pusch_pc_NB_IoT.c 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

/*! \file pusch_pc.c
 * \brief Implementation of UE PUSCH Power Control procedures from 36.213 LTE specifications (Section
 * \author R. Knopp
 * \date 2011
 * \version 0.1
 * \company Eurecom
 * \email: knopp@eurecom.fr
 * \note
 * \warning
 */

#include "defs_nb_iot.h"
#include "PHY/defs_nb_iot.h"
#include "PHY/LTE_TRANSPORT/proto_nb_iot.h"
#include "PHY/extern_NB_IoT.h"

// This is the formula from Section 5.1.1.1 in 36.213 100*10*log10((2^(MPR*Ks)-1)), where MPR is in the range [0,6] and Ks=1.25
int16_t hundred_times_delta_TF_NB_IoT[100] = {-32768,-1268,-956,-768,-631,-523,-431,-352,-282,-219,-161,-107,-57,-9,36,79,120,159,197,234,269,304,337,370,402,434,465,495,525,555,583,612,640,668,696,723,750,777,803,829,856,881,907,933,958,983,1008,1033,1058,1083,1108,1132,1157,1181,1205,1229,1254,1278,1302,1325,1349,1373,1397,1421,1444,1468,1491,1515,1538,1562,1585,1609,1632,1655,1679,1702,1725,1748,1772,1795,1818,1841,1864,1887,1910,1933,1956,1980,2003,2026,2049,2072,2095,2118,2141,2164,2186,2209,2232,2255};
uint16_t hundred_times_log10_NPRB_NB_IoT[100] = {0,301,477,602,698,778,845,903,954,1000,1041,1079,1113,1146,1176,1204,1230,1255,1278,1301,1322,1342,1361,1380,1397,1414,1431,1447,1462,1477,1491,1505,1518,1531,1544,1556,1568,1579,1591,1602,1612,1623,1633,1643,1653,1662,1672,1681,1690,1698,1707,1716,1724,1732,1740,1748,1755,1763,1770,1778,1785,1792,1799,1806,1812,1819,1826,1832,1838,1845,1851,1857,1863,1869,1875,1880,1886,1892,1897,1903,1908,1913,1919,1924,1929,1934,1939,1944,1949,1954,1959,1963,1968,1973,1977,1982,1986,1991,1995,2000};

int16_t get_hundred_times_delta_IF_eNB_NB_IoT(PHY_VARS_eNB_NB_IoT *eNB,uint8_t UE_id,uint8_t harq_pid, uint8_t bw_factor)
{

  uint32_t Nre,sumKr,MPR_x100,Kr,r;
  uint16_t beta_offset_pusch;

  DevAssert( UE_id < NUMBER_OF_UE_MAX_NB_IoT+1 );
  DevAssert( harq_pid < 8 );

51 52
  Nre = eNB->nulsch[UE_id]->harq_process->Nsymb_initial *
        eNB->nulsch[UE_id]->harq_process->nb_rb*12;
53 54 55

  sumKr = 0;

56 57 58
  for (r=0; r<eNB->nulsch[UE_id]->harq_process->C; r++) {
    if (r<eNB->nulsch[UE_id]->harq_process->Cminus)
      Kr = eNB->nulsch[UE_id]->harq_process->Kminus;
59
    else
60
      Kr = eNB->nulsch[UE_id]->harq_process->Kplus;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    sumKr += Kr;
  }

  if (Nre==0)
    return(0);

  MPR_x100 = 100*sumKr/Nre;
  // Note: MPR=is the effective spectral efficiency of the PUSCH
  // FK 20140908 sumKr is only set after the ulsch_encoding

  beta_offset_pusch = 8;
  //(eNB->ulsch[UE_id]->harq_processes[harq_pid]->control_only == 1) ? eNB->ulsch[UE_id]->beta_offset_cqi_times8:8;

  DevAssert( UE_id < NUMBER_OF_UE_MAX_NB_IoT );
//#warning "This condition happens sometimes. Need more investigation" // navid
  //DevAssert( MPR_x100/6 < 100 );

  if (eNB->ul_power_control_dedicated[UE_id].deltaMCS_Enabled == 1) {
    // This is the formula from Section 5.1.1.1 in 36.213 10*log10(deltaIF_PUSCH = (2^(MPR*Ks)-1)*beta_offset_pusch)
    if (bw_factor == 1) {
82
      uint8_t nb_rb = eNB->nulsch[UE_id]->harq_process->nb_rb;
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
      return(hundred_times_delta_TF_NB_IoT[MPR_x100/6]+10*dB_fixed_times10((beta_offset_pusch)>>3)) + hundred_times_log10_NPRB_NB_IoT[nb_rb-1];
    } else
      return(hundred_times_delta_TF_NB_IoT[MPR_x100/6]+10*dB_fixed_times10((beta_offset_pusch)>>3));
  } else {
    return(0);
  }
}

/*
int16_t get_hundred_times_delta_IF_mac(module_id_t module_idP, uint8_t CC_id, rnti_t rnti, uint8_t harq_pid)
{
  int8_t UE_id = find_ue( rnti, PHY_vars_eNB_g[module_idP][CC_id] );

  if (UE_id == -1) {
    // not found
    return 0;
  }

  return get_hundred_times_delta_IF_eNB( PHY_vars_eNB_g[module_idP][CC_id], UE_id, harq_pid, 0 );
}

int16_t get_hundred_times_delta_IF(PHY_VARS_UE *ue,uint8_t eNB_id,uint8_t harq_pid)
{

  uint32_t Nre = 2*ue->ulsch[eNB_id]->harq_processes[harq_pid]->Nsymb_initial *
                 ue->ulsch[eNB_id]->harq_processes[harq_pid]->nb_rb*12;

  if (Nre==0)
    return(0);

  uint32_t MPR_x100 = 100*ue->ulsch[eNB_id]->harq_processes[harq_pid]->TBS/Nre;
  // Note: MPR=is the effective spectral efficiency of the PUSCH
  // FK 20140908 sumKr is only set after the ulsch_encoding

  uint16_t beta_offset_pusch = (ue->ulsch[eNB_id]->harq_processes[harq_pid]->control_only == 1) ?
    ue->ulsch[eNB_id]->beta_offset_cqi_times8:8;

  if (ue->ul_power_control_dedicated[eNB_id].deltaMCS_Enabled == 1) {
    // This is the formula from Section 5.1.1.1 in 36.213 10*log10(deltaIF_PUSCH = (2^(MPR*Ks)-1)*beta_offset_pusch)
    return(hundred_times_delta_TF[MPR_x100/6]+10*dB_fixed_times10((beta_offset_pusch)>>3));
  } else {
    return(0);
  }
}



uint8_t alpha_lut[8] = {0,40,50,60,70,80,90,100};

void pusch_power_cntl(PHY_VARS_UE *ue,UE_rxtx_proc_t *proc,uint8_t eNB_id,uint8_t j, uint8_t abstraction_flag)
{


  uint8_t harq_pid = subframe2harq_pid(&ue->frame_parms,
                                       proc->frame_tx,
                                       proc->subframe_tx);

  uint8_t nb_rb = ue->ulsch[eNB_id]->harq_processes[harq_pid]->nb_rb;
  int16_t PL;


  // P_pusch = 10*log10(nb_rb + P_opusch(j)+ alpha(u)*PL + delta_TF(i) + f(i))
  //
  // P_opusch(0) = P_oPTR + deltaP_Msg3 if PUSCH is transporting Msg3
  // else
  // P_opusch(0) = PO_NOMINAL_PUSCH(j) + P_O_UE_PUSCH(j)
  PL = get_PL(ue->Mod_id,ue->CC_id,eNB_id);

  ue->ulsch[eNB_id]->Po_PUSCH = (hundred_times_log10_NPRB[nb_rb-1]+
				 get_hundred_times_delta_IF(ue,eNB_id,harq_pid) +
				 100*ue->ulsch[eNB_id]->f_pusch)/100;

  if(ue->ulsch_Msg3_active[eNB_id] == 1) {  // Msg3 PUSCH

    ue->ulsch[eNB_id]->Po_PUSCH += (mac_xface->get_Po_NOMINAL_PUSCH(ue->Mod_id,0) + PL);

    LOG_I(PHY,"[UE  %d][RAPROC] AbsSubframe %d.%d: Msg3 (%d PRBs) Po_PUSCH %d dBm (%d,%d,100*PL=%d,%d,%d)\n",
          ue->Mod_id,proc->frame_tx,proc->subframe_tx,nb_rb,ue->ulsch[eNB_id]->Po_PUSCH,
          100*mac_xface->get_Po_NOMINAL_PUSCH(ue->Mod_id,0),
          hundred_times_log10_NPRB[nb_rb-1],
          100*PL,
          get_hundred_times_delta_IF(ue,eNB_id,harq_pid),
          100*ue->ulsch[eNB_id]->f_pusch);
  } else if (j==0) { // SPS PUSCH
  } else if (j==1) { // Normal PUSCH

    ue->ulsch[eNB_id]->Po_PUSCH +=  ((alpha_lut[ue->frame_parms.ul_power_control_config_common.alpha]*PL)/100);
    ue->ulsch[eNB_id]->Po_PUSCH +=  ue->frame_parms.ul_power_control_config_common.p0_NominalPUSCH;
    ue->ulsch[eNB_id]->PHR       =  ue->tx_power_max_dBm-ue->ulsch[eNB_id]->Po_PUSCH;  

    if (ue->ulsch[eNB_id]->PHR < -23)
      ue->ulsch[eNB_id]->PHR = -23;
    else if (ue->ulsch[eNB_id]->PHR > 40)
      ue->ulsch[eNB_id]->PHR = 40;

    LOG_D(PHY,"[UE  %d][PUSCH %d] AbsSubframe %d.%d: nb_rb: %d, Po_PUSCH %d dBm : tx power %d, Po_NOMINAL_PUSCH %d,log10(NPRB) %f,PHR %d, PL %d, alpha*PL %f,delta_IF %f,f_pusch %d\n",
          ue->Mod_id,harq_pid,proc->frame_tx,proc->subframe_tx,nb_rb,
          ue->ulsch[eNB_id]->Po_PUSCH,
          ue->tx_power_max_dBm,
          ue->frame_parms.ul_power_control_config_common.p0_NominalPUSCH,
          hundred_times_log10_NPRB[nb_rb-1]/100.0,
          ue->ulsch[eNB_id]->PHR,
          PL,
          alpha_lut[ue->frame_parms.ul_power_control_config_common.alpha]*PL/100.0,
          get_hundred_times_delta_IF(ue,eNB_id,harq_pid)/100.0,
          ue->ulsch[eNB_id]->f_pusch);
  }

}

int8_t get_PHR(uint8_t Mod_id, uint8_t CC_id,uint8_t eNB_index)
{

  return PHY_vars_UE_g[Mod_id][CC_id]->ulsch[eNB_index]->PHR;
}

// uint8_t eNB_id,uint8_t harq_pid, uint8_t UE_id,
int16_t estimate_ue_tx_power(uint32_t tbs, uint32_t nb_rb, uint8_t control_only, lte_prefix_type_t ncp, uint8_t use_srs)
{

  /// The payload + CRC size in bits, "B"
  uint32_t B;
  /// Number of code segments
  uint32_t C;
  /// Number of "small" code segments
  uint32_t Cminus;
  /// Number of "large" code segments
  uint32_t Cplus;
  /// Number of bits in "small" code segments (<6144)
  uint32_t Kminus;
  /// Number of bits in "large" code segments (<6144)
  uint32_t Kplus;
  /// Total number of bits across all segments
  uint32_t sumKr;
  /// Number of "Filler" bits
  uint32_t F;
  // num resource elements
  uint32_t num_re=0.0;
  // num symbols
  uint32_t num_symb=0.0;
  /// effective spectral efficiency of the PUSCH
  uint32_t MPR_x100=0;
  /// beta_offset
  uint16_t beta_offset_pusch_x8=8;
  /// delta mcs
  float delta_mcs=0.0;
  /// bandwidth factor
  float bw_factor=0.0;

  B= tbs+24;
  lte_segmentation(NULL,
                   NULL,
                   B,
                   &C,
                   &Cplus,
                   &Cminus,
                   &Kplus,
                   &Kminus,
                   &F);


  sumKr = Cminus*Kminus + Cplus*Kplus;
  num_symb = 12-(ncp<<1)-(use_srs==0?0:1);
  num_re = num_symb * nb_rb * 12;

  if (num_re == 0)
    return(0);

  MPR_x100 = 100*sumKr/num_re;

  if (control_only == 1 )
    beta_offset_pusch_x8=8; // fixme

  //(beta_offset_pusch_x8=ue->ulsch[eNB_id]->harq_processes[harq_pid]->control_only == 1) ? ue->ulsch[eNB_id]->beta_offset_cqi_times8:8;

  // if deltamcs_enabledm
  delta_mcs = ((hundred_times_delta_TF[MPR_x100/6]+10*dB_fixed_times10((beta_offset_pusch_x8)>>3))/100.0);
  bw_factor = (hundred_times_log10_NPRB[nb_rb-1]/100.0);
#ifdef DEBUG_SEGMENTATION
  printf("estimated ue tx power %d (num_re %d, sumKr %d, mpr_x100 %d, delta_mcs %f, bw_factor %f)\n",
         (int16_t)ceil(delta_mcs + bw_factor), num_re, sumKr, MPR_x100, delta_mcs, bw_factor);
#endif
  return (int16_t)ceil(delta_mcs + bw_factor);

}
*/