defs_NB_IoT.h 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

22
/* file: PHY/CODING/defs_NB_IoT.h
23
   purpose: Top-level definitions, data types and function prototypes for openairinterface coding blocks for NB-IoT
24
   author: matthieu.kanj@b-com.com, raymond.knopp@eurecom.fr, michele.paffetti@studio.unibo.it
25 26 27 28 29 30
   date: 29.06.2017
*/

#ifndef OPENAIR1_PHY_CODING_DEFS_NB_IOT_H_
#define OPENAIR1_PHY_CODING_DEFS_NB_IOT_H_

31 32 33 34 35 36 37 38 39
#include <stdint.h>  // for uint8/16/32_t

/* check if this ifndef is required for NB-IoT ?!
//#ifndef NO_OPENAIR1
//#include "PHY/defs_NB_IoT.h"
//#else
//#include "PHY/TOOLS/time_meas.h"
//#endif
*/
40 41 42 43 44 45 46 47 48

#define CRC24_A_NB_IoT 0
#define CRC24_B_NB_IoT 1
#define CRC16_NB_IoT 2
#define CRC8_NB_IoT 3

//#define MAX_TURBO_ITERATIONS_MBSFN 8  // no MBSFN
#define MAX_TURBO_ITERATIONS_NB_IoT 4

49
#define LTE_NULL_NB_IoT 2  // defined also in PHY/LTE_TRANSPORT/defs_NB_IoT.h
50

51 52 53 54 55 56 57 58
/** \fn uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w)
\brief This is the subblock interleaving algorithm for convolutionally coded blocks from 36-212 (Release 13.4, 2017).
This function takes the d-sequence and generates the w-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to input (d-sequence, convolutional code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$  from 36-212)
*/
59 60
uint32_t sub_block_interleaving_cc_NB_IoT(uint32_t D, uint8_t *d,uint8_t *w);

61 62 63 64 65 66 67 68
/**
\brief This is the NB-IoT rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param E Number of coded channel bits
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\returns \f$E\f$, the number of coded bits per segment */

69
uint32_t lte_rate_matching_cc_NB_IoT(uint32_t RCC,      // RRC = 2
70 71 72
				     				 uint16_t E,        // E = 1600
				     				 uint8_t *w,	// length
				    				 uint8_t *e);	// length 1600
73

74 75 76 77 78 79 80 81 82 83 84
/** \fn void ccodelte_encode(int32_t numbits,uint8_t add_crc, uint8_t *inPtr,uint8_t *outPtr,uint16_t rnti)
\brief This function implements the LTE convolutional code of rate 1/3
  with a constraint length of 7 bits. The inputs are bit packed in octets
(from MSB to LSB). Trellis tail-biting is included here.
@param numbits Number of bits to encode
@param add_crc crc to be appended (8 bits) if add_crc = 1
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param rnti RNTI for CRC scrambling
*/

85 86 87 88 89 90
void ccode_encode_NB_IoT (int32_t numbits,
						  uint8_t add_crc,
						  uint8_t *inPtr,
						  uint8_t *outPtr,
						  uint16_t rnti);

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an LTE convolutional code.*/
void ccodelte_init_NB_IoT(void);

/*!\fn void crcTableInit(void)
\brief This function initializes the different crc tables.*/
void crcTableInit_NB_IoT (void);


/*!\fn uint32_t crc24a(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('a' variant for overall transport block)
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24a_NB_IoT (uint8_t *inPtr, int32_t bitlen);

/*!\fn uint32_t crc24b(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('b' variant for transport-block segments)
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24b_NB_IoT (uint8_t *inPtr, int32_t bitlen);

/*!\fn uint32_t crc16(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 16-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc16_NB_IoT (uint8_t *inPtr, int32_t bitlen);

122 123 124 125 126 127 128 129 130
/*!\fn uint32_t crc8(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 8-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc8_NB_IoT  (uint8_t *inPtr, int32_t bitlen);




131 132 133


uint32_t crcbit_NB_IoT (uint8_t * ,
134 135
                 		int32_t,
                 		uint32_t);
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

/*!\fn void phy_viterbi_lte_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n)
\brief This routine performs a SIMD optmized Viterbi decoder for the LTE 64-state tail-biting convolutional code.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits*/
//void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
void phy_viterbi_lte_sse2_NB_IoT(int8_t *y,uint8_t *decoded_bytes,uint16_t n);

/** \fn void sub_block_deinterleaving_cc(uint32_t D, int8_t *d,int8_t *w)
\brief This is the subblock deinterleaving algorithm for convolutionally-coded data from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
This function takes the w-sequence and generates the d-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_cc_NB_IoT(uint32_t D,int8_t *d,int8_t *w);


/*
\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param E This the number of coded bits allocated for channel
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
\param soft_input This is a pointer to the soft channel output
\returns \f$E\f$, the number of coded bits per segment
*/
void lte_rate_matching_cc_rx_NB_IoT(uint32_t RCC,
                             		uint16_t E,
                             		int8_t *w,
                             		uint8_t *dummy_w,
                             		int8_t *soft_input);

/** \fn generate_dummy_w_cc(uint32_t D, uint8_t *w)
\brief This function generates a dummy interleaved sequence (first row) for receiver (convolutionally-coded data), in order to identify the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t generate_dummy_w_cc_NB_IoT(uint32_t D, uint8_t *w);

/** \fn lte_segmentation(uint8_t *input_buffer,
              uint8_t **output_buffers,
            uint32_t B,
            uint32_t *C,
            uint32_t *Cplus,
            uint32_t *Cminus,
            uint32_t *Kplus,
            uint32_t *Kminus,
            uint32_t *F)
\brief This function implements the LTE transport block segmentation algorithm from 36-212, V8.6 2009-03.
@param input_buffer
@param output_buffers
@param B
@param C
@param Cplus
@param Cminus
@param Kplus
@param Kminus
@param F
*/
int32_t lte_segmentation_NB_IoT(uint8_t *input_buffer,
                         		uint8_t **output_buffers,
                         		uint32_t B,
                         		uint32_t *C,
                         		uint32_t *Cplus,
                         		uint32_t *Cminus,
                         		uint32_t *Kplus,
                         		uint32_t *Kminus,
                         		uint32_t *F);

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/** \fn void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w)
\brief This is the subblock deinterleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
This function takes the w-sequence and generates the d-sequence.  The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
//*****************void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w);

/**
\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH).  It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param G This the number of coded transport bits allocated in sub-frame
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
\param soft_input This is a pointer to the soft channel output
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
\param Mdlharq Number of HARQ rounds
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param clear 1 means clear soft buffer (start of HARQ round)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
\param E_out the number of coded bits per segment
\returns 0 on success, -1 on failure
*/

// int lte_rate_matching_turbo_rx(uint32_t RTC,
//                                uint32_t G,
//                                int16_t *w,
//                                uint8_t *dummy_w,
//                                int16_t *soft_input,
//                                uint8_t C,
//                                uint32_t Nsoft,
//                                uint8_t Mdlharq,
//                                uint8_t Kmimo,
//                                uint8_t rvidx,
//                                uint8_t clear,
//                                uint8_t Qm,
//                                uint8_t Nl,
//                                uint8_t r,
//                                uint32_t *E_out);
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
// uint32_t lte_rate_matching_turbo_rx_abs(uint32_t RTC,
//                                         uint32_t G,
//                                         double *w,
//                                         uint8_t *dummy_w,
//                                         double *soft_input,
//                                         uint8_t C,
//                                         uint32_t Nsoft,
//                                         uint8_t Mdlharq,
//                                         uint8_t Kmimo,
//                                         uint8_t rvidx,
//                                         uint8_t clear,
//                                         uint8_t Qm,
//                                         uint8_t Nl,
//                                         uint8_t r,
//                                         uint32_t *E_out);
269

270 271 272 273 274
void ccode_encode_npdsch_NB_IoT (int32_t   numbits,
								 uint8_t   *inPtr,
								 uint8_t   *outPtr,
								 uint32_t  crc);

275
#endif /* OPENAIR1_PHY_CODING_DEFS_NB_IOT_H_ */