars_ue->proc.proc_rxtx[0].frame_rx;
int coded_bits_per_codeword = 0;
int mcs = 0;
unsigned char harq_pid = 0;
*/
/*
if (phy_vars_ue->dlsch[phy_vars_ue->current_thread_id[subframe]][eNB_id][0]!=NULL) {
harq_pid = phy_vars_ue->dlsch[phy_vars_ue->current_thread_id[subframe]][eNB_id][0]->current_harq_pid;
if (harq_pid>=8)
return;
mcs = phy_vars_ue->dlsch[phy_vars_ue->current_thread_id[subframe]][eNB_id][0]->harq_processes[harq_pid]->mcs;
// Button 0
if(!phy_vars_ue->dlsch[phy_vars_ue->current_thread_id[subframe]][eNB_id][0]->harq_processes[harq_pid]->dl_power_off) {
// we are in TM5
fl_show_object(form->button_0);
}
}
if (phy_vars_ue->pdcch_vars[phy_vars_ue->current_thread_id[subframe]][eNB_id]!=NULL) {
num_pdcch_symbols = phy_vars_ue->pdcch_vars[phy_vars_ue->current_thread_id[subframe]][eNB_id]->num_pdcch_symbols;
}
// coded_bits_per_codeword = frame_parms->N_RB_DL*12*get_Qm(mcs)*(frame_parms->symbols_per_tti);
if (phy_vars_ue->dlsch[phy_vars_ue->current_thread_id[subframe]][eNB_id][0]!=NULL) {
coded_bits_per_codeword = get_G(frame_parms,
phy_vars_ue->dlsch[phy_vars_ue->current_thread_id[subframe]][eNB_id][0]->harq_processes[harq_pid]->nb_rb,
phy_vars_ue->dlsch[phy_vars_ue->current_thread_id[subframe]][eNB_id][0]->harq_processes[harq_pid]->rb_alloc_even,
get_Qm(mcs),
phy_vars_ue->dlsch[phy_vars_ue->current_thread_id[subframe]][eNB_id][0]->harq_processes[harq_pid]->Nl,
num_pdcch_symbols,
frame,
subframe,
beamforming_mode);
} else {
coded_bits_per_codeword = 0; //frame_parms->N_RB_DL*12*get_Qm(mcs)*(frame_parms->symbols_per_tti);
}
I = (float*) calloc(frame_parms->ofdm_symbol_size*frame_parms->symbols_per_tti*2,sizeof(float));
Q = (float*) calloc(frame_parms->ofdm_symbol_size*frame_parms->symbols_per_tti*2,sizeof(float));
chest_t_abs = (float**) malloc(nb_antennas_rx*sizeof(float*));
for (arx=0; arx<nb_antennas_rx; arx++) {
chest_t_abs[arx] = (float*) calloc(frame_parms->ofdm_symbol_size,sizeof(float));
}
chest_f_abs = (float*) calloc(nsymb_ce*nb_antennas_rx*nb_antennas_tx,sizeof(float));
llr = (float*) calloc(coded_bits_per_codeword,sizeof(float)); // init to zero
bit = malloc(coded_bits_per_codeword*sizeof(float));
llr_pdcch = (float*) calloc(12*frame_parms->N_RB_DL*num_pdcch_symbols*2,sizeof(float)); // init to zero
bit_pdcch = (float*) calloc(12*frame_parms->N_RB_DL*num_pdcch_symbols*2,sizeof(float));
*/
rxsig_t = (int16_t**) phy_vars_ue->common_vars.rxdata;
rxsig_t_dB = calloc(nb_antennas_rx,sizeof(float*));
for (arx=0; arx<nb_antennas_rx; arx++) {
rxsig_t_dB[arx] = (float*) calloc(samples_per_frame,sizeof(float));
}
time = calloc(samples_per_frame,sizeof(float));
corr = calloc(samples_per_frame,sizeof(float));
/*
chest_t = (int16_t**) phy_vars_ue->common_vars.common_vars_rx_data_per_thread[phy_vars_ue->current_thread_id[subframe]].dl_ch_estimates_time[eNB_id];
chest_f = (int16_t**) phy_vars_ue->common_vars.common_vars_rx_data_per_thread[phy_vars_ue->current_thread_id[subframe]].dl_ch_estimates[eNB_id];
pbch_llr = (int8_t*) phy_vars_ue->pbch_vars[eNB_id]->llr;
pbch_comp = (int16_t*) phy_vars_ue->pbch_vars[eNB_id]->rxdataF_comp[0];
pdcch_llr = (int8_t*) phy_vars_ue->pdcch_vars[phy_vars_ue->current_thread_id[subframe]][eNB_id]->llr;
pdcch_comp = (int16_t*) phy_vars_ue->pdcch_vars[phy_vars_ue->current_thread_id[subframe]][eNB_id]->rxdataF_comp[0];
pdsch_llr = (int16_t*) phy_vars_ue->pdsch_vars[phy_vars_ue->current_thread_id[subframe]][eNB_id]->llr[0]; // stream 0
// pdsch_llr = (int16_t*) phy_vars_ue->lte_ue_pdsch_vars_SI[eNB_id]->llr[0]; // stream 0
pdsch_comp = (int16_t*) phy_vars_ue->pdsch_vars[phy_vars_ue->current_thread_id[subframe]][eNB_id]->rxdataF_comp0[0];
pdsch_mag = (int16_t*) phy_vars_ue->pdsch_vars[phy_vars_ue->current_thread_id[subframe]][eNB_id]->dl_ch_mag0[0];
*/
// Received signal in time domain of receive antenna 0
if (rxsig_t != NULL) {
if (rxsig_t[0] != NULL) {
for (i=0; i<samples_per_frame; i++) {
rxsig_t_dB[0][i] = 10*log10(1.0+(float) ((rxsig_t[0][2*i])*(rxsig_t[0][2*i])+(rxsig_t[0][2*i+1])*(rxsig_t[0][2*i+1])));
time[i] = (float) i;
}
fl_set_xyplot_data(form->rxsig_t,time,rxsig_t_dB[0],samples_per_frame,"","","");
}
/*
for (arx=1; arx<nb_antennas_rx; arx++) {
if (rxsig_t[arx] != NULL) {
for (i=0; i<FRAME_LENGTH_COMPLEX_SAMPLES; i++) {
rxsig_t_dB[arx][i] = 10*log10(1.0+(float) ((rxsig_t[arx][2*i])*(rxsig_t[arx][2*i])+(rxsig_t[arx][2*i+1])*(rxsig_t[arx][2*i+1])));
}
fl_add_xyplot_overlay(form->rxsig_t,arx,time,rxsig_t_dB[arx],FRAME_LENGTH_COMPLEX_SAMPLES,rx_antenna_colors[arx]);
}
}
*/
}
for (ind=0;ind<3;ind++) {
if (pss_corr_ue[ind]) {
for (i=0; i<samples_per_frame; i++) {
corr[i] = (float) pss_corr_ue[ind][i];
time[i] = (float) i;
}
if (ind==0)
fl_set_xyplot_data(form->chest_t,time,corr,samples_per_frame,"","","");
else
fl_add_xyplot_overlay(form->chest_t,ind,time,corr,samples_per_frame,rx_antenna_colors[ind]);
}
}
/*
// Channel Impulse Response (still repeated format)
if (chest_t != NULL) {
ymax = 0;
if (chest_t[0] !=NULL) {
for (i=0; i<(frame_parms->ofdm_symbol_size>>3); i++) {
chest_t_abs[0][i] = (float) (chest_t[0][4*i]*chest_t[0][4*i]+chest_t[0][4*i+1]*chest_t[0][4*i+1]);
if (chest_t_abs[0][i] > ymax)
ymax = chest_t_abs[0][i];
}
fl_set_xyplot_data(form->chest_t,time,chest_t_abs[0],(frame_parms->ofdm_symbol_size>>3),"","","");
}
for (arx=1; arx<nb_antennas_rx; arx++) {
if (chest_t[arx] !=NULL) {
for (i=0; i<(frame_parms->ofdm_symbol_size>>3); i++) {
chest_t_abs[arx][i] = (float) (chest_t[arx][4*i]*chest_t[arx][4*i]+chest_t[arx][4*i+1]*chest_t[arx][4*i+1]);
if (chest_t_abs[arx][i] > ymax)
ymax = chest_t_abs[arx][i];
}
fl_add_xyplot_overlay(form->chest_t,arx,time,chest_t_abs[arx],(frame_parms->ofdm_symbol_size>>3),rx_antenna_colors[arx]);
fl_set_xyplot_overlay_type(form->chest_t,arx,FL_DASHED_XYPLOT);
}
}
// Avoid flickering effect
// fl_get_xyplot_ybounds(form->chest_t,&ymin,&ymax); // Does not always work...
fl_set_xyplot_ybounds(form->chest_t,0,(double) ymax);
}
// Channel Frequency Response (includes 5 complex sample for filter)
if (chest_f != NULL) {
ind = 0;
for (atx=0; atx<nb_antennas_tx; atx++) {
for (arx=0; arx<nb_antennas_rx; arx++) {
if (chest_f[(atx<<1)+arx] != NULL) {
for (k=0; k<nsymb_ce; k++) {
freq[ind] = (float)ind;
Re = (float)(chest_f[(atx<<1)+arx][(2*k)]);
Im = (float)(chest_f[(atx<<1)+arx][(2*k)+1]);
chest_f_abs[ind] = (short)10*log10(1.0+((double)Re*Re + (double)Im*Im));
ind++;
}
}
}
}
// tx antenna 0
fl_set_xyplot_xbounds(form->chest_f,0,nb_antennas_rx*nb_antennas_tx*nsymb_ce);
//fl_set_xyplot_xtics(form->chest_f,nb_antennas_rx*nb_antennas_tx*frame_parms->symbols_per_tti,2);
// fl_set_xyplot_xtics(form->chest_f,nb_antennas_rx*nb_antennas_tx*2,2);
fl_set_xyplot_xgrid(form->chest_f,FL_GRID_MAJOR);
fl_set_xyplot_data(form->chest_f,freq,chest_f_abs,nsymb_ce,"","","");
for (arx=1; arx<nb_antennas_rx; arx++) {
fl_add_xyplot_overlay(form->chest_f,1,&freq[arx*nsymb_ce],&chest_f_abs[arx*nsymb_ce],nsymb_ce,rx_antenna_colors[arx]);
}
// other tx antennas
if (nb_antennas_tx > 1) {
if (nb_antennas_rx > 1) {
for (atx=1; atx<nb_antennas_tx; atx++) {
for (arx=0; arx<nb_antennas_rx; arx++) {
fl_add_xyplot_overlay(form->chest_f,(atx<<1)+arx,&freq[((atx<<1)+arx)*nsymb_ce],&chest_f_abs[((atx<<1)+arx)*nsymb_ce],nsymb_ce,rx_antenna_colors[arx]);
}
}
} else { // 1 rx antenna
atx=1;
arx=0;
fl_add_xyplot_overlay(form->chest_f,atx,&freq[atx*nsymb_ce],&chest_f_abs[atx*nsymb_ce],nsymb_ce,rx_antenna_colors[arx]);
}
}
}
// PBCH LLRs
if (pbch_llr != NULL) {
for (i=0; i<1920; i++) {
llr_pbch[i] = (float) pbch_llr[i];
bit_pbch[i] = (float) i;
}
fl_set_xyplot_data(form->pbch_llr,bit_pbch,llr_pbch,1920,"","","");
}
// PBCH I/Q of MF Output
if (pbch_comp!=NULL) {
for (i=0; i<72*2; i++) {
I[i] = pbch_comp[2*i];
Q[i] = pbch_comp[2*i+1];
}
fl_set_xyplot_data(form->pbch_comp,I,Q,72*2,"","","");
}
// PDCCH LLRs
if (pdcch_llr != NULL) {
for (i=0; i<12*frame_parms->N_RB_DL*2*num_pdcch_symbols; i++) {
llr_pdcch[i] = (float) pdcch_llr[i];
bit_pdcch[i] = (float) i;
}
fl_set_xyplot_xbounds(form->pdcch_llr,0,12*frame_parms->N_RB_DL*2*3);
if (frame_parms->N_RB_DL != 100)
{
fl_set_xyplot_data(form->pdcch_llr,bit_pdcch,llr_pdcch,12*frame_parms->N_RB_DL*2*num_pdcch_symbols,"","","");
}
else
{
LOG_D(PHY,"UE PDCCH LLR plot is bugged in 20 MHz BW, to be fixed !!!\n");
}
}
// PDCCH I/Q of MF Output
if (pdcch_comp!=NULL) {
for (i=0; i<12*frame_parms->N_RB_DL*num_pdcch_symbols; i++) {
I[i] = pdcch_comp[2*i];
Q[i] = pdcch_comp[2*i+1];
}
if (frame_parms->N_RB_DL != 100)
{
fl_set_xyplot_data(form->pdcch_comp,I,Q,12*frame_parms->N_RB_DL*num_pdcch_symbols,"","","");
}
else
{
LOG_D(PHY,"UE PDCCH COMP plot is bugged in 20 MHz BW, to be fixed !!!\n");
}
}
// PDSCH LLRs
if (pdsch_llr != NULL) {
for (i=0; i<coded_bits_per_codeword; i++) {
llr[i] = (float) pdsch_llr[i];
bit[i] = (float) i;
}
fl_set_xyplot_xbounds(form->pdsch_llr,0,coded_bits_per_codeword);
if (frame_parms->N_RB_DL != 100)
{
fl_set_xyplot_data(form->pdsch_llr,bit,llr,coded_bits_per_codeword,"","","");
}
else
{
LOG_D(PHY,"UE PDSCH LLR plot is bugged in 20 MHz BW, to be fixed !!!\n");
}
}
// PDSCH I/Q of MF Output
if (pdsch_comp!=NULL) {
ind=0;
for (k=0; k<frame_parms->symbols_per_tti; k++) {
for (i=0; i<12*frame_parms->N_RB_DL/2; i++) {
int j = (2*frame_parms->N_RB_DL*12*k)+4*i;
I[ind] = (pdsch_mag[j ]!=0? 1.0/pdsch_mag[j ]: 0.0) * pdsch_comp[j ]*1.0;
Q[ind] = (pdsch_mag[j+1]!=0? 1.0/pdsch_mag[j+1]: 0.0) * pdsch_comp[j+1]*1.0;
ind++;
}
}
fl_set_xyplot_data(form->pdsch_comp,I,Q,ind,"","","");
}
// PDSCH Throughput
memmove( tput_time_ue[UE_id], &tput_time_ue[UE_id][1], (TPUT_WINDOW_LENGTH-1)*sizeof(float) );
memmove( tput_ue[UE_id], &tput_ue[UE_id][1], (TPUT_WINDOW_LENGTH-1)*sizeof(float) );
tput_time_ue[UE_id][TPUT_WINDOW_LENGTH-1] = (float) frame;
tput_ue[UE_id][TPUT_WINDOW_LENGTH-1] = ((float) total_dlsch_bitrate)/1000.0;
if (tput_ue[UE_id][TPUT_WINDOW_LENGTH-1] > tput_ue_max[UE_id]) {
tput_ue_max[UE_id] = tput_ue[UE_id][TPUT_WINDOW_LENGTH-1];
}
fl_set_xyplot_data(form->pdsch_tput,tput_time_ue[UE_id],tput_ue[UE_id],TPUT_WINDOW_LENGTH,"","","");
fl_set_xyplot_ybounds(form->pdsch_tput,0,tput_ue_max[UE_id]);
*/
fl_check_forms();
free(time);
free(corr);
for (arx=0; arx<nb_antennas_rx; arx++) {
free(rxsig_t_dB[arx]);
}
free(rxsig_t_dB);
/*
free(I);
free(Q);
free(chest_f_abs);
free(llr);
free(bit);
free(bit_pdcch);
free(llr_pdcch);
for (arx=0; arx<nb_antennas_rx; arx++) {
free(chest_t_abs[arx]);
}
free(chest_t_abs);
*/
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* Header file generated by fdesign on Tue Nov 13 09:42:50 2012 */
#ifndef FD_lte_scope_h_
#define FD_lte_scope_h_
#include <forms.h>
//#include "PHY/defs_eNB.h"
//#include "PHY/defs_UE.h"
//#include "PHY/impl_defs_top.h"
#include "PHY/defs_nr_UE.h"
/* Forms and Objects */
typedef struct {
FL_FORM * lte_phy_scope_enb;
FL_OBJECT * rxsig_t;
FL_OBJECT * chest_f;
FL_OBJECT * chest_t;
FL_OBJECT * pusch_comp;
FL_OBJECT * pucch_comp;
FL_OBJECT * pucch_comp1;
FL_OBJECT * pusch_llr;
FL_OBJECT * pusch_tput;
FL_OBJECT * button_0;
} FD_lte_phy_scope_enb;
typedef struct {
FL_FORM * lte_phy_scope_ue;
FL_OBJECT * rxsig_t;
FL_OBJECT * chest_f;
FL_OBJECT * chest_t;
FL_OBJECT * pbch_comp;
FL_OBJECT * pbch_llr;
FL_OBJECT * pdcch_comp;
FL_OBJECT * pdcch_llr;
FL_OBJECT * pdsch_comp;
FL_OBJECT * pdsch_llr;
FL_OBJECT * pdsch_comp1;
FL_OBJECT * pdsch_llr1;
FL_OBJECT * pdsch_tput;
FL_OBJECT * button_0;
} FD_lte_phy_scope_ue;
FD_lte_phy_scope_enb * create_lte_phy_scope_enb( void );
FD_lte_phy_scope_ue * create_lte_phy_scope_ue( void );
/*
void phy_scope_eNB(FD_lte_phy_scope_enb *form,
PHY_VARS_gNB *phy_vars_enb,
int UE_id);
*/
void phy_scope_UE(FD_lte_phy_scope_ue *form,
PHY_VARS_NR_UE *phy_vars_ue,
int eNB_id,
int UE_id,
uint8_t subframe);
#endif /* FD_lte_scope_h_ */
......@@ -379,7 +379,7 @@ int main(int argc, char **argv)
exit(-1);
}
frame_length_complex_samples = frame_parms->samples_per_subframe;
frame_length_complex_samples = frame_parms->samples_per_subframe*NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
frame_length_complex_samples_no_prefix = frame_parms->samples_per_subframe_wCP;
s_re = malloc(2*sizeof(double*));
......@@ -432,7 +432,6 @@ int main(int argc, char **argv)
gNB->pbch_configured = 1;
for (int i=0;i<4;i++) gNB->pbch_pdu[i]=i+1;
nr_common_signal_procedures (gNB,frame,subframe);
}
/*
LOG_M("txsigF0.m","txsF0", gNB->common_vars.txdataF[0],frame_length_complex_samples_no_prefix,1,1);
......@@ -455,11 +454,25 @@ int main(int argc, char **argv)
frame_parms);
}
}
/*
} else {
printf("Reading %d samples from file to antenna buffer %d\n",frame_length_complex_samples,0);
if (fread(txdata[0],
sizeof(int32_t),
frame_length_complex_samples,
input_fd) != frame_length_complex_samples) {
printf("error reading from file\n");
exit(-1);
}
}
LOG_M("txsig0.m","txs0", txdata[0],frame_length_complex_samples,1,1);
if (gNB->frame_parms.nb_antennas_tx>1)
LOG_M("txsig1.m","txs1", txdata[1],frame_length_complex_samples,1,1);
*/
if (output_fd)
fwrite(txdata[0],sizeof(int32_t),frame_length_complex_samples,output_fd);
int txlev = signal_energy(&txdata[0][5*frame_parms->ofdm_symbol_size + 4*frame_parms->nb_prefix_samples + frame_parms->nb_prefix_samples0],
frame_parms->ofdm_symbol_size + frame_parms->nb_prefix_samples);
......@@ -568,9 +581,12 @@ int main(int argc, char **argv)
free(r_im);
free(txdata);
if (write_output_file)
if (output_fd)
fclose(output_fd);
if (input_fd)
fclose(input_fd);
return(n_errors);
}
......
......@@ -59,6 +59,8 @@
#include "T.h"
#include "PHY/TOOLS/nr_phy_scope.h"
extern double cpuf;
//static nfapi_nr_config_request_t config_t;
//static nfapi_nr_config_request_t* config =&config_t;
......@@ -435,7 +437,7 @@ static void *UE_thread_synch(void *arg) {
#endif
if (nr_initial_sync( UE, UE->mode ) == 0) {
hw_slot_offset = (UE->rx_offset<<1) / UE->frame_parms.samples_per_tti;
hw_slot_offset = (UE->rx_offset<<1) / UE->frame_parms.samples_per_subframe;
printf("Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %d (DL %u, UL %u), UE_scan_carrier %d\n",
hw_slot_offset,
freq_offset,
......@@ -488,6 +490,7 @@ static void *UE_thread_synch(void *arg) {
break;
}
if (UE->mode != loop_through_memory) {
UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0);
//UE->rfdevice.trx_set_gains_func(&openair0,&openair0_cfg[0]);
//UE->rfdevice.trx_stop_func(&UE->rfdevice);
......@@ -497,6 +500,7 @@ static void *UE_thread_synch(void *arg) {
LOG_E(HW,"Could not start the device\n");
oai_exit=1;
}*/
}
if (UE->UE_scan_carrier == 1) {
......@@ -532,6 +536,7 @@ static void *UE_thread_synch(void *arg) {
} else {
// initial sync failed
// calculate new offset and try again
if (UE->UE_scan_carrier == 1) {
if (freq_offset >= 0)
freq_offset += 100;
......@@ -553,6 +558,7 @@ static void *UE_thread_synch(void *arg) {
return &UE_thread_synch_retval; // not reached
}
}
#if DISABLE_LOG_X
printf("[initial_sync] trying carrier off %d Hz, rxgain %d (DL %u, UL %u)\n",
freq_offset,
......@@ -583,6 +589,12 @@ static void *UE_thread_synch(void *arg) {
break;
}
extern FD_lte_phy_scope_ue *form_ue[NUMBER_OF_UE_MAX];
phy_scope_UE(form_ue[0],
PHY_vars_UE_g[0][0],
0,0,7);
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
// indicate readiness
UE->proc.instance_cnt_synch--;
......@@ -646,8 +658,8 @@ static void *UE_thread_rxn_txnp4(void *arg) {
}
// initRefTimes(t2);
initRefTimes(t3);
pickTime(current);
// initRefTimes(t3);
// pickTime(current);
// updateTimes(proc->gotIQs, &t2, 10000, "Delay to wake up UE_Thread_Rx (case 2)");
// Process Rx data for one sub-frame
......@@ -796,7 +808,7 @@ void *UE_thread(void *arg) {
PHY_VARS_NR_UE *UE = (PHY_VARS_NR_UE *) arg;
// int tx_enabled = 0;
int dummy_rx[UE->frame_parms.nb_antennas_rx][UE->frame_parms.samples_per_tti] __attribute__((aligned(32)));
int dummy_rx[UE->frame_parms.nb_antennas_rx][UE->frame_parms.samples_per_subframe] __attribute__((aligned(32)));
openair0_timestamp timestamp;
void* rxp[NB_ANTENNAS_RX], *txp[NB_ANTENNAS_TX];
int start_rx_stream = 0;
......@@ -828,7 +840,7 @@ void *UE_thread(void *arg) {
//itti_send_msg_to_task (TASK_NAS_UE, UE->Mod_id + NB_eNB_INST, message_p);
#endif
int tti_nr=-1;
int subframe_nr=-1;
//int cumulated_shift=0;
if ((oaisim_flag == 0) && (UE->mode != loop_through_memory))
AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");
......@@ -876,7 +888,7 @@ void *UE_thread(void *arg) {
if (UE->mode != loop_through_memory) {
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void*)&dummy_rx[i][0];
for (int sf=0; sf<LTE_NUMBER_OF_SUBFRAMES_PER_FRAME; sf++)
for (int sf=0; sf<NR_NUMBER_OF_SUBFRAMES_PER_FRAME; sf++)
// printf("Reading dummy sf %d\n",sf);
AssertFatal(UE->frame_parms.samples_per_subframe==
UE->rfdevice.trx_read_func(&UE->rfdevice,
......@@ -926,12 +938,11 @@ void *UE_thread(void *arg) {
rt_sleep_ns(1000*1000);
} else {
tti_nr++;
int ttis_per_frame = LTE_NUMBER_OF_SUBFRAMES_PER_FRAME*UE->frame_parms.ttis_per_subframe;
tti_nr %= ttis_per_frame;
subframe_nr++;
subframe_nr %= NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
UE_nr_rxtx_proc_t *proc = &UE->proc.proc_rxtx[thread_idx];
// update thread index for received subframe
UE->current_thread_id[tti_nr] = thread_idx;
UE->current_thread_id[subframe_nr] = thread_idx;
#if BASIC_SIMULATOR
{
......@@ -944,7 +955,7 @@ void *UE_thread(void *arg) {
}
}
#endif
LOG_D(PHY,"Process TTI %d thread Idx %d \n", tti_nr, UE->current_thread_id[tti_nr]);
LOG_D(PHY,"Process subframe %d thread Idx %d \n", subframe_nr, UE->current_thread_id[subframe_nr]);
thread_idx++;
if(thread_idx>=RX_NB_TH)
......@@ -955,14 +966,14 @@ void *UE_thread(void *arg) {
for (i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void*)&UE->common_vars.rxdata[i][UE->frame_parms.ofdm_symbol_size+
UE->frame_parms.nb_prefix_samples0+
tti_nr*UE->frame_parms.samples_per_tti];
subframe_nr*UE->frame_parms.samples_per_subframe];
for (i=0; i<UE->frame_parms.nb_antennas_tx; i++)
txp[i] = (void*)&UE->common_vars.txdata[i][((tti_nr+2)%10*UE->frame_parms.ttis_per_subframe)*UE->frame_parms.samples_per_tti];
txp[i] = (void*)&UE->common_vars.txdata[i][((subframe_nr+2)%NR_NUMBER_OF_SUBFRAMES_PER_FRAME)*UE->frame_parms.samples_per_subframe];
int readBlockSize, writeBlockSize;
if (tti_nr<(ttis_per_frame - 1)) {
readBlockSize=UE->frame_parms.samples_per_tti;
writeBlockSize=UE->frame_parms.samples_per_tti;
if (subframe_nr<(NR_NUMBER_OF_SUBFRAMES_PER_FRAME - 1)) {
readBlockSize=UE->frame_parms.samples_per_subframe;
writeBlockSize=UE->frame_parms.samples_per_subframe;
} else {
// set TO compensation to zero
UE->rx_offset_diff = 0;
......@@ -971,15 +982,15 @@ void *UE_thread(void *arg) {
UE->rx_offset > 0 )
UE->rx_offset_diff = -1 ;
if ( UE->rx_offset > 5*UE->frame_parms.samples_per_subframe &&
UE->rx_offset < 10*UE->frame_parms.samples_per_tti )
UE->rx_offset < 10*UE->frame_parms.samples_per_subframe )
UE->rx_offset_diff = 1;
LOG_D(PHY,"AbsSubframe %d.%d TTI SET rx_off_diff to %d rx_offset %d \n",proc->frame_rx,tti_nr,UE->rx_offset_diff,UE->rx_offset);
readBlockSize=UE->frame_parms.samples_per_tti -
LOG_D(PHY,"AbsSubframe %d.%d TTI SET rx_off_diff to %d rx_offset %d \n",proc->frame_rx,subframe_nr,UE->rx_offset_diff,UE->rx_offset);
readBlockSize=UE->frame_parms.samples_per_subframe -
UE->frame_parms.ofdm_symbol_size -
UE->frame_parms.nb_prefix_samples0 -
UE->rx_offset_diff;
writeBlockSize=UE->frame_parms.samples_per_tti -
writeBlockSize=UE->frame_parms.samples_per_subframe -
UE->rx_offset_diff;
}
......@@ -992,7 +1003,7 @@ void *UE_thread(void *arg) {
AssertFatal( writeBlockSize ==
UE->rfdevice.trx_write_func(&UE->rfdevice,
timestamp+
(2*UE->frame_parms.samples_per_tti) -
(2*UE->frame_parms.samples_per_subframe) -
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0 -
openair0_cfg[0].tx_sample_advance,
txp,
......@@ -1000,7 +1011,7 @@ void *UE_thread(void *arg) {
UE->frame_parms.nb_antennas_tx,
1),"");
if( tti_nr==(ttis_per_frame-1)) {
if( subframe_nr==(NR_NUMBER_OF_SUBFRAMES_PER_FRAME-1)) {
// read in first symbol of next frame and adjust for timing drift
int first_symbols=writeBlockSize-readBlockSize;
if ( first_symbols > 0 )
......@@ -1013,10 +1024,14 @@ void *UE_thread(void *arg) {
if ( first_symbols <0 )
LOG_E(PHY,"can't compensate: diff =%d\n", first_symbols);
}
} //UE->mode != loop_through_memory
else
rt_sleep_ns(1000*1000);
pickTime(gotIQs);
// operate on thread sf mod 2
AssertFatal(pthread_mutex_lock(&proc->mutex_rxtx) ==0,"");
if(tti_nr == 0) {
if(subframe_nr == 0) {
//UE->proc.proc_rxtx[0].frame_rx++;
//UE->proc.proc_rxtx[1].frame_rx++;
for (th_id=0; th_id < RX_NB_TH; th_id++) {
......@@ -1038,18 +1053,18 @@ void *UE_thread(void *arg) {
UE->proc.proc_rxtx[th_id].gotIQs=readTime(gotIQs);
}
proc->nr_tti_rx=tti_nr;
proc->subframe_rx=tti_nr>>((uint8_t)(log2 (UE->frame_parms.ttis_per_subframe)));
proc->nr_tti_rx=subframe_nr;
proc->subframe_rx=subframe_nr;
proc->frame_tx = proc->frame_rx;
proc->nr_tti_tx= tti_nr + DURATION_RX_TO_TX;
if (proc->nr_tti_tx > ttis_per_frame) {
proc->nr_tti_tx= subframe_nr + DURATION_RX_TO_TX;
if (proc->nr_tti_tx > NR_NUMBER_OF_SUBFRAMES_PER_FRAME) {
proc->frame_tx = (proc->frame_tx + 1)%MAX_FRAME_NUMBER;
proc->nr_tti_tx %= ttis_per_frame;
proc->nr_tti_tx %= NR_NUMBER_OF_SUBFRAMES_PER_FRAME;
}
proc->subframe_tx=(proc->nr_tti_tx)>>((uint8_t)(log2 (UE->frame_parms.ttis_per_subframe)));
proc->subframe_tx=subframe_nr + DURATION_RX_TO_TX;
proc->timestamp_tx = timestamp+
(DURATION_RX_TO_TX*UE->frame_parms.samples_per_tti)-
(DURATION_RX_TO_TX*UE->frame_parms.samples_per_subframe)-
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0;
proc->instance_cnt_rxtx++;
......@@ -1069,7 +1084,7 @@ void *UE_thread(void *arg) {
char exit_fun_string[256];
sprintf(exit_fun_string,"[SCHED][UE %d] !!! UE instance_cnt_rxtx > 2 (IC %d) (Proc %d)!!",
UE->Mod_id, proc->instance_cnt_rxtx,
UE->current_thread_id[tti_nr]);
UE->current_thread_id[subframe_nr]);
printf("%s\n",exit_fun_string);
fflush(stdout);
sleep(1);
......@@ -1084,10 +1099,6 @@ void *UE_thread(void *arg) {
// updateTimes(lastTime, &t1, 20000, "Delay between two IQ acquisitions (case 1)");
// pickStaticTime(lastTime);
} else {
printf("Processing subframe %d",proc->subframe_rx);
getchar();
}
} // start_rx_stream==1
} // UE->is_synchronized==1
......@@ -1115,6 +1126,7 @@ void init_UE_threads(PHY_VARS_NR_UE *UE) {
pthread_mutex_init(&UE->proc.mutex_synch,NULL);
pthread_cond_init(&UE->proc.cond_synch,NULL);
UE->proc.instance_cnt_synch = -1;
// the threads are not yet active, therefore access is allowed without locking
int nb_threads=RX_NB_TH;
......@@ -1187,6 +1199,7 @@ void fill_ue_band_info(void) {
}*/
#endif
/*
int setup_ue_buffers(PHY_VARS_NR_UE **phy_vars_ue, openair0_config_t *openair0_cfg) {
int i, CC_id;
......@@ -1226,4 +1239,4 @@ int setup_ue_buffers(PHY_VARS_NR_UE **phy_vars_ue, openair0_config_t *openair0_c
}
return 0;
}
*/
......@@ -80,7 +80,7 @@ unsigned short config_frames[4] = {2,9,11,13};
#include "system.h"
#include "stats.h"
#ifdef XFORMS
#include "PHY/TOOLS/lte_phy_scope.h"
#include "PHY/TOOLS/nr_phy_scope.h"
//#include "stats.h"
// current status is that every UE has a DL scope for a SINGLE eNB (eNB_id=0)
// at eNB 0, an UL scope for every UE
......@@ -111,11 +111,10 @@ volatile int oai_exit = 0;
static clock_source_t clock_source = internal;
static int wait_for_sync = 0;
static char UE_flag=0;
unsigned int mmapped_dma=0;
int single_thread_flag=1;
static char threequarter_fs=0;
int threequarter_fs=0;
uint32_t downlink_frequency[MAX_NUM_CCs][4];
int32_t uplink_frequency_offset[MAX_NUM_CCs][4];
......@@ -149,7 +148,7 @@ double rx_gain_off = 0.0;
double sample_rate=30.72e6;
double bw = 10.0e6;
static int tx_max_power[MAX_NUM_CCs]; /* = {0,0}*/;
static int tx_max_power[MAX_NUM_CCs] = {0};
char rf_config_file[1024];
......@@ -175,7 +174,7 @@ int rx_input_level_dBm;
#ifdef XFORMS
extern int otg_enabled;
static char do_forms=0;
int do_forms=0;
#else
int otg_enabled;
#endif
......@@ -415,18 +414,16 @@ static void *scope_thread(void *arg) {
#endif
while (!oai_exit) {
if (UE_flag==1) {
//len = dump_ue_stats (PHY_vars_UE_g[0][0], &PHY_vars_UE_g[0][0]->proc.proc_rxtx[0],stats_buffer, 0, mode,rx_input_level_dBm);
//fl_set_object_label(form_stats->stats_text, stats_buffer);
fl_clear_browser(form_stats->stats_text);
fl_add_browser_line(form_stats->stats_text, stats_buffer);
/*phy_scope_UE(form_ue[0],
if (PHY_vars_UE_g[0][0]->is_synchronized == 1)
phy_scope_UE(form_ue[0],
PHY_vars_UE_g[0][0],
0,
0,7);*/
}
0,0,7);
//else it is done in the synch thread
//printf("doing forms\n");
//usleep(100000); // 100 ms
......@@ -502,7 +499,7 @@ static void get_options(void) {
int CC_id;
int tddflag, nonbiotflag;
char *loopfile=NULL;
int dumpframe;
int dumpframe=0;
uint32_t online_log_messages;
uint32_t glog_level, glog_verbosity;
uint32_t start_telnetsrv;
......@@ -615,10 +612,6 @@ static void get_options(void) {
uecap_xer_in=1;
} /* UE with config file */
#if defined(OAI_USRP) || defined(CPRIGW) || defined(OAI_ADRV9371_ZC706)
int clock_src;
#endif
}
#if T_TRACER
......@@ -1002,8 +995,6 @@ int main( int argc, char **argv ) {
UE[CC_id]->pdcch_vars[1][0]->crnti = 0x1235;
}
rx_gain[CC_id][0] = 81;
tx_max_power[CC_id] = -40;
UE[CC_id]->rx_total_gain_dB = (int)rx_gain[CC_id][0] + rx_gain_off;
UE[CC_id]->tx_power_max_dBm = tx_max_power[CC_id];
......@@ -1120,10 +1111,13 @@ int main( int argc, char **argv ) {
#ifdef XFORMS
int UE_id;
int fl_argc=1;
if (do_forms==1) {
fl_initialize (&argc, argv, NULL, 0, 0);
// fl_initialize messes with argv and argc, so pretend to not pass any options
fl_initialize (&fl_argc, argv, NULL, 0, 0);
// restore the original command line args
// argv = fl_get_cmdline_args( &argc );
form_stats = create_form_stats_form();
fl_show_form (form_stats->stats_form, FL_PLACE_HOTSPOT, FL_FULLBORDER, "stats");
UE_id = 0;
......@@ -1155,10 +1149,6 @@ int main( int argc, char **argv ) {
rt_sleep_ns(10*100000000ULL);
// start the main thread
//if (UE_flag == 1) {
init_UE(1);
number_of_cards = 1;
......@@ -1166,25 +1156,16 @@ int main( int argc, char **argv ) {
PHY_vars_UE_g[0][CC_id]->rf_map.card=0;
PHY_vars_UE_g[0][CC_id]->rf_map.chain=CC_id+chain_offset;
}
//}
// connect the TX/RX buffers
//if (UE_flag==1) {
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
#if defined(OAI_USRP) || defined(OAI_ADRV9371_ZC706)
UE[CC_id]->hw_timing_advance = timing_advance;
#else
UE[CC_id]->hw_timing_advance = 160;
#endif
}
if (setup_ue_buffers(UE,&openair0_cfg[0])!=0) {
printf("Error setting up eNB buffer\n");
exit(-1);
}
if (input_fd) {
......@@ -1195,8 +1176,7 @@ int main( int argc, char **argv ) {
input_fd) != frame_parms[0]->samples_per_subframe*10)
printf("error reading from file\n");
}
//p_exmimo_config->framing.tdd_config = TXRXSWITCH_TESTRX;
//}
sleep(3);
......@@ -1211,16 +1191,18 @@ int main( int argc, char **argv ) {
printf("TYPE <CTRL-C> TO TERMINATE\n");
//getchar();
/*
#if defined(ENABLE_ITTI)
printf("Entering ITTI signals handler\n");
itti_wait_tasks_end();
oai_exit=1;
#else
*/
while (oai_exit==0)
rt_sleep_ns(100000000ULL);
#endif
//#endif
// stop threads
#ifdef XFORMS
......
......@@ -136,7 +136,7 @@
{"ue-nb-ant-tx", CONFIG_HLP_UENANTT, 0, u8ptr:&nb_antenna_tx, defuintval:1, TYPE_UINT8, 0}, \
{"ue-scan-carrier", CONFIG_HLP_UESCAN, PARAMFLAG_BOOL, iptr:&UE_scan_carrier, defintval:0, TYPE_INT, 0}, \
{"ue-max-power", NULL, 0, iptr:&(tx_max_power[0]), defintval:90, TYPE_INT, 0}, \
{"r" , CONFIG_HLP_PRB, 0, u8ptr:&(frame_parms[0]->N_RB_DL), defintval:25, TYPE_UINT8, 0}, \
{"r" , CONFIG_HLP_PRB, 0, iptr:&(frame_parms[0]->N_RB_DL), defintval:25, TYPE_UINT, 0}, \
{"dlsch-demod-shift", CONFIG_HLP_DLSHIFT, 0, iptr:(int32_t *)&dlsch_demod_shift, defintval:0, TYPE_INT, 0}, \
{"usrp-args", CONFIG_HLP_USRP_ARGS, 0, strptr:(char **)&usrp_args, defstrval:"type=b200", TYPE_STRING, 0}, \
{"usrp-clksrc", CONFIG_HLP_USRP_CLK_SRC,0, strptr:(char **)&usrp_clksrc, defstrval:"internal", TYPE_STRING, 0} \
......@@ -167,8 +167,8 @@
{"A" , CONFIG_HLP_TADV, 0, uptr:&timing_advance, defintval:0, TYPE_UINT, 0}, \
{"C" , CONFIG_HLP_DLF, 0, uptr:&(downlink_frequency[0][0]), defuintval:2680000000, TYPE_UINT, 0}, \
{"a" , CONFIG_HLP_CHOFF, 0, iptr:&chain_offset, defintval:0, TYPE_INT, 0}, \
{"d" , CONFIG_HLP_SOFTS, PARAMFLAG_BOOL, uptr:(uint32_t *)&do_forms, defintval:0, TYPE_INT8, 0}, \
{"E" , CONFIG_HLP_TQFS, PARAMFLAG_BOOL, i8ptr:&threequarter_fs, defintval:0, TYPE_INT8, 0}, \
{"d" , CONFIG_HLP_SOFTS, PARAMFLAG_BOOL, iptr:&do_forms, defintval:0, TYPE_INT, 0}, \
{"E" , CONFIG_HLP_TQFS, PARAMFLAG_BOOL, iptr:&threequarter_fs, defintval:0, TYPE_INT, 0}, \
{"K" , CONFIG_HLP_ITTIL, PARAMFLAG_NOFREE, strptr:&itti_dump_file, defstrval:"/tmp/itti.dump", TYPE_STRING, 0}, \
{"m" , CONFIG_HLP_DLMCS, 0, uptr:&target_dl_mcs, defintval:0, TYPE_UINT, 0}, \
{"t" , CONFIG_HLP_ULMCS, 0, uptr:&target_ul_mcs, defintval:0, TYPE_UINT, 0}, \
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment