Commit eb363157 authored by Raymond Knopp's avatar Raymond Knopp

moved simulation target into lte-uesoftmodem with --simL1 option

parent 4b943d4b
......@@ -621,9 +621,7 @@ add_boolean_option(RRC_DEFAULT_RAB_IS_AM False "set the RLC mode to AM for the d
add_boolean_option(OAI_NW_DRIVER_TYPE_ETHERNET False "????")
add_boolean_option(DEADLINE_SCHEDULER True "Use the Linux scheduler SCHED_DEADLINE: kernel >= 3.14")
add_boolean_option(CPU_AFFINITY False "Enable CPU Affinity of threads (only valid without deadline scheduler). It is enabled only with >2 CPUs")
add_boolean_option(NAS_ADDRESS_FIX False "specific to oaisim: for nasmesh driver")
add_boolean_option(NAS_NETLINK False "useless ??? Must be True to compile nasmesh driver without rtai ????")
add_boolean_option(OAISIM False "specific to oaisim")
add_boolean_option(OAI_NW_DRIVER_USE_NETLINK True "????")
add_boolean_option(USE_MME False "this flag is used only one time in lte-softmodem.c")
......@@ -652,9 +650,7 @@ add_boolean_option(OPENAIR_LTE True "Seems legacy: keep it to true")
# PHY options
##########################
add_boolean_option(DRIVER2013 True "only relevant for EXMIMO")
add_boolean_option(ENABLE_NEW_MULTICAST False "specific to oaisim")
add_boolean_option(EXMIMO_IOT True "????")
add_boolean_option(LARGE_SCALE False "specific to oaisim: defines max eNB=2 and max UE=120")
add_boolean_option(LOCALIZATION False "???")
add_integer_option(MAX_NUM_CCs 1 "????")
add_boolean_option(MU_RECEIVER False "????")
......@@ -677,7 +673,6 @@ add_boolean_option(NAS_UE True "NAS UE INSTANCE (<> NAS_MME)")
##########################
# ACCESS STRATUM LAYER2 OPTIONS
##########################
add_boolean_option(MAC_CONTEXT True "specific to oaisim")
add_boolean_option(JUMBO_FRAME True "ENABLE LARGE SDU in ACCESS STRATUM (larger than common MTU)")
##########################
......@@ -1720,12 +1715,14 @@ ${OPENAIR1_DIR}/SIMULATION/TOOLS/taus.c
${OPENAIR1_DIR}/SIMULATION/TOOLS/multipath_channel.c
${OPENAIR1_DIR}/SIMULATION/TOOLS/multipath_tv_channel.c
${OPENAIR1_DIR}/SIMULATION/TOOLS/abstraction.c
${OPENAIR1_DIR}/SIMULATION/TOOLS/channel_sim.c
${OPENAIR1_DIR}/SIMULATION/RF/rf.c
${OPENAIR1_DIR}/SIMULATION/RF/dac.c
${OPENAIR1_DIR}/SIMULATION/RF/adc.c
${OPENAIR1_DIR}/SIMULATION/ETH_TRANSPORT/netlink_init.c
)
add_library(SIMU_ETH
${OPENAIR1_DIR}/SIMULATION/ETH_TRANSPORT/netlink_init.c
${OPENAIR1_DIR}/SIMULATION/ETH_TRANSPORT/multicast_link.c
......@@ -1982,6 +1979,8 @@ add_executable(lte-uesoftmodem
${OPENAIR_TARGETS}/RT/USER/rt_wrapper.c
${OPENAIR_TARGETS}/RT/USER/lte-ue.c
${OPENAIR_TARGETS}/RT/USER/lte-uesoftmodem.c
${OPENAIR_TARGETS}/RT/USER/lte-ru.c
${OPENAIR_TARGETS}/RT/USER/rfsim.c
${OPENAIR1_DIR}/SIMULATION/TOOLS/taus.c
${OPENAIR_TARGETS}/COMMON/create_tasks_ue.c
${OPENAIR_TARGETS}/ARCH/COMMON/common_lib.c
......@@ -2000,13 +1999,13 @@ add_executable(lte-uesoftmodem
target_link_libraries (lte-uesoftmodem
-Wl,--start-group
RRC_LIB S1AP_LIB S1AP_ENB GTPV1U SECU_CN SECU_OSA UTIL HASHTABLE SCTP_CLIENT UDP SCHED_RU_LIB SCHED_UE_LIB PHY_COMMON PHY_UE PHY_RU LFDS L2_UE
RRC_LIB S1AP_LIB S1AP_ENB GTPV1U SECU_CN SECU_OSA UTIL HASHTABLE SCTP_CLIENT UDP SCHED_RU_LIB SCHED_UE_LIB PHY_COMMON PHY_UE PHY_RU LFDS L2_UE SIMU
${MSC_LIB} ${RAL_LIB} ${NAS_UE_LIB} ${ITTI_LIB} ${FLPT_MSG_LIB} ${ASYNC_IF_LIB} LFDS7
NFAPI_COMMON_LIB NFAPI_LIB NFAPI_PNF_LIB NFAPI_USER_LIB
-Wl,--end-group z dl)
target_link_libraries (lte-uesoftmodem ${LIBXML2_LIBRARIES})
target_link_libraries (lte-uesoftmodem pthread m ${CONFIG_LIBRARIES} rt crypt ${CRYPTO_LIBRARIES} ${OPENSSL_LIBRARIES} ${NETTLE_LIBRARIES} sctp ${XFORMS_LIBRARIES} ${PROTOBUF_LIB} ${CMAKE_DL_LIBS} ${LIBYAML_LIBRARIES})
target_link_libraries (lte-uesoftmodem pthread m ${CONFIG_LIBRARIES} rt crypt ${CRYPTO_LIBRARIES} ${OPENSSL_LIBRARIES} ${NETTLE_LIBRARIES} sctp ${XFORMS_LIBRARIES} ${PROTOBUF_LIB} ${CMAKE_DL_LIBS} ${LIBYAML_LIBRARIES} ${ATLAS_LIBRARIES})
target_link_libraries (lte-uesoftmodem ${LIB_LMS_LIBRARIES})
target_link_libraries (lte-uesoftmodem ${T_LIB})
......@@ -2019,6 +2018,8 @@ add_executable(lte-uesoftmodem-nos1
${OPENAIR_TARGETS}/RT/USER/rt_wrapper.c
${OPENAIR_TARGETS}/RT/USER/lte-ue.c
${OPENAIR_TARGETS}/RT/USER/lte-uesoftmodem.c
${OPENAIR_TARGETS}/RT/USER/lte-ru.c
${OPENAIR_TARGETS}/RT/USER/rfsim.c
${OPENAIR1_DIR}/SIMULATION/TOOLS/taus.c
${OPENAIR_TARGETS}/COMMON/create_tasks_ue.c
${OPENAIR_TARGETS}/ARCH/COMMON/common_lib.c
......@@ -2038,13 +2039,13 @@ add_executable(lte-uesoftmodem-nos1
target_link_libraries (lte-uesoftmodem-nos1
-Wl,--start-group
RRC_LIB SECU_CN SECU_OSA UTIL HASHTABLE SCHED_RU_LIB SCHED_UE_LIB PHY_COMMON PHY_UE PHY_RU LFDS L2_UE ${MSC_LIB} ${RAL_LIB} ${ITTI_LIB}
RRC_LIB SECU_CN SECU_OSA UTIL HASHTABLE SCHED_RU_LIB SCHED_UE_LIB PHY_COMMON PHY_UE PHY_RU LFDS L2_UE SIMU ${MSC_LIB} ${RAL_LIB} ${ITTI_LIB}
${MIH_LIB} ${FLPT_MSG_LIB} ${ASYNC_IF_LIB} LFDS7
NFAPI_COMMON_LIB NFAPI_LIB NFAPI_PNF_LIB NFAPI_USER_LIB
-Wl,--end-group z dl )
target_link_libraries (lte-uesoftmodem-nos1 ${LIBXML2_LIBRARIES})
target_link_libraries (lte-uesoftmodem-nos1 pthread m ${CONFIG_LIBRARIES} rt crypt ${CRYPTO_LIBRARIES} ${OPENSSL_LIBRARIES} ${NETTLE_LIBRARIES} sctp ${XFORMS_LIBRARIES} ${PROTOBUF_LIB} ${CMAKE_DL_LIBS} ${LIBYAML_LIBRARIES})
target_link_libraries (lte-uesoftmodem-nos1 pthread m ${CONFIG_LIBRARIES} rt crypt ${CRYPTO_LIBRARIES} ${OPENSSL_LIBRARIES} ${NETTLE_LIBRARIES} sctp ${XFORMS_LIBRARIES} ${PROTOBUF_LIB} ${CMAKE_DL_LIBS} ${LIBYAML_LIBRARIES} ${ATLAS_LIBRARIES})
target_link_libraries (lte-uesoftmodem-nos1 ${LIB_LMS_LIBRARIES})
target_link_libraries (lte-uesoftmodem-nos1 ${T_LIB})
......@@ -2075,96 +2076,6 @@ target_link_libraries (lte-uesoftmodem-nos1 ${T_LIB})
# Addexecutables for tests
####################################
# A all in one network simulator
################
add_executable(oaisim
${rrc_h}
${s1ap_h}
${x2ap_h}
${OPENAIR_BIN_DIR}/messages_xml.h
${OPENAIR_TARGETS}/RT/USER/lte-ue.c
${OPENAIR_TARGETS}/RT/USER/lte-ru.c
${OPENAIR_TARGETS}/RT/USER/rt_wrapper.c
${OPENAIR_TARGETS}/SIMU/USER/channel_sim.c
# ${OPENAIR_TARGETS}/SIMU/USER/oaisim_config.c
${OPENAIR_TARGETS}/SIMU/USER/sinr_sim.c
${OPENAIR_TARGETS}/SIMU/USER/cor_SF_sim.c
${OPENAIR_TARGETS}/SIMU/USER/oaisim_functions.c
${OPENAIR_TARGETS}/SIMU/USER/event_handler.c
${OPENAIR_TARGETS}/SIMU/USER/oaisim.c
${OPENAIR_TARGETS}/ARCH/COMMON/common_lib.c
${OPENAIR2_DIR}/RRC/NAS/nas_config.c
${OPENAIR2_DIR}/RRC/NAS/rb_config.c
${OPENAIR3_DIR}/NAS/UE/nas_ue_task.c
${OPENAIR_DIR}/common/utils/utils.c
${OPENAIR_DIR}/common/utils/system.c
${OPENAIR_TARGETS}/COMMON/create_tasks_ue.c
${XFORMS_SOURCE}
${T_SOURCE}
${CONFIG_SOURCES}
${SHLIB_LOADER_SOURCES}
)
target_include_directories(oaisim PUBLIC ${OPENAIR_TARGETS}/SIMU/USER)
target_link_libraries (oaisim
-Wl,-ldl,--start-group
RRC_LIB S1AP_LIB S1AP_ENB X2AP_LIB SECU_CN UTIL HASHTABLE SCTP_CLIENT UDP SCHED_RU_LIB SCHED_UE_LIB PHY_COMMON PHY_UE PHY_RU LFDS L2_UE ${MSC_LIB} LIB_NAS_UE SIMU SECU_OSA ${ITTI_LIB} ${MIH_LIB}
${FLPT_MSG_LIB} ${ASYNC_IF_LIB} ${FLEXRAN_AGENT_LIB} LFDS7
-Wl,--end-group z dl)
target_link_libraries (oaisim ${LIBXML2_LIBRARIES} ${LAPACK_LIBRARIES})
target_link_libraries (oaisim pthread m ${CONFIG_LIBRARIES} rt crypt ${CRYPTO_LIBRARIES} ${OPENSSL_LIBRARIES} ${NETTLE_LIBRARIES} sctp z
${ATLAS_LIBRARIES} ${XFORMS_LIBRARIES} ${OPENPGM_LIBRARIES} ${PROTOBUF_LIB} ${CMAKE_DL_LIBS} ${LIBYAML_LIBRARIES})
#Force link with forms, regardless XFORMS option
target_link_libraries (oaisim forms)
target_link_libraries (oaisim ${T_LIB})
# A all in one network simulator
################
add_executable(oaisim_nos1
${rrc_h}
${s1ap_h}
${x2ap_h}
${OPENAIR_BIN_DIR}/messages_xml.h
${OPENAIR_TARGETS}/RT/USER/lte-ue.c
${OPENAIR_TARGETS}/RT/USER/lte-ru.c
${OPENAIR1_DIR}/SCHED/prach_procedures.c
${OPENAIR_TARGETS}/RT/USER/rt_wrapper.c
${OPENAIR_TARGETS}/SIMU/USER/channel_sim.c
# ${OPENAIR_TARGETS}/SIMU/USER/oaisim_config.c
${OPENAIR_TARGETS}/SIMU/USER/sinr_sim.c
${OPENAIR_TARGETS}/SIMU/USER/cor_SF_sim.c
${OPENAIR_TARGETS}/SIMU/USER/oaisim_functions.c
${OPENAIR_TARGETS}/SIMU/USER/event_handler.c
${OPENAIR_TARGETS}/SIMU/USER/oaisim.c
${OPENAIR_TARGETS}/ARCH/COMMON/common_lib.c
${OPENAIR2_DIR}/RRC/NAS/nas_config.c
${OPENAIR2_DIR}/RRC/NAS/rb_config.c
${OPENAIR_TARGETS}/COMMON/create_tasks_ue.c
${OPENAIR_DIR}/common/utils/system.c
${XFORMS_SOURCE}
${T_SOURCE}
${CONFIG_SOURCES}
${SHLIB_LOADER_SOURCES}
)
target_include_directories(oaisim_nos1 PUBLIC ${OPENAIR_TARGETS}/SIMU/USER)
target_link_libraries (oaisim_nos1
-Wl,--start-group
RRC_LIB X2AP_LIB SECU_CN UTIL HASHTABLE SCHED_RU_LIB SCHED_UE_LIB PHY_COMMON PHY_UE PHY_RU LFDS ${MSC_LIB} ${ITTI_LIB} SIMU L2_UE ${FLPT_MSG_LIB} ${ASYNC_IF_LIB} LFDS7
-Wl,--end-group z dl )
target_link_libraries (oaisim_nos1 ${LIBXML2_LIBRARIES} ${LAPACK_LIBRARIES})
target_link_libraries (oaisim_nos1 pthread m ${CONFIG_LIBRARIES} rt crypt ${CRYPTO_LIBRARIES} ${OPENSSL_LIBRARIES} ${NETTLE_LIBRARIES}
${ATLAS_LIBRARIES} ${XFORMS_LIBRARIES} ${OPENPGM_LIBRARIES} ${PROTOBUF_LIB} ${CMAKE_DL_LIBS} ${LIBYAML_LIBRARIES})
#Force link with forms, regardless XFORMS option
target_link_libraries (oaisim_nos1 forms)
#message("protobuflib is ${PROTOBUF_LIB}")
target_link_libraries (oaisim_nos1 ${T_LIB})
# Unitary tests for each piece of L1: example, mbmssim is MBMS L1 simulator
#####################################
......@@ -2262,7 +2173,7 @@ endforeach(myExe)
if (${T_TRACER})
foreach(i
#all "add_executable" definitions (except tests, rb_tool, updatefw)
lte-softmodem lte-softmodem-nos1 oaisim oaisim_nos1
lte-softmodem lte-softmodem-nos1
dlsim_tm4 dlsim dlsim_tm7 ulsim pbchsim scansim mbmssim
pdcchsim pucchsim prachsim syncsim
#all "add_library" definitions
......
......@@ -42,8 +42,8 @@
#include "log.h"
#if defined (LOG_D) && defined (LOG_E)
# define SIG_DEBUG(x, args...) LOG_D(EMU, x, ##args)
# define SIG_ERROR(x, args...) LOG_E(EMU, x, ##args)
# define SIG_DEBUG(x, args...) LOG_D(SIM, x, ##args)
# define SIG_ERROR(x, args...) LOG_E(SIM, x, ##args)
#endif
#ifndef SIG_DEBUG
......
......@@ -70,7 +70,6 @@ extern char mode_string[4][20];
extern unsigned char NB_RU;
#ifndef OPENAIR2
extern unsigned char NB_eNB_INST;
......
......@@ -65,7 +65,6 @@ extern int flagMag;
extern char mode_string[4][20];
extern unsigned char NB_RU;
#ifndef OPENAIR2
extern unsigned char NB_eNB_INST;
......
......@@ -67,7 +67,6 @@ char mode_string[4][20] = {"NOT SYNCHED","PRACH","RAR","PUSCH"};
#include "SIMULATION/ETH_TRANSPORT/vars.h"
unsigned char NB_RU=0;
#ifndef OPENAIR2
unsigned char NB_eNB_INST=0;
......
......@@ -61,7 +61,6 @@ char mode_string[4][20] = {"NOT SYNCHED","PRACH","RAR","PUSCH"};
#include "SIMULATION/ETH_TRANSPORT/vars.h"
unsigned char NB_RU=0;
#ifndef OPENAIR2
unsigned char NB_eNB_INST=0;
......
......@@ -99,7 +99,7 @@ multicast_link_init(void)
SOCK_DGRAM,
&group_list[group].port, &sin);
LOG_D(EMU, "multicast_link_init(): Created socket %d for group %d, port %d\n",
LOG_D(SIM, "multicast_link_init(): Created socket %d for group %d, port %d\n",
group_list[group].socket,group,group_list[group].port);
/* Used so we can re-bind to our port while a previous connection is still
......@@ -107,17 +107,17 @@ multicast_link_init(void)
*/
if (setsockopt(group_list[group].socket, SOL_SOCKET, SO_REUSEADDR,
&reuse_addr, sizeof (reuse_addr)) < 0) {
LOG_E(EMU, "[MULTICAST] ERROR : setsockopt:SO_REUSEADDR, exiting ...");
LOG_E(SIM, "[MULTICAST] ERROR : setsockopt:SO_REUSEADDR, exiting ...");
exit (EXIT_FAILURE);
}
if (multicast_if != NULL) {
if (setsockopt(group_list[group].socket, SOL_SOCKET,SO_BINDTODEVICE,
multicast_if, strlen(multicast_if)) < 0) {
LOG_E(EMU,
LOG_E(SIM,
"[MULTICAST] ERROR : setsockopt:SO_BINDTODEVICE on interface %s, exiting ...\n",
multicast_if);
LOG_E(EMU,
LOG_E(SIM,
"[MULTICAST] make sure that you have a root privilage or run with sudo -E \n");
exit (EXIT_FAILURE);
}
......@@ -132,7 +132,7 @@ multicast_link_init(void)
if (setsockopt (group_list[group].socket, IPPROTO_IP, IP_MULTICAST_LOOP,
&multicast_loop, sizeof (multicast_loop)) < 0) {
LOG_E(EMU,
LOG_E(SIM,
"[MULTICAST] ERROR: %s line %d multicast_link_main_loop() IP_MULTICAST_LOOP %m",
__FILE__, __LINE__);
exit (EXIT_FAILURE);
......@@ -143,13 +143,13 @@ multicast_link_init(void)
command.imr_interface.s_addr = htonl (INADDR_ANY);
if (command.imr_multiaddr.s_addr == -1) {
LOG_E(EMU, "[MULTICAST] ERROR: %s line %d NO MULTICAST", __FILE__, __LINE__);
LOG_E(SIM, "[MULTICAST] ERROR: %s line %d NO MULTICAST", __FILE__, __LINE__);
exit (EXIT_FAILURE);
}
if (setsockopt (group_list[group].socket, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&command, sizeof (command)) < 0) {
LOG_E(EMU, "[MULTICAST] ERROR: %s line %d IP_ADD_MEMBERSHIP %m", __FILE__,
LOG_E(SIM, "[MULTICAST] ERROR: %s line %d IP_ADD_MEMBERSHIP %m", __FILE__,
__LINE__);
exit (EXIT_FAILURE);
}
......@@ -202,13 +202,13 @@ multicast_link_read_data (int groupP)
if ((groupP < MULTICAST_LINK_NUM_GROUPS) && (groupP >= 0)) {
if ((num_bytes = recvfrom (group_list[groupP].socket,
group_list[groupP].rx_buffer, 40000, 0, 0, 0)) < 0) {
LOG_E(EMU, "[MULTICAST] recvfrom has failed (%d:%s)\n (%s:%d)\n",
LOG_E(SIM, "[MULTICAST] recvfrom has failed (%d:%s)\n (%s:%d)\n",
errno, strerror(errno), __FILE__, __LINE__);
} else {
rx_handler(num_bytes,group_list[groupP].rx_buffer);
}
} else {
LOG_E(EMU, "[MULTICAST] ERROR: groupP out of bounds %d\n", groupP);
LOG_E(SIM, "[MULTICAST] ERROR: groupP out of bounds %d\n", groupP);
}
}
......@@ -242,7 +242,7 @@ multicast_link_write_sock(int groupP, char *dataP, uint32_t sizeP)
if ((num = sendto (group_list[groupP].socket, dataP, sizeP, 0,
(struct sockaddr *) &group_list[groupP].sock_remote_addr,
sizeof (group_list[groupP].sock_remote_addr))) < 0) {
LOG_E(EMU, "[MULTICAST] sendto has failed (%d:%s)\n (%s:%d)\n",
LOG_E(SIM, "[MULTICAST] sendto has failed (%d:%s)\n (%s:%d)\n",
errno, strerror(errno),
__FILE__, __LINE__);
}
......@@ -274,22 +274,22 @@ int multicast_link_read_data_from_sock(uint8_t is_master)
multicast_link_build_select_list ();
LOG_D(EMU, "Stuck on select with timeout %s\n",
LOG_D(SIM, "Stuck on select with timeout %s\n",
timeout_p == NULL ? "infinite" : "15000 usecs");
readsocks = select(highsock + 1, &socks, (fd_set *) 0, (fd_set *) 0, timeout_p);
if (readsocks < 0) {
LOG_E(EMU, "Multicast select failed (%d:%s)\n", errno, strerror(errno));
LOG_E(SIM, "Multicast select failed (%d:%s)\n", errno, strerror(errno));
exit(EXIT_FAILURE);
} else if (readsocks > 0) {
#ifdef DEBUG_EMU
LOG_D(EMU, "Multicast Normal read\n");
#ifdef DEBUG_SIM
LOG_D(SIM, "Multicast Normal read\n");
#endif
multicast_link_read();
} else {
/* Timeout */
LOG_I(EMU, "Multicast select time-out\n");
LOG_I(SIM, "Multicast select time-out\n");
return 1;
}
......@@ -311,21 +311,21 @@ void multicast_link_start(void (*rx_handlerP) (unsigned int, char *),
rx_handler = rx_handlerP;
multicast_group = _multicast_group;
multicast_if = multicast_ifname;
LOG_I(EMU, "[MULTICAST] LINK START on interface=%s for group=%d: handler=%p\n",
LOG_I(SIM, "[MULTICAST] LINK START on interface=%s for group=%d: handler=%p\n",
(multicast_if == NULL) ? "not specified" : multicast_if, multicast_group,
rx_handler);
multicast_link_init ();
#if ! defined(ENABLE_NEW_MULTICAST)
LOG_D(EMU, "[MULTICAST] multicast link start thread\n");
LOG_D(SIM, "[MULTICAST] multicast link start thread\n");
if (pthread_create (&main_loop_thread, NULL, multicast_link_main_loop,
NULL) != 0) {
LOG_E(EMU, "[MULTICAST LINK] Error in pthread_create (%d:%s)\n",
LOG_E(SIM, "[MULTICAST LINK] Error in pthread_create (%d:%s)\n",
errno, strerror(errno));
exit(EXIT_FAILURE);
} else {
pthread_detach(main_loop_thread); // disassociate from parent
LOG_I(EMU, "[MULTICAST LINK] Thread detached\n");
LOG_I(SIM, "[MULTICAST LINK] Thread detached\n");
}
#endif
......
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>
#include "SIMULATION/TOOLS/sim.h"
#include "SIMULATION/RF/rf.h"
#include "PHY/types.h"
#include "PHY/defs_eNB.h"
#include "PHY/phy_extern.h"
#include "PHY/phy_extern_ue.h"
#include "LAYER2/MAC/mac.h"
#include "LAYER2/MAC/mac_extern.h"
#include "UTIL/LOG/log_if.h"
#include "UTIL/LOG/log_extern.h"
#include "RRC/LTE/rrc_extern.h"
#include "PHY_INTERFACE/phy_interface_extern.h"
#include "UTIL/OCG/OCG.h"
#include "UTIL/OPT/opt.h" // to test OPT
#include "UTIL/FIFO/types.h"
#define RF
#define DEBUG_SIM
/*
#undef LOG_D
#define LOG_D(A,B,C...) printf(B,C)
*/
int number_rb_ul;
int first_rbUL ;
extern Signal_buffers_t *signal_buffers_g;
double r_re_DL[NUMBER_OF_UE_MAX][2][30720];
double r_im_DL[NUMBER_OF_UE_MAX][2][30720];
double r_re_UL[NUMBER_OF_eNB_MAX][2][30720];
double r_im_UL[NUMBER_OF_eNB_MAX][2][30720];
int RU_output_mask[NUMBER_OF_UE_MAX];
int UE_output_mask[NUMBER_OF_RU_MAX];
pthread_mutex_t RU_output_mutex[NUMBER_OF_UE_MAX];
pthread_mutex_t UE_output_mutex[NUMBER_OF_RU_MAX];
double ru_amp[NUMBER_OF_RU_MAX];
void do_DL_sig(channel_desc_t *RU2UE[NUMBER_OF_RU_MAX][NUMBER_OF_UE_MAX][MAX_NUM_CCs],
uint16_t subframe,
uint32_t offset,
uint32_t length,
uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *ue_frame_parms,
uint8_t UE_id,
int CC_id)
{
int32_t att_eNB_id=-1;
int32_t **txdata,**rxdata;
uint32_t eNB_id,ru_id=0;
double tx_pwr;
double rx_pwr;
int32_t rx_pwr2;
uint32_t i,aa;
uint32_t sf_offset;
double min_path_loss=-200;
uint8_t hold_channel=0;
uint8_t nb_antennas_rx = RU2UE[0][0][CC_id]->nb_rx; // number of rx antennas at UE
uint8_t nb_antennas_tx = RU2UE[0][0][CC_id]->nb_tx; // number of tx antennas at eNB
double s_re0[30720];
double s_re1[30720];
double *s_re[2];
double s_im0[30720];
double s_im1[30720];
double *s_im[2];
double r_re00[30720];
double r_re01[30720];
double *r_re0[2];
double r_im00[30720];
double r_im01[30720];
double *r_im0[2];
LTE_DL_FRAME_PARMS *frame_parms;
s_re[0] = s_re0;
s_im[0] = s_im0;
s_re[1] = s_re1;
s_im[1] = s_im1;
r_re0[0] = r_re00;
r_im0[0] = r_im00;
r_re0[1] = r_re01;
r_im0[1] = r_im01;
if (subframe==0)
hold_channel = 0;
else
hold_channel = 1;
pthread_mutex_lock(&RU_output_mutex[UE_id]);
if (RU_output_mask[UE_id] == 0) { // This is the first eNodeB for this UE, clear the buffer
for (aa=0; aa<nb_antennas_rx; aa++) {
memset((void*)r_re_DL[UE_id][aa],0,(RC.ru[0]->frame_parms.samples_per_tti)*sizeof(double));
memset((void*)r_im_DL[UE_id][aa],0,(RC.ru[0]->frame_parms.samples_per_tti)*sizeof(double));
}
}
pthread_mutex_unlock(&RU_output_mutex[UE_id]);
for (ru_id=0; ru_id<RC.nb_RU; ru_id++) {
txdata = RC.ru[ru_id]->common.txdata;
frame_parms = &RC.ru[ru_id]->frame_parms;
sf_offset = (subframe*frame_parms->samples_per_tti) + offset;
LOG_D(SIM,">>>>>>>>>>>>>>>>>TXPATH: RU %d : DL_sig reading TX for subframe %d (sf_offset %d, length %d) from %p\n",ru_id,subframe,sf_offset,length,txdata[0]+sf_offset);
int length_meas = frame_parms->ofdm_symbol_size;
if (sf_offset+length <= frame_parms->samples_per_tti*10) {
tx_pwr = dac_fixed_gain(s_re,
s_im,
txdata,
sf_offset,
nb_antennas_tx,
length,
sf_offset,
length_meas,
14,
frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE
0,
&ru_amp[ru_id],
frame_parms->N_RB_DL*12);
}
else {
tx_pwr = dac_fixed_gain(s_re,
s_im,
txdata,
sf_offset,
nb_antennas_tx,
(frame_parms->samples_per_tti*10)-sf_offset,
sf_offset,
length_meas,
14,
frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE
0,
&ru_amp[ru_id],
frame_parms->N_RB_DL*12);
tx_pwr = dac_fixed_gain(s_re,
s_im,
txdata,
sf_offset,
nb_antennas_tx,
length+sf_offset-(frame_parms->samples_per_tti*10),
sf_offset,
length_meas,
14,
frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE
0,
&ru_amp[ru_id],
frame_parms->N_RB_DL*12);
}
#ifdef DEBUG_SIM
LOG_D(PHY,"[SIM][DL] subframe %d: txp (time) %d dB\n",
subframe,dB_fixed(signal_energy(&txdata[0][sf_offset],length_meas)));
LOG_D(OCM,"[SIM][DL] RU %d (CCid %d): tx_pwr %.1f dBm/RE (target %d dBm/RE), for subframe %d\n",
ru_id,CC_id,
10*log10(tx_pwr),
frame_parms->pdsch_config_common.referenceSignalPower,
subframe);
#endif
tx_pwr = signal_energy_fp(s_re,s_im,nb_antennas_tx,
length<length_meas?length:length_meas,
0)/(12.0*frame_parms->N_RB_DL);
//RU2UE[eNB_id][UE_id]->path_loss_dB = 0;
multipath_channel(RU2UE[ru_id][UE_id][CC_id],s_re,s_im,r_re0,r_im0,
length,hold_channel);
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp2(RU2UE[ru_id][UE_id][CC_id]->ch[0],
RU2UE[ru_id][UE_id][CC_id]->channel_length)*RU2UE[ru_id][UE_id][CC_id]->channel_length;
LOG_D(OCM,"[SIM][DL] Channel RU %d => UE %d (CCid %d): Channel gain %f dB (%f)\n",ru_id,UE_id,CC_id,10*log10(rx_pwr),rx_pwr);
#endif
#ifdef DEBUG_SIM
for (i=0; i<RU2UE[ru_id][UE_id][CC_id]->channel_length; i++)
LOG_D(OCM,"channel(%d,%d)[%d] : (%f,%f)\n",ru_id,UE_id,i,RU2UE[ru_id][UE_id][CC_id]->ch[0][i].x,RU2UE[ru_id][UE_id][CC_id]->ch[0][i].y);
#endif
LOG_D(OCM,"[SIM][DL] Channel RU %d => UE %d (CCid %d): tx_power %.1f dBm/RE, path_loss %1.f dB\n",
ru_id,UE_id,CC_id,
(double)frame_parms->pdsch_config_common.referenceSignalPower,
RU2UE[ru_id][UE_id][CC_id]->path_loss_dB);
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,
length<length_meas?length:length_meas,
0)/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr %f dBm/RE (%f dBm RSSI,tx %f dB)for subframe %d (length %d)\n",UE_id,
10*log10(rx_pwr),
10*log10(rx_pwr*(double)frame_parms->N_RB_DL*12),
10*log10(tx_pwr),subframe,
length<length_meas?length:length_meas);
LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (noise) -132 dBm/RE (N0fs = %.1f dBm, N0B = %.1f dBm) for subframe %d\n",
UE_id,
10*log10(RU2UE[ru_id][UE_id][CC_id]->sampling_rate*1e6)-174,
10*log10(RU2UE[ru_id][UE_id][CC_id]->sampling_rate*1e6*12*frame_parms->N_RB_DL/(double)frame_parms->ofdm_symbol_size)-174,
subframe);
#endif
if (RU2UE[ru_id][UE_id][CC_id]->first_run == 1)
RU2UE[ru_id][UE_id][CC_id]->first_run = 0;
// RF model
#ifdef DEBUG_SIM
LOG_D(OCM,"[SIM][DL] UE %d (CCid %d): rx_gain %d dB (-ADC %f) for subframe %d\n",UE_id,CC_id,PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB,
PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB-66.227,subframe);
#endif
rf_rx_simple(r_re0,
r_im0,
nb_antennas_rx,
length,
1e3/RU2UE[ru_id][UE_id][CC_id]->sampling_rate, // sampling time (ns)
(double)PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB - 66.227); // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp(r_re0,r_im0,
nb_antennas_rx,
length<length_meas?length:length_meas,
0)/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][DL] UE %d : ADC in (RU %d) %f dBm/RE for subframe %d\n",
UE_id,ru_id,
10*log10(rx_pwr),subframe);
#endif
pthread_mutex_lock(&RU_output_mutex[UE_id]);
for (i=0; i<frame_parms->samples_per_tti; i++) {
for (aa=0; aa<nb_antennas_rx; aa++) {
r_re_DL[UE_id][aa][i]+=r_re0[aa][i];
r_im_DL[UE_id][aa][i]+=r_im0[aa][i];
}
}
RU_output_mask[UE_id] |= (1<<ru_id);
if (RU_output_mask[UE_id] == (1<<RC.nb_RU)-1) {
RU_output_mask[UE_id]=0;
double *r_re_p[2] = {r_re_DL[UE_id][0],r_re_DL[UE_id][1]};
double *r_im_p[2] = {r_im_DL[UE_id][0],r_im_DL[UE_id][1]};
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp(r_re_p,r_im_p,nb_antennas_rx,length<length_meas?length:length_meas,0)/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][DL] UE %d : ADC in %f dBm/RE for subframe %d\n",UE_id,10*log10(rx_pwr),subframe);
#endif
rxdata = PHY_vars_UE_g[UE_id][CC_id]->common_vars.rxdata;
sf_offset = (subframe*frame_parms->samples_per_tti)+offset;
adc(r_re_p,
r_im_p,
0,
sf_offset,
rxdata,
nb_antennas_rx,
length,
12);
#ifdef DEBUG_SIM
rx_pwr2 = signal_energy(rxdata[0]+sf_offset,length<length_meas?length:length_meas)/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB/RE (%d) for subframe %d, writing to %p, length %d\n",UE_id, 10*log10((double)rx_pwr2),rx_pwr2,subframe,rxdata,length<length_meas?length:length_meas);
LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB for subframe %d\n",UE_id,10*log10((double)rx_pwr2*12*frame_parms->N_RB_DL) ,subframe);
#else
UNUSED_VARIABLE(rx_pwr2);
UNUSED_VARIABLE(tx_pwr);
UNUSED_VARIABLE(rx_pwr);
#endif
} // RU_output_mask
pthread_mutex_unlock(&RU_output_mutex[UE_id]);
} // ru_id
}
void do_UL_sig(channel_desc_t *UE2RU[NUMBER_OF_UE_MAX][NUMBER_OF_RU_MAX][MAX_NUM_CCs],
uint16_t subframe,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms,
uint32_t frame,int ru_id,uint8_t CC_id)
{
int32_t **txdata,**rxdata;
uint8_t UE_id=0;
uint8_t nb_antennas_rx = UE2RU[0][0][CC_id]->nb_rx; // number of rx antennas at eNB
uint8_t nb_antennas_tx = UE2RU[0][0][CC_id]->nb_tx; // number of tx antennas at UE
double tx_pwr, rx_pwr;
int32_t rx_pwr2;
uint32_t i,aa;
uint32_t sf_offset;
uint8_t hold_channel=0;
double s_re0[30720];
double s_re1[30720];
double *s_re[2];
double s_im0[30720];
double s_im1[30720];
double *s_im[2];
double r_re00[30720];
double r_re01[30720];
double *r_re0[2];
double r_im00[30720];
double r_im01[30720];
double *r_im0[2];
s_re[0] = s_re0;
s_im[0] = s_im0;
s_re[1] = s_re1;
s_im[1] = s_im1;
r_re0[0] = r_re00;
r_im0[0] = r_im00;
r_re0[1] = r_re01;
r_im0[1] = r_im01;
pthread_mutex_lock(&UE_output_mutex[ru_id]);
// Clear RX signal for eNB = eNB_id
for (i=0; i<frame_parms->samples_per_tti; i++) {
for (aa=0; aa<nb_antennas_rx; aa++) {
r_re_UL[ru_id][aa][i]=0.0;
r_im_UL[ru_id][aa][i]=0.0;
}
}
pthread_mutex_unlock(&UE_output_mutex[ru_id]);
// Compute RX signal for eNB = eNB_id
for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {
txdata = PHY_vars_UE_g[UE_id][CC_id]->common_vars.txdata;
AssertFatal(txdata != NULL,"txdata is null\n");
sf_offset = subframe*frame_parms->samples_per_tti;
if (((double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm[subframe] +
UE2RU[UE_id][ru_id][CC_id]->path_loss_dB) <= -125.0) {
// don't simulate a UE that is too weak
LOG_D(OCM,"[SIM][UL] ULPOWERS UE %d tx_pwr %d dBm (num_RE %d) for subframe %d (sf_offset %d)\n",
UE_id,
PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm[subframe],
PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe],
subframe,sf_offset);
} else {
tx_pwr = dac_fixed_gain((double**)s_re,
(double**)s_im,
txdata,
sf_offset,
nb_antennas_tx,
frame_parms->samples_per_tti,
sf_offset,
frame_parms->ofdm_symbol_size,
14,
(double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm[subframe]-10*log10((double)PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe]),
1,
NULL,
PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe]); // This make the previous argument the total power
LOG_D(OCM,"[SIM][UL] ULPOWERS UE %d tx_pwr %f dBm (target %d dBm, num_RE %d) for subframe %d (sf_offset %d)\n",
UE_id,
10*log10(tx_pwr*PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe]),
PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm[subframe],
PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe],
subframe,sf_offset);
multipath_channel(UE2RU[UE_id][ru_id][CC_id],s_re,s_im,r_re0,r_im0,
frame_parms->samples_per_tti,hold_channel);
rx_pwr = signal_energy_fp2(UE2RU[UE_id][ru_id][CC_id]->ch[0],
UE2RU[UE_id][ru_id][CC_id]->channel_length)*UE2RU[UE_id][ru_id][CC_id]->channel_length;
LOG_D(OCM,"[SIM][UL] subframe %d Channel UE %d => RU %d : %f dB (hold %d,length %d, PL %f)\n",subframe,UE_id,ru_id,10*log10(rx_pwr),
hold_channel,UE2RU[UE_id][ru_id][CC_id]->channel_length,
UE2RU[UE_id][ru_id][CC_id]->path_loss_dB);
rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->samples_per_tti,0);
LOG_D(OCM,"[SIM][UL] RU %d (%d/%d rx antennas) : rx_pwr %f dBm (tx_pwr - PL %f) for subframe %d, sptti %d\n",
ru_id,nb_antennas_rx,UE2RU[UE_id][ru_id][CC_id]->nb_rx,10*log10(rx_pwr),10*log10(tx_pwr*PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe])+UE2RU[UE_id][ru_id][CC_id]->path_loss_dB,subframe,frame_parms->samples_per_tti);
/*
if (abs(10*log10(rx_pwr)-10*log10(tx_pwr*PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe])-UE2RU[UE_id][ru_id][CC_id]->path_loss_dB)>3) {
write_output("txsig_re.m","s_re",s_re[0],frame_parms->samples_per_tti,1,7);
write_output("txsig_im.m","s_im",s_im[0],frame_parms->samples_per_tti,1,7);
write_output("rxsig_re.m","r_re",r_re0[0],frame_parms->samples_per_tti,1,7);
write_output("rxsig_im.m","r_im",r_im0[0],frame_parms->samples_per_tti,1,7);
exit(-1);
}*/
if (UE2RU[UE_id][ru_id][CC_id]->first_run == 1)
UE2RU[UE_id][ru_id][CC_id]->first_run = 0;
pthread_mutex_lock(&UE_output_mutex[ru_id]);
for (aa=0; aa<nb_antennas_rx; aa++) {
for (i=0; i<frame_parms->samples_per_tti; i++) {
r_re_UL[ru_id][aa][i]+=r_re0[aa][i];
r_im_UL[ru_id][aa][i]+=r_im0[aa][i];
}
}
pthread_mutex_unlock(&UE_output_mutex[ru_id]);
}
} //UE_id
double *r_re_p[2] = {r_re_UL[ru_id][0],r_re_UL[ru_id][1]};
double *r_im_p[2] = {r_im_UL[ru_id][0],r_im_UL[ru_id][1]};
rx_pwr = signal_energy_fp(r_re_p,r_im_p,nb_antennas_rx,frame_parms->samples_per_tti,0);
LOG_D(OCM,"[SIM][UL] RU %d (%d/%d rx antennas) : rx_pwr %f dBm (before RF) for subframe %d, gain %f\n",
ru_id,nb_antennas_rx,nb_antennas_rx,10*log10(rx_pwr),subframe,
(double)RC.ru[ru_id]->max_rxgain-(double)RC.ru[ru_id]->att_rx - 66.227);
rf_rx_simple(r_re_p,
r_im_p,
nb_antennas_rx,
frame_parms->samples_per_tti,
1e3/UE2RU[0][ru_id][CC_id]->sampling_rate, // sampling time (ns)
(double)RC.ru[ru_id]->max_rxgain-(double)RC.ru[ru_id]->att_rx - 66.227); // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
//#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp(r_re_p,r_im_p,nb_antennas_rx,frame_parms->samples_per_tti,0);//*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL;
LOG_D(OCM,"[SIM][UL] rx_pwr (ADC in) %f dB for subframe %d (rx_gain %f)\n",10*log10(rx_pwr),subframe,
(double)RC.ru[ru_id]->max_rxgain-(double)RC.ru[ru_id]->att_rx);
//#endif
rxdata = RC.ru[ru_id]->common.rxdata;
sf_offset = subframe*frame_parms->samples_per_tti;
adc(r_re_p,
r_im_p,
0,
sf_offset,
rxdata,
nb_antennas_rx,
frame_parms->samples_per_tti,
12);
#ifdef DEBUG_SIM
rx_pwr2 = signal_energy(rxdata[0]+sf_offset,frame_parms->samples_per_tti)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][UL] RU %d rx_pwr (ADC out) %f dB (%d) for subframe %d (offset %d) = %p\n",ru_id,10*log10((double)rx_pwr2),rx_pwr2,subframe,sf_offset,rxdata[0]+sf_offset);
#else
UNUSED_VARIABLE(tx_pwr);
UNUSED_VARIABLE(rx_pwr);
UNUSED_VARIABLE(rx_pwr2);
#endif
}
......@@ -212,13 +212,13 @@ int logInit (void)
g_log->log_component[RRC].filelog = 0;
g_log->log_component[RRC].filelog_name = "/tmp/rrc.log";
g_log->log_component[EMU].name = "EMU";
g_log->log_component[EMU].level = LOG_EMERG;
g_log->log_component[EMU].flag = LOG_MED;
g_log->log_component[EMU].interval = 1;
g_log->log_component[EMU].fd = 0;
g_log->log_component[EMU].filelog = 0;
g_log->log_component[EMU].filelog_name = "";
g_log->log_component[SIM].name = "SIM";
g_log->log_component[SIM].level = LOG_EMERG;
g_log->log_component[SIM].flag = LOG_MED;
g_log->log_component[SIM].interval = 1;
g_log->log_component[SIM].fd = 0;
g_log->log_component[SIM].filelog = 0;
g_log->log_component[SIM].filelog_name = "";
g_log->log_component[OMG].name = "OMG";
g_log->log_component[OMG].level = LOG_EMERG;
......@@ -474,7 +474,7 @@ int logInit (void)
if (g_log->syslog) {
#if ! defined(CN_BUILD)
openlog(g_log->log_component[EMU].name, LOG_PID, g_log->config.facility);
openlog(g_log->log_component[SIM].name, LOG_PID, g_log->config.facility);
#endif // ! defined(CN_BUILD)
}
log_getconfig(g_log);
......@@ -1737,16 +1737,16 @@ int main(int argc, char *argv[])
int test_log(void)
{
LOG_ENTER(MAC); // because the default level is DEBUG
LOG_I(EMU, "1 Starting OAI logs version %s Build date: %s on %s\n",
LOG_I(SIM, "1 Starting OAI logs version %s Build date: %s on %s\n",
BUILD_VERSION, BUILD_DATE, BUILD_HOST);
LOG_D(MAC, "1 debug MAC \n");
LOG_N(MAC, "1 notice MAC \n");
LOG_W(MAC, "1 warning MAC \n");
set_comp_log(EMU, LOG_INFO, FLAG_ONLINE);
set_comp_log(SIM, LOG_INFO, FLAG_ONLINE);
set_comp_log(MAC, LOG_WARNING, 0);
LOG_I(EMU, "2 Starting OAI logs version %s Build date: %s on %s\n",
LOG_I(SIM, "2 Starting OAI logs version %s Build date: %s on %s\n",
BUILD_VERSION, BUILD_DATE, BUILD_HOST);
LOG_E(MAC, "2 emerge MAC\n");
LOG_D(MAC, "2 debug MAC \n");
......@@ -1758,7 +1758,7 @@ int test_log(void)
set_comp_log(MAC, LOG_NOTICE, 1);
LOG_ENTER(MAC);
LOG_I(EMU, "3 Starting OAI logs version %s Build date: %s on %s\n",
LOG_I(SIM, "3 Starting OAI logs version %s Build date: %s on %s\n",
BUILD_VERSION, BUILD_DATE, BUILD_HOST);
LOG_D(MAC, "3 debug MAC \n");
LOG_N(MAC, "3 notice MAC \n");
......@@ -1766,10 +1766,10 @@ int test_log(void)
LOG_I(MAC, "3 info MAC \n");
set_comp_log(MAC, LOG_DEBUG,1);
set_comp_log(EMU, LOG_DEBUG,1);
set_comp_log(SIM, LOG_DEBUG,1);
LOG_ENTER(MAC);
LOG_I(EMU, "4 Starting OAI logs version %s Build date: %s on %s\n",
LOG_I(SIM, "4 Starting OAI logs version %s Build date: %s on %s\n",
BUILD_VERSION, BUILD_DATE, BUILD_HOST);
LOG_D(MAC, "4 debug MAC \n");
LOG_N(MAC, "4 notice MAC \n");
......@@ -1778,7 +1778,7 @@ int test_log(void)
set_comp_log(MAC, LOG_DEBUG,0);
set_comp_log(EMU, LOG_DEBUG,0);
set_comp_log(SIM, LOG_DEBUG,0);
LOG_I(LOG, "5 Starting OAI logs version %s Build date: %s on %s\n",
BUILD_VERSION, BUILD_DATE, BUILD_HOST);
......@@ -1789,7 +1789,7 @@ int test_log(void)
set_comp_log(MAC, LOG_TRACE,0X07F);
set_comp_log(EMU, LOG_TRACE,0X07F);
set_comp_log(SIM, LOG_TRACE,0X07F);
LOG_ENTER(MAC);
LOG_I(LOG, "6 Starting OAI logs version %s Build date: %s on %s\n",
......
......@@ -150,7 +150,7 @@ typedef enum {
MIN_LOG_COMPONENTS = 0,
PHY = MIN_LOG_COMPONENTS,
MAC,
EMU,
SIM,
OCG,
OMG,
OPT,
......
......@@ -2467,7 +2467,7 @@ void RCconfig_RU(void) {
RC.ru_mask=(1<<NB_RU) - 1;
RC.ru_mask=(1<<RC.nb_RU) - 1;
printf("Set RU mask to %lx\n",RC.ru_mask);
for (j = 0; j < RC.nb_RU; j++) {
......
......@@ -459,7 +459,7 @@ void *l2l1_task(void *arg) {
switch (ITTI_MSG_ID(message_p)) {
case INITIALIZE_MESSAGE:
/* Start eNB thread */
LOG_D(EMU, "L2L1 TASK received %s\n", ITTI_MSG_NAME(message_p));
printf("L2L1 TASK received %s\n", ITTI_MSG_NAME(message_p));
start_eNB = 1;
break;
......@@ -471,7 +471,7 @@ void *l2l1_task(void *arg) {
break;
default:
LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
printf("Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
break;
}
} while (ITTI_MSG_ID(message_p) != INITIALIZE_MESSAGE);
......@@ -498,11 +498,11 @@ void *l2l1_task(void *arg) {
break;
case MESSAGE_TEST:
LOG_I(EMU, "Received %s\n", ITTI_MSG_NAME(message_p));
printf("Received %s\n", ITTI_MSG_NAME(message_p));
break;
default:
LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
printf("Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
break;
}
......@@ -564,8 +564,7 @@ static void get_options(void) {
/* Read RC configuration file */
RCConfig();
NB_eNB_INST = RC.nb_inst;
NB_RU = RC.nb_RU;
printf("Configuration: nb_rrc_inst %d, nb_L1_inst %d, nb_ru %d\n",NB_eNB_INST,RC.nb_L1_inst,NB_RU);
printf("Configuration: nb_rrc_inst %d, nb_L1_inst %d, nb_ru %d\n",NB_eNB_INST,RC.nb_L1_inst,RC.nb_RU);
if (nonbiotflag <= 0) {
load_NB_IoT();
printf(" nb_nbiot_rrc_inst %d, nb_nbiot_L1_inst %d, nb_nbiot_macrlc_inst %d\n",
......@@ -1285,7 +1284,7 @@ int main( int argc, char **argv )
// cleanup
stop_eNB(NB_eNB_INST);
stop_RU(NB_RU);
stop_RU(RC.nb_RU);
/* release memory used by the RU/eNB threads (incomplete), after all
* threads have been stopped (they partially use the same memory) */
for (int inst = 0; inst < NB_eNB_INST; inst++) {
......@@ -1294,7 +1293,7 @@ int main( int argc, char **argv )
phy_free_lte_eNB(RC.eNB[inst][cc_id]);
}
}
for (int inst = 0; inst < NB_RU; inst++) {
for (int inst = 0; inst < RC.nb_RU; inst++) {
phy_free_RU(RC.ru[inst]);
}
free_lte_top();
......@@ -1313,7 +1312,7 @@ int main( int argc, char **argv )
// *** Handle per CC_id openair0
for(ru_id=0; ru_id<NB_RU; ru_id++) {
for(ru_id=0; ru_id<RC.nb_RU; ru_id++) {
if (RC.ru[ru_id]->rfdevice.trx_end_func)
RC.ru[ru_id]->rfdevice.trx_end_func(&RC.ru[ru_id]->rfdevice);
if (RC.ru[ru_id]->ifdevice.trx_end_func)
......
......@@ -52,6 +52,7 @@
#define CONFIG_HLP_DBGUEPR "UE run normal prach power ramping, but don't continue random-access\n"
#define CONFIG_HLP_CALPRACH "UE run normal prach with maximum power, but don't continue random-access\n"
#define CONFIG_HLP_NOL2CN "bypass L2 and upper layers\n"
#define CONFIG_HLP_SIML1 "activate RF simulator instead of HW\n"
#define CONFIG_HLP_UERXG "set UE RX gain\n"
#define CONFIG_HLP_UERXGOFF "external UE amplifier offset\n"
#define CONFIG_HLP_UETXG "set UE TX gain\n"
......@@ -131,6 +132,7 @@
/* optname helpstr paramflags XXXptr defXXXval type numelt */
/*--------------------------------------------------------------------------------------------------------------------------------------------------*/
#define CMDLINE_UEPARAMS_DESC { \
{"siml1", CONFIG_HLP_SIML1, PARAMFLAG_BOOL, iptr:&simL1flag, defintval:0, TYPE_INT, 0}, \
{"ue-rxgain", CONFIG_HLP_UERXG, 0, dblptr:&(rx_gain[0][0]), defdblval:0, TYPE_DOUBLE, 0}, \
{"ue-rxgain-off", CONFIG_HLP_UERXGOFF, 0, dblptr:&rx_gain_off, defdblval:0, TYPE_DOUBLE, 0}, \
{"ue-txgain", CONFIG_HLP_UETXG, 0, dblptr:&(tx_gain[0][0]), defdblval:0, TYPE_DOUBLE, 0}, \
......@@ -138,8 +140,8 @@
{"ue-nb-ant-tx", CONFIG_HLP_UENANTT, 0, u8ptr:&nb_antenna_tx, defuintval:1, TYPE_UINT8, 0}, \
{"ue-scan-carrier", CONFIG_HLP_UESCAN, PARAMFLAG_BOOL, iptr:&UE_scan_carrier, defintval:0, TYPE_INT, 0}, \
{"ue-max-power", NULL, 0, iptr:&(tx_max_power[0]), defintval:90, TYPE_INT, 0}, \
{"emul-iface", CONFIG_HLP_EMULIFACE, 0, strptr:&emul_iface, defstrval:"lo", TYPE_STRING, 100}, \
{"L2-emul", NULL, 0, u8ptr:&nfapi_mode, defuintval:3, TYPE_UINT8, 0}, \
{"emul-iface", CONFIG_HLP_EMULIFACE, 0, strptr:&emul_iface, defstrval:"lo", TYPE_STRING, 100}, \
{"L2-emul", NULL, 0, u8ptr:&nfapi_mode, defuintval:3, TYPE_UINT8, 0}, \
{"num-ues", NULL, 0, u8ptr:&(NB_UE_INST), defuintval:1, TYPE_UINT8, 0}, \
{"r" , CONFIG_HLP_PRB, 0, u8ptr:&(frame_parms[0]->N_RB_DL), defintval:25, TYPE_UINT8, 0}, \
{"dlsch-demod-shift", CONFIG_HLP_DLSHIFT, 0, iptr:(int32_t *)&dlsch_demod_shift, defintval:0, TYPE_INT, 0}, \
......@@ -272,7 +274,7 @@ extern void set_function_spec_param(RU_t *ru);
extern int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue, openair0_config_t *openair0_cfg);
extern void fill_ue_band_info(void);
extern void init_UE(int,int,int,int);
extern void init_UE(int nb_inst,int eMBMS_active, int uecap_xer_in, int timing_correction, int phy_test, int UE_scan, int UE_scan_carrier, runmode_t mode,int rxgain,int txpowermax, int nb_rx, int nb_tx);
extern void init_thread(int sched_runtime, int sched_deadline, int sched_fifo, cpu_set_t *cpuset, char * name);
extern void reset_opp_meas(void);
......
......@@ -79,7 +79,7 @@ void init_UE_threads(int);
void init_UE_threads_stub(int);
void init_UE_single_thread_stub(int);
void *UE_thread(void *arg);
void init_UE(int nb_inst,int,int,int);
void init_UE(int nb_inst,int eMBMS_active, int uecap_xer_in, int timing_correction, int phy_test, int UE_scan, int UE_scan_carrier, runmode_t mode,int rxgain,int txpowermax,int nb_rx,int nb_tx);
void init_UE_stub(int nb_inst,int,int,char*);
void init_UE_stub_single_thread(int nb_inst,int,int,char*);
int init_timer_thread(void);
......@@ -93,6 +93,8 @@ extern int oai_nfapi_sr_indication(nfapi_sr_indication_t *ind);
extern int oai_nfapi_rx_ind(nfapi_rx_indication_t *ind);
extern int multicast_link_write_sock(int groupP, char *dataP, uint32_t sizeP);
extern int simL1flag;
//extern int tx_req_UE_MAC1();
void ue_stub_rx_handler(unsigned int, char *);
......@@ -236,7 +238,7 @@ void init_thread(int sched_runtime, int sched_deadline, int sched_fifo, cpu_set_
}
void init_UE(int nb_inst,int eMBMS_active, int uecap_xer_in, int timing_correction) {
void init_UE(int nb_inst,int eMBMS_active, int uecap_xer_in, int timing_correction, int phy_test, int UE_scan, int UE_scan_carrier, runmode_t mode,int rxgain,int txpowermax,int nb_rx,int nb_tx) {
PHY_VARS_UE *UE;
int inst;
......@@ -248,18 +250,58 @@ void init_UE(int nb_inst,int eMBMS_active, int uecap_xer_in, int timing_correcti
0,// cba_group_active
0); // HO flag
if (PHY_vars_UE_g==NULL) PHY_vars_UE_g = (PHY_VARS_UE***)calloc(1+nb_inst,sizeof(PHY_VARS_UE**));
for (inst=0;inst<nb_inst;inst++) {
LOG_I(PHY,"Initializing memory for UE instance %d (%p)\n",inst,PHY_vars_UE_g[inst]);
PHY_vars_UE_g[inst][0] = init_ue_vars(NULL,inst,0);
if (PHY_vars_UE_g[inst]==NULL) PHY_vars_UE_g[inst] = (PHY_VARS_UE**)calloc(1+MAX_NUM_CCs,sizeof(PHY_VARS_UE*));
if (simL1flag == 0) PHY_vars_UE_g[inst][0] = init_ue_vars(NULL,inst,0);
else PHY_vars_UE_g[inst][0] = init_ue_vars(&RC.ru[0]->frame_parms,inst,0);
// turn off timing control loop in UE
PHY_vars_UE_g[inst][0]->no_timing_correction = timing_correction;
UE = PHY_vars_UE_g[inst][0];
printf("PHY_vars_UE_g[0][0] = %p\n",UE);
if (phy_test==1)
UE->mac_enabled = 0;
else
UE->mac_enabled = 1;
if (UE->mac_enabled == 0) { //set default UL parameters for testing mode
for (int i=0; i<NUMBER_OF_CONNECTED_eNB_MAX; i++) {
UE->pusch_config_dedicated[i].betaOffset_ACK_Index = 0;
UE->pusch_config_dedicated[i].betaOffset_RI_Index = 0;
UE->pusch_config_dedicated[i].betaOffset_CQI_Index = 2;
UE->scheduling_request_config[i].sr_PUCCH_ResourceIndex = 0;
UE->scheduling_request_config[i].sr_ConfigIndex = 7+(0%3);
UE->scheduling_request_config[i].dsr_TransMax = sr_n4;
}
}
UE->UE_scan = UE_scan;
UE->UE_scan_carrier = UE_scan_carrier;
UE->mode = mode;
printf("UE->mode = %d\n",mode);
if (UE->mac_enabled == 1) {
UE->pdcch_vars[0][0]->crnti = 0x1234;
UE->pdcch_vars[1][0]->crnti = 0x1234;
}else {
UE->pdcch_vars[0][0]->crnti = 0x1235;
UE->pdcch_vars[1][0]->crnti = 0x1235;
}
UE->rx_total_gain_dB = rxgain;
UE->tx_power_max_dBm = txpowermax;
UE->frame_parms.nb_antennas_tx = nb_tx;
UE->frame_parms.nb_antennas_rx = nb_rx;
if (simL1flag == 1) init_ue_devices();
LOG_I(PHY,"Intializing UE Threads for instance %d (%p,%p)...\n",inst,PHY_vars_UE_g[inst],PHY_vars_UE_g[inst][0]);
init_UE_threads(inst);
UE = PHY_vars_UE_g[inst][0];
if (oaisim_flag == 0) {
if (simL1flag == 0) {
ret = openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]);
if (ret !=0){
exit_fun("Error loading device library");
......@@ -443,9 +485,12 @@ static void *UE_thread_synch(void *arg)
}
}
/*
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
*/
wait_sync("UE_thread_sync");
printf("Started device, unlocked sync_mutex (UE_sync_thread)\n");
......@@ -1425,6 +1470,14 @@ void *UE_thread(void *arg) {
init_thread(100000, 500000, FIFO_PRIORITY, &cpuset,
"UHD Threads");
/*
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
*/
wait_sync("UE thread\n");
LOG_I(PHY,"UE_thread Got sync\n");
#ifdef NAS_UE
MessageDef *message_p;
message_p = itti_alloc_new_message(TASK_NAS_UE, INITIALIZE_MESSAGE);
......
......@@ -156,6 +156,7 @@ static char *itti_dump_file = NULL;
int UE_scan = 1;
int UE_scan_carrier = 0;
int simL1flag = 0;
runmode_t mode = normal_txrx;
FILE *input_fd=NULL;
......@@ -212,6 +213,7 @@ uint8_t exit_missed_slots=1;
uint64_t num_missed_slots=0; // counter for the number of missed slots
extern void init_ue_devices();
extern void reset_opp_meas(void);
extern void print_opp_meas(void);
extern void init_UE_stub_single_thread(int nb_inst,int eMBMS_active, int uecap_xer_in, char *emul_iface);
......@@ -452,11 +454,11 @@ void *l2l1_task(void *arg) {
break;
case MESSAGE_TEST:
LOG_I(EMU, "Received %s\n", ITTI_MSG_NAME(message_p));
LOG_I(SIM, "Received %s\n", ITTI_MSG_NAME(message_p));
break;
default:
LOG_E(EMU, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
LOG_E(SIM, "Received unexpected message %s\n", ITTI_MSG_NAME(message_p));
break;
}
......@@ -539,8 +541,7 @@ static void get_options(void) {
}
UE_scan=0;
if (tddflag > 0) {
if (tddflag > 0) {
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++)
frame_parms[CC_id]->frame_type = TDD;
}
......@@ -581,7 +582,7 @@ static void get_options(void) {
paramdef_t cmdline_ttraceparams[] =CMDLINE_TTRACEPARAMS_DESC ;
config_process_cmdline( cmdline_ttraceparams,sizeof(cmdline_ttraceparams)/sizeof(paramdef_t),NULL);
#endif
/*
if ( !(CONFIG_ISFLAGSET(CONFIG_ABORT)) && (!(CONFIG_ISFLAGSET(CONFIG_NOOOPT))) ) {
// Here the configuration file is the XER encoded UE capabilities
// Read it in and store in asn1c data structures
......@@ -589,7 +590,7 @@ static void get_options(void) {
printf("%s\n",uecap_xer);
if(nfapi_mode!=3)
uecap_xer_in=1;
} /* UE with config file */
} *//* UE with config file */
}
......@@ -648,7 +649,7 @@ void set_default_frame_parms(LTE_DL_FRAME_PARMS *frame_parms[MAX_NUM_CCs]) {
}
void init_openair0(void) {
void init_openair0(LTE_DL_FRAME_PARMS *frame_parms,int rxgain) {
int card;
int i;
......@@ -658,8 +659,8 @@ void init_openair0(void) {
openair0_cfg[card].mmapped_dma=mmapped_dma;
openair0_cfg[card].configFilename = NULL;
if(frame_parms[0]->N_RB_DL == 100) {
if (frame_parms[0]->threequarter_fs) {
if(frame_parms->N_RB_DL == 100) {
if (frame_parms->threequarter_fs) {
openair0_cfg[card].sample_rate=23.04e6;
openair0_cfg[card].samples_per_frame = 230400;
openair0_cfg[card].tx_bw = 10e6;
......@@ -670,17 +671,17 @@ void init_openair0(void) {
openair0_cfg[card].tx_bw = 10e6;
openair0_cfg[card].rx_bw = 10e6;
}
} else if(frame_parms[0]->N_RB_DL == 50) {
} else if(frame_parms->N_RB_DL == 50) {
openair0_cfg[card].sample_rate=15.36e6;
openair0_cfg[card].samples_per_frame = 153600;
openair0_cfg[card].tx_bw = 5e6;
openair0_cfg[card].rx_bw = 5e6;
} else if (frame_parms[0]->N_RB_DL == 25) {
} else if (frame_parms->N_RB_DL == 25) {
openair0_cfg[card].sample_rate=7.68e6;
openair0_cfg[card].samples_per_frame = 76800;
openair0_cfg[card].tx_bw = 2.5e6;
openair0_cfg[card].rx_bw = 2.5e6;
} else if (frame_parms[0]->N_RB_DL == 6) {
} else if (frame_parms->N_RB_DL == 6) {
openair0_cfg[card].sample_rate=1.92e6;
openair0_cfg[card].samples_per_frame = 19200;
openair0_cfg[card].tx_bw = 1.5e6;
......@@ -690,23 +691,20 @@ void init_openair0(void) {
if (frame_parms[0]->frame_type==TDD)
if (frame_parms->frame_type==TDD)
openair0_cfg[card].duplex_mode = duplex_mode_TDD;
else //FDD
openair0_cfg[card].duplex_mode = duplex_mode_FDD;
printf("HW: Configuring card %d, nb_antennas_tx/rx %d/%d\n",card,
PHY_vars_UE_g[0][0]->frame_parms.nb_antennas_tx,
PHY_vars_UE_g[0][0]->frame_parms.nb_antennas_rx);
openair0_cfg[card].Mod_id = 0;
openair0_cfg[card].num_rb_dl=frame_parms[0]->N_RB_DL;
openair0_cfg[card].num_rb_dl=frame_parms->N_RB_DL;
openair0_cfg[card].clock_source = clock_source;
openair0_cfg[card].tx_num_channels=min(2,PHY_vars_UE_g[0][0]->frame_parms.nb_antennas_tx);
openair0_cfg[card].rx_num_channels=min(2,PHY_vars_UE_g[0][0]->frame_parms.nb_antennas_rx);
openair0_cfg[card].tx_num_channels=min(2,frame_parms->nb_antennas_tx);
openair0_cfg[card].rx_num_channels=min(2,frame_parms->nb_antennas_rx);
for (i=0; i<4; i++) {
......@@ -722,7 +720,7 @@ void init_openair0(void) {
openair0_cfg[card].autocal[i] = 1;
openair0_cfg[card].tx_gain[i] = tx_gain[0][i];
openair0_cfg[card].rx_gain[i] = PHY_vars_UE_g[0][0]->rx_total_gain_dB - rx_gain_off;
openair0_cfg[card].rx_gain[i] = rxgain - rx_gain_off;
openair0_cfg[card].configFilename = rf_config_file;
......@@ -789,7 +787,6 @@ int main( int argc, char **argv )
int CC_id;
uint8_t abstraction_flag=0;
uint8_t beta_ACK=0,beta_RI=0,beta_CQI=2;
// Default value for the number of UEs. It will hold,
// if not changed from the command line option --num-ues
......@@ -809,7 +806,6 @@ int main( int argc, char **argv )
setvbuf(stderr, NULL, _IONBF, 0);
#endif
PHY_VARS_UE *UE[MAX_NUM_CCs];
mode = normal_txrx;
memset(&openair0_cfg[0],0,sizeof(openair0_config_t)*MAX_CARDS);
......@@ -857,7 +853,7 @@ int main( int argc, char **argv )
set_comp_log(OTG, LOG_INFO, LOG_HIGH, 1);
set_comp_log(RRC, LOG_INFO, LOG_HIGH, 1);
#if defined(ENABLE_ITTI)
set_comp_log(EMU, LOG_INFO, LOG_MED, 1);
set_comp_log(SIM, LOG_INFO, LOG_MED, 1);
# if defined(ENABLE_USE_MME)
set_comp_log(NAS, LOG_INFO, LOG_HIGH, 1);
# endif
......@@ -934,33 +930,6 @@ int main( int argc, char **argv )
printf("Before CC \n");
// Panos: From old version
/*if (UE_flag==1) {
PHY_vars_UE_g = malloc(sizeof(PHY_VARS_UE**)*NB_UE_INST);
for (int i=0; i<NB_UE_INST; i++) {
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
PHY_vars_UE_g[i] = malloc(sizeof(PHY_VARS_UE*)*MAX_NUM_CCs);
PHY_vars_UE_g[i][CC_id] = init_ue_vars(frame_parms[CC_id], i,abstraction_flag);
UE[CC_id] = PHY_vars_UE_g[i][CC_id];
printf("PHY_vars_UE_g[inst][%d] = %p\n",CC_id,UE[CC_id]);
if (phy_test==1)
UE[CC_id]->mac_enabled = 0;
else
UE[CC_id]->mac_enabled = 1;
}
}
}*/
//NB_UE_INST=1;
NB_INST=1;
if(nfapi_mode == 3){
PHY_vars_UE_g = malloc(sizeof(PHY_VARS_UE**)*NB_UE_INST);
......@@ -969,80 +938,59 @@ int main( int argc, char **argv )
PHY_vars_UE_g[i] = malloc(sizeof(PHY_VARS_UE*)*MAX_NUM_CCs);
PHY_vars_UE_g[i][CC_id] = init_ue_vars(frame_parms[CC_id], i,abstraction_flag);
UE[CC_id] = PHY_vars_UE_g[i][CC_id];
printf("PHY_vars_UE_g[inst][%d] = %p\n",CC_id,UE[CC_id]);
PHY_vars_UE_g[i][CC_id];
if (phy_test==1)
UE[CC_id]->mac_enabled = 0;
PHY_vars_UE_g[i][CC_id]->mac_enabled = 0;
else
UE[CC_id]->mac_enabled = 1;
PHY_vars_UE_g[i][CC_id]->mac_enabled = 1;
}
}
}
else{
else init_openair0(frame_parms[0],(int)rx_gain[0][0]);
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
//NB_UE_INST=1;
NB_INST=1;
PHY_vars_UE_g = malloc(sizeof(PHY_VARS_UE**));
PHY_vars_UE_g[0] = malloc(sizeof(PHY_VARS_UE*)*MAX_NUM_CCs);
PHY_vars_UE_g[0][CC_id] = init_ue_vars(frame_parms[CC_id], 0,abstraction_flag);
UE[CC_id] = PHY_vars_UE_g[0][CC_id];
printf("PHY_vars_UE_g[0][%d] = %p\n",CC_id,UE[CC_id]);
if (phy_test==1)
UE[CC_id]->mac_enabled = 0;
else
UE[CC_id]->mac_enabled = 1;
if (UE[CC_id]->mac_enabled == 0) { //set default UL parameters for testing mode
for (i=0; i<NUMBER_OF_CONNECTED_eNB_MAX; i++) {
UE[CC_id]->pusch_config_dedicated[i].betaOffset_ACK_Index = beta_ACK;
UE[CC_id]->pusch_config_dedicated[i].betaOffset_RI_Index = beta_RI;
UE[CC_id]->pusch_config_dedicated[i].betaOffset_CQI_Index = beta_CQI;
UE[CC_id]->scheduling_request_config[i].sr_PUCCH_ResourceIndex = 0;
UE[CC_id]->scheduling_request_config[i].sr_ConfigIndex = 7+(0%3);
UE[CC_id]->scheduling_request_config[i].dsr_TransMax = sr_n4;
}
}
if (simL1flag==1) {
AssertFatal(NULL!=load_configmodule(argc,argv),
"[SOFTMODEM] Error, configuration module init failed\n");
UE[CC_id]->UE_scan = UE_scan;
UE[CC_id]->UE_scan_carrier = UE_scan_carrier;
UE[CC_id]->mode = mode;
printf("UE[%d]->mode = %d\n",CC_id,mode);
if (UE[CC_id]->mac_enabled == 1) {
UE[CC_id]->pdcch_vars[0][0]->crnti = 0x1234;
UE[CC_id]->pdcch_vars[1][0]->crnti = 0x1234;
}else {
UE[CC_id]->pdcch_vars[0][0]->crnti = 0x1235;
UE[CC_id]->pdcch_vars[1][0]->crnti = 0x1235;
}
UE[CC_id]->rx_total_gain_dB = (int)rx_gain[CC_id][0] + rx_gain_off;
UE[CC_id]->tx_power_max_dBm = tx_max_power[CC_id];
RCConfig_sim();
}
if (frame_parms[CC_id]->frame_type==FDD) {
UE[CC_id]->N_TA_offset = 0;
}
else {
if (frame_parms[CC_id]->N_RB_DL == 100)
UE[CC_id]->N_TA_offset = 624;
else if (frame_parms[CC_id]->N_RB_DL == 50)
UE[CC_id]->N_TA_offset = 624/2;
else if (frame_parms[CC_id]->N_RB_DL == 25)
UE[CC_id]->N_TA_offset = 624/4;
// start the main UE threads
int eMBMS_active = 0;
}
init_openair0();
if (nfapi_mode==3) // UE-STUB-PNF
{
config_sync_var=0;
wait_nfapi_init("main?");
//Panos: Temporarily we will be using single set of threads for multiple UEs.
//init_UE_stub(1,eMBMS_active,uecap_xer_in,emul_iface);
init_UE_stub_single_thread(NB_UE_INST,eMBMS_active,uecap_xer_in,emul_iface);
}
else {
init_UE(1,eMBMS_active,uecap_xer_in,0,phy_test,UE_scan,UE_scan_carrier,mode,(int)rx_gain[0][0],tx_max_power,
frame_parms[0]->nb_antennas_rx,
frame_parms[0]->nb_antennas_tx);
}
printf("Runtime table\n");
fill_modeled_runtime_table(runtime_phy_rx,runtime_phy_tx);
cpuf=get_cpu_freq_GHz();
if (phy_test==0) {
printf("Filling UE band info\n");
fill_ue_band_info();
dl_phy_sync_success (0, 0, 0, 1);
}
if (nfapi_mode!=3){
number_of_cards = 1;
for(CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
PHY_vars_UE_g[0][CC_id]->rf_map.card=0;
PHY_vars_UE_g[0][CC_id]->rf_map.chain=CC_id+chain_offset;
}
}
cpuf=get_cpu_freq_GHz();
......@@ -1099,8 +1047,8 @@ int main( int argc, char **argv )
#endif
// init UE_PF_PO and mutex lock
pthread_mutex_init(&ue_pf_po_mutex, NULL);
memset (&UE_PF_PO[0][0], 0, sizeof(UE_PF_PO_t)*NUMBER_OF_UE_MAX*MAX_NUM_CCs);
// pthread_mutex_init(&ue_pf_po_mutex, NULL);
// memset (&UE_PF_PO[0][0], 0, sizeof(UE_PF_PO_t)*NUMBER_OF_UE_MAX*MAX_NUM_CCs);
mlockall(MCL_CURRENT | MCL_FUTURE);
......@@ -1170,74 +1118,41 @@ int main( int argc, char **argv )
printf("NFAPI MODE:%s\n", nfapi_mode_str);
// start the main threads
int eMBMS_active = 0;
if (nfapi_mode==3) // UE-STUB-PNF
{
config_sync_var=0;
wait_nfapi_init("main?");
//Panos: Temporarily we will be using single set of threads for multiple UEs.
//init_UE_stub(1,eMBMS_active,uecap_xer_in,emul_iface);
init_UE_stub_single_thread(NB_UE_INST,eMBMS_active,uecap_xer_in,emul_iface);
}
else {
init_UE(1,eMBMS_active,uecap_xer_in,0);
}
if (phy_test==0) {
printf("Filling UE band info\n");
fill_ue_band_info();
dl_phy_sync_success (0, 0, 0, 1);
}
if (nfapi_mode!=3){
number_of_cards = 1;
for(CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
PHY_vars_UE_g[0][CC_id]->rf_map.card=0;
PHY_vars_UE_g[0][CC_id]->rf_map.chain=CC_id+chain_offset;
}
}
// connect the TX/RX buffers
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
#ifdef OAI_USRP
UE[CC_id]->hw_timing_advance = timing_advance;
#else
UE[CC_id]->hw_timing_advance = 160;
#endif
}
/*
if(nfapi_mode!=3) {
if (setup_ue_buffers(UE,&openair0_cfg[0])!=0) {
if (setup_ue_buffers(PHY_vars_UE_g[0],&openair0_cfg[0])!=0) {
printf("Error setting up eNB buffer\n");
exit(-1);
}
}
*/
if (input_fd) {
printf("Reading in from file to antenna buffer %d\n",0);
if (fread(UE[0]->common_vars.rxdata[0],
if (fread(PHY_vars_UE_g[0][0]->common_vars.rxdata[0],
sizeof(int32_t),
frame_parms[0]->samples_per_tti*10,
input_fd) != frame_parms[0]->samples_per_tti*10)
printf("error reading from file\n");
}
//p_exmimo_config->framing.tdd_config = TXRXSWITCH_TESTRX;
if (simL1flag==1) init_ocm();
printf("Sending sync to all threads\n");
pthread_mutex_lock(&sync_mutex);
sync_var=0;
pthread_cond_broadcast(&sync_cond);
pthread_mutex_unlock(&sync_mutex);
printf("About to call end_configmodule() from %s() %s:%d\n", __FUNCTION__, __FILE__, __LINE__);
end_configmodule();
printf("Called end_configmodule() from %s() %s:%d\n", __FUNCTION__, __FILE__, __LINE__);
......@@ -1246,6 +1161,7 @@ int main( int argc, char **argv )
printf("TYPE <CTRL-C> TO TERMINATE\n");
//getchar();
#if defined(ENABLE_ITTI)
printf("Entering ITTI signals handler\n");
itti_wait_tasks_end();
......@@ -1254,9 +1170,9 @@ int main( int argc, char **argv )
printf("oai_exit=%d\n",oai_exit);
#else
while (oai_exit==0)
rt_sleep_ns(100000000ULL);
printf("Terminating application - oai_exit=%d\n",oai_exit);
while (oai_exit==0)
rt_sleep_ns(100000000ULL);
printf("Terminating application - oai_exit=%d\n",oai_exit);
#endif
......@@ -1279,7 +1195,7 @@ int main( int argc, char **argv )
pthread_cond_destroy(&sync_cond);
pthread_mutex_destroy(&sync_mutex);
pthread_mutex_destroy(&ue_pf_po_mutex);
// pthread_mutex_destroy(&ue_pf_po_mutex);
// *** Handle per CC_id openair0
if (PHY_vars_UE_g[0][0]->rfdevice.trx_end_func)
......
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file rfsim.c
* \brief function for simulated RF device
* \author R. Knopp
* \date 2018
* \version 1.0
* \company Eurecom
* \email: openair_tech@eurecom.fr
* \note
* \warning
*/
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <execinfo.h>
#include <time.h>
#include <mcheck.h>
#include <sys/timerfd.h>
#include "assertions.h"
#include "rfsim.h"
#include "openair1/SIMULATION/TOOLS/sim.h"
#include "enb_config.h"
#include "enb_paramdef.h"
#include "platform_constants.h"
#include "common/config/config_paramdesc.h"
#include "common/config/config_userapi.h"
#include "common/ran_context.h"
#include "PHY/defs_UE.h"
#include "PHY/defs_eNB.h"
RAN_CONTEXT_t RC;
extern PHY_VARS_UE ***PHY_vars_UE_g;
// put all of these in a common structure after
channel_desc_t *RU2UE[NUMBER_OF_RU_MAX][NUMBER_OF_UE_MAX][MAX_NUM_CCs];
channel_desc_t *UE2RU[NUMBER_OF_UE_MAX][NUMBER_OF_RU_MAX][MAX_NUM_CCs];
double r_re_DL[NUMBER_OF_UE_MAX][2][30720];
double r_im_DL[NUMBER_OF_UE_MAX][2][30720];
double r_re_UL[NUMBER_OF_eNB_MAX][2][30720];
double r_im_UL[NUMBER_OF_eNB_MAX][2][30720];
int RU_output_mask[NUMBER_OF_UE_MAX];
int UE_output_mask[NUMBER_OF_RU_MAX];
pthread_mutex_t RU_output_mutex[NUMBER_OF_UE_MAX];
pthread_mutex_t UE_output_mutex[NUMBER_OF_RU_MAX];
pthread_mutex_t subframe_mutex;
int subframe_ru_mask=0,subframe_UE_mask=0;
openair0_timestamp current_ru_rx_timestamp[NUMBER_OF_RU_MAX][MAX_NUM_CCs];
openair0_timestamp current_UE_rx_timestamp[MAX_MOBILES_PER_ENB][MAX_NUM_CCs];
openair0_timestamp last_ru_rx_timestamp[NUMBER_OF_RU_MAX][MAX_NUM_CCs];
openair0_timestamp last_UE_rx_timestamp[MAX_MOBILES_PER_ENB][MAX_NUM_CCs];
double ru_amp[NUMBER_OF_RU_MAX];
pthread_t rfsim_thread;
void init_ru_devices(void);
void init_RU(const char*);
void rfsim_top(void *n_frames);
void wait_RUs(void)
{
int i;
// wait for all RUs to be configured over fronthaul
pthread_mutex_lock(&RC.ru_mutex);
while (RC.ru_mask>0) {
pthread_cond_wait(&RC.ru_cond,&RC.ru_mutex);
}
// copy frame parameters from RU to UEs
for (i=0;i<NB_UE_INST;i++) {
/*
PHY_vars_UE_g[i][0]->frame_parms.N_RB_DL = RC.ru[0]->frame_parms.N_RB_DL;
PHY_vars_UE_g[i][0]->frame_parms.N_RB_UL = RC.ru[0]->frame_parms.N_RB_UL;
PHY_vars_UE_g[i][0]->frame_parms.nb_antennas_tx = 1;
PHY_vars_UE_g[i][0]->frame_parms.nb_antennas_rx = 1;
// set initially to 2, it will be revised after initial synchronization
PHY_vars_UE_g[i][0]->frame_parms.nb_antenna_ports_eNB = 2;
PHY_vars_UE_g[i][0]->frame_parms.tdd_config = 1;
PHY_vars_UE_g[i][0]->frame_parms.dl_CarrierFreq = RC.ru[0]->frame_parms.dl_CarrierFreq;
PHY_vars_UE_g[i][0]->frame_parms.ul_CarrierFreq = RC.ru[0]->frame_parms.ul_CarrierFreq;
PHY_vars_UE_g[i][0]->frame_parms.eutra_band = RC.ru[0]->frame_parms.eutra_band;
LOG_I(PHY,"Initializing UE %d frame parameters from RU information: N_RB_DL %d, p %d, dl_Carrierfreq %u, ul_CarrierFreq %u, eutra_band %d\n",
i,
PHY_vars_UE_g[i][0]->frame_parms.N_RB_DL,
PHY_vars_UE_g[i][0]->frame_parms.nb_antenna_ports_eNB,
PHY_vars_UE_g[i][0]->frame_parms.dl_CarrierFreq,
PHY_vars_UE_g[i][0]->frame_parms.ul_CarrierFreq,
PHY_vars_UE_g[i][0]->frame_parms.eutra_band);
*/
current_UE_rx_timestamp[i][0] = RC.ru[0]->frame_parms.samples_per_tti + RC.ru[0]->frame_parms.ofdm_symbol_size + RC.ru[0]->frame_parms.nb_prefix_samples0;
}
for (int ru_id=0;ru_id<RC.nb_RU;ru_id++) current_ru_rx_timestamp[ru_id][0] = RC.ru[ru_id]->frame_parms.samples_per_tti;
printf("RUs are ready, let's go\n");
}
void wait_eNBs(void)
{
return;
}
void RCConfig_sim(void) {
paramlist_def_t RUParamList = {CONFIG_STRING_RU_LIST,NULL,0};
// AssertFatal(RC.config_file_name!=NULL,"configuration file is undefined\n");
// Get num RU instances
config_getlist( &RUParamList,NULL,0, NULL);
RC.nb_RU = RUParamList.numelt;
printf("returned with %d rus\n",RC.nb_RU);
init_RU(NULL);
printf("Waiting for RUs to get set up\n");
wait_RUs();
init_ru_devices();
int nframes = 100000;
AssertFatal(0 == pthread_create(&rfsim_thread,
NULL,
rfsim_top,
(void*)&nframes), "");
}
int ru_trx_start(openair0_device *device) {
return(0);
}
void ru_trx_end(openair0_device *device) {
return;
}
int ru_trx_stop(openair0_device *device) {
return(0);
}
int UE_trx_start(openair0_device *device) {
return(0);
}
void UE_trx_end(openair0_device *device) {
return;
}
int UE_trx_stop(openair0_device *device) {
return(0);
}
int ru_trx_set_freq(openair0_device *device, openair0_config_t *openair0_cfg, int dummy) {
return(0);
}
int ru_trx_set_gains(openair0_device *device, openair0_config_t *openair0_cfg) {
return(0);
}
int UE_trx_set_freq(openair0_device *device, openair0_config_t *openair0_cfg, int dummy) {
return(0);
}
int UE_trx_set_gains(openair0_device *device, openair0_config_t *openair0_cfg) {
return(0);
}
extern pthread_mutex_t subframe_mutex;
extern int subframe_ru_mask,subframe_UE_mask;
int ru_trx_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc) {
int ru_id = device->Mod_id;
int CC_id = device->CC_id;
int subframe;
int sample_count=0;
*ptimestamp = last_ru_rx_timestamp[ru_id][CC_id];
LOG_D(SIM,"RU_trx_read nsamps %d TS(%llu,%llu) => subframe %d\n",nsamps,
(unsigned long long)current_ru_rx_timestamp[ru_id][CC_id],
(unsigned long long)last_ru_rx_timestamp[ru_id][CC_id],
(int)((*ptimestamp/RC.ru[ru_id]->frame_parms.samples_per_tti)%10));
// if we're at a subframe boundary generate UL signals for this ru
while (sample_count<nsamps) {
while (current_ru_rx_timestamp[ru_id][CC_id]<
(nsamps+last_ru_rx_timestamp[ru_id][CC_id])) {
LOG_D(SIM,"RU: current TS %"PRIi64", last TS %"PRIi64", sleeping\n",current_ru_rx_timestamp[ru_id][CC_id],last_ru_rx_timestamp[ru_id][CC_id]);
usleep(500);
}
subframe = (last_ru_rx_timestamp[ru_id][CC_id]/RC.ru[ru_id]->frame_parms.samples_per_tti)%10;
if (subframe_select(&RC.ru[ru_id]->frame_parms,subframe) != SF_DL || RC.ru[ru_id]->frame_parms.frame_type == FDD) {
LOG_D(SIM,"RU_trx_read generating UL subframe %d (Ts %llu, current TS %llu)\n",
subframe,(unsigned long long)*ptimestamp,
(unsigned long long)current_ru_rx_timestamp[ru_id][CC_id]);
do_UL_sig(UE2RU,
subframe,
0, // abstraction_flag
&RC.ru[ru_id]->frame_parms,
0, // frame is only used for abstraction
ru_id,
CC_id);
}
last_ru_rx_timestamp[ru_id][CC_id] += RC.ru[ru_id]->frame_parms.samples_per_tti;
sample_count += RC.ru[ru_id]->frame_parms.samples_per_tti;
}
return(nsamps);
}
int UE_trx_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc)
{
int UE_id = device->Mod_id;
int CC_id = device->CC_id;
int subframe;
int sample_count=0;
int read_size;
int sptti = PHY_vars_UE_g[UE_id][CC_id]->frame_parms.samples_per_tti;
*ptimestamp = last_UE_rx_timestamp[UE_id][CC_id];
LOG_D(SIM,"UE %d DL simulation 0: UE_trx_read nsamps %d TS %llu (%llu, offset %d) antenna %d\n",
UE_id,
nsamps,
(unsigned long long)current_UE_rx_timestamp[UE_id][CC_id],
(unsigned long long)last_UE_rx_timestamp[UE_id][CC_id],
(int)(last_UE_rx_timestamp[UE_id][CC_id]%sptti),
cc);
if (nsamps < sptti)
read_size = nsamps;
else
read_size = sptti;
while (sample_count<nsamps) {
LOG_D(SIM,"UE %d: DL simulation 1: UE_trx_read : current TS now %"PRIi64", last TS %"PRIi64"\n",UE_id,current_UE_rx_timestamp[UE_id][CC_id],last_UE_rx_timestamp[UE_id][CC_id]);
while (current_UE_rx_timestamp[UE_id][CC_id] <
(last_UE_rx_timestamp[UE_id][CC_id]+read_size)) {
LOG_D(SIM,"UE %d: DL simulation 2: UE_trx_read : current TS %"PRIi64", last TS %"PRIi64", sleeping\n",UE_id,current_UE_rx_timestamp[UE_id][CC_id],last_UE_rx_timestamp[UE_id][CC_id]);
usleep(500);
}
LOG_D(SIM,"UE %d: DL simulation 3: UE_trx_read : current TS now %"PRIi64", last TS %"PRIi64"\n",UE_id,current_UE_rx_timestamp[UE_id][CC_id],last_UE_rx_timestamp[UE_id][CC_id]);
// if we cross a subframe-boundary
subframe = (last_UE_rx_timestamp[UE_id][CC_id]/sptti)%10;
// tell top-level we are busy
pthread_mutex_lock(&subframe_mutex);
subframe_UE_mask|=(1<<UE_id);
LOG_D(SIM,"Setting UE_id %d mask to busy (%d)\n",UE_id,subframe_UE_mask);
pthread_mutex_unlock(&subframe_mutex);
LOG_D(PHY,"UE %d: DL simulation 4: UE_trx_read generating DL subframe %d (Ts %llu, current TS %llu,nsamps %d)\n",
UE_id,subframe,(unsigned long long)*ptimestamp,
(unsigned long long)current_UE_rx_timestamp[UE_id][CC_id],
nsamps);
LOG_D(SIM,"UE %d: DL simulation 5: Doing DL simulation for %d samples starting in subframe %d at offset %d\n",
UE_id,nsamps,subframe,
(int)(last_UE_rx_timestamp[UE_id][CC_id]%sptti));
do_DL_sig(RU2UE,
subframe,
last_UE_rx_timestamp[UE_id][CC_id]%sptti,
sptti,
0, //abstraction_flag,
&PHY_vars_UE_g[UE_id][CC_id]->frame_parms,
UE_id,
CC_id);
LOG_D(SIM,"UE %d: DL simulation 6: UE_trx_read @ TS %"PRIi64" (%"PRIi64")=> frame %d, subframe %d\n",
UE_id, current_UE_rx_timestamp[UE_id][CC_id],
last_UE_rx_timestamp[UE_id][CC_id],
(int)((last_UE_rx_timestamp[UE_id][CC_id]/(sptti*10))&1023),
subframe);
last_UE_rx_timestamp[UE_id][CC_id] += read_size;
sample_count += read_size;
}
return(nsamps);
}
extern double ru_amp[NUMBER_OF_RU_MAX];
int ru_trx_write(openair0_device *device,openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags) {
int ru_id = device->Mod_id;
LTE_DL_FRAME_PARMS *frame_parms = &RC.ru[ru_id]->frame_parms;
pthread_mutex_lock(&subframe_mutex);
LOG_D(SIM,"[TXPATH] ru_trx_write: RU %d mask %d\n",ru_id,subframe_ru_mask);
pthread_mutex_unlock(&subframe_mutex);
// compute amplitude of TX signal from first symbol in subframe
// note: assumes that the packet is an entire subframe
ru_amp[ru_id] = 0;
for (int aa=0; aa<RC.ru[ru_id]->nb_tx; aa++) {
ru_amp[ru_id] += (double)signal_energy((int32_t*)buff[aa],frame_parms->ofdm_symbol_size)/(12*frame_parms->N_RB_DL);
}
ru_amp[ru_id] = sqrt(ru_amp[ru_id]);
LOG_D(SIM,"Setting amp for RU %d to %f (%d)\n",ru_id,ru_amp[ru_id], dB_fixed((double)signal_energy((int32_t*)buff[0],frame_parms->ofdm_symbol_size)));
// tell top-level we are done
pthread_mutex_lock(&subframe_mutex);
subframe_ru_mask|=(1<<ru_id);
LOG_D(SIM,"Setting RU %d to busy\n",ru_id);
pthread_mutex_unlock(&subframe_mutex);
return(nsamps);
}
int UE_trx_write(openair0_device *device,openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags) {
return(nsamps);
}
void init_ru_devices(){
module_id_t ru_id;
RU_t *ru;
// allocate memory for RU if not already done
if (RC.ru==NULL) RC.ru = (RU_t**)malloc(RC.nb_RU*sizeof(RU_t*));
for (ru_id=0;ru_id<RC.nb_RU;ru_id++) {
LOG_I(SIM,"Initiaizing rfdevice for RU %d\n",ru_id);
if (RC.ru[ru_id]==NULL) RC.ru[ru_id] = (RU_t*)malloc(sizeof(RU_t));
ru = RC.ru[ru_id];
ru->rfdevice.Mod_id = ru_id;
ru->rfdevice.CC_id = 0;
ru->rfdevice.trx_start_func = ru_trx_start;
ru->rfdevice.trx_read_func = ru_trx_read;
ru->rfdevice.trx_write_func = ru_trx_write;
ru->rfdevice.trx_end_func = ru_trx_end;
ru->rfdevice.trx_stop_func = ru_trx_stop;
ru->rfdevice.trx_set_freq_func = ru_trx_set_freq;
ru->rfdevice.trx_set_gains_func = ru_trx_set_gains;
last_ru_rx_timestamp[ru_id][0] = 0;
}
}
init_ue_devices() {
AssertFatal(PHY_vars_UE_g!=NULL,"Top-level structure for UE is null\n");
for (int UE_id=0;UE_id<NB_UE_INST;UE_id++) {
AssertFatal(PHY_vars_UE_g[UE_id]!=NULL,"UE %d context is not allocated\n");
printf("Initializing UE %d\n",UE_id);
for (int CC_id=0;CC_id<MAX_NUM_CCs;CC_id++) {
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.Mod_id = UE_id;
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.CC_id = CC_id;
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.trx_start_func = UE_trx_start;
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.trx_read_func = UE_trx_read;
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.trx_write_func = UE_trx_write;
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.trx_end_func = UE_trx_end;
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.trx_stop_func = UE_trx_stop;
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.trx_set_freq_func = UE_trx_set_freq;
PHY_vars_UE_g[UE_id][CC_id]->rfdevice.trx_set_gains_func = UE_trx_set_gains;
last_UE_rx_timestamp[UE_id][CC_id] = 0;
}
}
}
void init_ocm(double snr_dB,double sinr_dB)
{
module_id_t UE_id, ru_id;
int CC_id;
randominit(0);
set_taus_seed(0);
init_channel_vars ();//fp, &s_re, &s_im, &r_re, &r_im, &r_re0, &r_im0);
// initialize channel descriptors
LOG_I(PHY,"Initializing channel descriptors (nb_RU %d, nb_UE %d)\n",RC.nb_RU,NB_UE_INST);
for (ru_id = 0; ru_id < RC.nb_RU; ru_id++) {
for (UE_id = 0; UE_id < NB_UE_INST; UE_id++) {
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
LOG_I(PHY,"Initializing channel descriptors (RU %d, UE %d) for N_RB_DL %d\n",ru_id,UE_id,
RC.ru[ru_id]->frame_parms.N_RB_DL);
RU2UE[ru_id][UE_id][CC_id] =
new_channel_desc_scm(RC.ru[ru_id]->nb_tx,
PHY_vars_UE_g[UE_id][CC_id]->frame_parms.nb_antennas_rx,
AWGN,
N_RB2sampling_rate(RC.ru[ru_id]->frame_parms.N_RB_DL),
N_RB2channel_bandwidth(RC.ru[ru_id]->frame_parms.N_RB_DL),
0.0,
0,
0);
random_channel(RU2UE[ru_id][UE_id][CC_id],0);
LOG_D(OCM,"[SIM] Initializing channel (%s) from UE %d to ru %d\n", "AWGN",UE_id, ru_id);
UE2RU[UE_id][ru_id][CC_id] =
new_channel_desc_scm(PHY_vars_UE_g[UE_id][CC_id]->frame_parms.nb_antennas_tx,
RC.ru[ru_id]->nb_rx,
AWGN,
N_RB2sampling_rate(RC.ru[ru_id]->frame_parms.N_RB_UL),
N_RB2channel_bandwidth(RC.ru[ru_id]->frame_parms.N_RB_UL),
0.0,
0,
0);
random_channel(UE2RU[UE_id][ru_id][CC_id],0);
// to make channel reciprocal uncomment following line instead of previous. However this only works for SISO at the moment. For MIMO the channel would need to be transposed.
//UE2RU[UE_id][ru_id] = RU2UE[ru_id][UE_id];
AssertFatal(RU2UE[ru_id][UE_id][CC_id]!=NULL,"RU2UE[%d][%d][%d] is null\n",ru_id,UE_id,CC_id);
AssertFatal(UE2RU[UE_id][ru_id][CC_id]!=NULL,"UE2RU[%d][%d][%d] is null\n",UE_id,ru_id,CC_id);
//pathloss: -132.24 dBm/15kHz RE + target SNR - eNB TX power per RE
if (ru_id == (UE_id % RC.nb_RU)) {
RU2UE[ru_id][UE_id][CC_id]->path_loss_dB = -132.24 + snr_dB - RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower;
UE2RU[UE_id][ru_id][CC_id]->path_loss_dB = -132.24 + snr_dB - RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower;
} else {
RU2UE[ru_id][UE_id][CC_id]->path_loss_dB = -132.24 + sinr_dB - RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower;
UE2RU[UE_id][ru_id][CC_id]->path_loss_dB = -132.24 + sinr_dB - RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower;
}
LOG_D(OCM,"Path loss from eNB %d to UE %d (CCid %d)=> %f dB (eNB TX %d, SNR %f)\n",ru_id,UE_id,CC_id,
RU2UE[ru_id][UE_id][CC_id]->path_loss_dB,
RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower,snr_dB);
}
}
}
}
void update_ocm(double snr_dB,double sinr_dB)
{
module_id_t UE_id, ru_id;
int CC_id;
for (ru_id = 0; ru_id < RC.nb_RU; ru_id++) {
for (UE_id = 0; UE_id < NB_UE_INST; UE_id++) {
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
AssertFatal(RU2UE[ru_id][UE_id][CC_id]!=NULL,"RU2UE[%d][%d][%d] is null\n",ru_id,UE_id,CC_id);
AssertFatal(UE2RU[UE_id][ru_id][CC_id]!=NULL,"UE2RU[%d][%d][%d] is null\n",UE_id,ru_id,CC_id);
//pathloss: -132.24 dBm/15kHz RE + target SNR - eNB TX power per RE
if (ru_id == (UE_id % RC.nb_RU)) {
RU2UE[ru_id][UE_id][CC_id]->path_loss_dB = -132.24 + snr_dB - RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower;
UE2RU[UE_id][ru_id][CC_id]->path_loss_dB = -132.24 + snr_dB - RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower;
} else {
RU2UE[ru_id][UE_id][CC_id]->path_loss_dB = -132.24 + sinr_dB - RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower;
UE2RU[UE_id][ru_id][CC_id]->path_loss_dB = -132.24 + sinr_dB - RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower;
}
LOG_D(OCM,"Path loss from eNB %d to UE %d (CCid %d)=> %f dB (eNB TX %d, SNR %f)\n",ru_id,UE_id,CC_id,
RU2UE[ru_id][UE_id][CC_id]->path_loss_dB,
RC.ru[ru_id]->frame_parms.pdsch_config_common.referenceSignalPower,snr_dB);
}
}
}
}
void init_channel_vars(void)
{
int i;
memset(RU_output_mask,0,sizeof(int)*NUMBER_OF_UE_MAX);
for (i=0;i<NB_UE_INST;i++)
pthread_mutex_init(&RU_output_mutex[i],NULL);
memset(UE_output_mask,0,sizeof(int)*NUMBER_OF_RU_MAX);
for (i=0;i<RC.nb_RU;i++)
pthread_mutex_init(&UE_output_mutex[i],NULL);
}
void rfsim_top(void *n_frames) {
LOG_I(PHY,"rfsim_top: Waiting for sync\n");
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
for (int frame = 0;
frame < *(int*)n_frames;
frame++) {
for (int sf = 0; sf < 10; sf++) {
int CC_id=0;
int all_done=0;
printf("Running %d.%d\n",frame,sf);
while (all_done==0) {
pthread_mutex_lock(&subframe_mutex);
int subframe_ru_mask_local = (subframe_select(&RC.ru[0]->frame_parms,(sf+4)%10)!=SF_UL) ? subframe_ru_mask : ((1<<RC.nb_RU)-1);
int subframe_UE_mask_local = (RC.ru[0]->frame_parms.frame_type == FDD || subframe_select(&RC.ru[0]->frame_parms,(sf+4)%10)!=SF_DL) ? subframe_UE_mask : ((1<<NB_UE_INST)-1);
pthread_mutex_unlock(&subframe_mutex);
LOG_D(SIM,"Frame %d, Subframe %d, NB_RU %d, NB_UE %d: Checking masks %x,%x\n",frame,sf,RC.nb_RU,NB_UE_INST,subframe_ru_mask_local,subframe_UE_mask_local);
if ((subframe_ru_mask_local == ((1<<RC.nb_RU)-1)) &&
(subframe_UE_mask_local == ((1<<NB_UE_INST)-1))) all_done=1;
else usleep(1500);
}
//clear subframe masks for next round
pthread_mutex_lock(&subframe_mutex);
subframe_ru_mask=0;
subframe_UE_mask=0;
pthread_mutex_unlock(&subframe_mutex);
// increment timestamps
for (int ru_id=0;ru_id<RC.nb_RU;ru_id++) {
current_ru_rx_timestamp[ru_id][CC_id] += RC.ru[ru_id]->frame_parms.samples_per_tti;
LOG_D(SIM,"RU %d/%d: TS %"PRIi64"\n",ru_id,CC_id,current_ru_rx_timestamp[ru_id][CC_id]);
}
for (int UE_inst = 0; UE_inst<NB_UE_INST;UE_inst++) {
current_UE_rx_timestamp[UE_inst][CC_id] += PHY_vars_UE_g[UE_inst][CC_id]->frame_parms.samples_per_tti;
LOG_D(SIM,"UE %d/%d: TS %"PRIi64"\n",UE_inst,CC_id,current_UE_rx_timestamp[UE_inst][CC_id]);
}
if (oai_exit == 1) return;
}
}
}
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <time.h>
#include "SIMULATION/TOOLS/sim.h"
#include "SIMULATION/RF/rf.h"
#include "PHY/types.h"
#include "PHY/defs_eNB.h"
#include "PHY/phy_extern.h"
#include "PHY/phy_extern_ue.h"
#include "LAYER2/MAC/mac.h"
#include "LAYER2/MAC/mac_extern.h"
#include "UTIL/LOG/log_if.h"
#include "UTIL/LOG/log_extern.h"
#include "RRC/LTE/rrc_extern.h"
#include "PHY_INTERFACE/phy_interface_extern.h"
#include "UTIL/OCG/OCG.h"
#include "UTIL/OPT/opt.h" // to test OPT
#include "UTIL/FIFO/types.h"
#ifdef XFORMS
#include "forms.h"
#include "phy_procedures_sim_form.h"
#endif
#include "oaisim.h"
#define RF
#define DEBUG_SIM
/*
#undef LOG_D
#define LOG_D(A,B,C...) printf(B,C)
*/
int number_rb_ul;
int first_rbUL ;
extern Signal_buffers_t *signal_buffers_g;
double r_re_DL[NUMBER_OF_UE_MAX][2][30720];
double r_im_DL[NUMBER_OF_UE_MAX][2][30720];
double r_re_UL[NUMBER_OF_eNB_MAX][2][30720];
double r_im_UL[NUMBER_OF_eNB_MAX][2][30720];
int RU_output_mask[NUMBER_OF_UE_MAX];
int UE_output_mask[NUMBER_OF_RU_MAX];
pthread_mutex_t RU_output_mutex[NUMBER_OF_UE_MAX];
pthread_mutex_t UE_output_mutex[NUMBER_OF_RU_MAX];
double ru_amp[NUMBER_OF_RU_MAX];
void do_DL_sig(channel_desc_t *RU2UE[NUMBER_OF_RU_MAX][NUMBER_OF_UE_MAX][MAX_NUM_CCs],
node_desc_t *enb_data[NUMBER_OF_RU_MAX],
node_desc_t *ue_data[NUMBER_OF_UE_MAX],
uint16_t subframe,
uint32_t offset,
uint32_t length,
uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *ue_frame_parms,
uint8_t UE_id,
int CC_id)
{
int32_t att_eNB_id=-1;
int32_t **txdata,**rxdata;
uint32_t eNB_id,ru_id=0;
double tx_pwr;
double rx_pwr;
int32_t rx_pwr2;
uint32_t i,aa;
uint32_t sf_offset;
double min_path_loss=-200;
uint8_t hold_channel=0;
uint8_t nb_antennas_rx = RU2UE[0][0][CC_id]->nb_rx; // number of rx antennas at UE
uint8_t nb_antennas_tx = RU2UE[0][0][CC_id]->nb_tx; // number of tx antennas at eNB
double s_re0[30720];
double s_re1[30720];
double *s_re[2];
double s_im0[30720];
double s_im1[30720];
double *s_im[2];
double r_re00[30720];
double r_re01[30720];
double *r_re0[2];
double r_im00[30720];
double r_im01[30720];
double *r_im0[2];
LTE_DL_FRAME_PARMS *frame_parms;
s_re[0] = s_re0;
s_im[0] = s_im0;
s_re[1] = s_re1;
s_im[1] = s_im1;
r_re0[0] = r_re00;
r_im0[0] = r_im00;
r_re0[1] = r_re01;
r_im0[1] = r_im01;
if (subframe==0)
hold_channel = 0;
else
hold_channel = 1;
if (abstraction_flag != 0) {
//for (UE_id=0;UE_id<NB_UE_INST;UE_id++) {
if (!hold_channel) {
// calculate the random channel from each RU
for (ru_id=0; ru_id<RC.nb_RU; ru_id++) {
frame_parms = &RC.ru[ru_id]->frame_parms;
random_channel(RU2UE[ru_id][UE_id][CC_id],abstraction_flag);
/*
for (i=0;i<RU2UE[eNB_id][UE_id]->nb_taps;i++)
printf("RU2UE[%d][%d]->a[0][%d] = (%f,%f)\n",eNB_id,UE_id,i,RU2UE[eNB_id][UE_id]->a[0][i].x,RU2UE[eNB_id][UE_id]->a[0][i].y);
*/
freq_channel(RU2UE[ru_id][UE_id][CC_id], frame_parms->N_RB_DL,frame_parms->N_RB_DL*12+1);
}
// find out which eNB the UE is attached to
/*
for (eNB_id=0; eNB_id<RC.nb_inst; eNB_id++) {
if (find_ue(PHY_vars_UE_g[UE_id][CC_id]->pdcch_vars[0][0]->crnti,RC.eNB[eNB_id][CC_id])>=0) {
// UE with UE_id is connected to eNb with eNB_id
att_eNB_id=eNB_id;
LOG_D(OCM,"A: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
}
}
*/
// if UE is not attached yet, find assume its the eNB with the smallest pathloss
if (att_eNB_id<0) {
for (eNB_id=0; eNB_id<NB_eNB_INST; eNB_id++) {
for (int ru=0;ru<RC.nb_RU;ru++) {
ru_id = RC.eNB[eNB_id][CC_id]->RU_list[ru]->idx;
if (min_path_loss<RU2UE[ru_id][UE_id][CC_id]->path_loss_dB) {
min_path_loss = RU2UE[ru_id][UE_id][CC_id]->path_loss_dB;
att_eNB_id=eNB_id;
LOG_D(OCM,"B: UE attached to eNB (UE%d->eNB%d)\n",UE_id,eNB_id);
}
}
}
}
if (att_eNB_id<0) {
LOG_E(OCM,"Cannot find eNB for UE %d, return\n",UE_id);
return; //exit(-1);
}
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp2(RU2UE[att_eNB_id][UE_id][CC_id]->ch[0],
RU2UE[att_eNB_id][UE_id][CC_id]->channel_length)*RU2UE[att_eNB_id][UE_id][CC_id]->channel_length;
LOG_D(OCM,"Channel (CCid %d) eNB %d => UE %d : tx_power %d dBm, path_loss %f dB\n",
CC_id,att_eNB_id,UE_id,
frame_parms->pdsch_config_common.referenceSignalPower,
RU2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB);
#endif
//dlsch_abstraction(PHY_vars_UE_g[UE_id]->sinr_dB, rb_alloc, 8);
// fill in perfect channel estimates
channel_desc_t *desc1 = RU2UE[att_eNB_id][UE_id][CC_id];
int32_t **dl_channel_est = PHY_vars_UE_g[UE_id][CC_id]->common_vars.common_vars_rx_data_per_thread[subframe&0x1].dl_ch_estimates[0];
// double scale = pow(10.0,(enb_data[att_eNB_id]->tx_power_dBm + RU2UE[att_eNB_id][UE_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id]->rx_total_gain_dB)/20.0);
double scale = pow(10.0,(frame_parms->pdsch_config_common.referenceSignalPower+RU2UE[att_eNB_id][UE_id][CC_id]->path_loss_dB + (double) PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB)/20.0);
LOG_D(OCM,"scale =%lf (%d dB)\n",scale,(int) (20*log10(scale)));
// freq_channel(desc1,frame_parms->N_RB_DL,nb_samples);
//write_output("channel.m","ch",desc1->ch[0],desc1->channel_length,1,8);
//write_output("channelF.m","chF",desc1->chF[0],nb_samples,1,8);
int count,count1,a_rx,a_tx;
for(a_tx=0; a_tx<nb_antennas_tx; a_tx++) {
for (a_rx=0; a_rx<nb_antennas_rx; a_rx++) {
//for (count=0;count<frame_parms->symbols_per_tti/2;count++)
for (count=0; count<1; count++) {
for (count1=0; count1<frame_parms->N_RB_DL*12; count1++) {
((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].x*scale);
((int16_t *) dl_channel_est[(a_tx<<1)+a_rx])[2*count1+1+(count*frame_parms->ofdm_symbol_size+LTE_CE_FILTER_LENGTH)*2]=(int16_t)(desc1->chF[a_rx+(a_tx*nb_antennas_rx)][count1].y*scale) ;
}
}
}
}
// calculate the SNR for the attached eNB (this assumes eNB always uses PMI stored in eNB_UE_stats; to be improved)
init_snr(RU2UE[att_eNB_id][UE_id][CC_id], enb_data[att_eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB, &PHY_vars_UE_g[UE_id][CC_id]->N0,
PHY_vars_UE_g[UE_id][CC_id]->transmission_mode[att_eNB_id], RC.eNB[att_eNB_id][CC_id]->UE_stats[UE_id].DL_pmi_single,
RC.eNB[att_eNB_id][CC_id]->mu_mimo_mode[UE_id].dl_pow_off,RC.eNB[att_eNB_id][CC_id]->frame_parms.N_RB_DL);
// calculate sinr here
for (eNB_id = 0; eNB_id < NB_eNB_INST; eNB_id++) {
if (att_eNB_id != eNB_id) {
calculate_sinr(RU2UE[eNB_id][UE_id][CC_id], enb_data[eNB_id], ue_data[UE_id], PHY_vars_UE_g[UE_id][CC_id]->sinr_dB,
RC.eNB[att_eNB_id][CC_id]->frame_parms.N_RB_DL);
}
}
} // hold channel
}
else { //abstraction_flag
pthread_mutex_lock(&RU_output_mutex[UE_id]);
if (RU_output_mask[UE_id] == 0) { // This is the first eNodeB for this UE, clear the buffer
for (aa=0; aa<nb_antennas_rx; aa++) {
memset((void*)r_re_DL[UE_id][aa],0,(RC.ru[0]->frame_parms.samples_per_tti)*sizeof(double));
memset((void*)r_im_DL[UE_id][aa],0,(RC.ru[0]->frame_parms.samples_per_tti)*sizeof(double));
}
}
pthread_mutex_unlock(&RU_output_mutex[UE_id]);
for (ru_id=0; ru_id<RC.nb_RU; ru_id++) {
txdata = RC.ru[ru_id]->common.txdata;
frame_parms = &RC.ru[ru_id]->frame_parms;
sf_offset = (subframe*frame_parms->samples_per_tti) + offset;
LOG_D(EMU,">>>>>>>>>>>>>>>>>TXPATH: RU %d : DL_sig reading TX for subframe %d (sf_offset %d, length %d) from %p\n",ru_id,subframe,sf_offset,length,txdata[0]+sf_offset);
int length_meas = frame_parms->ofdm_symbol_size;
if (sf_offset+length <= frame_parms->samples_per_tti*10) {
tx_pwr = dac_fixed_gain(s_re,
s_im,
txdata,
sf_offset,
nb_antennas_tx,
length,
sf_offset,
length_meas,
14,
frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE
0,
&ru_amp[ru_id],
frame_parms->N_RB_DL*12);
}
else {
tx_pwr = dac_fixed_gain(s_re,
s_im,
txdata,
sf_offset,
nb_antennas_tx,
(frame_parms->samples_per_tti*10)-sf_offset,
sf_offset,
length_meas,
14,
frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE
0,
&ru_amp[ru_id],
frame_parms->N_RB_DL*12);
tx_pwr = dac_fixed_gain(s_re,
s_im,
txdata,
sf_offset,
nb_antennas_tx,
length+sf_offset-(frame_parms->samples_per_tti*10),
sf_offset,
length_meas,
14,
frame_parms->pdsch_config_common.referenceSignalPower, // dBm/RE
0,
&ru_amp[ru_id],
frame_parms->N_RB_DL*12);
}
#ifdef DEBUG_SIM
LOG_D(PHY,"[SIM][DL] subframe %d: txp (time) %d dB\n",
subframe,dB_fixed(signal_energy(&txdata[0][sf_offset],length_meas)));
LOG_D(OCM,"[SIM][DL] RU %d (CCid %d): tx_pwr %.1f dBm/RE (target %d dBm/RE), for subframe %d\n",
ru_id,CC_id,
10*log10(tx_pwr),
frame_parms->pdsch_config_common.referenceSignalPower,
subframe);
#endif
tx_pwr = signal_energy_fp(s_re,s_im,nb_antennas_tx,
length<length_meas?length:length_meas,
0)/(12.0*frame_parms->N_RB_DL);
//RU2UE[eNB_id][UE_id]->path_loss_dB = 0;
multipath_channel(RU2UE[ru_id][UE_id][CC_id],s_re,s_im,r_re0,r_im0,
length,hold_channel);
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp2(RU2UE[ru_id][UE_id][CC_id]->ch[0],
RU2UE[ru_id][UE_id][CC_id]->channel_length)*RU2UE[ru_id][UE_id][CC_id]->channel_length;
LOG_D(OCM,"[SIM][DL] Channel RU %d => UE %d (CCid %d): Channel gain %f dB (%f)\n",ru_id,UE_id,CC_id,10*log10(rx_pwr),rx_pwr);
#endif
#ifdef DEBUG_SIM
for (i=0; i<RU2UE[ru_id][UE_id][CC_id]->channel_length; i++)
LOG_D(OCM,"channel(%d,%d)[%d] : (%f,%f)\n",ru_id,UE_id,i,RU2UE[ru_id][UE_id][CC_id]->ch[0][i].x,RU2UE[ru_id][UE_id][CC_id]->ch[0][i].y);
#endif
LOG_D(OCM,"[SIM][DL] Channel RU %d => UE %d (CCid %d): tx_power %.1f dBm/RE, path_loss %1.f dB\n",
ru_id,UE_id,CC_id,
(double)frame_parms->pdsch_config_common.referenceSignalPower,
// enb_data[eNB_id]->tx_power_dBm,
RU2UE[ru_id][UE_id][CC_id]->path_loss_dB);
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,
length<length_meas?length:length_meas,
0)/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr %f dBm/RE (%f dBm RSSI,tx %f dB)for subframe %d (length %d)\n",UE_id,
10*log10(rx_pwr),
10*log10(rx_pwr*(double)frame_parms->N_RB_DL*12),
10*log10(tx_pwr),subframe,
length<length_meas?length:length_meas);
LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (noise) -132 dBm/RE (N0fs = %.1f dBm, N0B = %.1f dBm) for subframe %d\n",
UE_id,
10*log10(RU2UE[ru_id][UE_id][CC_id]->sampling_rate*1e6)-174,
10*log10(RU2UE[ru_id][UE_id][CC_id]->sampling_rate*1e6*12*frame_parms->N_RB_DL/(double)frame_parms->ofdm_symbol_size)-174,
subframe);
#endif
if (RU2UE[ru_id][UE_id][CC_id]->first_run == 1)
RU2UE[ru_id][UE_id][CC_id]->first_run = 0;
// RF model
#ifdef DEBUG_SIM
LOG_D(OCM,"[SIM][DL] UE %d (CCid %d): rx_gain %d dB (-ADC %f) for subframe %d\n",UE_id,CC_id,PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB,
PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB-66.227,subframe);
#endif
rf_rx_simple(r_re0,
r_im0,
nb_antennas_rx,
length,
1e3/RU2UE[ru_id][UE_id][CC_id]->sampling_rate, // sampling time (ns)
(double)PHY_vars_UE_g[UE_id][CC_id]->rx_total_gain_dB - 66.227); // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp(r_re0,r_im0,
nb_antennas_rx,
length<length_meas?length:length_meas,
0)/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][DL] UE %d : ADC in (RU %d) %f dBm/RE for subframe %d\n",
UE_id,ru_id,
10*log10(rx_pwr),subframe);
#endif
pthread_mutex_lock(&RU_output_mutex[UE_id]);
for (i=0; i<frame_parms->samples_per_tti; i++) {
for (aa=0; aa<nb_antennas_rx; aa++) {
r_re_DL[UE_id][aa][i]+=r_re0[aa][i];
r_im_DL[UE_id][aa][i]+=r_im0[aa][i];
}
}
RU_output_mask[UE_id] |= (1<<ru_id);
if (RU_output_mask[UE_id] == (1<<RC.nb_RU)-1) {
RU_output_mask[UE_id]=0;
double *r_re_p[2] = {r_re_DL[UE_id][0],r_re_DL[UE_id][1]};
double *r_im_p[2] = {r_im_DL[UE_id][0],r_im_DL[UE_id][1]};
#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp(r_re_p,r_im_p,nb_antennas_rx,length<length_meas?length:length_meas,0)/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][DL] UE %d : ADC in %f dBm/RE for subframe %d\n",UE_id,10*log10(rx_pwr),subframe);
#endif
rxdata = PHY_vars_UE_g[UE_id][CC_id]->common_vars.rxdata;
sf_offset = (subframe*frame_parms->samples_per_tti)+offset;
adc(r_re_p,
r_im_p,
0,
sf_offset,
rxdata,
nb_antennas_rx,
length,
12);
#ifdef DEBUG_SIM
rx_pwr2 = signal_energy(rxdata[0]+sf_offset,length<length_meas?length:length_meas)/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB/RE (%d) for subframe %d, writing to %p, length %d\n",UE_id, 10*log10((double)rx_pwr2),rx_pwr2,subframe,rxdata,length<length_meas?length:length_meas);
LOG_D(OCM,"[SIM][DL] UE %d : rx_pwr (ADC out) %f dB for subframe %d\n",UE_id,10*log10((double)rx_pwr2*12*frame_parms->N_RB_DL) ,subframe);
#else
UNUSED_VARIABLE(rx_pwr2);
UNUSED_VARIABLE(tx_pwr);
UNUSED_VARIABLE(rx_pwr);
#endif
} // RU_output_mask
pthread_mutex_unlock(&RU_output_mutex[UE_id]);
} // ru_id
}
}
void do_UL_sig(channel_desc_t *UE2RU[NUMBER_OF_UE_MAX][NUMBER_OF_RU_MAX][MAX_NUM_CCs],
node_desc_t *enb_data[NUMBER_OF_RU_MAX],node_desc_t *ue_data[NUMBER_OF_UE_MAX],
uint16_t subframe,uint8_t abstraction_flag,LTE_DL_FRAME_PARMS *frame_parms,
uint32_t frame,int ru_id,uint8_t CC_id)
{
int32_t **txdata,**rxdata;
uint8_t UE_id=0;
uint8_t nb_antennas_rx = UE2RU[0][0][CC_id]->nb_rx; // number of rx antennas at eNB
uint8_t nb_antennas_tx = UE2RU[0][0][CC_id]->nb_tx; // number of tx antennas at UE
double tx_pwr, rx_pwr;
int32_t rx_pwr2;
uint32_t i,aa;
uint32_t sf_offset;
uint8_t hold_channel=0;
double s_re0[30720];
double s_re1[30720];
double *s_re[2];
double s_im0[30720];
double s_im1[30720];
double *s_im[2];
double r_re00[30720];
double r_re01[30720];
double *r_re0[2];
double r_im00[30720];
double r_im01[30720];
double *r_im0[2];
s_re[0] = s_re0;
s_im[0] = s_im0;
s_re[1] = s_re1;
s_im[1] = s_im1;
r_re0[0] = r_re00;
r_im0[0] = r_im00;
r_re0[1] = r_re01;
r_im0[1] = r_im01;
if (abstraction_flag!=0) {
} else { //without abstraction
pthread_mutex_lock(&UE_output_mutex[ru_id]);
// Clear RX signal for eNB = eNB_id
for (i=0; i<frame_parms->samples_per_tti; i++) {
for (aa=0; aa<nb_antennas_rx; aa++) {
r_re_UL[ru_id][aa][i]=0.0;
r_im_UL[ru_id][aa][i]=0.0;
}
}
pthread_mutex_unlock(&UE_output_mutex[ru_id]);
// Compute RX signal for eNB = eNB_id
for (UE_id=0; UE_id<NB_UE_INST; UE_id++) {
txdata = PHY_vars_UE_g[UE_id][CC_id]->common_vars.txdata;
AssertFatal(txdata != NULL,"txdata is null\n");
sf_offset = subframe*frame_parms->samples_per_tti;
if (((double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm[subframe] +
UE2RU[UE_id][ru_id][CC_id]->path_loss_dB) <= -125.0) {
// don't simulate a UE that is too weak
LOG_D(OCM,"[SIM][UL] ULPOWERS UE %d tx_pwr %d dBm (num_RE %d) for subframe %d (sf_offset %d)\n",
UE_id,
PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm[subframe],
PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe],
subframe,sf_offset);
} else {
tx_pwr = dac_fixed_gain((double**)s_re,
(double**)s_im,
txdata,
sf_offset,
nb_antennas_tx,
frame_parms->samples_per_tti,
sf_offset,
frame_parms->ofdm_symbol_size,
14,
(double)PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm[subframe]-10*log10((double)PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe]),
1,
NULL,
PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe]); // This make the previous argument the total power
LOG_D(OCM,"[SIM][UL] ULPOWERS UE %d tx_pwr %f dBm (target %d dBm, num_RE %d) for subframe %d (sf_offset %d)\n",
UE_id,
10*log10(tx_pwr*PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe]),
PHY_vars_UE_g[UE_id][CC_id]->tx_power_dBm[subframe],
PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe],
subframe,sf_offset);
multipath_channel(UE2RU[UE_id][ru_id][CC_id],s_re,s_im,r_re0,r_im0,
frame_parms->samples_per_tti,hold_channel);
rx_pwr = signal_energy_fp2(UE2RU[UE_id][ru_id][CC_id]->ch[0],
UE2RU[UE_id][ru_id][CC_id]->channel_length)*UE2RU[UE_id][ru_id][CC_id]->channel_length;
LOG_D(OCM,"[SIM][UL] subframe %d Channel UE %d => RU %d : %f dB (hold %d,length %d, PL %f)\n",subframe,UE_id,ru_id,10*log10(rx_pwr),
hold_channel,UE2RU[UE_id][ru_id][CC_id]->channel_length,
UE2RU[UE_id][ru_id][CC_id]->path_loss_dB);
rx_pwr = signal_energy_fp(r_re0,r_im0,nb_antennas_rx,frame_parms->samples_per_tti,0);
LOG_D(OCM,"[SIM][UL] RU %d (%d/%d rx antennas) : rx_pwr %f dBm (tx_pwr - PL %f) for subframe %d, sptti %d\n",
ru_id,nb_antennas_rx,UE2RU[UE_id][ru_id][CC_id]->nb_rx,10*log10(rx_pwr),10*log10(tx_pwr*PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe])+UE2RU[UE_id][ru_id][CC_id]->path_loss_dB,subframe,frame_parms->samples_per_tti);
/*
if (abs(10*log10(rx_pwr)-10*log10(tx_pwr*PHY_vars_UE_g[UE_id][CC_id]->tx_total_RE[subframe])-UE2RU[UE_id][ru_id][CC_id]->path_loss_dB)>3) {
write_output("txsig_re.m","s_re",s_re[0],frame_parms->samples_per_tti,1,7);
write_output("txsig_im.m","s_im",s_im[0],frame_parms->samples_per_tti,1,7);
write_output("rxsig_re.m","r_re",r_re0[0],frame_parms->samples_per_tti,1,7);
write_output("rxsig_im.m","r_im",r_im0[0],frame_parms->samples_per_tti,1,7);
exit(-1);
}*/
if (UE2RU[UE_id][ru_id][CC_id]->first_run == 1)
UE2RU[UE_id][ru_id][CC_id]->first_run = 0;
pthread_mutex_lock(&UE_output_mutex[ru_id]);
for (aa=0; aa<nb_antennas_rx; aa++) {
for (i=0; i<frame_parms->samples_per_tti; i++) {
r_re_UL[ru_id][aa][i]+=r_re0[aa][i];
r_im_UL[ru_id][aa][i]+=r_im0[aa][i];
}
}
pthread_mutex_unlock(&UE_output_mutex[ru_id]);
}
} //UE_id
double *r_re_p[2] = {r_re_UL[ru_id][0],r_re_UL[ru_id][1]};
double *r_im_p[2] = {r_im_UL[ru_id][0],r_im_UL[ru_id][1]};
rx_pwr = signal_energy_fp(r_re_p,r_im_p,nb_antennas_rx,frame_parms->samples_per_tti,0);
LOG_D(OCM,"[SIM][UL] RU %d (%d/%d rx antennas) : rx_pwr %f dBm (before RF) for subframe %d, gain %f\n",
ru_id,nb_antennas_rx,nb_antennas_rx,10*log10(rx_pwr),subframe,
(double)RC.ru[ru_id]->max_rxgain-(double)RC.ru[ru_id]->att_rx - 66.227);
rf_rx_simple(r_re_p,
r_im_p,
nb_antennas_rx,
frame_parms->samples_per_tti,
1e3/UE2RU[0][ru_id][CC_id]->sampling_rate, // sampling time (ns)
(double)RC.ru[ru_id]->max_rxgain-(double)RC.ru[ru_id]->att_rx - 66.227); // rx_gain (dB) (66.227 = 20*log10(pow2(11)) = gain from the adc that will be applied later)
//#ifdef DEBUG_SIM
rx_pwr = signal_energy_fp(r_re_p,r_im_p,nb_antennas_rx,frame_parms->samples_per_tti,0);//*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL;
LOG_D(OCM,"[SIM][UL] rx_pwr (ADC in) %f dB for subframe %d (rx_gain %f)\n",10*log10(rx_pwr),subframe,
(double)RC.ru[ru_id]->max_rxgain-(double)RC.ru[ru_id]->att_rx);
//#endif
rxdata = RC.ru[ru_id]->common.rxdata;
sf_offset = subframe*frame_parms->samples_per_tti;
adc(r_re_p,
r_im_p,
0,
sf_offset,
rxdata,
nb_antennas_rx,
frame_parms->samples_per_tti,
12);
#ifdef DEBUG_SIM
rx_pwr2 = signal_energy(rxdata[0]+sf_offset,frame_parms->samples_per_tti)*(double)frame_parms->ofdm_symbol_size/(12.0*frame_parms->N_RB_DL);
LOG_D(OCM,"[SIM][UL] RU %d rx_pwr (ADC out) %f dB (%d) for subframe %d (offset %d) = %p\n",ru_id,10*log10((double)rx_pwr2),rx_pwr2,subframe,sf_offset,rxdata[0]+sf_offset);
#else
UNUSED_VARIABLE(tx_pwr);
UNUSED_VARIABLE(rx_pwr);
UNUSED_VARIABLE(rx_pwr2);
#endif
} // abstraction_flag==0
}
void init_channel_vars(LTE_DL_FRAME_PARMS *frame_parms, double ***s_re,double ***s_im,double ***r_re,double ***r_im,double ***r_re0,double ***r_im0)
{
int i;
memset(RU_output_mask,0,sizeof(int)*NUMBER_OF_UE_MAX);
for (i=0;i<NB_UE_INST;i++)
pthread_mutex_init(&RU_output_mutex[i],NULL);
memset(UE_output_mask,0,sizeof(int)*NUMBER_OF_RU_MAX);
for (i=0;i<NB_eNB_INST;i++)
pthread_mutex_init(&UE_output_mutex[i],NULL);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment