/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/*! \file ue_procedures.c
 * \brief procedures related to UE
 * \author  Navid Nikaein and Raymond Knopp
 * \date 2010 - 2014
 * \version 1
 * \email: navid.nikaein@eurecom.fr
 * @ingroup _mac

 */

#ifdef EXMIMO
#include <pthread.h>
#endif

#include "extern.h"
#include "defs.h"
#include "proto.h"
#ifdef PHY_EMUL
#include "SIMULATION/PHY_EMULATION/impl_defs.h"
#else
#include "SCHED/defs.h"
#include "PHY/impl_defs_top.h"
#endif
#include "PHY_INTERFACE/extern.h"
#include "COMMON/mac_rrc_primitives.h"

#include "RRC/L2_INTERFACE/openair_rrc_L2_interface.h"
#include "RRC/LITE/extern.h"
#include "UTIL/LOG/log.h"
#include "UTIL/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"
#include "OCG.h"
#include "OCG_extern.h"

#ifdef PHY_EMUL
#include "SIMULATION/simulation_defs.h"
#endif
#include "pdcp.h"

#if defined(ENABLE_ITTI)
#include "intertask_interface.h"
#endif

#include "assertions.h"

#include "SIMULATION/TOOLS/defs.h"	// for taus

#define DEBUG_HEADER_PARSING 1
#define ENABLE_MAC_PAYLOAD_DEBUG 1

extern uint8_t usim_test;

mapping BSR_names[] = {
    {"NONE", 0},
    {"SHORT BSR", 1},
    {"TRUNCATED BSR", 2},
    {"LONG BSR", 3},
    {"PADDING BSR", 4},
    {NULL, -1}
};


void ue_init_mac(module_id_t module_idP)
{
    int i;
    // default values as deined in 36.331 sec 9.2.2
    LOG_I(MAC, "[UE%d] Applying default macMainConfig\n", module_idP);
    //UE_mac_inst[module_idP].scheduling_info.macConfig=NULL;
    UE_mac_inst[module_idP].scheduling_info.retxBSR_Timer =
	RetxBSR_Timer_r12_sf10240;
    UE_mac_inst[module_idP].scheduling_info.periodicBSR_Timer =
	PeriodicBSR_Timer_r12_infinity;
    UE_mac_inst[module_idP].scheduling_info.periodicPHR_Timer =
	MAC_MainConfig__phr_Config__setup__periodicPHR_Timer_sf20;
    UE_mac_inst[module_idP].scheduling_info.prohibitPHR_Timer =
	MAC_MainConfig__phr_Config__setup__prohibitPHR_Timer_sf20;
    UE_mac_inst[module_idP].scheduling_info.PathlossChange_db =
	MAC_MainConfig__phr_Config__setup__dl_PathlossChange_dB1;
    UE_mac_inst[module_idP].PHR_state =
	MAC_MainConfig__phr_Config_PR_setup;
    UE_mac_inst[module_idP].scheduling_info.SR_COUNTER = 0;
    UE_mac_inst[module_idP].scheduling_info.sr_ProhibitTimer = 0;
    UE_mac_inst[module_idP].scheduling_info.sr_ProhibitTimer_Running = 0;
    UE_mac_inst[module_idP].scheduling_info.maxHARQ_Tx =
	MAC_MainConfig__ul_SCH_Config__maxHARQ_Tx_n5;
    UE_mac_inst[module_idP].scheduling_info.ttiBundling = 0;
    UE_mac_inst[module_idP].scheduling_info.extendedBSR_Sizes_r10 = 0;
    UE_mac_inst[module_idP].scheduling_info.extendedPHR_r10 = 0;
    UE_mac_inst[module_idP].scheduling_info.drx_config = NULL;
    UE_mac_inst[module_idP].scheduling_info.phr_config = NULL;
    // set init value 0xFFFF, make sure periodic timer and retx time counters are NOT active, after bsr transmission set the value configured by the NW.
    UE_mac_inst[module_idP].scheduling_info.periodicBSR_SF =
	MAC_UE_BSR_TIMER_NOT_RUNNING;
    UE_mac_inst[module_idP].scheduling_info.retxBSR_SF =
	MAC_UE_BSR_TIMER_NOT_RUNNING;
    UE_mac_inst[module_idP].BSR_reporting_active = BSR_TRIGGER_NONE;

    UE_mac_inst[module_idP].scheduling_info.periodicPHR_SF =
	get_sf_perioidicPHR_Timer(UE_mac_inst[module_idP].
				  scheduling_info.periodicPHR_Timer);
    UE_mac_inst[module_idP].scheduling_info.prohibitPHR_SF =
	get_sf_prohibitPHR_Timer(UE_mac_inst[module_idP].
				 scheduling_info.prohibitPHR_Timer);
    UE_mac_inst[module_idP].scheduling_info.PathlossChange_db =
	get_db_dl_PathlossChange(UE_mac_inst[module_idP].
				 scheduling_info.PathlossChange);
    UE_mac_inst[module_idP].PHR_reporting_active = 0;

    for (i = 0; i < MAX_NUM_LCID; i++) {
	LOG_D(MAC,
	      "[UE%d] Applying default logical channel config for LCGID %d\n",
	      module_idP, i);
	UE_mac_inst[module_idP].scheduling_info.Bj[i] = -1;
	UE_mac_inst[module_idP].scheduling_info.bucket_size[i] = -1;

	if (i < DTCH) {		// initilize all control channels lcgid to 0
	    UE_mac_inst[module_idP].scheduling_info.LCGID[i] = 0;
	} else {		// initialize all the data channels lcgid to 1
	    UE_mac_inst[module_idP].scheduling_info.LCGID[i] = 1;
	}

	UE_mac_inst[module_idP].scheduling_info.LCID_status[i] =
	    LCID_EMPTY;
	UE_mac_inst[module_idP].scheduling_info.LCID_buffer_remain[i] = 0;
    }

#ifdef CBA

    for (i = 0; i < NUM_MAX_CBA_GROUP; i++) {
	UE_mac_inst[module_idP].cba_last_access[i] =
	    round(uniform_rngen(1, 30));
    }

#endif
}


unsigned char *parse_header(unsigned char *mac_header,
			    unsigned char *num_ce,
			    unsigned char *num_sdu,
			    unsigned char *rx_ces,
			    unsigned char *rx_lcids,
			    unsigned short *rx_lengths,
			    unsigned short tb_length)
{

    unsigned char not_done = 1, num_ces = 0, num_cont_res =
	0, num_padding = 0, num_sdus = 0, lcid, num_sdu_cnt;
    unsigned char *mac_header_ptr = mac_header;
    unsigned short length, ce_len = 0;

    while (not_done == 1) {

	if (((SCH_SUBHEADER_FIXED *) mac_header_ptr)->E == 0) {
	    //      printf("E=0\n");
	    not_done = 0;
	}

	lcid = ((SCH_SUBHEADER_FIXED *) mac_header_ptr)->LCID;

	if (lcid < UE_CONT_RES) {
	    //printf("[MAC][UE] header %x.%x.%x\n",mac_header_ptr[0],mac_header_ptr[1],mac_header_ptr[2]);
	    if (not_done == 0) {	// last MAC SDU, length is implicit
		mac_header_ptr++;
		length =
		    tb_length - (mac_header_ptr - mac_header) - ce_len;

		for (num_sdu_cnt = 0; num_sdu_cnt < num_sdus;
		     num_sdu_cnt++) {
		    length -= rx_lengths[num_sdu_cnt];
		}
	    } else {
		if (((SCH_SUBHEADER_LONG *) mac_header_ptr)->F == 1) {
		    length =
			((((SCH_SUBHEADER_LONG *) mac_header_ptr)->
			  L_MSB & 0x7f)
			 << 8) | (((SCH_SUBHEADER_LONG *) mac_header_ptr)->
				  L_LSB & 0xff);
		    mac_header_ptr += 3;
#ifdef DEBUG_HEADER_PARSING
		    LOG_D(MAC, "[UE] parse long sdu, size %x \n", length);
#endif

		} else {	//if (((SCH_SUBHEADER_SHORT *)mac_header_ptr)->F == 0) {
		    length = ((SCH_SUBHEADER_SHORT *) mac_header_ptr)->L;
		    mac_header_ptr += 2;
		}
	    }

#ifdef DEBUG_HEADER_PARSING
	    LOG_D(MAC, "[UE] sdu %d lcid %d length %d (offset now %ld)\n",
		  num_sdus, lcid, length, mac_header_ptr - mac_header);
#endif
	    rx_lcids[num_sdus] = lcid;
	    rx_lengths[num_sdus] = length;
	    num_sdus++;
	} else {		// This is a control element subheader
	    if (lcid == SHORT_PADDING) {
		num_padding++;
		mac_header_ptr++;
	    } else {
		rx_ces[num_ces] = lcid;
		num_ces++;
		mac_header_ptr++;

		if (lcid == TIMING_ADV_CMD) {
		    ce_len++;
		} else if (lcid == UE_CONT_RES) {

		    // FNA: check MAC Header is one of thoses defined in Annex B of 36.321
		    // Check there is only 1 Contention Resolution
		    if (num_cont_res) {
			LOG_W(MAC,
			      "[UE] Msg4 Wrong received format: More than 1 Contention Resolution\n");
			// exit parsing
			return NULL;

		    }
		    // UE_CONT_RES shall never be the last subheader unless this is the only MAC subheader
		    if ((not_done == 0)
			&& ((num_sdus) || (num_ces > 1) || (num_padding))) {
			LOG_W(MAC,
			      "[UE] Msg4 Wrong received format: Contention Resolution after num_ces=%d num_sdus=%d num_padding=%d\n",
			      num_ces, num_sdus, num_padding);
			// exit parsing
			return NULL;
		    }
		    num_cont_res++;
		    ce_len += 6;
		}
	    }

#ifdef DEBUG_HEADER_PARSING
	    LOG_D(MAC, "[UE] ce %d lcid %d (offset now %ld)\n", num_ces,
		  lcid, mac_header_ptr - mac_header);
#endif
	}
    }

    *num_ce = num_ces;
    *num_sdu = num_sdus;

    return (mac_header_ptr);
}

uint32_t
ue_get_SR(module_id_t module_idP, int CC_id, frame_t frameP,
	  uint8_t eNB_id, uint16_t rnti, sub_frame_t subframe)
{

    // no UL-SCH resources available for this tti && UE has a valid PUCCH resources for SR configuration for this tti
    //  int MGL=6;// measurement gap length in ms
    int MGRP = 0;		// measurement gap repetition period in ms
    int gapOffset = -1;
    int T = 0;

    DevCheck(module_idP < (int) NB_UE_INST, module_idP, NB_UE_INST, 0);

    AssertFatal(CC_id == 0,
		"Transmission on secondary CCs is not supported yet\n");

    // determin the measurement gap
    if (UE_mac_inst[module_idP].measGapConfig != NULL) {
	if (UE_mac_inst[module_idP].measGapConfig->choice.setup.
	    gapOffset.present == MeasGapConfig__setup__gapOffset_PR_gp0) {
	    MGRP = 40;
	    gapOffset =
		UE_mac_inst[module_idP].measGapConfig->choice.
		setup.gapOffset.choice.gp0;
	} else if (UE_mac_inst[module_idP].measGapConfig->choice.
		   setup.gapOffset.present ==
		   MeasGapConfig__setup__gapOffset_PR_gp1) {
	    MGRP = 80;
	    gapOffset =
		UE_mac_inst[module_idP].measGapConfig->choice.
		setup.gapOffset.choice.gp1;
	} else {
	    LOG_W(MAC, "Measurement GAP offset is unknown\n");
	}

	T = MGRP / 10;
	DevAssert(T != 0);

	//check the measurement gap and sr prohibit timer
	if ((subframe == gapOffset % 10)
	    && ((frameP % T) == (floor(gapOffset / 10)))
	    && (UE_mac_inst[module_idP].
		scheduling_info.sr_ProhibitTimer_Running == 0)) {
	    UE_mac_inst[module_idP].scheduling_info.SR_pending = 1;
	    return (0);
	}
    }

    if ((UE_mac_inst[module_idP].physicalConfigDedicated != NULL) &&
	(UE_mac_inst[module_idP].scheduling_info.SR_pending == 1) &&
	(UE_mac_inst[module_idP].scheduling_info.SR_COUNTER <
	 (1 <<
	  (2 +
	   UE_mac_inst[module_idP].
	   physicalConfigDedicated->schedulingRequestConfig->choice.setup.
	   dsr_TransMax)))) {
	LOG_D(MAC,
	      "[UE %d][SR %x] Frame %d subframe %d PHY asks for SR (SR_COUNTER/dsr_TransMax %d/%d), SR_pending %d\n",
	      module_idP, rnti, frameP, subframe,
	      UE_mac_inst[module_idP].scheduling_info.SR_COUNTER,
	      (1 <<
	       (2 +
		UE_mac_inst[module_idP].
		physicalConfigDedicated->schedulingRequestConfig->choice.
		setup.dsr_TransMax)),
	      UE_mac_inst[module_idP].scheduling_info.SR_pending);

	UE_mac_inst[module_idP].scheduling_info.SR_COUNTER++;

	// start the sr-prohibittimer : rel 9 and above
	if (UE_mac_inst[module_idP].scheduling_info.sr_ProhibitTimer > 0) {	// timer configured
	    UE_mac_inst[module_idP].scheduling_info.sr_ProhibitTimer--;
	    UE_mac_inst[module_idP].scheduling_info.
		sr_ProhibitTimer_Running = 1;
	} else {
	    UE_mac_inst[module_idP].scheduling_info.
		sr_ProhibitTimer_Running = 0;
	}

	LOG_D(MAC,
	      "[UE %d][SR %x] Frame %d subframe %d send SR indication (SR_COUNTER/dsr_TransMax %d/%d), SR_pending %d\n",
	      module_idP, rnti, frameP, subframe,
	      UE_mac_inst[module_idP].scheduling_info.SR_COUNTER,
	      (1 <<
	       (2 +
		UE_mac_inst[module_idP].
		physicalConfigDedicated->schedulingRequestConfig->choice.
		setup.dsr_TransMax)),
	      UE_mac_inst[module_idP].scheduling_info.SR_pending);

	//UE_mac_inst[module_idP].ul_active =1;
	return (1);		//instruct phy to signal SR
    } else {
	// notify RRC to relase PUCCH/SRS
	// clear any configured dl/ul
	// initiate RA
	if (UE_mac_inst[module_idP].scheduling_info.SR_pending) {
	    // release all pucch resource
	    UE_mac_inst[module_idP].physicalConfigDedicated = NULL;
	    UE_mac_inst[module_idP].ul_active = 0;
	    UE_mac_inst[module_idP].BSR_reporting_active =
		BSR_TRIGGER_NONE;

	    LOG_I(MAC, "[UE %d] Release all SRs \n", module_idP);
	}
	UE_mac_inst[module_idP].scheduling_info.SR_pending = 0;
	UE_mac_inst[module_idP].scheduling_info.SR_COUNTER = 0;
	return (0);
    }
}

//------------------------------------------------------------------------------
void
ue_send_sdu(module_id_t module_idP,
	    uint8_t CC_id,
	    frame_t frameP,
	    sub_frame_t subframeP,
	    uint8_t * sdu, uint16_t sdu_len, uint8_t eNB_index)
//------------------------------------------------------------------------------
{

    unsigned char rx_ces[MAX_NUM_CE], num_ce, num_sdu, i, *payload_ptr;
    unsigned char rx_lcids[NB_RB_MAX];
    unsigned short rx_lengths[NB_RB_MAX];
    unsigned char *tx_sdu;
#if UE_TIMING_TRACE
    start_meas(&UE_mac_inst[module_idP].rx_dlsch_sdu);
#endif
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SEND_SDU, VCD_FUNCTION_IN);

    LOG_T(MAC, "sdu: %x.%x.%x\n", sdu[0], sdu[1], sdu[2]);

    if (opt_enabled) {
	trace_pdu(1, sdu, sdu_len, module_idP, 3,
		  UE_mac_inst[module_idP].crnti, frameP, subframeP, 0, 0);
	LOG_D(OPT,
	      "[UE %d][DLSCH] Frame %d trace pdu for rnti %x  with size %d\n",
	      module_idP, frameP, UE_mac_inst[module_idP].crnti, sdu_len);
    }

    payload_ptr =
	parse_header(sdu, &num_ce, &num_sdu, rx_ces, rx_lcids, rx_lengths,
		     sdu_len);

#ifdef DEBUG_HEADER_PARSING
    LOG_D(MAC,
	  "[UE %d] ue_send_sdu : Frame %d eNB_index %d : num_ce %d num_sdu %d\n",
	  module_idP, frameP, eNB_index, num_ce, num_sdu);
#endif

#if defined(ENABLE_MAC_PAYLOAD_DEBUG)
    LOG_T(MAC, "[UE %d] First 32 bytes of DLSCH : \n", module_idP);

    for (i = 0; i < 32; i++) {
	LOG_T(MAC, "%x.", sdu[i]);
    }

    LOG_T(MAC, "\n");
#endif

    if (payload_ptr != NULL) {

	for (i = 0; i < num_ce; i++) {
	    //    printf("ce %d : %d\n",i,rx_ces[i]);
	    switch (rx_ces[i]) {
	    case UE_CONT_RES:

		LOG_I(MAC,
		      "[UE %d][RAPROC] Frame %d : received contention resolution msg: %x.%x.%x.%x.%x.%x, Terminating RA procedure\n",
		      module_idP, frameP, payload_ptr[0], payload_ptr[1],
		      payload_ptr[2], payload_ptr[3], payload_ptr[4],
		      payload_ptr[5]);

		if (UE_mac_inst[module_idP].RA_active == 1) {
		    LOG_I(MAC,
			  "[UE %d][RAPROC] Frame %d : Clearing RA_active flag\n",
			  module_idP, frameP);
		    UE_mac_inst[module_idP].RA_active = 0;
		    // check if RA procedure has finished completely (no contention)
		    tx_sdu = &UE_mac_inst[module_idP].CCCH_pdu.payload[3];

		    //Note: 3 assumes sizeof(SCH_SUBHEADER_SHORT) + PADDING CE, which is when UL-Grant has TBS >= 9 (64 bits)
		    // (other possibility is 1 for TBS=7 (SCH_SUBHEADER_FIXED), or 2 for TBS=8 (SCH_SUBHEADER_FIXED+PADDING or SCH_SUBHEADER_SHORT)
		    for (i = 0; i < 6; i++)
			if (tx_sdu[i] != payload_ptr[i]) {
			    LOG_E(MAC,
				  "[UE %d][RAPROC] Contention detected, RA failed\n",
				  module_idP);
			    ra_failed(module_idP, CC_id, eNB_index);
			    UE_mac_inst
				[module_idP].
				RA_contention_resolution_timer_active = 0;
			    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
				(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SEND_SDU,
				 VCD_FUNCTION_OUT);
			    return;
			}

		    LOG_I(MAC,
			  "[UE %d][RAPROC] Frame %d : Clearing contention resolution timer\n",
			  module_idP, frameP);
		    UE_mac_inst
			[module_idP].
			RA_contention_resolution_timer_active = 0;
		    ra_succeeded(module_idP, CC_id, eNB_index);
		}

		payload_ptr += 6;
		break;

	    case TIMING_ADV_CMD:
#ifdef DEBUG_HEADER_PARSING
		LOG_D(MAC, "[UE] CE %d : UE Timing Advance : %d\n", i,
		      payload_ptr[0]);
#endif
		process_timing_advance(module_idP, CC_id, payload_ptr[0]);
		payload_ptr++;
		break;

	    case DRX_CMD:
#ifdef DEBUG_HEADER_PARSING
		LOG_D(MAC, "[UE] CE %d : UE DRX :", i);
#endif
		payload_ptr++;
		break;
	    }
	}

	for (i = 0; i < num_sdu; i++) {
#ifdef DEBUG_HEADER_PARSING
	    LOG_D(MAC, "[UE] SDU %d : LCID %d, length %d\n", i,
		  rx_lcids[i], rx_lengths[i]);
#endif

	    if (rx_lcids[i] == CCCH) {

		LOG_D(MAC,
		      "[UE %d] rnti %x Frame %d : DLSCH -> DL-CCCH, RRC message (eNB %d, %d bytes)\n",
		      module_idP, UE_mac_inst[module_idP].crnti, frameP,
		      eNB_index, rx_lengths[i]);

#if defined(ENABLE_MAC_PAYLOAD_DEBUG)
		int j;

		for (j = 0; j < rx_lengths[i]; j++) {
		    LOG_T(MAC, "%x.", (uint8_t) payload_ptr[j]);
		}

		LOG_T(MAC, "\n");
#endif
		mac_rrc_data_ind(module_idP,
				 CC_id,
				 frameP, subframeP,
				 UE_mac_inst[module_idP].crnti,
				 CCCH,
				 (uint8_t *) payload_ptr,
				 rx_lengths[i], ENB_FLAG_NO, eNB_index, 0);

	    } else if ((rx_lcids[i] == DCCH) || (rx_lcids[i] == DCCH1)) {
		LOG_D(MAC,
		      "[UE %d] Frame %d : DLSCH -> DL-DCCH%d, RRC message (eNB %d, %d bytes)\n",
		      module_idP, frameP, rx_lcids[i], eNB_index,
		      rx_lengths[i]);
		mac_rlc_data_ind(module_idP, UE_mac_inst[module_idP].crnti,
				 eNB_index, frameP, ENB_FLAG_NO,
				 MBMS_FLAG_NO, rx_lcids[i],
				 (char *) payload_ptr, rx_lengths[i], 1,
				 NULL);

	    } else if ((rx_lcids[i] < NB_RB_MAX) && (rx_lcids[i] > DCCH1)) {

		LOG_D(MAC,
		      "[UE %d] Frame %d : DLSCH -> DL-DTCH%d (eNB %d, %d bytes)\n",
		      module_idP, frameP, rx_lcids[i], eNB_index,
		      rx_lengths[i]);

#if defined(ENABLE_MAC_PAYLOAD_DEBUG)
		int j;
		for (j = 0; j < rx_lengths[i]; j++)
		    LOG_T(MAC, "%x.", (unsigned char) payload_ptr[j]);
		LOG_T(MAC, "\n");
#endif
		mac_rlc_data_ind(module_idP,
				 UE_mac_inst[module_idP].crnti,
				 eNB_index,
				 frameP,
				 ENB_FLAG_NO,
				 MBMS_FLAG_NO,
				 rx_lcids[i],
				 (char *) payload_ptr, rx_lengths[i], 1,
				 NULL);
	    } else {
		LOG_E(MAC, "[UE %d] Frame %d : unknown LCID %d (eNB %d)\n",
		      module_idP, frameP, rx_lcids[i], eNB_index);
	    }
	    payload_ptr += rx_lengths[i];
	}
    }				// end if (payload_ptr != NULL)

    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SEND_SDU, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
    stop_meas(&UE_mac_inst[module_idP].rx_dlsch_sdu);
#endif
}

void
ue_decode_si(module_id_t module_idP, int CC_id, frame_t frameP,
	     uint8_t eNB_index, void *pdu, uint16_t len)
{
#if UE_TIMING_TRACE
    start_meas(&UE_mac_inst[module_idP].rx_si);
#endif
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_DECODE_SI, VCD_FUNCTION_IN);

    LOG_D(MAC, "[UE %d] Frame %d Sending SI to RRC (LCID Id %d,len %d)\n",
	  module_idP, frameP, BCCH, len);

    mac_rrc_data_ind(module_idP, CC_id, frameP, 0,	// unknown subframe
		     SI_RNTI,
		     BCCH, (uint8_t *) pdu, len, ENB_FLAG_NO, eNB_index,
		     0);
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_DECODE_SI, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
    stop_meas(&UE_mac_inst[module_idP].rx_si);
#endif
    if (opt_enabled == 1) {
	trace_pdu(0,
		  (uint8_t *) pdu,
		  len,
		  module_idP,
		  4,
		  0xffff,
		  UE_mac_inst[module_idP].rxFrame,
		  UE_mac_inst[module_idP].rxSubframe, 0, 0);
	LOG_D(OPT,
	      "[UE %d][BCH] Frame %d trace pdu for CC_id %d rnti %x with size %d\n",
	      module_idP, frameP, CC_id, 0xffff, len);
    }
}

void
ue_decode_p(module_id_t module_idP, int CC_id, frame_t frameP,
	    uint8_t eNB_index, void *pdu, uint16_t len)
{
#if UE_TIMING_TRACE
    start_meas(&UE_mac_inst[module_idP].rx_p);
#endif
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_DECODE_PCCH, VCD_FUNCTION_IN);

    LOG_D(MAC,
	  "[UE %d] Frame %d Sending Paging message to RRC (LCID Id %d,len %d)\n",
	  module_idP, frameP, PCCH, len);

    mac_rrc_data_ind(module_idP, CC_id, frameP, 0,	// unknown subframe
		     P_RNTI,
		     PCCH, (uint8_t *) pdu, len, ENB_FLAG_NO, eNB_index,
		     0);
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_DECODE_PCCH, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
    stop_meas(&UE_mac_inst[module_idP].rx_p);
#endif
    if (opt_enabled == 1) {
	trace_pdu(0,
		  (uint8_t *) pdu,
		  len,
		  module_idP,
		  4,
		  P_RNTI,
		  UE_mac_inst[module_idP].rxFrame,
		  UE_mac_inst[module_idP].rxSubframe, 0, 0);
	LOG_D(OPT,
	      "[UE %d][BCH] Frame %d trace pdu for CC_id %d rnti %x with size %d\n",
	      module_idP, frameP, CC_id, P_RNTI, len);
    }
}

#if defined(Rel10) || defined(Rel14)
unsigned char *parse_mch_header(unsigned char *mac_header,
				unsigned char *num_sdu,
				unsigned char *rx_lcids,
				unsigned short *rx_lengths,
				unsigned short tb_length)
{
    unsigned char not_done = 1, num_sdus = 0, lcid, i;
    unsigned char *mac_header_ptr = mac_header;
    unsigned short length;

    while (not_done == 1) {
	if (((SCH_SUBHEADER_FIXED *) mac_header_ptr)->E == 0) {
	    not_done = 0;
	}

	lcid = ((SCH_SUBHEADER_FIXED *) mac_header_ptr)->LCID;

	if (lcid < SHORT_PADDING) {	// subheader for MSI, MCCH or MTCH
	    if (not_done == 0) {	// last MAC SDU, length is implicit
		mac_header_ptr++;
		length = tb_length - (mac_header_ptr - mac_header);

		for (i = 0; i < num_sdus; i++) {
		    length -= rx_lengths[i];
		}
	    } else {		// not the last MAC SDU
		if (((SCH_SUBHEADER_LONG *) mac_header_ptr)->F == 1) {	// subheader has length of 3octets
		    //    length = ((SCH_SUBHEADER_LONG *)mac_header_ptr)->L;
		    length =
			((((SCH_SUBHEADER_LONG *) mac_header_ptr)->
			  L_MSB & 0x7f)
			 << 8) | (((SCH_SUBHEADER_LONG *) mac_header_ptr)->
				  L_LSB & 0xff);
		    mac_header_ptr += 3;
		} else {	// subheader has length of 2octets
		    length = ((SCH_SUBHEADER_SHORT *) mac_header_ptr)->L;
		    mac_header_ptr += 2;
		}
	    }

	    rx_lcids[num_sdus] = lcid;
	    rx_lengths[num_sdus] = length;
	    num_sdus++;
	} else {		// subheader for padding
	    //     if (lcid == SHORT_PADDING)
	    mac_header_ptr++;
	}
    }

    *num_sdu = num_sdus;
    return (mac_header_ptr);
}

// this function is for sending mch_sdu from phy to mac
void
ue_send_mch_sdu(module_id_t module_idP, uint8_t CC_id, frame_t frameP,
		uint8_t * sdu, uint16_t sdu_len, uint8_t eNB_index,
		uint8_t sync_area)
{

    unsigned char num_sdu, i, *payload_ptr;
    unsigned char rx_lcids[NB_RB_MAX];
    unsigned short rx_lengths[NB_RB_MAX];
#if UE_TIMING_TRACE
    start_meas(&UE_mac_inst[module_idP].rx_mch_sdu);
#endif
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SEND_MCH_SDU, VCD_FUNCTION_IN);

    LOG_D(MAC,
	  "[UE %d] Frame %d : process the mch PDU for sync area %d \n",
	  module_idP, frameP, sync_area);
    LOG_D(MAC, "[UE %d] sdu: %x.%x\n", module_idP, sdu[0], sdu[1]);
    LOG_D(MAC, "[UE %d] parse_mch_header, demultiplex\n", module_idP);

    payload_ptr =
	parse_mch_header(sdu, &num_sdu, rx_lcids, rx_lengths, sdu_len);
    LOG_D(MAC, "[UE %d] parse_mch_header, found %d sdus\n", module_idP,
	  num_sdu);

    for (i = 0; i < num_sdu; i++) {
	if (rx_lcids[i] == MCH_SCHDL_INFO) {
	    if (UE_mac_inst[module_idP].mcch_status == 1) {
		LOG_I(MAC,
		      "[UE %d] Frame %d : MCH->MSI for sync area %d (eNB %d, %d bytes)\n",
		      module_idP, frameP, sync_area, eNB_index,
		      rx_lengths[i]);
		// ??store necessary scheduling info to ue_mac_inst in order to
		// calculate exact position of interested service (for the complex case has >1 mtch)
		// set msi_status to 1
		UE_mac_inst[module_idP].msi_status = 1;
	    }
	} else if (rx_lcids[i] == MCCH_LCHANID) {
	    LOG_I(MAC,
		  "[UE %d] Frame %d : SDU %d MCH->MCCH for sync area %d (eNB %d, %d bytes)\n",
		  module_idP, frameP, i, sync_area, eNB_index,
		  rx_lengths[i]);
	    mac_rrc_data_ind(module_idP, CC_id, frameP, 0,	// unknown subframe
			     M_RNTI,
			     MCCH,
			     payload_ptr, rx_lengths[i], 0, eNB_index,
			     sync_area);
	} else if (rx_lcids[i] == MTCH) {
	    if (UE_mac_inst[module_idP].msi_status == 1) {
		LOG_I(MAC,
		      "[UE %d] Frame %d : MCH->MTCH for sync area %d (eNB %d, %d bytes)\n",
		      module_idP, frameP, sync_area, eNB_index,
		      rx_lengths[i]);

		mac_rlc_data_ind(module_idP, UE_mac_inst[module_idP].crnti, eNB_index, frameP, ENB_FLAG_NO, MBMS_FLAG_YES, MTCH,	/*+ (maxDRB + 3), */
				 (char *) payload_ptr, rx_lengths[i], 1,
				 NULL);

	    }
	} else {
	    LOG_W(MAC,
		  "[UE %d] Frame %d : unknown sdu %d rx_lcids[%d]=%d mcch status %d eNB %d \n",
		  module_idP, frameP, rx_lengths[i], i, rx_lcids[i],
		  UE_mac_inst[module_idP].mcch_status, eNB_index);
	}

	payload_ptr += rx_lengths[i];
    }

    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SEND_MCH_SDU, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
    stop_meas(&UE_mac_inst[module_idP].rx_mch_sdu);
#endif
}

int8_t
ue_get_mbsfn_sf_alloction(module_id_t module_idP,
			  uint8_t mbsfn_sync_area, unsigned char eNB_index)
{
    // currently there is one-to-one mapping between sf allocation pattern and sync area
    if (mbsfn_sync_area >= MAX_MBSFN_AREA) {
	LOG_W(MAC,
	      "[UE %" PRIu8 "] MBSFN synchronization area %" PRIu8
	      " out of range for eNB %" PRIu8 "\n", module_idP,
	      mbsfn_sync_area, eNB_index);
	return -1;
    } else if (UE_mac_inst[module_idP].
	       mbsfn_SubframeConfig[mbsfn_sync_area] != NULL) {
	return mbsfn_sync_area;
    } else {
	LOG_W(MAC,
	      "[UE %" PRIu8 "] MBSFN Subframe Config pattern %" PRIu8
	      " not found \n", module_idP, mbsfn_sync_area);
	return -1;
    }
}

int
ue_query_mch(module_id_t module_idP, uint8_t CC_id, uint32_t frameP,
	     uint32_t subframe, uint8_t eNB_index, uint8_t * sync_area,
	     uint8_t * mcch_active)
{

    int i = 0, j = 0, ii = 0, msi_pos = 0, mcch_mcs = -1;
    int mcch_flag = 0, mtch_flag = 0, msi_flag = 0;
    int mbsfn_period = 0;	// 1<<(UE_mac_inst[module_idP].mbsfn_SubframeConfig[0]->radioframeAllocationPeriod);
    int mcch_period = 0;	// 32<<(UE_mac_inst[module_idP].mbsfn_AreaInfo[0]->mcch_Config_r9.mcch_RepetitionPeriod_r9);
    int mch_scheduling_period = -1;

    int frame_FDD = 1;


#if UE_TIMING_TRACE
    start_meas(&UE_mac_inst[module_idP].ue_query_mch);
#endif

    if (UE_mac_inst[module_idP].pmch_Config[0]) {
	mch_scheduling_period =
	    8 << (UE_mac_inst[module_idP].
		  pmch_Config[0]->mch_SchedulingPeriod_r9);
    }

    for (i = 0; i < UE_mac_inst[module_idP].num_active_mbsfn_area; i++) {
	// assume, that there is always a mapping
	if ((j =
	     ue_get_mbsfn_sf_alloction(module_idP, i, eNB_index)) == -1) {
	    return -1;		// continue;
	}

	ii = 0;
	msi_pos = 0;
	mbsfn_period =
	    1 << (UE_mac_inst[module_idP].
		  mbsfn_SubframeConfig[0]->radioframeAllocationPeriod);
	mcch_period =
	    32 << (UE_mac_inst[module_idP].
		   mbsfn_AreaInfo[0]->mcch_Config_r9.
		   mcch_RepetitionPeriod_r9);

	LOG_D(MAC,
	      "[UE %d] Frame %d subframe %d: Checking MBSFN Sync Area %d/%d with SF allocation %d/%d for MCCH and MTCH (mbsfn period %d, mcch period %d,mac sched period (%d,%ld))\n",
	      module_idP, frameP, subframe, i,
	      UE_mac_inst[module_idP].num_active_mbsfn_area, j,
	      UE_mac_inst[module_idP].num_sf_allocation_pattern,
	      mbsfn_period, mcch_period, mch_scheduling_period,
	      UE_mac_inst[module_idP].
	      mbsfn_SubframeConfig[j]->radioframeAllocationOffset);

	// get the real MCS value
	switch (UE_mac_inst[module_idP].mbsfn_AreaInfo[i]->
		mcch_Config_r9.signallingMCS_r9) {
	case 0:
	    mcch_mcs = 2;
	    break;

	case 1:
	    mcch_mcs = 7;
	    break;

	case 2:
	    mcch_mcs = 13;
	    break;

	case 3:
	    mcch_mcs = 19;
	    break;
	}

	if (frameP % mbsfn_period == UE_mac_inst[module_idP].mbsfn_SubframeConfig[j]->radioframeAllocationOffset) {	// MBSFN frameP
	    if (UE_mac_inst[module_idP].mbsfn_SubframeConfig[j]->subframeAllocation.present == MBSFN_SubframeConfig__subframeAllocation_PR_oneFrame) {	// one-frameP format

		if (UE_mac_inst[module_idP].pmch_Config[0]) {
		    //  Find the first subframe in this MCH to transmit MSI
		    if (frameP % mch_scheduling_period ==
			UE_mac_inst[module_idP].
			mbsfn_SubframeConfig
			[j]->radioframeAllocationOffset) {
			while (ii == 0) {
			    ii = UE_mac_inst[module_idP].
				mbsfn_SubframeConfig[j]->
				subframeAllocation.choice.
				oneFrame.buf[0] & (0x80 >> msi_pos);
			    msi_pos++;
			}
		    }
		}

		if (UE_mac_inst[module_idP].tdd_Config == NULL)
		    frame_FDD = 1;
		else
		    frame_FDD = 0;
		// Check if the subframe is for MSI, MCCH or MTCHs and Set the correspoding flag to 1
		switch (subframe) {
		case 1:
		    if (frame_FDD == 1) {
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_FDD_SF1) == MBSFN_FDD_SF1) {
			    if (msi_pos == 1) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_FDD_SF1) ==
				 MBSFN_FDD_SF1)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    }

		    break;

		case 2:
		    if (frame_FDD == 1) {
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_FDD_SF2) == MBSFN_FDD_SF2) {
			    if (msi_pos == 2) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_FDD_SF2) ==
				 MBSFN_FDD_SF2)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    }

		    break;

		case 3:
		    if (frame_FDD == 0) {	//TDD
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_TDD_SF3) == MBSFN_TDD_SF3) {
			    if (msi_pos == 1) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_TDD_SF3) ==
				 MBSFN_TDD_SF3)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    } else {	// FDD
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_FDD_SF3) == MBSFN_FDD_SF3) {
			    if (msi_pos == 3) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_FDD_SF3) ==
				 MBSFN_FDD_SF3)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    }

		    break;

		case 4:
		    if (frame_FDD == 0) {
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_TDD_SF4) == MBSFN_TDD_SF4) {
			    if (msi_pos == 2) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_TDD_SF4) ==
				 MBSFN_TDD_SF4)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    }

		    break;

		case 6:
		    if (frame_FDD == 1) {
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_FDD_SF6) == MBSFN_FDD_SF6) {
			    if (msi_pos == 4) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_FDD_SF6) ==
				 MBSFN_FDD_SF6)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    }

		    break;

		case 7:
		    if (frame_FDD == 0) {	// TDD
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_TDD_SF7) == MBSFN_TDD_SF7) {
			    if (msi_pos == 3) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_TDD_SF7) ==
				 MBSFN_TDD_SF7)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    } else {	// FDD
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_FDD_SF7) == MBSFN_FDD_SF7) {
			    if (msi_pos == 5) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_FDD_SF7) ==
				 MBSFN_FDD_SF7)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    }

		    break;

		case 8:
		    if (frame_FDD == 0) {	//TDD
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_TDD_SF8) == MBSFN_TDD_SF8) {
			    if (msi_pos == 4) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_TDD_SF8) ==
				 MBSFN_TDD_SF8)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    } else {	// FDD
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_FDD_SF8) == MBSFN_FDD_SF8) {
			    if (msi_pos == 6) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_FDD_SF8) ==
				 MBSFN_FDD_SF8)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    }

		    break;

		case 9:
		    if (frame_FDD == 0) {
			if ((UE_mac_inst[module_idP].mbsfn_SubframeConfig
			     [j]->subframeAllocation.choice.oneFrame.
			     buf[0] & MBSFN_TDD_SF9) == MBSFN_TDD_SF9) {
			    if (msi_pos == 5) {
				msi_flag = 1;
			    }

			    if ((frameP % mcch_period ==
				 UE_mac_inst[module_idP].mbsfn_AreaInfo
				 [i]->mcch_Config_r9.mcch_Offset_r9)
				&&
				((UE_mac_inst[module_idP].mbsfn_AreaInfo
				  [i]->mcch_Config_r9.sf_AllocInfo_r9.
				  buf[0] & MBSFN_TDD_SF9) ==
				 MBSFN_TDD_SF9)) {
				mcch_flag = 1;
			    }

			    mtch_flag = 1;
			}
		    }

		    break;
		}		// end switch

		// sf allocation is non-overlapping
		if ((msi_flag == 1) || (mcch_flag == 1)
		    || (mtch_flag == 1)) {
		    LOG_D(MAC,
			  "[UE %d] Frame %d Subframe %d: sync area %d SF alloc %d: msi flag %d, mcch flag %d, mtch flag %d\n",
			  module_idP, frameP, subframe, i, j, msi_flag,
			  mcch_flag, mtch_flag);

		    *sync_area = i;
		    break;
		}
	    } else {		// four-frameP format
	    }
	}
    }				// end of for
#if UE_TIMING_TRACE
    stop_meas(&UE_mac_inst[module_idP].ue_query_mch);
#endif

    if ((mcch_flag == 1)) {	// || (msi_flag==1))
	*mcch_active = 1;
    }

    if ((mcch_flag == 1)
	|| ((msi_flag == 1) && (UE_mac_inst[module_idP].mcch_status == 1))) {
	return mcch_mcs;
    } else if ((mtch_flag == 1)
	       && (UE_mac_inst[module_idP].msi_status == 1)) {
	return UE_mac_inst[module_idP].pmch_Config[0]->dataMCS_r9;
    } else {
	return -1;
    }
}

#endif

unsigned char
generate_ulsch_header(uint8_t * mac_header,
		      uint8_t num_sdus,
		      uint8_t short_padding,
		      uint16_t * sdu_lengths,
		      uint8_t * sdu_lcids,
		      POWER_HEADROOM_CMD * power_headroom,
		      uint16_t * crnti,
		      BSR_SHORT * truncated_bsr,
		      BSR_SHORT * short_bsr,
		      BSR_LONG * long_bsr, unsigned short post_padding)
{

    SCH_SUBHEADER_FIXED *mac_header_ptr =
	(SCH_SUBHEADER_FIXED *) mac_header;
    unsigned char first_element = 0, last_size = 0, i;
    unsigned char mac_header_control_elements[16], *ce_ptr;

    LOG_D(MAC, "[UE] Generate ULSCH : num_sdus %d\n", num_sdus);
#ifdef DEBUG_HEADER_PARSING

    for (i = 0; i < num_sdus; i++) {
	LOG_T(MAC, "[UE] sdu %d : lcid %d length %d", i, sdu_lcids[i],
	      sdu_lengths[i]);
    }

    LOG_T(MAC, "\n");
#endif
    ce_ptr = &mac_header_control_elements[0];

    if ((short_padding == 1) || (short_padding == 2)) {
	mac_header_ptr->R = 0;
	mac_header_ptr->E = 0;
	mac_header_ptr->LCID = SHORT_PADDING;
	first_element = 1;
	last_size = 1;
    }

    if (short_padding == 2) {
	mac_header_ptr->E = 1;
	mac_header_ptr++;
	mac_header_ptr->R = 0;
	mac_header_ptr->E = 0;
	mac_header_ptr->LCID = SHORT_PADDING;
	last_size = 1;
    }

    if (power_headroom) {
	if (first_element > 0) {
	    mac_header_ptr->E = 1;
	    mac_header_ptr++;
	} else {
	    first_element = 1;
	}

	mac_header_ptr->R = 0;
	mac_header_ptr->E = 0;
	mac_header_ptr->LCID = POWER_HEADROOM;
	last_size = 1;
	*((POWER_HEADROOM_CMD *) ce_ptr) = (*power_headroom);
	ce_ptr += sizeof(POWER_HEADROOM_CMD);
	LOG_D(MAC, "phr header size %zu\n", sizeof(POWER_HEADROOM_CMD));
    }

    if (crnti) {
#ifdef DEBUG_HEADER_PARSING
	LOG_D(MAC, "[UE] CRNTI : %x (first_element %d)\n", *crnti,
	      first_element);
#endif

	if (first_element > 0) {
	    mac_header_ptr->E = 1;
	    mac_header_ptr++;
	} else {
	    first_element = 1;
	}

	mac_header_ptr->R = 0;
	mac_header_ptr->E = 0;
	mac_header_ptr->LCID = CRNTI;
	last_size = 1;
	*((uint16_t *) ce_ptr) = (*crnti);
	ce_ptr += sizeof(uint16_t);
	//    printf("offset %d\n",ce_ptr-mac_header_control_elements);
    }

    if (truncated_bsr) {
	if (first_element > 0) {
	    mac_header_ptr->E = 1;
	    /*
	       printf("last subheader : %x (R%d,E%d,LCID%d)\n",*(unsigned char*)mac_header_ptr,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->R,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->E,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->LCID);
	     */
	    mac_header_ptr++;
	} else {
	    first_element = 1;
	}

#ifdef DEBUG_HEADER_PARSING
	LOG_D(MAC, "[UE] Scheduler Truncated BSR Header\n");
#endif
	mac_header_ptr->R = 0;
	mac_header_ptr->E = 0;
	mac_header_ptr->LCID = TRUNCATED_BSR;
	last_size = 1;
	*((BSR_TRUNCATED *) ce_ptr) = (*truncated_bsr);
	ce_ptr += sizeof(BSR_TRUNCATED);
	//    printf("(cont_res) : offset %d\n",ce_ptr-mac_header_control_elements);

    } else if (short_bsr) {
	if (first_element > 0) {
	    mac_header_ptr->E = 1;
	    /*
	       printf("last subheader : %x (R%d,E%d,LCID%d)\n",*(unsigned char*)mac_header_ptr,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->R,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->E,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->LCID);
	     */
	    mac_header_ptr++;
	} else {
	    first_element = 1;
	}

#ifdef DEBUG_HEADER_PARSING
	LOG_D(MAC, "[UE] Scheduler SHORT BSR Header\n");
#endif
	mac_header_ptr->R = 0;
	mac_header_ptr->E = 0;
	mac_header_ptr->LCID = SHORT_BSR;
	last_size = 1;
	*((BSR_SHORT *) ce_ptr) = (*short_bsr);
	ce_ptr += sizeof(BSR_SHORT);

	//    printf("(cont_res) : offset %d\n",ce_ptr-mac_header_control_elements);
    } else if (long_bsr) {
	if (first_element > 0) {
	    mac_header_ptr->E = 1;
	    /*
	       printf("last subheader : %x (R%d,E%d,LCID%d)\n",*(unsigned char*)mac_header_ptr,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->R,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->E,
	       ((SCH_SUBHEADER_FIXED *)mac_header_ptr)->LCID);
	     */
	    mac_header_ptr++;
	} else {
	    first_element = 1;
	}

#ifdef DEBUG_HEADER_PARSING
	LOG_D(MAC, "[UE] Scheduler Long BSR Header\n");
#endif
	mac_header_ptr->R = 0;
	mac_header_ptr->E = 0;
	mac_header_ptr->LCID = LONG_BSR;
	last_size = 1;

	*(ce_ptr) =
	    (long_bsr->
	     Buffer_size0 << 2) | ((long_bsr->Buffer_size1 & 0x30) >> 4);
	*(ce_ptr + 1) =
	    ((long_bsr->Buffer_size1 & 0x0F) << 4) | ((long_bsr->
						       Buffer_size2 & 0x3C)
						      >> 2);
	*(ce_ptr + 2) =
	    ((long_bsr->
	      Buffer_size2 & 0x03) << 2) | (long_bsr->Buffer_size3 & 0x3F);
	ce_ptr += BSR_LONG_SIZE;

	//    printf("(cont_res) : offset %d\n",ce_ptr-mac_header_control_elements);
    }
    //  printf("last_size %d,mac_header_ptr %p\n",last_size,mac_header_ptr);

    for (i = 0; i < num_sdus; i++) {
#ifdef DEBUG_HEADER_PARSING
	LOG_T(MAC, "[UE] sdu subheader %d (lcid %d, %d bytes)\n", i,
	      sdu_lcids[i], sdu_lengths[i]);
#endif

	if ((i == (num_sdus - 1))
	    && ((short_padding) || (post_padding == 0))) {
	    if (first_element > 0) {
		mac_header_ptr->E = 1;
#ifdef DEBUG_HEADER_PARSING
		LOG_D(MAC, "[UE] last subheader : %x (R%d,E%d,LCID%d)\n",
		      *(unsigned char *) mac_header_ptr,
		      ((SCH_SUBHEADER_FIXED *) mac_header_ptr)->R,
		      ((SCH_SUBHEADER_FIXED *) mac_header_ptr)->E,
		      ((SCH_SUBHEADER_FIXED *) mac_header_ptr)->LCID);
#endif
		mac_header_ptr += last_size;
	    }
	    mac_header_ptr->R = 0;
	    mac_header_ptr->E = 0;
	    mac_header_ptr->LCID = sdu_lcids[i];
	} else {
	    if ((first_element > 0)) {
		mac_header_ptr->E = 1;
#ifdef DEBUG_HEADER_PARSING
		LOG_D(MAC, "[UE] last subheader : %x (R%d,E%d,LCID%d)\n",
		      *(unsigned char *) mac_header_ptr,
		      ((SCH_SUBHEADER_FIXED *) mac_header_ptr)->R,
		      ((SCH_SUBHEADER_FIXED *) mac_header_ptr)->E,
		      ((SCH_SUBHEADER_FIXED *) mac_header_ptr)->LCID);
#endif
		mac_header_ptr += last_size;
		//      printf("last_size %d,mac_header_ptr %p\n",last_size,mac_header_ptr);
	    } else {
		first_element = 1;

	    }

	    if (sdu_lengths[i] < 128) {
		((SCH_SUBHEADER_SHORT *) mac_header_ptr)->R = 0;	// 3
		((SCH_SUBHEADER_SHORT *) mac_header_ptr)->E = 0;
		((SCH_SUBHEADER_SHORT *) mac_header_ptr)->F = 0;
		((SCH_SUBHEADER_SHORT *) mac_header_ptr)->LCID =
		    sdu_lcids[i];
		((SCH_SUBHEADER_SHORT *) mac_header_ptr)->L =
		    (unsigned char) sdu_lengths[i];
		last_size = 2;
#ifdef DEBUG_HEADER_PARSING
		LOG_D(MAC, "[UE] short sdu\n");
		LOG_T(MAC,
		      "[UE] last subheader : %x (R%d,E%d,LCID%d,F%d,L%d)\n",
		      ((uint16_t *) mac_header_ptr)[0],
		      ((SCH_SUBHEADER_SHORT *) mac_header_ptr)->R,
		      ((SCH_SUBHEADER_SHORT *) mac_header_ptr)->E,
		      ((SCH_SUBHEADER_SHORT *) mac_header_ptr)->LCID,
		      ((SCH_SUBHEADER_SHORT *) mac_header_ptr)->F,
		      ((SCH_SUBHEADER_SHORT *) mac_header_ptr)->L);
#endif
	    } else {
		((SCH_SUBHEADER_LONG *) mac_header_ptr)->R = 0;
		((SCH_SUBHEADER_LONG *) mac_header_ptr)->E = 0;
		((SCH_SUBHEADER_LONG *) mac_header_ptr)->F = 1;
		((SCH_SUBHEADER_LONG *) mac_header_ptr)->LCID =
		    sdu_lcids[i];
		((SCH_SUBHEADER_LONG *) mac_header_ptr)->L_MSB =
		    ((unsigned short) sdu_lengths[i] >> 8) & 0x7f;
		((SCH_SUBHEADER_LONG *) mac_header_ptr)->L_LSB =
		    (unsigned short) sdu_lengths[i] & 0xff;
		((SCH_SUBHEADER_LONG *) mac_header_ptr)->padding = 0x00;
		last_size = 3;
#ifdef DEBUG_HEADER_PARSING
		LOG_D(MAC, "[UE] long sdu\n");
#endif
	    }
	}
    }

    if (post_padding > 0) {	// we have lots of padding at the end of the packet
	mac_header_ptr->E = 1;
	mac_header_ptr += last_size;
	// add a padding element
	mac_header_ptr->R = 0;
	mac_header_ptr->E = 0;
	mac_header_ptr->LCID = SHORT_PADDING;
	mac_header_ptr++;
    } else {			// no end of packet padding
	// last SDU subhead is of fixed type (sdu length implicitly to be computed at UE)
	mac_header_ptr++;
	//mac_header_ptr=last_size; // FIXME: should be ++
    }


    if ((ce_ptr - mac_header_control_elements) > 0) {
	memcpy((void *) mac_header_ptr, mac_header_control_elements,
	       ce_ptr - mac_header_control_elements);
	mac_header_ptr +=
	    (unsigned char) (ce_ptr - mac_header_control_elements);
    }
#ifdef DEBUG_HEADER_PARSING
    LOG_T(MAC, " [UE] header : ");

    for (i = 0; i < ((unsigned char *) mac_header_ptr - mac_header); i++) {
	LOG_T(MAC, "%2x.", mac_header[i]);
    }

    LOG_T(MAC, "\n");
#endif
    return ((unsigned char *) mac_header_ptr - mac_header);

}

void
ue_get_sdu(module_id_t module_idP, int CC_id, frame_t frameP,
	   sub_frame_t subframe, uint8_t eNB_index,
	   uint8_t * ulsch_buffer, uint16_t buflen, uint8_t * access_mode)
{

    uint8_t total_rlc_pdu_header_len = 0, rlc_pdu_header_len_last = 0;
    uint16_t buflen_remain = 0;
    uint8_t bsr_len = 0, bsr_ce_len = 0, bsr_header_len = 0;
    uint8_t phr_header_len = 0, phr_ce_len = 0, phr_len = 0;
    uint8_t lcid = 0, lcid_rlc_pdu_count = 0;
    boolean_t is_lcid_processed = FALSE;
    boolean_t is_all_lcid_processed = FALSE;
    uint16_t sdu_lengths[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    uint8_t sdu_lcids[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
    uint8_t payload_offset = 0, num_sdus = 0;
    uint8_t ulsch_buff[MAX_ULSCH_PAYLOAD_BYTES];
    uint16_t sdu_length_total = 0;
    BSR_SHORT bsr_short, bsr_truncated;
    BSR_LONG bsr_long;
    BSR_SHORT *bsr_s = &bsr_short;
    BSR_LONG *bsr_l = &bsr_long;
    BSR_SHORT *bsr_t = &bsr_truncated;
    POWER_HEADROOM_CMD phr;
    POWER_HEADROOM_CMD *phr_p = &phr;
    unsigned short short_padding = 0, post_padding = 0, padding_len = 0;
    int j;			// used for padding
    // Compute header length
    int lcg_id = 0;
    int lcg_id_bsr_trunc = 0;
    int highest_priority = 16;
    int num_lcg_id_with_data = 0;
    rlc_buffer_occupancy_t lcid_buffer_occupancy_old =
	0, lcid_buffer_occupancy_new = 0;

    LOG_D(MAC,
	  "[UE %d] MAC PROCESS UL TRANSPORT BLOCK at frame%d subframe %d TBS=%d\n",
	  module_idP, frameP, subframe, buflen);


    AssertFatal(CC_id == 0,
		"Transmission on secondary CCs is not supported yet\n");

#if UE_TIMING_TRACE
    start_meas(&UE_mac_inst[module_idP].tx_ulsch_sdu);
#endif
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_GET_SDU, VCD_FUNCTION_IN);

#ifdef CBA

    if (*access_mode == CBA_ACCESS) {
	LOG_D(MAC, "[UE %d] frameP %d subframe %d try CBA transmission\n",
	      module_idP, frameP, subframe);

	//if (UE_mac_inst[module_idP].scheduling_info.LCID_status[DTCH] == LCID_EMPTY)
	if (cba_access(module_idP, frameP, subframe, eNB_index, buflen) ==
	    0) {
	    *access_mode = POSTPONED_ACCESS;
	    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
		(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_GET_SDU, VCD_FUNCTION_OUT);
	    return;
	}

	LOG_I(MAC,
	      "[UE %d] frameP %d subframe %d CBA transmission oppurtunity, tbs %d\n",
	      module_idP, frameP, subframe, buflen);
    }
#endif
    bsr_header_len = 0;
    phr_header_len = 1;		//sizeof(SCH_SUBHEADER_FIXED);

    while (lcg_id < MAX_NUM_LCGID) {
	if (UE_mac_inst[module_idP].scheduling_info.BSR_bytes[lcg_id]) {
	    num_lcg_id_with_data++;
	}
	lcg_id++;
    }

    if (num_lcg_id_with_data) {
	LOG_D(MAC,
	      "[UE %d] MAC Tx data pending at frame%d subframe %d nb LCG =%d Bytes for LCG0=%d LCG1=%d LCG2=%d LCG3=%d BSR Trigger status =%d TBS=%d\n",
	      module_idP, frameP, subframe, num_lcg_id_with_data,
	      UE_mac_inst[module_idP].scheduling_info.BSR_bytes[0],
	      UE_mac_inst[module_idP].scheduling_info.BSR_bytes[1],
	      UE_mac_inst[module_idP].scheduling_info.BSR_bytes[2],
	      UE_mac_inst[module_idP].scheduling_info.BSR_bytes[3],
	      UE_mac_inst[module_idP].BSR_reporting_active, buflen);

    }
    //Restart ReTxBSR Timer at new grant indication (36.321)
    if (UE_mac_inst[module_idP].scheduling_info.retxBSR_SF !=
	MAC_UE_BSR_TIMER_NOT_RUNNING) {
	UE_mac_inst[module_idP].scheduling_info.retxBSR_SF =
	    get_sf_retxBSRTimer(UE_mac_inst[module_idP].
				scheduling_info.retxBSR_Timer);
    }
    // periodicBSR-Timer expires, trigger BSR
    if ((UE_mac_inst[module_idP].scheduling_info.periodicBSR_Timer !=
	 PeriodicBSR_Timer_r12_infinity)
	&& (UE_mac_inst[module_idP].scheduling_info.periodicBSR_SF == 0)) {
	// Trigger BSR Periodic
	UE_mac_inst[module_idP].BSR_reporting_active |=
	    BSR_TRIGGER_PERIODIC;

	LOG_D(MAC,
	      "[UE %d] MAC BSR Triggered PeriodicBSR Timer expiry at frame%d subframe %d TBS=%d\n",
	      module_idP, frameP, subframe, buflen);

    }
    //Compute BSR Length if Regular or Periodic BSR is triggered
    //WARNING: if BSR long is computed, it may be changed to BSR short during or after multiplexing if there remains less than 1 LCGROUP with data after Tx
    if (UE_mac_inst[module_idP].BSR_reporting_active) {

	AssertFatal((UE_mac_inst[module_idP].BSR_reporting_active &
		     BSR_TRIGGER_PADDING) == 0,
		    "Inconsistent BSR Trigger=%d !\n",
		    UE_mac_inst[module_idP].BSR_reporting_active);

	if (buflen >= 4) {
	    //A Regular or Periodic BSR can only be sent if TBS >= 4 as transmitting only a BSR is not allowed if UE has data to transmit
	    bsr_header_len = 1;

	    if (num_lcg_id_with_data <= 1) {
		bsr_ce_len = sizeof(BSR_SHORT);	//1 byte
	    } else {
		bsr_ce_len = BSR_LONG_SIZE;	//3 bytes
	    }
	}
    }

    bsr_len = bsr_ce_len + bsr_header_len;

    phr_ce_len =
	(UE_mac_inst[module_idP].PHR_reporting_active ==
	 1) ? 1 /* sizeof(POWER_HEADROOM_CMD) */ : 0;
    if ((phr_ce_len > 0)
	&& ((phr_ce_len + phr_header_len + bsr_len) <= buflen)) {
	phr_len = phr_ce_len + phr_header_len;
	LOG_D(MAC,
	      "[UE %d] header size info: PHR len %d (ce%d,hdr%d) buff_len %d\n",
	      module_idP, phr_len, phr_ce_len, phr_header_len, buflen);
    } else {
	phr_len = 0;
	phr_header_len = 0;
	phr_ce_len = 0;
    }

    // check for UL bandwidth requests and add SR control element

    // check for UL bandwidth requests and add SR control element

    // Check for DCCH first
// TO DO: Multiplex in the order defined by the logical channel prioritization
    for (lcid = DCCH;
	 (lcid < MAX_NUM_LCID) && (is_all_lcid_processed == FALSE); lcid++)
    {
	if (UE_mac_inst[module_idP].scheduling_info.LCID_status[lcid] ==
	    LCID_NOT_EMPTY) {

	    lcid_rlc_pdu_count = 0;
	    is_lcid_processed = FALSE;
	    lcid_buffer_occupancy_old =
		mac_rlc_get_buffer_occupancy_ind(module_idP,
						 UE_mac_inst[module_idP].
						 crnti, eNB_index, frameP,
						 subframe, ENB_FLAG_NO,
						 lcid);

	    lcid_buffer_occupancy_new = lcid_buffer_occupancy_old;

	    AssertFatal(lcid_buffer_occupancy_new ==
			UE_mac_inst[module_idP].
			scheduling_info.LCID_buffer_remain[lcid],
			"LCID=%d RLC has BO %d bytes but MAC has stored %d bytes\n",
			lcid, lcid_buffer_occupancy_new,
			UE_mac_inst[module_idP].
			scheduling_info.LCID_buffer_remain[lcid]);

	    AssertFatal(lcid_buffer_occupancy_new <=
			UE_mac_inst[module_idP].
			scheduling_info.BSR_bytes[UE_mac_inst[module_idP].
						  scheduling_info.LCGID
						  [lcid]],
			"LCID=%d RLC has more BO %d bytes than BSR = %d bytes\n",
			lcid, lcid_buffer_occupancy_new,
			UE_mac_inst[module_idP].
			scheduling_info.BSR_bytes[UE_mac_inst[module_idP].
						  scheduling_info.LCGID
						  [lcid]]);


	    //Multiplex all available DCCH RLC PDUs considering to multiplex the last PDU each time for maximize the data
	    //Adjust at the end of the loop
	    while ((!is_lcid_processed) && (lcid_buffer_occupancy_new)
		   && (bsr_len + phr_len + total_rlc_pdu_header_len +
		       sdu_length_total + MIN_MAC_HDR_RLC_SIZE <= buflen))
	    {

		// Workaround for issue in OAI eNB or EPC which are not able to process SRB2 message multiplexed with SRB1 on the same MAC PDU
		if ((usim_test == 0) && (lcid == DCCH1)
		    && (lcid_rlc_pdu_count == 0) && (num_sdus)) {

		    // Skip SRB2 multiplex if at least one SRB1 SDU is already multiplexed
		    break;
		}

		buflen_remain =
		    buflen - (bsr_len + phr_len +
			      total_rlc_pdu_header_len + sdu_length_total +
			      1);


		LOG_D(MAC,
		      "[UE %d] Frame %d : UL-DXCH -> ULSCH, RLC %d has %d bytes to "
		      "send (Transport Block size %d BSR size=%d PHR=%d SDU Length Total %d , mac header len %d BSR byte before Tx=%d)\n",
		      module_idP, frameP, lcid, lcid_buffer_occupancy_new,
		      buflen, bsr_len, phr_len, sdu_length_total,
		      total_rlc_pdu_header_len,
		      UE_mac_inst[module_idP].
		      scheduling_info.BSR_bytes[UE_mac_inst[module_idP].
						scheduling_info.LCGID
						[lcid]]);


		sdu_lengths[num_sdus] = mac_rlc_data_req(module_idP,
							 UE_mac_inst
							 [module_idP].
							 crnti, eNB_index,
							 frameP,
							 ENB_FLAG_NO,
							 MBMS_FLAG_NO,
							 lcid,
							 buflen_remain,
							 (char *)
							 &ulsch_buff
							 [sdu_length_total]);


		AssertFatal(buflen_remain >= sdu_lengths[num_sdus],
			    "LCID=%d RLC has segmented %d bytes but MAC has max=%d\n",
			    lcid, sdu_lengths[num_sdus], buflen_remain);


		if (sdu_lengths[num_sdus]) {
		    sdu_length_total += sdu_lengths[num_sdus];
		    sdu_lcids[num_sdus] = lcid;
		    LOG_D(MAC,
			  "[UE %d] TX Multiplex RLC PDU TX Got %d bytes for LcId%d\n",
			  module_idP, sdu_lengths[num_sdus], lcid);

		    if (buflen ==
			(bsr_len + phr_len + total_rlc_pdu_header_len +
			 sdu_length_total + 1)) {
			//No more remaining TBS after this PDU
			//exit the function
			rlc_pdu_header_len_last = 1;
			is_lcid_processed = TRUE;
			is_all_lcid_processed = TRUE;
		    } else {
			rlc_pdu_header_len_last =
			    (sdu_lengths[num_sdus] > 128) ? 3 : 2;

			//Change to 1 byte if it does not fit in the TBS, ie last PDU
			if (buflen <=
			    (bsr_len + phr_len + total_rlc_pdu_header_len +
			     rlc_pdu_header_len_last + sdu_length_total)) {
			    rlc_pdu_header_len_last = 1;
			    is_lcid_processed = TRUE;
			    is_all_lcid_processed = TRUE;
			}
		    }

		    //Update number of SDU
		    num_sdus++;

		    //Update total MAC Header size for RLC PDUs and save last one
		    total_rlc_pdu_header_len += rlc_pdu_header_len_last;

		    lcid_rlc_pdu_count++;
		} else {
		    /* avoid infinite loop ... */
		    is_lcid_processed = TRUE;
		}

		/* Get updated BO after multiplexing this PDU */
		lcid_buffer_occupancy_new =
		    mac_rlc_get_buffer_occupancy_ind(module_idP,
						     UE_mac_inst
						     [module_idP].crnti,
						     eNB_index, frameP,
						     subframe, ENB_FLAG_NO,
						     lcid);

		is_lcid_processed = (is_lcid_processed)
		    || (lcid_buffer_occupancy_new <= 0);
	    }

	    //Update Buffer remain and BSR bytes after transmission

	    AssertFatal(lcid_buffer_occupancy_new <=
			lcid_buffer_occupancy_old,
			"MAC UE Tx error : Buffer Occupancy After Tx=%d greater than before=%d BO! for LCID=%d RLC PDU nb=%d Frame %d Subrame %d\n",
			lcid_buffer_occupancy_new,
			lcid_buffer_occupancy_old, lcid,
			lcid_rlc_pdu_count, frameP, subframe);

	    UE_mac_inst[module_idP].scheduling_info.
		LCID_buffer_remain[lcid] = lcid_buffer_occupancy_new;
	    UE_mac_inst[module_idP].
		scheduling_info.BSR_bytes[UE_mac_inst[module_idP].
					  scheduling_info.LCGID[lcid]] +=
		(lcid_buffer_occupancy_new - lcid_buffer_occupancy_old);

	    //Update the number of LCGID with data as BSR shall reflect status after BSR transmission
	    if ((num_lcg_id_with_data > 1)
		&& (UE_mac_inst[module_idP].
		    scheduling_info.BSR_bytes[UE_mac_inst[module_idP].
					      scheduling_info.LCGID[lcid]]
		    == 0)) {
		num_lcg_id_with_data--;
		// Change BSR size to BSR SHORT if num_lcg_id_with_data becomes to 1
		if ((bsr_len) && (num_lcg_id_with_data == 1)) {
		    bsr_ce_len = sizeof(BSR_SHORT);
		    bsr_len = bsr_ce_len + bsr_header_len;
		}
	    }


	    UE_mac_inst[module_idP].scheduling_info.LCID_status[lcid] =
		LCID_EMPTY;
	}
    }



    // Compute BSR Values and update Nb LCGID with data after multiplexing
    num_lcg_id_with_data = 0;
    lcg_id_bsr_trunc = 0;
    for (lcg_id = 0; lcg_id < MAX_NUM_LCGID; lcg_id++) {
	UE_mac_inst[module_idP].scheduling_info.BSR[lcg_id] =
	    locate_BsrIndexByBufferSize(BSR_TABLE, BSR_TABLE_SIZE,
					UE_mac_inst
					[module_idP].scheduling_info.
					BSR_bytes[lcg_id]);

	if (UE_mac_inst[module_idP].scheduling_info.BSR_bytes[lcg_id]) {
	    num_lcg_id_with_data++;
	    lcg_id_bsr_trunc = lcg_id;
	}
    }


    if (bsr_ce_len) {
	//Print updated BSR when sent
	LOG_D(MAC,
	      "[UE %d] Remaining Buffer after Tx frame%d subframe %d nb LCG =%d Bytes for LCG0=%d LCG1=%d LCG2=%d LCG3=%d BSR Trigger status =%d TBS=%d\n",
	      module_idP, frameP, subframe, num_lcg_id_with_data,
	      UE_mac_inst[module_idP].scheduling_info.BSR_bytes[0],
	      UE_mac_inst[module_idP].scheduling_info.BSR_bytes[1],
	      UE_mac_inst[module_idP].scheduling_info.BSR_bytes[2],
	      UE_mac_inst[module_idP].scheduling_info.BSR_bytes[3],
	      UE_mac_inst[module_idP].BSR_reporting_active, buflen);

	LOG_D(MAC,
	      "[UE %d] Frame %d Subframe %d TX BSR Regular or Periodic size=%d BSR0=%d BSR1=%d BSR2=%d BSR3=%d\n",
	      module_idP, frameP, subframe, bsr_ce_len,
	      UE_mac_inst[module_idP].scheduling_info.BSR[0],
	      UE_mac_inst[module_idP].scheduling_info.BSR[1],
	      UE_mac_inst[module_idP].scheduling_info.BSR[2],
	      UE_mac_inst[module_idP].scheduling_info.BSR[3]);
    }
    // build PHR and update the timers
    if (phr_ce_len == sizeof(POWER_HEADROOM_CMD)) {
	phr_p->PH = get_phr_mapping(module_idP, CC_id, eNB_index);
	phr_p->R = 0;
	LOG_D(MAC,
	      "[UE %d] Frame %d report PHR with mapping (%d->%d) for LCID %d\n",
	      module_idP, frameP, get_PHR(module_idP, CC_id, eNB_index),
	      phr_p->PH, POWER_HEADROOM);
	update_phr(module_idP, CC_id);
    } else {
	phr_p = NULL;
    }

    LOG_T(MAC, "[UE %d] Frame %d: bsr s %p bsr_l %p, phr_p %p\n",
	  module_idP, frameP, bsr_s, bsr_l, phr_p);


    // Check BSR padding: it is done after PHR according to Logical Channel Prioritization order
    // Check for max padding size, ie MAC Hdr for last RLC PDU = 1
    /* For Padding BSR:
       -  if the number of padding bits is equal to or larger than the size of the Short BSR plus its subheader but smaller than the size of the Long BSR plus its subheader:
       -  if more than one LCG has data available for transmission in the TTI where the BSR is transmitted: report Truncated BSR of the LCG with the highest priority logical channel with data available for transmission;
       -  else report Short BSR.
       -  else if the number of padding bits is equal to or larger than the size of the Long BSR plus its subheader, report Long BSR.
     */
    if (sdu_length_total) {
	padding_len =
	    buflen - (bsr_len + phr_len + total_rlc_pdu_header_len -
		      rlc_pdu_header_len_last + sdu_length_total + 1);
    } else {
	padding_len = buflen - (bsr_len + phr_len);
    }


    if ((padding_len) && (bsr_len == 0)) {
	/* if the number of padding bits is equal to or larger than the size of the Long BSR plus its subheader, report Long BSR */
	if (padding_len >= (1 + BSR_LONG_SIZE)) {
	    bsr_ce_len = BSR_LONG_SIZE;
	    bsr_header_len = 1;
	    // Trigger BSR Padding
	    UE_mac_inst[module_idP].BSR_reporting_active |=
		BSR_TRIGGER_PADDING;


	} else if (padding_len >= (1 + sizeof(BSR_SHORT))) {
	    bsr_ce_len = sizeof(BSR_SHORT);
	    bsr_header_len = 1;

	    if (num_lcg_id_with_data > 1) {
		// REPORT TRUNCATED BSR
		//Get LCGID of highest priority LCID with data
		for (lcid = DCCH; lcid < MAX_NUM_LCID; lcid++) {
		    if (UE_mac_inst[module_idP].
			logicalChannelConfig[lcid] != NULL) {
			lcg_id =
			    UE_mac_inst[module_idP].scheduling_info.
			    LCGID[lcid];

			if ((lcg_id < MAX_NUM_LCGID)
			    && (UE_mac_inst[module_idP].
				scheduling_info.BSR_bytes[lcg_id])
			    &&
			    (UE_mac_inst[module_idP].logicalChannelConfig
			     [lcid]->ul_SpecificParameters->priority <=
			     highest_priority)) {
			    highest_priority =
				UE_mac_inst[module_idP].
				logicalChannelConfig[lcid]->
				ul_SpecificParameters->priority;
			    lcg_id_bsr_trunc = lcg_id;
			}
		    }
		}
	    } else {
		//Report SHORT BSR, clear bsr_t
		bsr_t = NULL;
	    }

	    // Trigger BSR Padding
	    UE_mac_inst[module_idP].BSR_reporting_active |=
		BSR_TRIGGER_PADDING;
	}
	bsr_len = bsr_header_len + bsr_ce_len;
    }
    //Fill BSR Infos
    if (bsr_ce_len == 0) {
	bsr_s = NULL;
	bsr_l = NULL;
	bsr_t = NULL;
    } else if (bsr_ce_len == BSR_LONG_SIZE) {
	bsr_s = NULL;
	bsr_t = NULL;
	bsr_l->Buffer_size0 =
	    UE_mac_inst[module_idP].scheduling_info.BSR[LCGID0];
	bsr_l->Buffer_size1 =
	    UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1];
	bsr_l->Buffer_size2 =
	    UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2];
	bsr_l->Buffer_size3 =
	    UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3];

	LOG_D(MAC,
	      "[UE %d] Frame %d subframe %d BSR Trig=%d report long BSR (level LCGID0 %d,level LCGID1 %d,level LCGID2 %d,level LCGID3 %d)\n",
	      module_idP, frameP, subframe,
	      UE_mac_inst[module_idP].BSR_reporting_active,
	      UE_mac_inst[module_idP].scheduling_info.BSR[LCGID0],
	      UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1],
	      UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2],
	      UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3]);

    } else if (bsr_ce_len == sizeof(BSR_SHORT)) {
	bsr_l = NULL;
	if ((bsr_t != NULL)
	    && (UE_mac_inst[module_idP].BSR_reporting_active &
		BSR_TRIGGER_PADDING)) {
	    //Truncated BSR
	    bsr_s = NULL;
	    bsr_t->LCGID = lcg_id_bsr_trunc;
	    bsr_t->Buffer_size =
		UE_mac_inst[module_idP].scheduling_info.
		BSR[lcg_id_bsr_trunc];

	    LOG_D(MAC,
		  "[UE %d] Frame %d subframe %d BSR Trig=%d report TRUNCATED BSR with level %d for LCGID %d\n",
		  module_idP, frameP, subframe,
		  UE_mac_inst[module_idP].BSR_reporting_active,
		  UE_mac_inst[module_idP].
		  scheduling_info.BSR[lcg_id_bsr_trunc], lcg_id_bsr_trunc);

	} else {
	    bsr_t = NULL;
	    bsr_s->LCGID = lcg_id_bsr_trunc;
	    bsr_s->Buffer_size =
		UE_mac_inst[module_idP].scheduling_info.
		BSR[lcg_id_bsr_trunc];

	    LOG_D(MAC,
		  "[UE %d] Frame %d subframe %d BSR Trig=%d report SHORT BSR with level %d for LCGID %d\n",
		  module_idP, frameP, subframe,
		  UE_mac_inst[module_idP].BSR_reporting_active,
		  UE_mac_inst[module_idP].
		  scheduling_info.BSR[lcg_id_bsr_trunc], lcg_id_bsr_trunc);
	}
    }
// 1-bit padding or 2-bit padding  special padding subheader
// Check for max padding size, ie MAC Hdr for last RLC PDU = 1
    if (sdu_length_total) {
	padding_len =
	    buflen - (bsr_len + phr_len + total_rlc_pdu_header_len -
		      rlc_pdu_header_len_last + sdu_length_total + 1);
    } else {
	padding_len = buflen - (bsr_len + phr_len);
    }

    if (padding_len <= 2) {
	short_padding = padding_len;
	// only add padding header
	post_padding = 0;
	//update total MAC Hdr size for RLC data
	if (sdu_length_total) {
	    total_rlc_pdu_header_len =
		total_rlc_pdu_header_len - rlc_pdu_header_len_last + 1;
	    rlc_pdu_header_len_last = 1;
	}
    } else if (sdu_length_total) {
	post_padding =
	    buflen - (bsr_len + phr_len + total_rlc_pdu_header_len +
		      sdu_length_total + 1);
	// If by adding MAC Hdr for last RLC PDU the padding is 0 then set MAC Hdr for last RLC PDU = 1 and compute 1 or 2 byte padding
	if (post_padding == 0) {
	    total_rlc_pdu_header_len -= rlc_pdu_header_len_last;
	    padding_len =
		buflen - (bsr_len + phr_len + total_rlc_pdu_header_len +
			  sdu_length_total + 1);
	    short_padding = padding_len;
	    total_rlc_pdu_header_len++;
	}
    } else {
	if (padding_len == buflen) {	// nona mac pdu
	    *access_mode = CANCELED_ACCESS;
	}

	short_padding = 0;

	post_padding =
	    buflen - (bsr_len + phr_len + total_rlc_pdu_header_len +
		      sdu_length_total + 1);
    }

    // Generate header
    // if (num_sdus>0) {

    payload_offset = generate_ulsch_header(ulsch_buffer,	// mac header
					   num_sdus,	// num sdus
					   short_padding,	// short pading
					   sdu_lengths,	// sdu length
					   sdu_lcids,	// sdu lcid
					   phr_p,	// power headroom
					   NULL,	// crnti
					   bsr_t,	// truncated bsr
					   bsr_s,	// short bsr
					   bsr_l, post_padding);	// long_bsr

    LOG_D(MAC,
	  "[UE %d] Generate header :bufflen %d  sdu_length_total %d, num_sdus %d, sdu_lengths[0] %d, sdu_lcids[0] %d => payload offset %d,  total_rlc_pdu_header_len %d, padding %d,post_padding %d, bsr len %d, phr len %d, reminder %d \n",
	  module_idP, buflen, sdu_length_total, num_sdus, sdu_lengths[0],
	  sdu_lcids[0], payload_offset, total_rlc_pdu_header_len,
	  short_padding, post_padding, bsr_len, phr_len,
	  buflen - sdu_length_total - payload_offset);
    // cycle through SDUs and place in ulsch_buffer
    if (sdu_length_total) {
	memcpy(&ulsch_buffer[payload_offset], ulsch_buff,
	       sdu_length_total);
    }
    // fill remainder of DLSCH with random data
    if (post_padding) {
	for (j = 0; j < (buflen - sdu_length_total - payload_offset); j++) {
	    ulsch_buffer[payload_offset + sdu_length_total + j] =
		(char) (taus() & 0xff);
	}
    }
    LOG_D(MAC,
	  "[UE %d][SR] Gave SDU to PHY, clearing any scheduling request\n",
	  module_idP);
    UE_mac_inst[module_idP].scheduling_info.SR_pending = 0;
    UE_mac_inst[module_idP].scheduling_info.SR_COUNTER = 0;

    /* Actions when a BSR is sent */
    if (bsr_ce_len) {
	LOG_D(MAC,
	      "[UE %d] MAC BSR Sent !! bsr (ce%d,hdr%d) buff_len %d\n",
	      module_idP, bsr_ce_len, bsr_header_len, buflen);

	// Reset ReTx BSR Timer
	UE_mac_inst[module_idP].scheduling_info.retxBSR_SF =
	    get_sf_retxBSRTimer(UE_mac_inst[module_idP].
				scheduling_info.retxBSR_Timer);

	LOG_D(MAC, "[UE %d] MAC ReTx BSR Timer Reset =%d\n", module_idP,
	      UE_mac_inst[module_idP].scheduling_info.retxBSR_SF);

	// Reset Periodic Timer except when BSR is truncated
	if ((bsr_t == NULL)
	    && (UE_mac_inst[module_idP].scheduling_info.
		periodicBSR_Timer != PeriodicBSR_Timer_r12_infinity)) {
	    UE_mac_inst[module_idP].scheduling_info.periodicBSR_SF =
		get_sf_periodicBSRTimer(UE_mac_inst
					[module_idP].scheduling_info.
					periodicBSR_Timer);

	    LOG_D(MAC, "[UE %d] MAC Periodic BSR Timer Reset =%d\n",
		  module_idP,
		  UE_mac_inst[module_idP].scheduling_info.periodicBSR_SF);

	}
	// Reset BSR Trigger flags
	UE_mac_inst[module_idP].BSR_reporting_active = BSR_TRIGGER_NONE;
    }

    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_GET_SDU, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
    stop_meas(&UE_mac_inst[module_idP].tx_ulsch_sdu);
#endif

    if (opt_enabled) {
	trace_pdu(0, ulsch_buffer, buflen, module_idP, 3,
		  UE_mac_inst[module_idP].crnti,
		  UE_mac_inst[module_idP].txFrame,
		  UE_mac_inst[module_idP].txSubframe, 0, 0);
	LOG_D(OPT,
	      "[UE %d][ULSCH] Frame %d subframe %d trace pdu for rnti %x  with size %d\n",
	      module_idP, frameP, subframe, UE_mac_inst[module_idP].crnti,
	      buflen);
    }
}

//------------------------------------------------------------------------------
// called at each subframe
// Performs :
// 1. Trigger PDCP every 5ms
// 2. Call RRC for link status return to PHY
// 3. Perform SR/BSR procedures for scheduling feedback
// 4. Perform PHR procedures

UE_L2_STATE_t
ue_scheduler(const module_id_t module_idP,
	     const frame_t rxFrameP,
	     const sub_frame_t rxSubframeP,
	     const frame_t txFrameP,
	     const sub_frame_t txSubframeP,
	     const lte_subframe_t directionP,
	     const uint8_t eNB_indexP, const int CC_id)
//------------------------------------------------------------------------------
{
    int lcid;			// lcid index
    int TTI = 1;
    int bucketsizeduration = -1;
    int bucketsizeduration_max = -1;
    // mac_rlc_status_resp_t rlc_status[MAX_NUM_LCGID]; // 4
    // int8_t lcg_id;
    struct RACH_ConfigCommon *rach_ConfigCommon =
	(struct RACH_ConfigCommon *) NULL;
    protocol_ctxt_t ctxt;

#if defined(ENABLE_ITTI)
    MessageDef *msg_p;
    const char *msg_name;
    instance_t instance;
    int result;
#endif
#if UE_TIMING_TRACE
    start_meas(&UE_mac_inst[module_idP].ue_scheduler);
#endif
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SCHEDULER, VCD_FUNCTION_IN);

    PROTOCOL_CTXT_SET_BY_MODULE_ID(&ctxt, module_idP, ENB_FLAG_NO,
				   UE_mac_inst[module_idP].crnti, txFrameP,
				   txSubframeP, eNB_indexP);
#if defined(ENABLE_ITTI)

    do {
	// Checks if a message has been sent to MAC sub-task
	itti_poll_msg(TASK_MAC_UE, &msg_p);

	if (msg_p != NULL) {
	    msg_name = ITTI_MSG_NAME(msg_p);
	    instance = ITTI_MSG_INSTANCE(msg_p);

	    switch (ITTI_MSG_ID(msg_p)) {
	    case RRC_MAC_CCCH_DATA_REQ:
		LOG_I(MAC,
		      "Received %s from %s: instance %d, frameP %d, eNB_index %d\n",
		      msg_name, ITTI_MSG_ORIGIN_NAME(msg_p), instance,
		      RRC_MAC_CCCH_DATA_REQ(msg_p).frame,
		      RRC_MAC_CCCH_DATA_REQ(msg_p).enb_index);

		// TODO process CCCH data req.
		break;


	    default:
		LOG_E(MAC, "Received unexpected message %s\n", msg_name);
		break;
	    }

	    result = itti_free(ITTI_MSG_ORIGIN_ID(msg_p), msg_p);
	    AssertFatal(result == EXIT_SUCCESS,
			"Failed to free memory (%d)!\n", result);
	}
    }
    while (msg_p != NULL);

#endif

    //Mac_rlc_xface->frameP=frameP;
    //Rrc_xface->Frame_index=Mac_rlc_xface->frameP;
    //if (subframe%5 == 0)
    //LG#ifdef EXMIMO
    pdcp_run(&ctxt);
    //#endif
    UE_mac_inst[module_idP].txFrame = txFrameP;
    UE_mac_inst[module_idP].txSubframe = txSubframeP;
    UE_mac_inst[module_idP].rxFrame = rxFrameP;
    UE_mac_inst[module_idP].rxSubframe = rxSubframeP;

#ifdef CELLULAR
    rrc_rx_tx(module_idP, txFrameP, 0, eNB_indexP);
#else

    switch (rrc_rx_tx(&ctxt, eNB_indexP, CC_id)) {
    case RRC_OK:
	break;

    case RRC_ConnSetup_failed:
	LOG_E(MAC, "RRCConnectionSetup failed, returning to IDLE state\n");
	VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	    (VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SCHEDULER, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
	stop_meas(&UE_mac_inst[module_idP].ue_scheduler);
#endif
	return (CONNECTION_LOST);
	break;

    case RRC_PHY_RESYNCH:
	LOG_E(MAC, "RRC Loss of synch, returning PHY_RESYNCH\n");
	VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	    (VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SCHEDULER, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
	stop_meas(&UE_mac_inst[module_idP].ue_scheduler);
#endif
	return (PHY_RESYNCH);

    case RRC_Handover_failed:
	LOG_N(MAC, "Handover failure for UE %d eNB_index %d\n", module_idP,
	      eNB_indexP);
	//Invalid...need to add another MAC UE state for re-connection procedure
	phy_config_afterHO_ue(module_idP, 0, eNB_indexP,
			      (MobilityControlInfo_t *) NULL, 1);
	//return(3);
	break;

    case RRC_HO_STARTED:
	LOG_I(MAC,
	      "RRC handover, Instruct PHY to start the contention-free PRACH and synchronization\n");
	VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	    (VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SCHEDULER, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
	stop_meas(&UE_mac_inst[module_idP].ue_scheduler);
#endif
	return (PHY_HO_PRACH);

    default:
	break;
    }

#endif

    // Check Contention resolution timer (put in a function later)
    if (UE_mac_inst[module_idP].RA_contention_resolution_timer_active == 1) {

	if (UE_mac_inst[module_idP].radioResourceConfigCommon) {
	    rach_ConfigCommon =
		&UE_mac_inst[module_idP].
		radioResourceConfigCommon->rach_ConfigCommon;
	} else {
	    LOG_E(MAC, "FATAL: radioResourceConfigCommon is NULL!!!\n");
	    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
		(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SCHEDULER,
		 VCD_FUNCTION_OUT);

	    stop_meas(&UE_mac_inst[module_idP].ue_scheduler);
	    AssertFatal(1 == 0, "");

#if UE_TIMING_TRACE
	    stop_meas(&UE_mac_inst[module_idP].ue_scheduler);
#endif
	    //return(RRC_OK);
	}

	LOG_I(MAC, "Frame %d: Contention resolution timer %d/%ld\n",
	      txFrameP,
	      UE_mac_inst[module_idP].RA_contention_resolution_cnt,
	      ((1 +
		rach_ConfigCommon->
		ra_SupervisionInfo.mac_ContentionResolutionTimer) << 3));

	UE_mac_inst[module_idP].RA_contention_resolution_cnt++;

	if (UE_mac_inst[module_idP].RA_contention_resolution_cnt ==
	    ((1 +
	      rach_ConfigCommon->
	      ra_SupervisionInfo.mac_ContentionResolutionTimer) << 3)) {
	    UE_mac_inst[module_idP].RA_active = 0;
	    UE_mac_inst[module_idP].RA_contention_resolution_timer_active =
		0;
	    // Signal PHY to quit RA procedure
	    LOG_E(MAC,
		  "Module id %u Contention resolution timer expired, RA failed\n",
		  module_idP);
	    ra_failed(module_idP, 0, eNB_indexP);
	}
    }
    // Get RLC status info and update Bj for all lcids that are active
    for (lcid = DCCH; lcid < MAX_NUM_LCID; lcid++) {
	if (UE_mac_inst[module_idP].logicalChannelConfig[lcid]) {
	    // meausre the Bj
	    if ((directionP == SF_UL)
		&& (UE_mac_inst[module_idP].scheduling_info.Bj[lcid] >= 0)) {
		if (UE_mac_inst[module_idP].
		    logicalChannelConfig[lcid]->ul_SpecificParameters) {
		    bucketsizeduration =
			UE_mac_inst[module_idP].logicalChannelConfig
			[lcid]->ul_SpecificParameters->prioritisedBitRate *
			TTI;
		    bucketsizeduration_max =
			get_ms_bucketsizeduration(UE_mac_inst
						  [module_idP].logicalChannelConfig
						  [lcid]->ul_SpecificParameters->bucketSizeDuration);
		} else {
		    LOG_E(MAC,
			  "[UE %d] lcid %d, NULL ul_SpecificParameters\n",
			  module_idP, lcid);
		    AssertFatal(1 == 0, "");
		}

		if (UE_mac_inst[module_idP].scheduling_info.Bj[lcid] >
		    bucketsizeduration_max) {
		    UE_mac_inst[module_idP].scheduling_info.Bj[lcid] =
			bucketsizeduration_max;
		} else {
		    UE_mac_inst[module_idP].scheduling_info.Bj[lcid] =
			bucketsizeduration;
		}
	    }


	    /*
	       if (lcid == DCCH) {    
	       LOG_D(MAC,"[UE %d][SR] Frame %d subframe %d Pending data for SRB1=%d for LCGID %d \n",                  
	       module_idP, txFrameP,txSubframeP,UE_mac_inst[module_idP].scheduling_info.BSR[UE_mac_inst[module_idP].scheduling_info.LCGID[lcid]],                  
	       //         UE_mac_inst[module_idP].scheduling_info.LCGID[lcid]);
	       }
	     */
	}
    }

    // Call BSR procedure as described in Section 5.4.5 in 36.321

    // First check ReTxBSR Timer because it is always configured
    // Decrement ReTxBSR Timer if it is running and not null
    if ((UE_mac_inst[module_idP].scheduling_info.retxBSR_SF !=
	 MAC_UE_BSR_TIMER_NOT_RUNNING)
	&& (UE_mac_inst[module_idP].scheduling_info.retxBSR_SF != 0)) {
	UE_mac_inst[module_idP].scheduling_info.retxBSR_SF--;
    }
    // Decrement Periodic Timer if it is running and not null
    if ((UE_mac_inst[module_idP].scheduling_info.periodicBSR_SF !=
	 MAC_UE_BSR_TIMER_NOT_RUNNING)
	&& (UE_mac_inst[module_idP].scheduling_info.periodicBSR_SF != 0)) {
	UE_mac_inst[module_idP].scheduling_info.periodicBSR_SF--;
    }
    //Check whether Regular BSR is triggered
    if (update_bsr(module_idP, txFrameP, txSubframeP, eNB_indexP) == TRUE) {
	// call SR procedure to generate pending SR and BSR for next PUCCH/PUSCH TxOp.  This should implement the procedures
	// outlined in Sections 5.4.4 an 5.4.5 of 36.321
	UE_mac_inst[module_idP].scheduling_info.SR_pending = 1;
	// Regular BSR trigger
	UE_mac_inst[module_idP].BSR_reporting_active |=
	    BSR_TRIGGER_REGULAR;
	LOG_D(MAC,
	      "[UE %d][BSR] Regular BSR Triggered Frame %d subframe %d SR for PUSCH is pending\n",
	      module_idP, txFrameP, txSubframeP);
    }
    // UE has no valid phy config dedicated ||  no valid/released  SR
    if ((UE_mac_inst[module_idP].physicalConfigDedicated == NULL)) {
	// cancel all pending SRs
	UE_mac_inst[module_idP].scheduling_info.SR_pending = 0;
	UE_mac_inst[module_idP].ul_active = 0;
	LOG_T(MAC, "[UE %d] Release all SRs \n", module_idP);
	VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	    (VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SCHEDULER, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
	stop_meas(&UE_mac_inst[module_idP].ue_scheduler);
#endif
	return (CONNECTION_OK);
    }

    if ((UE_mac_inst[module_idP].
	 physicalConfigDedicated->schedulingRequestConfig == NULL)
	|| (UE_mac_inst[module_idP].
	    physicalConfigDedicated->schedulingRequestConfig->present ==
	    SchedulingRequestConfig_PR_release)) {

	// initiate RA with CRNTI included in msg3 (no contention) as descibed in 36.321 sec 5.1.5

	// cancel all pending SRs
	UE_mac_inst[module_idP].scheduling_info.SR_pending = 0;
	UE_mac_inst[module_idP].ul_active = 0;
	LOG_T(MAC, "[UE %d] Release all SRs \n", module_idP);
    }
    // Put this in a function
    // Call PHR procedure as described in Section 5.4.6 in 36.321
    if (UE_mac_inst[module_idP].PHR_state == MAC_MainConfig__phr_Config_PR_setup) {	// normal operation

	if (UE_mac_inst[module_idP].PHR_reconfigured == 1) {	// upon (re)configuration of the power headroom reporting functionality by upper layers
	    UE_mac_inst[module_idP].PHR_reporting_active = 1;
	    UE_mac_inst[module_idP].PHR_reconfigured = 0;
	} else {
	    //LOG_D(MAC,"PHR normal operation %d active %d \n", UE_mac_inst[module_idP].scheduling_info.periodicPHR_SF, UE_mac_inst[module_idP].PHR_reporting_active);
	    if ((UE_mac_inst[module_idP].scheduling_info.prohibitPHR_SF <=
		 0)
		&&
		((get_PL(module_idP, 0, eNB_indexP) <
		  UE_mac_inst[module_idP].scheduling_info.
		  PathlossChange_db)
		 || (UE_mac_inst[module_idP].power_backoff_db[eNB_indexP] >
		     UE_mac_inst[module_idP].
		     scheduling_info.PathlossChange_db)))
		// trigger PHR and reset the timer later when the PHR report is sent
	    {
		UE_mac_inst[module_idP].PHR_reporting_active = 1;
	    } else if (UE_mac_inst[module_idP].PHR_reporting_active == 0) {
		UE_mac_inst[module_idP].scheduling_info.prohibitPHR_SF--;
	    }

	    if (UE_mac_inst[module_idP].scheduling_info.periodicPHR_SF <=
		0)
		// trigger PHR and reset the timer later when the PHR report is sent
	    {
		UE_mac_inst[module_idP].PHR_reporting_active = 1;
	    } else if (UE_mac_inst[module_idP].PHR_reporting_active == 0) {
		UE_mac_inst[module_idP].scheduling_info.periodicPHR_SF--;
	    }
	}
    } else {			// release / nothing
	UE_mac_inst[module_idP].PHR_reporting_active = 0;	// release PHR
    }

    //If the UE has UL resources allocated for new transmission for this TTI here:
    VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME
	(VCD_SIGNAL_DUMPER_FUNCTIONS_UE_SCHEDULER, VCD_FUNCTION_OUT);
#if UE_TIMING_TRACE
    stop_meas(&UE_mac_inst[module_idP].ue_scheduler);
#endif
    return (CONNECTION_OK);
}

// to be improved
#ifdef CBA
extern int cba_backoff;
double uniform_rngen(int min, int max)
{
    double random = (double) taus() / ((double) 0xffffffff);
    return (max - min) * random + min;
}

int
cba_access(module_id_t module_idP, frame_t frameP,
	   sub_frame_t subframe, uint8_t eNB_index, uint16_t buflen)
{

    mac_rlc_status_resp_t rlc_status;
    int header_offset = 4;
    int rv = 0;

    /*
       if (( ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1]>0)&&(UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1]<64))   ||
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2]>0)&&(UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2]<64))   ||
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3]>0)&&(UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3]<64)) )
       //  && (UE_mac_inst[module_idP].ul_active == 0) // check if the ul is acrtive
       && (UE_mac_inst[module_idP].cba_last_access[0] <= 0) ) { // backoff
       //  LOG_D(MAC,"[UE %d] Frame %d Subframe %d: the current CBA backoff is %d \n", module_idP, frameP, subframe,
       //  UE_mac_inst[module_idP].cba_last_access[0] );

       UE_mac_inst[module_idP].cba_last_access[0]= round(uniform_rngen(1,40));
       LOG_D(MAC,"[UE %d] Frame %d Subframe %d: start a new CBA backoff  %d UL active state %d \n", module_idP, frameP, subframe,
       UE_mac_inst[module_idP].cba_last_access[0], UE_mac_inst[module_idP].ul_active);

       rv=1;
       } else if (( ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1]> 0 ))   ||
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2]> 0 ))   ||
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3]> 0 )) )
       // && (UE_mac_inst[module_idP].ul_active == 0) // check if the ul is acrtive
       && (UE_mac_inst[module_idP].cba_last_access[0]> 0) ){

       UE_mac_inst[module_idP].cba_last_access[0]-=1;
       LOG_D(MAC,"[UE %d] Frame %d Subframe %d: CBA backoff is decreased by one to %d UL active state %d \n",
       module_idP, frameP, subframe,
       UE_mac_inst[module_idP].cba_last_access[0], UE_mac_inst[module_idP].ul_active);

       } else if (( ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1] == 0 ))   &&
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2] == 0 ))   &&
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3] ==  0 )) )
       && (UE_mac_inst[module_idP].cba_last_access[0]> 0) ){
       UE_mac_inst[module_idP].cba_last_access[0]-=1;
       } */

    if ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID0] > 0)
	&& (UE_mac_inst[module_idP].scheduling_info.BSR[LCGID0] < 64)) {
	return 0;
    }

    if ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1] <= 0) &&
	(UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2] <= 0) &&
	(UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3] <= 0)) {
	return 0;
    }

    if (cba_backoff == 0) {	// apply probablisitc method
	UE_mac_inst[module_idP].cba_last_access[0] = uniform_rngen(0, 1);

	if (uniform_rngen(0, 1) > 0.6) {
	    LOG_I(MAC,
		  "[UE %d] Frame %d Subframe %d: CBA probability-based backoff (%d), UL active state %d \n",
		  module_idP, frameP, subframe, cba_backoff,
		  UE_mac_inst[module_idP].ul_active);

	    rv = 1;
	}
    } else {

	if (UE_mac_inst[module_idP].cba_last_access[0] <= 0) {
	    UE_mac_inst[module_idP].cba_last_access[0] =
		round(uniform_rngen(1, cba_backoff));

	    LOG_I(MAC,
		  "[UE %d] Frame %d Subframe %d: start a new CBA backoff  %d/%d UL active state %d \n",
		  module_idP, frameP, subframe,
		  UE_mac_inst[module_idP].cba_last_access[0], cba_backoff,
		  UE_mac_inst[module_idP].ul_active);

	    rv = 1;
	    /*
	       rlc_status = mac_rlc_status_ind(module_idP, UE_mac_inst[module_idP].crnti,frameP,ENB_FLAG_NO,MBMS_FLAG_NO, // eNB_index
	       DTCH,
	       0);

	       if ((
	       //  (rlc_status.pdus_in_buffer > 0 )           &&
	       // (UE_mac_inst[module_idP].ul_active == 0)  && // check if the ul is acrtive
	       (rlc_status.head_sdu_is_segmented  == 0 )          &&
	       ((rlc_status.head_sdu_remaining_size_to_send + header_offset ) <= buflen )
	       )){
	       rv = 1;

	       UE_mac_inst[module_idP].cba_last_access[0]= round(uniform_rngen(1,30));
	       LOG_D(MAC,"[UE %d] Frame %d Subframe %d: start a new CBA backoff  %d UL active state %d \n", module_idP, frameP, subframe,
	       UE_mac_inst[module_idP].cba_last_access[0], UE_mac_inst[module_idP].ul_active);
	     */
	} else {
	    UE_mac_inst[module_idP].cba_last_access[0] -= 1;
	    LOG_D(MAC,
		  "[UE %d] Frame %d Subframe %d: wait for backoff to expire (%d) CBA UL active state %d \n",
		  module_idP, frameP, subframe,
		  UE_mac_inst[module_idP].cba_last_access[0],
		  UE_mac_inst[module_idP].ul_active);
	}
    }

    return rv;
    /*
       if (( ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1]>0)&&(UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1]<64))   ||
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2]>0)&&(UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2]<64))   ||
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3]>0)&&(UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3]<64)) )
       //  && (UE_mac_inst[module_idP].ul_active == 0) // check if the ul is acrtive
       && (UE_mac_inst[module_idP].cba_last_access[0] <= 0) ) {

       UE_mac_inst[module_idP].cba_last_access[0]= round(uniform_rngen(1,cba_backoff));

       LOG_I(MAC,"[UE %d] Frame %d Subframe %d: start a new CBA backoff  %d/%d UL active state %d \n", module_idP, frameP, subframe,
       UE_mac_inst[module_idP].cba_last_access[0], cba_backoff,UE_mac_inst[module_idP].ul_active);

       rv = 1;

       rlc_status = mac_rlc_status_ind(module_idP, UE_mac_inst[module_idP].crnti,frameP,ENB_FLAG_NO,MBMS_FLAG_NO, // eNB_index
       DTCH,
       0);

       if ((
       // (rlc_status.pdus_in_buffer > 0 )           &&
       // (UE_mac_inst[module_idP].ul_active == 0)  && // check if the ul is acrtive
       (rlc_status.head_sdu_is_segmented  == 0 )          &&
       ((rlc_status.head_sdu_remaining_size_to_send + header_offset ) <= buflen )
       )){
       rv = 1;

       UE_mac_inst[module_idP].cba_last_access[0]= round(uniform_rngen(1,30));
       LOG_D(MAC,"[UE %d] Frame %d Subframe %d: start a new CBA backoff  %d UL active state %d \n", module_idP, frameP, subframe,
       UE_mac_inst[module_idP].cba_last_access[0], UE_mac_inst[module_idP].ul_active);
       } else
       UE_mac_inst[module_idP].cba_last_access[0]= round(uniform_rngen(1,5));


       } else if (( ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID1]> 0 ))   ||
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID2]> 0 ))   ||
       ((UE_mac_inst[module_idP].scheduling_info.BSR[LCGID3]> 0 )) )
       // && (UE_mac_inst[module_idP].ul_active == 0) // check if the ul is acrtive
       && (UE_mac_inst[module_idP].cba_last_access[0]> 0) )
       {

       UE_mac_inst[module_idP].cba_last_access[0]-=1;
       LOG_D(MAC,"[UE %d] Frame %d Subframe %d: wait for backoff to expire (%d) CBA UL active state %d \n",
       module_idP, frameP, subframe,
       UE_mac_inst[module_idP].cba_last_access[0], UE_mac_inst[module_idP].ul_active);
       }
       }
     */

}
#endif


boolean_t
update_bsr(module_id_t module_idP, frame_t frameP,
	   sub_frame_t subframeP, eNB_index_t eNB_index)
{

    mac_rlc_status_resp_t rlc_status;
    boolean_t bsr_regular_triggered = FALSE;
    uint8_t lcid;
    uint8_t lcgid;
    uint8_t num_lcid_with_data = 0;	// for LCID with data only if LCGID is defined
    uint16_t lcgid_buffer_remain[MAX_NUM_LCGID] = { 0, 0, 0, 0 };
    int32_t lcid_bytes_in_buffer[MAX_NUM_LCID];
    /* Array for ordering LCID with data per decreasing priority order */
    uint8_t lcid_reordered_array[MAX_NUM_LCID] =
	{ MAX_NUM_LCID, MAX_NUM_LCID, MAX_NUM_LCID, MAX_NUM_LCID,
	MAX_NUM_LCID, MAX_NUM_LCID, MAX_NUM_LCID, MAX_NUM_LCID,
	    MAX_NUM_LCID,
	MAX_NUM_LCID, MAX_NUM_LCID
    };
    uint8_t pos_next = 0;
    uint8_t highest_priority = 16;
    uint8_t array_index = 0;

    // Reset All BSR Infos
    lcid_bytes_in_buffer[0] = 0;
    for (lcid = DCCH; lcid < MAX_NUM_LCID; lcid++) {
	// Reset transmission status
	lcid_bytes_in_buffer[lcid] = 0;
	UE_mac_inst[module_idP].scheduling_info.LCID_status[lcid] =
	    LCID_EMPTY;
    }

    for (lcgid = 0; lcgid < MAX_NUM_LCGID; lcgid++) {
	// Reset Buffer Info
	UE_mac_inst[module_idP].scheduling_info.BSR[lcgid] = 0;
	UE_mac_inst[module_idP].scheduling_info.BSR_bytes[lcgid] = 0;
    }

    //Get Buffer Occupancy and fill lcid_reordered_array
    for (lcid = DCCH; lcid < MAX_NUM_LCID; lcid++) {
	if (UE_mac_inst[module_idP].logicalChannelConfig[lcid]) {
	    lcgid = UE_mac_inst[module_idP].scheduling_info.LCGID[lcid];

	    // Store already available data to transmit per Group
	    if (lcgid < MAX_NUM_LCGID) {
		lcgid_buffer_remain[lcgid] +=
		    UE_mac_inst[module_idP].
		    scheduling_info.LCID_buffer_remain[lcid];
	    }

	    rlc_status = mac_rlc_status_ind(module_idP, UE_mac_inst[module_idP].crnti, eNB_index, frameP, subframeP, ENB_FLAG_NO, MBMS_FLAG_NO, lcid, 0xFFFF);	//TBS is not used in RLC at this step, set a special value for debug

	    lcid_bytes_in_buffer[lcid] = rlc_status.bytes_in_buffer;

	    if (rlc_status.bytes_in_buffer > 0) {
		LOG_D(MAC,
		      "[UE %d] PDCCH Tick : LCID%d LCGID%d has data to transmit =%d bytes at frame %d subframe %d\n",
		      module_idP, lcid, lcgid, rlc_status.bytes_in_buffer,
		      frameP, subframeP);

		UE_mac_inst[module_idP].scheduling_info.LCID_status[lcid] =
		    LCID_NOT_EMPTY;
		//Update BSR_bytes and position in lcid_reordered_array only if Group is defined
		if (lcgid < MAX_NUM_LCGID) {
		    num_lcid_with_data++;
		    // sum lcid buffer which has same lcgid
		    UE_mac_inst[module_idP].scheduling_info.
			BSR_bytes[lcgid] += rlc_status.bytes_in_buffer;

		    //Fill in the array
		    array_index = 0;
		    do {
			if (UE_mac_inst[module_idP].logicalChannelConfig
			    [lcid]->ul_SpecificParameters->priority <=
			    highest_priority) {
			    //Insert if priority is higher or equal (lower or equal in value)
			    for (pos_next = num_lcid_with_data - 1;
				 pos_next > array_index; pos_next--) {
				lcid_reordered_array[pos_next] =
				    lcid_reordered_array[pos_next - 1];

			    }
			    lcid_reordered_array[array_index] = lcid;
			    break;

			}
			array_index++;
		    }
		    while ((array_index < num_lcid_with_data)
			   && (array_index < MAX_NUM_LCID));
		}
	    }
	}

    }

    // Check whether a regular BSR can be triggered according to the first cases in 36.321
    if (num_lcid_with_data) {
	LOG_D(MAC,
	      "[UE %d] PDCCH Tick at frame %d subframe %d: NumLCID with data=%d Reordered LCID0=%d LCID1=%d LCID2=%d\n",
	      module_idP, frameP, subframeP, num_lcid_with_data,
	      lcid_reordered_array[0], lcid_reordered_array[1],
	      lcid_reordered_array[2]);

	for (array_index = 0; array_index < num_lcid_with_data;
	     array_index++) {
	    lcid = lcid_reordered_array[array_index];
	    /* UL data, for a logical channel which belongs to a LCG, becomes available for transmission in the RLC entity
	       either the data belongs to a logical channel with higher priority than the priorities of the logical channels
	       which belong to any LCG and for which data is already available for transmission
	     */
	    if ((UE_mac_inst[module_idP].
		 scheduling_info.LCID_buffer_remain[lcid] == 0)
		/* or there is no data available for any of the logical channels which belong to a LCG */
		||
		(lcgid_buffer_remain
		 [UE_mac_inst[module_idP].scheduling_info.LCGID[lcid]] ==
		 0)) {
		bsr_regular_triggered = TRUE;

		LOG_D(MAC,
		      "[UE %d] PDCCH Tick : MAC BSR Triggered LCID%d LCGID%d data become available at frame %d subframe %d\n",
		      module_idP, lcid,
		      UE_mac_inst[module_idP].scheduling_info.LCGID[lcid],
		      frameP, subframeP);

		break;
	    }
	}

	// Trigger Regular BSR if ReTxBSR Timer has expired and UE has data for transmission
	if (UE_mac_inst[module_idP].scheduling_info.retxBSR_SF == 0) {
	    bsr_regular_triggered = TRUE;

	    if ((UE_mac_inst[module_idP].BSR_reporting_active &
		 BSR_TRIGGER_REGULAR) == 0) {
		LOG_I(MAC,
		      "[UE %d] PDCCH Tick : MAC BSR Triggered ReTxBSR Timer expiry at frame %d subframe %d\n",
		      module_idP, frameP, subframeP);
	    }

	}
    }
    //Store Buffer Occupancy in remain buffers for next TTI
    for (lcid = DCCH; lcid < MAX_NUM_LCID; lcid++) {
	UE_mac_inst[module_idP].scheduling_info.LCID_buffer_remain[lcid] =
	    lcid_bytes_in_buffer[lcid];
    }

    return bsr_regular_triggered;
}

uint8_t
locate_BsrIndexByBufferSize(const uint32_t * table, int size, int value)
{

    uint8_t ju, jm, jl;
    int ascend;

    DevAssert(size > 0);
    DevAssert(size <= 256);

    if (value == 0) {
	return 0;		//elseif (value > 150000) return 63;
    }

    jl = 0;			// lower bound
    ju = size - 1;		// upper bound
    ascend = (table[ju] >= table[jl]) ? 1 : 0;	// determine the order of the the table:  1 if ascending order of table, 0 otherwise

    while (ju - jl > 1) {	//If we are not yet done,
	jm = (ju + jl) >> 1;	//compute a midpoint,

	if ((value >= table[jm]) == ascend) {
	    jl = jm;		// replace the lower limit
	} else {
	    ju = jm;		//replace the upper limit
	}

	LOG_T(MAC,
	      "[UE] searching BSR index %d for (BSR TABLE %d < value %d)\n",
	      jm, table[jm], value);
    }

    if (value == table[jl]) {
	return jl;
    } else {
	return jl + 1;		//equally  ju
    }

}

int get_sf_periodicBSRTimer(uint8_t sf_offset)
{

    switch (sf_offset) {
    case PeriodicBSR_Timer_r12_sf5:
	return 5;
	break;

    case PeriodicBSR_Timer_r12_sf10:
	return 10;
	break;

    case PeriodicBSR_Timer_r12_sf16:
	return 16;
	break;

    case PeriodicBSR_Timer_r12_sf20:
	return 20;
	break;

    case PeriodicBSR_Timer_r12_sf32:
	return 32;
	break;

    case PeriodicBSR_Timer_r12_sf40:
	return 40;
	break;

    case PeriodicBSR_Timer_r12_sf64:
	return 64;
	break;

    case PeriodicBSR_Timer_r12_sf80:
	return 80;
	break;

    case PeriodicBSR_Timer_r12_sf128:
	return 128;
	break;

    case PeriodicBSR_Timer_r12_sf160:
	return 160;
	break;

    case PeriodicBSR_Timer_r12_sf320:
	return 320;
	break;

    case PeriodicBSR_Timer_r12_sf640:
	return 640;
	break;

    case PeriodicBSR_Timer_r12_sf1280:
	return 1280;
	break;

    case PeriodicBSR_Timer_r12_sf2560:
	return 2560;
	break;

    case PeriodicBSR_Timer_r12_infinity:
    default:
	return 0xFFFF;
	break;
    }
}

int get_sf_retxBSRTimer(uint8_t sf_offset)
{

    switch (sf_offset) {
    case RetxBSR_Timer_r12_sf320:
	return 320;
	break;

    case RetxBSR_Timer_r12_sf640:
	return 640;
	break;

    case RetxBSR_Timer_r12_sf1280:
	return 1280;
	break;

    case RetxBSR_Timer_r12_sf2560:
	return 2560;
	break;

    case RetxBSR_Timer_r12_sf5120:
	return 5120;
	break;

    case RetxBSR_Timer_r12_sf10240:
	return 10240;
	break;

    default:
	return -1;
	break;
    }
}

int get_ms_bucketsizeduration(uint8_t bucketsizeduration)
{

    switch (bucketsizeduration) {
    case LogicalChannelConfig__ul_SpecificParameters__bucketSizeDuration_ms50:
	return
	    50;
	break;

    case LogicalChannelConfig__ul_SpecificParameters__bucketSizeDuration_ms100:
	return
	    100;
	break;

    case LogicalChannelConfig__ul_SpecificParameters__bucketSizeDuration_ms150:
	return
	    150;
	break;

    case LogicalChannelConfig__ul_SpecificParameters__bucketSizeDuration_ms300:
	return
	    300;
	break;

    case LogicalChannelConfig__ul_SpecificParameters__bucketSizeDuration_ms500:
	return
	    500;
	break;

    case LogicalChannelConfig__ul_SpecificParameters__bucketSizeDuration_ms1000:
	return
	    1000;
	break;

    default:
	return 0;
	break;
    }
}

void update_phr(module_id_t module_idP, int CC_id)
{

    AssertFatal(CC_id == 0,
		"Transmission on secondary CCs is not supported yet\n");

    UE_mac_inst[module_idP].PHR_reporting_active = 0;
    UE_mac_inst[module_idP].scheduling_info.periodicPHR_SF =
	get_sf_perioidicPHR_Timer(UE_mac_inst[module_idP].
				  scheduling_info.periodicPHR_Timer);
    UE_mac_inst[module_idP].scheduling_info.prohibitPHR_SF =
	get_sf_prohibitPHR_Timer(UE_mac_inst[module_idP].
				 scheduling_info.prohibitPHR_Timer);
    // LOG_D(MAC,"phr %d %d\n ",UE_mac_inst[module_idP].scheduling_info.periodicPHR_SF, UE_mac_inst[module_idP].scheduling_info.prohibitPHR_SF);
}

uint8_t
get_phr_mapping(module_id_t module_idP, int CC_id, uint8_t eNB_index)
{

    AssertFatal(CC_id == 0,
		"Transmission on secondary CCs is not supported yet\n");

    //power headroom reporting range is from -23 ...+40 dB, as described in 36313
    //note: mac_xface->get_Po_NOMINAL_PUSCH(module_idP) is float
    if (get_PHR(module_idP, CC_id, eNB_index) < -23) {
	return 0;
    } else if (get_PHR(module_idP, CC_id, eNB_index) >= 40) {
	return 63;
    } else {			// -23 to 40
	return (uint8_t) get_PHR(module_idP, CC_id,
				 eNB_index) + PHR_MAPPING_OFFSET;

    }
}

int get_sf_perioidicPHR_Timer(uint8_t perioidicPHR_Timer)
{
    return (perioidicPHR_Timer + 1) * 10;
}


int get_sf_prohibitPHR_Timer(uint8_t prohibitPHR_Timer)
{
    return (prohibitPHR_Timer) * 10;
}

int get_db_dl_PathlossChange(uint8_t dl_PathlossChange)
{
    switch (dl_PathlossChange) {
    case MAC_MainConfig__phr_Config__setup__dl_PathlossChange_dB1:
	return 1;
	break;

    case MAC_MainConfig__phr_Config__setup__dl_PathlossChange_dB3:
	return 3;
	break;

    case MAC_MainConfig__phr_Config__setup__dl_PathlossChange_dB6:
	return 6;
	break;

    case MAC_MainConfig__phr_Config__setup__dl_PathlossChange_infinity:
    default:
	return -1;
	break;
    }
}