Commit 1e5c70f6 authored by Suzhi Bi's avatar Suzhi Bi

Upload New File

parent a22e95cc
# #################################################################
# Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks
#
# This file contains the main code of DROO. It loads the training samples saved in ./data/data_#.mat, splits the samples into two parts (training and testing data constitutes 80% and 20%), trains the DNN with training and validation samples, and finally tests the DNN with test data.
#
# Input: ./data/data_#.mat
# Data samples are generated according to the CD method presented in [2]. There are 30,000 samples saved in each ./data/data_#.mat, where # is the user number. Each data sample includes
# -----------------------------------------------------------------
# | wireless channel gain | input_h |
# -----------------------------------------------------------------
# | computing mode selection | output_mode |
# -----------------------------------------------------------------
# | energy broadcasting parameter | output_a |
# -----------------------------------------------------------------
# | transmit time of wireless device | output_tau |
# -----------------------------------------------------------------
# | weighted sum computation rate | output_obj |
# -----------------------------------------------------------------
#
#
# References:
# [1] 1. Liang Huang, Suzhi Bi, and Ying-Jun Angela Zhang, "Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks," in IEEE Transactions on Mobile Computing, early access, 2019, DOI:10.1109/TMC.2019.2928811.
# [2] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177-4190, Jun. 2018.
#
# version 1.0 -- July 2018. Written by Liang Huang (lianghuang AT zjut.edu.cn)
# #################################################################
import scipy.io as sio # import scipy.io for .mat file I/
import numpy as np # import numpy
# Implementated based on the PyTorch
from memoryPyTorch import MemoryDNN
from optimization import bisection
import time
def plot_rate(rate_his, rolling_intv=50):
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib as mpl
rate_array = np.asarray(rate_his)
df = pd.DataFrame(rate_his)
mpl.style.use('seaborn')
fig, ax = plt.subplots(figsize=(15, 8))
# rolling_intv = 20
plt.plot(np.arange(len(rate_array))+1, df.rolling(rolling_intv, min_periods=1).mean(), 'b')
plt.fill_between(np.arange(len(rate_array))+1, df.rolling(rolling_intv, min_periods=1).min()[0], df.rolling(rolling_intv, min_periods=1).max()[0], color = 'b', alpha = 0.2)
plt.ylabel('Normalized Computation Rate')
plt.xlabel('Time Frames')
plt.show()
def save_to_txt(rate_his, file_path):
with open(file_path, 'w') as f:
for rate in rate_his:
f.write("%s \n" % rate)
if __name__ == "__main__":
'''
This algorithm generates K modes from DNN, and chooses with largest
reward. The mode with largest reward is stored in the memory, which is
further used to train the DNN.
Adaptive K is implemented. K = max(K, K_his[-memory_size])
'''
N = 10 # number of users
n = 30000 # number of time frames
K = N # initialize K = N
decoder_mode = 'OP' # the quantization mode could be 'OP' (Order-preserving) or 'KNN'
Memory = 1024 # capacity of memory structure
Delta = 32 # Update interval for adaptive K
print('#user = %d, #channel=%d, K=%d, decoder = %s, Memory = %d, Delta = %d'%(N,n,K,decoder_mode, Memory, Delta))
# Load data
channel = sio.loadmat('./data/data_%d' %N)['input_h']
rate = sio.loadmat('./data/data_%d' %N)['output_obj'] # this rate is only used to plot figures; never used to train DROO.
# increase h to close to 1 for better training; it is a trick widely adopted in deep learning
channel = channel * 1000000
# generate the train and test data sample index
# data are splitted as 80:20
# training data are randomly sampled with duplication if n > total data size
split_idx = int(.8 * len(channel))
num_test = min(len(channel) - split_idx, n - int(.8 * n)) # training data size
mem = MemoryDNN(net = [N, 120, 80, N],
learning_rate = 0.01,
training_interval=10,
batch_size=128,
memory_size=Memory
)
start_time = time.time()
rate_his = []
rate_his_ratio = []
mode_his = []
k_idx_his = []
K_his = []
for i in range(n):
if i % (n//10) == 0:
print("%0.1f"%(i/n))
if i> 0 and i % Delta == 0:
# index counts from 0
if Delta > 1:
max_k = max(k_idx_his[-Delta:-1]) +1;
else:
max_k = k_idx_his[-1] +1;
K = min(max_k +1, N)
if i < n - num_test:
# training
i_idx = i % split_idx
else:
# test
i_idx = i - n + num_test + split_idx
h = channel[i_idx,:]
# the action selection must be either 'OP' or 'KNN'
m_list = mem.decode(h, K, decoder_mode)
r_list = []
for m in m_list:
r_list.append(bisection(h/1000000, m)[0])
# encode the mode with largest reward
mem.encode(h, m_list[np.argmax(r_list)])
# the main code for DROO training ends here
# the following codes store some interested metrics for illustrations
# memorize the largest reward
rate_his.append(np.max(r_list))
rate_his_ratio.append(rate_his[-1] / rate[i_idx][0])
# record the index of largest reward
k_idx_his.append(np.argmax(r_list))
# record K in case of adaptive K
K_his.append(K)
mode_his.append(m_list[np.argmax(r_list)])
total_time=time.time()-start_time
mem.plot_cost()
plot_rate(rate_his_ratio)
print("Averaged normalized computation rate:", sum(rate_his_ratio[-num_test: -1])/num_test)
print('Total time consumed:%s'%total_time)
print('Average time per channel:%s'%(total_time/n))
# save data into txt
save_to_txt(k_idx_his, "k_idx_his.txt")
save_to_txt(K_his, "K_his.txt")
save_to_txt(mem.cost_his, "cost_his.txt")
save_to_txt(rate_his_ratio, "rate_his_ratio.txt")
save_to_txt(mode_his, "mode_his.txt")
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment