1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Compus SophiaTech 450, route des chappes, 06451 Biot, France.
*******************************************************************************/
/*! \file otg_models.c
* \brief function containing the OTG TX traffic generation functions
* \author M. Laner and navid nikaein
* \date 2013
* \version 0.1
* \company Eurecom
* \email: navid.nikaein@eurecom.fr
* \note
* \warning
*/
#include "UTIL/MATH/oml.h"
#include "otg_models.h"
#include "UTIL/LOG/log.h"
/*all the TARMA stuff:
this is based on the modelling framework provided in
"M. Laner, P. Svoboda and M. Rupp, Modeling Randomness in Network Traffic, SIGMETRICS/Performance'12, London, UK, 2012".
*/
/* this function must be called for each random process and each time it shall produce a new random sample,
which is the return value
input: - inputSamples: an array of length TARMA_NUM_PROCESSES with iid gaussian samples
which must be the same for xcorrelated processes
- proc: pointer to tarmaProcess_t
output: - the next value in the random process
*/
double tarmaCalculateSample( double inputSamples[], tarmaProcess_t *proc){
/* struct with all definitions of the random process and its history */
int cnt;
double X, Y, Ypower, Z;
/* calculate the current sample X' by weighting the input samples */
X=0;
for( cnt=0; cnt<TARMA_NUM_PROCESSES ; cnt++){
X += proc->inputWeight[cnt]*inputSamples[cnt];
}
/* update the MA history: shift everything back for one lag */
for( cnt=TARMA_NUM_MA_MAX-1; cnt>0; cnt--){
proc->maHist[cnt] = proc->maHist[cnt-1];
}
proc->maHist[0]=X; /* update the MA history with the current filter input value */
/* update the AR history: shift everything back for one lag */
for( cnt=TARMA_NUM_AR_MAX-1; cnt>0; cnt--){
proc->arHist[cnt] = proc->arHist[cnt-1];
}
proc->arHist[0]=0; /* caution: arHist[0] must not be used for the filter processing! */
/* filter processing */
Y=0;
for( cnt=0; cnt<TARMA_NUM_MA_MAX; cnt++){ /* moving average part, start at lag 0 = current X */
Y += proc->maWeight[cnt] * proc->maHist[cnt];
}
for( cnt=1; cnt<TARMA_NUM_AR_MAX; cnt++){ /* auto regressive part, start at lag 1 = former Y */
Y += -proc->arWeight[cnt] * proc->arHist[cnt];
}
proc->arHist[0]=Y; /* update the AR history with the current filter output value */
/* polynomial transformation */
Z=0;
Ypower=1;
for(cnt=0; cnt<TARMA_NUM_POLY_MAX; cnt++){
Z += proc->polyWeight[cnt]*Ypower;
Ypower *= Y;
}
LOG_D(OTG,"TARMA_DEBUG: tarmaCalculateSamples called: Z=%f\n",Z);
//tarmaPrintProc(proc);
return Z;
}
/*
this function must be called each time before size and itd are generated for the respective packet.
it updates the input samples stored in the structure stream,
ps: calling it more often than for each packet is also fine
input: - the stream to be updated
output:
*/
void tarmaUpdateInputSample (tarmaStream_t *stream){
int cnt;
LOG_T(OTG,"TARMA_DEBUG: tarmaUpdateInputSample(%p)\n", stream);
if(stream){
for(cnt=0; cnt<TARMA_NUM_PROCESSES; cnt++){
stream->tarma_input_samples[cnt]=gaussian_dist(10000,1)-10000;
LOG_D(OTG,"TARMA_DEBUG: %f\n",stream->tarma_input_samples[cnt]);
}
}
}
/*
this function initializes the given stream, it allocates the respective memory if necessary (stream=0)
and sets all the respective values to zero.
input: - steam to be initialized (or zero if memory shall be allocated)
output: - the same stream
*/
tarmaStream_t *tarmaInitStream(tarmaStream_t *stream){
if(stream==0){
stream=(tarmaStream_t*) malloc(sizeof(tarmaStream_t));
}
tarmaProcess_t *proc;
int cntvar, cntp, cntma, cntar, cntpy;
for(cntvar=0; cntvar<2; cntvar++){
if(cntvar==0){
proc=&(stream->tarma_idt);
}else{
proc=&(stream->tarma_size);
}
for(cntp=0; cntp<TARMA_NUM_PROCESSES; cntp++){
proc->inputWeight[cntp]=0;
}
for(cntma=0; cntma<TARMA_NUM_MA_MAX; cntma++){
proc->maWeight[cntma]=0;
proc->maHist[cntma]=0;
}
for(cntar=0; cntar<TARMA_NUM_AR_MAX; cntar++){
proc->arWeight[cntar]=0;
proc->arHist[cntar]=0;
}
for(cntpy=0; cntpy<TARMA_NUM_POLY_MAX; cntpy++){
proc->polyWeight[cntpy]=0;
}
}
LOG_D(OTG,"TARMA_DEBUG: tarmaInitStream(%p) called\n", stream);
return stream;
}
/*
this function initializes the input stream according to the openarena traffic modelling
input: - stream to be initialized
output:
*/
void tarmaSetupOpenarenaDownlink(tarmaStream_t *stream){
stream->tarma_size.inputWeight[0]=1;
stream->tarma_size.maWeight[0]=0.6;
stream->tarma_size.maWeight[1]=-1.04;
stream->tarma_size.maWeight[2]=0.44;
stream->tarma_size.arWeight[0]=1;
stream->tarma_size.arWeight[1]=-1.971;
stream->tarma_size.arWeight[2]=0.971;
stream->tarma_size.polyWeight[0]=157;
stream->tarma_size.polyWeight[1]=67.2;
stream->tarma_size.polyWeight[2]=-11.2;
stream->tarma_size.polyWeight[3]=-1.9;
stream->tarma_size.polyWeight[4]=18.6;
stream->tarma_size.polyWeight[5]=1.8;
//tarmaPrintStreamInit(stream);
}
/*
this function prints the actual history of a random process
input: - random process
output:
*/
void tarmaPrintProc(tarmaProcess_t *proc){
char prefix[]="OTG TARMA DEBUG: ";
int cntma, cntar;
printf("%s tarmaPrintProc(%p) called\n", prefix, proc);
printf("%s ma history:\n",prefix);
for(cntma=0; cntma<TARMA_NUM_MA_MAX; cntma++){
printf("%s ma[%d]: %f\n",prefix,cntma,proc->maHist[cntma]);
}
printf("%s ar history:\n",prefix);
for(cntar=0; cntar<TARMA_NUM_AR_MAX; cntar++){
printf("%s ar[%d]: %f\n",prefix,cntar,proc->arHist[cntar]);
}
}
/*
this function prints the fixed (weigths) parameters of the input stream
input: - stream to be printed
output:
*/
void tarmaPrintStreamInit(tarmaStream_t *stream){
char prefix[]="OTG TARMA DEBUG: ";
tarmaProcess_t *proc;
int cntvar, cntp, cntma, cntar, cntpy;
printf("%s tarmaPrintStreamInit(%p) called\n", prefix, stream);
for(cntvar=0; cntvar<2; cntvar++){
if(cntvar==0){
proc=&(stream->tarma_idt);
printf("%s variable: idt\n",prefix);
}else{
proc=&(stream->tarma_size);
printf("%s variable: size\n",prefix);
}
printf("%s input processes\n",prefix);
for(cntp=0; cntp<TARMA_NUM_PROCESSES; cntp++){
printf("%s w_pr[%d]: %f\n",prefix,cntp,proc->inputWeight[cntp]);
}
printf("%s moving average weights\n",prefix);
for(cntma=0; cntma<TARMA_NUM_MA_MAX; cntma++){
printf("%s w_ma[%d]: %f\n",prefix,cntma,proc->maWeight[cntma]);
}
printf("%s auto-regressive weights\n",prefix);
for(cntar=0; cntar<TARMA_NUM_AR_MAX; cntar++){
printf("%s w_ar[%d]: %f\n",prefix,cntar,proc->arWeight[cntar]);
}
printf("%s polynomial factors\n",prefix);
for(cntpy=0; cntpy<TARMA_NUM_POLY_MAX; cntpy++){
printf("%s w_py[%d]: %f\n",prefix,cntpy,proc->polyWeight[cntpy]);
}
}
}
/*
everything about video modeling which is an extended version of tarma modeling
*/
/*
this function calculates the packet size (frame size) for each video frame,
the idt is always fixed to the framerate (i.e., between 20 and 50 fps, default=25)
input: - vidoe stream
output: - frame size
*/
double tarmaCalculateVideoSample(tarmaVideo_t *video){
double size=0;
double inputsamples[TARMA_NUM_PROCESSES];
tarmaProcess_t *proc;
int frameidx;
int cntp, cntpy;
if(video){
proc=&(video->tarma_size);
frameidx=video->tarmaVideoGopStructure[video->tarmaVideoFrameNumber];
LOG_D(OTG,"TARMA_DEBUG: tarmaCalculateVideoSample(%p) called\n", video);
LOG_D(OTG,"TARMA_DEBUG: frameidx=%d\n",frameidx);
if(frameidx>=0 && frameidx<=TARMA_NUM_FRAME_TYPES){
for(cntpy=0; cntpy<TARMA_NUM_POLY_MAX; cntpy++){
proc->polyWeight[cntpy]=video->polyWeightFrame[frameidx][cntpy];
}
for(cntp=0; cntp<TARMA_NUM_PROCESSES; cntp++){
inputsamples[cntp]=gaussian_dist(10000,1)-10000;
}
size=tarmaCalculateSample(inputsamples,proc);
}
/*get ready for the next frame*/
video->tarmaVideoFrameNumber++;
if(video->tarmaVideoFrameNumber>=TARMA_NUM_GOP_MAX){
video->tarmaVideoFrameNumber=0;
}
if(video->tarmaVideoGopStructure[video->tarmaVideoFrameNumber]<0 ||
video->tarmaVideoGopStructure[video->tarmaVideoFrameNumber]>TARMA_NUM_FRAME_TYPES){
video->tarmaVideoFrameNumber=0;
}
}
return size;
}
/*
this function initializes a video stream (and allocates memory if needed)
input: - video stream (or zero if memory should be allocated)
output: - the same video stream
*/
tarmaVideo_t *tarmaInitVideo(tarmaVideo_t *video){
tarmaProcess_t *proc;
int cntp, cntma, cntar, cntpy, cntgop, cnttype;
LOG_D(OTG,"TARMA_DEBUG: tarmaInitVideo(%p) called\n", video);
if(video==0){
video=(tarmaVideo_t*) malloc(sizeof(tarmaVideo_t));
}
proc=&(video->tarma_size);
for(cntp=0; cntp<TARMA_NUM_PROCESSES; cntp++){
proc->inputWeight[cntp]=0;
}
for(cntma=0; cntma<TARMA_NUM_MA_MAX; cntma++){
proc->maWeight[cntma]=0;
proc->maHist[cntma]=0;
}
for(cntar=0; cntar<TARMA_NUM_AR_MAX; cntar++){
proc->arWeight[cntar]=0;
proc->arHist[cntar]=0;
}
for(cntpy=0; cntpy<TARMA_NUM_POLY_MAX; cntpy++){
proc->polyWeight[cntpy]=0;
}
video->tarmaVideoFrameNumber=0;
for(cntgop=0; cntgop<TARMA_NUM_GOP_MAX; cntgop++){
video->tarmaVideoGopStructure[cntgop]=-1;
}
for(cnttype=0; cnttype<TARMA_NUM_FRAME_TYPES; cnttype++){
for(cntpy=0; cntpy<TARMA_NUM_POLY_MAX; cntpy++){
video->polyWeightFrame[cnttype][cntpy]=0;
}
}
return video;
}
/*
this function initializes a video stream according to a tarma model
input: - video to be initialized
- compression rate: 1...dvd quality
output:
*/
void tarmaSetupVideoGop12(tarmaVideo_t *video, double compression){
if(video){
video->tarma_size.inputWeight[0]=1;
video->tarma_size.maWeight[0]=0.47;
video->tarma_size.maWeight[1]=-0.829;
video->tarma_size.maWeight[2]=0.358;
video->tarma_size.arWeight[0]=1;
video->tarma_size.arWeight[1]=-1.984;
video->tarma_size.arWeight[2]=0.984;
video->tarmaVideoGopStructure[0]=0; /*i frame*/
video->tarmaVideoGopStructure[1]=2; /*b frame*/
video->tarmaVideoGopStructure[2]=2;
video->tarmaVideoGopStructure[3]=1; /*p frame*/
video->tarmaVideoGopStructure[4]=2;
video->tarmaVideoGopStructure[5]=2;
video->tarmaVideoGopStructure[6]=1;
video->tarmaVideoGopStructure[7]=2;
video->tarmaVideoGopStructure[8]=2;
video->tarmaVideoGopStructure[9]=1;
video->tarmaVideoGopStructure[10]=2;
video->tarmaVideoGopStructure[11]=2;
if(compression<1){compression=1;}
video->polyWeightFrame[0][0]=55400/compression; /*i frame*/
video->polyWeightFrame[0][1]=32300/compression;
video->polyWeightFrame[0][2]=10400/compression;
video->polyWeightFrame[0][3]=-100/compression;
video->polyWeightFrame[0][4]=-800/compression;
video->polyWeightFrame[0][5]=74/compression;
video->polyWeightFrame[1][0]=20900/compression; /*p frame*/
video->polyWeightFrame[1][1]=19100/compression;
video->polyWeightFrame[1][2]=7150/compression;
video->polyWeightFrame[1][3]=-740/compression;
video->polyWeightFrame[1][4]=-130/compression;
video->polyWeightFrame[1][5]=20/compression;
video->polyWeightFrame[2][0]=11700/compression; /*b frame*/
video->polyWeightFrame[2][1]=10300/compression;
video->polyWeightFrame[2][2]=4320/compression;
video->polyWeightFrame[2][3]=700/compression;
video->polyWeightFrame[2][4]=-90/compression;
video->polyWeightFrame[2][5]=-2/compression;
tarmaPrintVideoInit(video);
}
}
/*
this function prints the fixed (weigths) parameters of the input video stream
input: - video stream to be printed
output:
*/
void tarmaPrintVideoInit(tarmaVideo_t *video){
char prefix[]="OTG TARMA DEBUG: ";
tarmaProcess_t *proc;
int cntp, cntma, cntar, cntpy, cntgop, cnttype;
printf("%s tarmaPrintVideoInit(%p) called\n", prefix, video);
proc=&(video->tarma_size);
printf("%s input process weights\n",prefix);
for(cntp=0; cntp<TARMA_NUM_PROCESSES; cntp++){
printf("%s w[%d]=%f\n",prefix,cntp,proc->inputWeight[cntp]);
}
printf("%s ma weights\n",prefix);
for(cntma=0; cntma<TARMA_NUM_MA_MAX; cntma++){
printf("%s ma[%d]=%f\n",prefix,cntma,proc->maWeight[cntma]);
}
printf("%s ar weights\n",prefix);
for(cntar=0; cntar<TARMA_NUM_AR_MAX; cntar++){
printf("%s ar[%d]=%f\n",prefix,cntar,proc->arWeight[cntar]);
}
printf("%s polynomial weights\n",prefix);
for(cntpy=0; cntpy<TARMA_NUM_POLY_MAX; cntpy++){
printf("%s p[%d]=%f\n",prefix,cntpy,proc->polyWeight[cntpy]);
}
printf("%s video frame number=%d\n",prefix,video->tarmaVideoFrameNumber);
printf("%s gop structure\n",prefix);
for(cntgop=0; cntgop<TARMA_NUM_GOP_MAX; cntgop++){
printf("%s gop[%d]=%d\n",prefix,cntgop,video->tarmaVideoGopStructure[cntgop]);
}
printf("%s frame poly weights\n",prefix);
for(cntpy=0; cntpy<TARMA_NUM_POLY_MAX; cntpy++){
printf("%s [%d] ",prefix,cntpy);
for(cnttype=0; cnttype<TARMA_NUM_FRAME_TYPES; cnttype++){
printf(" %05.3f",video->polyWeightFrame[cnttype][cntpy]);
}
printf("\n");
}
}
/*
everything about background traffic modeling according to
"M. Laner, P. Svoboda, S. Schwarz, M. Rupp, Users in Cells: a Data Traffic Analysis, WCNC'12, Paris, France, 2012".
*/
/*
this function creates a random realization of the mean data rate of a background-session
input:
output: - random realization of R_s (B/s)
*/
double backgroundRateRnd(){
double rate;
rate=pow(10,lognormal_dist(1.3525, 0.1954))/8; /*Byte/s*/;
if(rate>BACKGROUND_RATE_MAX){
rate=BACKGROUND_RATE_MAX;
}else if(rate<0){
rate=0;
}
return rate;
}
/*
this function creates a random realization of the session duration of a background-session
input:
output: - random realization of D_s (ms)
*/
int backgroundSessionDurationRnd(){
int duration;
duration = ceil(pow(10,exponential_dist(1/0.3591))*1000); /*ms*/
if(duration<0){
duration=0;
}else if(duration>1<<30){
duration=1<<30;
}
return duration;
}
/*
this function initializes a background stream and allocates memory if needed
input: - the bg-stream (or zero if memory shall be allocated)
- the mean number of users (sessions) to be expected for this stream
output: - the same bg-stream
*/
backgroundStream_t *backgroundStreamInit(backgroundStream_t *stream, double lambda_n){
int cnts, numactivenow;
if(stream==0){
stream=(backgroundStream_t*) malloc(sizeof(backgroundStream_t));
}
stream->meanNumSessions=lambda_n;
stream->lastUpdateTime=0;
numactivenow=poisson_dist(lambda_n); /*how many sessions are active (i.e., started before simulation)*/
for(cnts=0; cnts<BACKGROUND_NUM_ACTIVE_MAX; cnts++){
if(cnts<numactivenow){
/*these sessions are already active for unknown time and have therefore a random phaseshift in ds*/
stream->activeSessions[cnts].meanSessionRate=backgroundRateRnd();
stream->activeSessions[cnts].endTime=ceil((double)backgroundSessionDurationRnd()*uniform_rng()); /*ms*/
}else{
stream->activeSessions[cnts].meanSessionRate=0;
stream->activeSessions[cnts].endTime=-1;
}
}
LOG_D(OTG,"BACKGROUND_USERS DEBUG: backgroundStreamInit(%p) called\n", stream);
backgroundPrintStream (stream);
return stream;
}
/*
this function updates a given background stream
input: - bg-stream
- current time
output:
*/
void backgroundUpdateStream(backgroundStream_t *stream, int ctime){
int numNewSessions, cnts, period;
LOG_D(OTG,"BACKGROUND DEBUG: backgroundUpdateStream(stream*=%p,ctime=%d) called\n", stream, ctime);
if(stream){
period=ctime-stream->lastUpdateTime;
numNewSessions=poisson_dist(stream->meanNumSessions/5710*period);
for(cnts=0; cnts<BACKGROUND_NUM_ACTIVE_MAX; cnts++){
if(stream->activeSessions[cnts].endTime<ctime){
if(numNewSessions>0){
stream->activeSessions[cnts].meanSessionRate=backgroundRateRnd();
stream->activeSessions[cnts].endTime=
ctime-period*uniform_rng()+backgroundSessionDurationRnd(); /*ms*/
numNewSessions--;
}else{
stream->activeSessions[cnts].meanSessionRate=0;
stream->activeSessions[cnts].endTime=-1;
}
}
}
stream->lastUpdateTime=ctime;
backgroundPrintStream (stream);
}
}
/*
this function generates the packet size for a given bg-stream and a given idt,
the distribution of the idt can thereby be arbitrary (const idt=20ms recommended)
input: - bg-stream
- current time
- idt of the current packet
output: - packet size of the current packet
*/
double backgroundCalculateSize(backgroundStream_t *stream, int ctime, int idt){
int cnts, cntact=0;
double size=0;
double mrate=0;
backgroundUpdateStream(stream, ctime);
LOG_D(OTG,"BACKGROUND DEBUG: backgroundCalculateSize(stream*=%p,idt=%d,ctime=%d) called\n", stream, idt, ctime);
if(stream){
for(cnts=0; cnts<BACKGROUND_NUM_ACTIVE_MAX; cnts++){
if(stream->activeSessions[cnts].endTime>ctime){
mrate+=stream->activeSessions[cnts].meanSessionRate;
cntact++;
}
}
size=mrate*idt/1000;
LOG_D(OTG,"BACKGROUND DEBUG: cntact=%02d, idt=%05d, agg_mrate=%05.1f, size=%04.1f\n", cntact, idt, mrate,size);
}
return size;
}
/*
this function prints the current status of the bg-stream
input: - bg-stream
output:
*/
void backgroundPrintStream(backgroundStream_t *stream){
int cnts;
LOG_D(OTG,"BACKGROUND DEBUG: backgroundPrintStream(%p)\n", stream);
if(stream){
LOG_D(OTG,"BACKGROUND DEBUG: meanNumSessions(lambda_n)=%f\n",stream->meanNumSessions);
for(cnts=0; cnts<BACKGROUND_NUM_ACTIVE_MAX; cnts++){
LOG_D(OTG,"BACKGROUND DEBUG: session[%d] -> mrate=%06.3f, etime=%05d\n",
cnts, stream->activeSessions[cnts].meanSessionRate, stream->activeSessions[cnts].endTime);
}
}
}