nr_ulsch_demodulation.c 39.3 KB
Newer Older
1
#include "PHY/defs_gNB.h"
2
#include "PHY/phy_extern.h"
3 4
#include "nr_transport_proto.h"
#include "PHY/impl_defs_top.h"
5
#include "PHY/NR_TRANSPORT/nr_sch_dmrs.h"
6
#include "PHY/NR_ESTIMATION/nr_ul_estimation.h"
7
#include "PHY/defs_nr_common.h"
8

9 10 11 12
//#define DEBUG_CH_COMP
//#define DEBUG_RB_EXT
//#define DEBUG_CH_MAG

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
void nr_idft(uint32_t *z, uint32_t Msc_PUSCH)
{

#if defined(__x86_64__) || defined(__i386__)
  __m128i idft_in128[1][1200], idft_out128[1][1200];
  __m128i norm128;
#elif defined(__arm__)
  int16x8_t idft_in128[1][1200], idft_out128[1][1200];
  int16x8_t norm128;
#endif
  int16_t *idft_in0 = (int16_t*)idft_in128[0], *idft_out0 = (int16_t*)idft_out128[0];

  int i, ip;

  LOG_T(PHY,"Doing lte_idft for Msc_PUSCH %d\n",Msc_PUSCH);

  // conjugate input
  for (i = 0; i < (Msc_PUSCH>>2); i++) {
#if defined(__x86_64__)||defined(__i386__)
    *&(((__m128i*)z)[i]) = _mm_sign_epi16(*&(((__m128i*)z)[i]), *(__m128i*)&conjugate2[0]);
#elif defined(__arm__)
    *&(((int16x8_t*)z)[i]) = vmulq_s16(*&(((int16x8_t*)z)[i]), *(int16x8_t*)&conjugate2[0]);
#endif
  }

  for (i=0,ip=0; i<Msc_PUSCH; i++, ip+=4) {
    ((uint32_t*)idft_in0)[ip+0] = z[i];
  }


  switch (Msc_PUSCH) {
    case 12:
      dft12((int16_t *)idft_in0, (int16_t *)idft_out0);

#if defined(__x86_64__)||defined(__i386__)
      norm128 = _mm_set1_epi16(9459);
#elif defined(__arm__)
      norm128 = vdupq_n_s16(9459);
#endif

      for (i = 0; i < 12; i++) {
#if defined(__x86_64__)||defined(__i386__)
        ((__m128i*)idft_out0)[i] = _mm_slli_epi16(_mm_mulhi_epi16(((__m128i*)idft_out0)[i], norm128), 1);
#elif defined(__arm__)
        ((int16x8_t*)idft_out0)[i] = vqdmulhq_s16(((int16x8_t*)idft_out0)[i], norm128);
#endif
      }

      break;

    case 24:
      dft24(idft_in0, idft_out0, 1);
      break;

    case 36:
      dft36(idft_in0, idft_out0, 1);
      break;

    case 48:
      dft48(idft_in0, idft_out0, 1);
      break;

    case 60:
      dft60(idft_in0, idft_out0, 1);
      break;

    case 72:
      dft72(idft_in0, idft_out0, 1);
      break;

    case 96:
      dft96(idft_in0, idft_out0, 1);
      break;

    case 108:
      dft108(idft_in0, idft_out0, 1);
      break;

    case 120:
      dft120(idft_in0, idft_out0, 1);
      break;

    case 144:
      dft144(idft_in0, idft_out0, 1);
      break;

    case 180:
      dft180(idft_in0, idft_out0, 1);
      break;

    case 192:
      dft192(idft_in0, idft_out0, 1);
      break;

    case 216:
      dft216(idft_in0, idft_out0, 1);
      break;

    case 240:
      dft240(idft_in0, idft_out0, 1);
      break;

    case 288:
      dft288(idft_in0, idft_out0, 1);
      break;

    case 300:
      dft300(idft_in0, idft_out0, 1);
      break;

    case 324:
      dft324((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 360:
      dft360((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 384:
      dft384((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 432:
      dft432((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 480:
      dft480((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 540:
      dft540((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 576:
      dft576((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 600:
      dft600((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 648:
      dft648((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 720:
      dft720((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 768:
      dft768((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 864:
      dft864((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 900:
      dft900((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 960:
      dft960((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 972:
      dft972((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 1080:
      dft1080((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 1152:
      dft1152((int16_t*)idft_in0, (int16_t*)idft_out0, 1);
      break;

    case 1200:
      dft1200(idft_in0, idft_out0, 1);
      break;

    default:
      // should not be reached
      LOG_E( PHY, "Unsupported Msc_PUSCH value of %"PRIu16"\n", Msc_PUSCH );
      return;
  }



  for (i = 0, ip = 0; i < Msc_PUSCH; i++, ip+=4) {
    z[i] = ((uint32_t*)idft_out0)[ip];
  }

  // conjugate output
  for (i = 0; i < (Msc_PUSCH>>2); i++) {
#if defined(__x86_64__) || defined(__i386__)
    ((__m128i*)z)[i] = _mm_sign_epi16(((__m128i*)z)[i], *(__m128i*)&conjugate2[0]);
#elif defined(__arm__)
    *&(((int16x8_t*)z)[i]) = vmulq_s16(*&(((int16x8_t*)z)[i]), *(int16x8_t*)&conjugate2[0]);
#endif
  }

#if defined(__x86_64__) || defined(__i386__)
  _mm_empty();
  _m_empty();
#endif

}
222 223

void nr_ulsch_extract_rbs_single(int **rxdataF,
224
                                 int **ul_ch_estimates,
225
                                 int **rxdataF_ext,
226
                                 int **ul_ch_estimates_ext,
227 228 229 230 231 232
                                 uint32_t rxdataF_ext_offset,
                                 // unsigned int *rb_alloc, [hna] Resource Allocation Type 1 is assumed only for the moment
                                 unsigned char symbol,
                                 unsigned short start_rb,
                                 unsigned short nb_rb_pusch,
                                 NR_DL_FRAME_PARMS *frame_parms) 
233
{
234
  unsigned short start_re, re, nb_re_pusch;
235
  unsigned char aarx, is_dmrs_symbol = 0;
236
  uint32_t rxF_ext_index = 0;
237 238
  uint32_t ul_ch0_ext_index = 0;
  uint32_t ul_ch0_index = 0;
239 240

  int16_t *rxF,*rxF_ext;
241 242 243 244 245 246 247 248
  int *ul_ch0,*ul_ch0_ext;

#ifdef DEBUG_RB_EXT

  printf("--------------------symbol = %d-----------------------\n", symbol);
  printf("--------------------ch_ext_index = %d-----------------------\n", symbol*NR_NB_SC_PER_RB * nb_rb_pusch);

#endif
249

250 251
  is_dmrs_symbol = (symbol == 2) ? 1 : 0; //to be updated from config
  
252
  start_re = (frame_parms->first_carrier_offset + (start_rb * NR_NB_SC_PER_RB))%frame_parms->ofdm_symbol_size;
253
  
254
  nb_re_pusch = NR_NB_SC_PER_RB * nb_rb_pusch;
255 256 257 258

  for (aarx = 0; aarx < frame_parms->nb_antennas_rx; aarx++) {
    
    rxF       = (int16_t *)&rxdataF[aarx][symbol * frame_parms->ofdm_symbol_size];
259
    rxF_ext   = (int16_t *)&rxdataF_ext[aarx][symbol * nb_re_pusch]; // [hna] rxdataF_ext isn't contiguous in order to solve an alignment problem ib llr computation in case of mod_order = 4, 6
260

261 262 263
    ul_ch0     = &ul_ch_estimates[aarx][(2*(frame_parms->ofdm_symbol_size))]; // DMRS REs are only in symbol 2 (to be updated from config)
    ul_ch0_ext = &ul_ch_estimates_ext[aarx][symbol*nb_re_pusch];

264
    for (re = 0; re < nb_re_pusch; re++) {
265

266 267
      if ( (is_dmrs_symbol && ((re&1) != 0))    ||    (is_dmrs_symbol == 0) ) { // [hna] (re&1) != frame_parms->nushift) assuming only dmrs type 1 and mapping type A
                                                                                // frame_parms->nushift should be initialized with 0
268 269
        rxF_ext[rxF_ext_index]     = (rxF[ ((start_re + re)*2)      % (frame_parms->ofdm_symbol_size*2)]);
        rxF_ext[rxF_ext_index + 1] = (rxF[(((start_re + re)*2) + 1) % (frame_parms->ofdm_symbol_size*2)]);
270 271 272 273 274 275 276 277 278
        ul_ch0_ext[ul_ch0_ext_index] = ul_ch0[ul_ch0_index];

  #ifdef DEBUG_RB_EXT
        printf("rxF_ext[%d] = %d\n", rxF_ext_index, rxF_ext[rxF_ext_index]);
        printf("rxF_ext[%d] = %d\n", rxF_ext_index+1, rxF_ext[rxF_ext_index+1]);
        printf("ul_ch0_ext[%d] = %d\n", 2*ul_ch0_ext_index, ((int16_t *)ul_ch0_ext)[2*ul_ch0_ext_index]);
        printf("ul_ch0_ext[%d] = %d\n", 2*ul_ch0_ext_index + 1, ((int16_t *)ul_ch0_ext)[2*ul_ch0_ext_index + 1]);
  #endif

279
        rxF_ext_index = rxF_ext_index + 2;
280
        ul_ch0_ext_index++;
281
    	}
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
      ul_ch0_index++;
    }
  }
}

void nr_ulsch_scale_channel(int **ul_ch_estimates_ext,
                            NR_DL_FRAME_PARMS *frame_parms,
                            NR_gNB_ULSCH_t **ulsch_gNB,
                            uint8_t symbol,
                            uint8_t pilots,
                            unsigned short nb_rb)
{

#if defined(__x86_64__)||defined(__i386__)

  short rb, ch_amp;
  unsigned char aatx,aarx;
  __m128i *ul_ch128, ch_amp128;

  // Determine scaling amplitude based the symbol

  ch_amp = 1024*8; //((pilots) ? (ulsch_gNB[0]->sqrt_rho_b) : (ulsch_gNB[0]->sqrt_rho_a));

  LOG_D(PHY,"Scaling PUSCH Chest in OFDM symbol %d by %d, pilots %d nb_rb %d NCP %d symbol %d\n", symbol, ch_amp, pilots, nb_rb, frame_parms->Ncp, symbol);
   // printf("Scaling PUSCH Chest in OFDM symbol %d by %d\n",symbol_mod,ch_amp);

  ch_amp128 = _mm_set1_epi16(ch_amp); // Q3.13

  for (aatx=0; aatx < frame_parms->nb_antenna_ports_eNB; aatx++) {
    for (aarx=0; aarx < frame_parms->nb_antennas_rx; aarx++) {

      ul_ch128 = (__m128i *)&ul_ch_estimates_ext[aarx][symbol*nb_rb*NR_NB_SC_PER_RB];

      if (pilots==1){
        nb_rb = nb_rb>>1;
      }


      for (rb=0;rb<nb_rb;rb++) {

        ul_ch128[0] = _mm_mulhi_epi16(ul_ch128[0], ch_amp128);
        ul_ch128[0] = _mm_slli_epi16(ul_ch128[0], 3);

        ul_ch128[1] = _mm_mulhi_epi16(ul_ch128[1], ch_amp128);
        ul_ch128[1] = _mm_slli_epi16(ul_ch128[1], 3);

        if (pilots) {
          ul_ch128+=2;
        } else {
          ul_ch128[2] = _mm_mulhi_epi16(ul_ch128[2], ch_amp128);
          ul_ch128[2] = _mm_slli_epi16(ul_ch128[2], 3);
          ul_ch128+=3;

        }
      }
337 338
    }
  }
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
#endif
}

//compute average channel_level on each (TX,RX) antenna pair
void nr_ulsch_channel_level(int **ul_ch_estimates_ext,
                            NR_DL_FRAME_PARMS *frame_parms,
                            int32_t *avg,
                            uint8_t symbol,
                            uint32_t len,
                            unsigned short nb_rb)
{

#if defined(__x86_64__)||defined(__i386__)

  short rb;
354
  unsigned char aatx, aarx;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  __m128i *ul_ch128, avg128U;

  int16_t x = factor2(len);
  int16_t y = (len)>>x;

  for (aatx = 0; aatx < frame_parms->nb_antennas_tx; aatx++)
    for (aarx = 0; aarx < frame_parms->nb_antennas_rx; aarx++) {
      //clear average level
      avg128U = _mm_setzero_si128();

      ul_ch128=(__m128i *)&ul_ch_estimates_ext[(aatx<<1)+aarx][symbol*nb_rb*12];

      for (rb = 0; rb < nb_rb; rb++) {
        avg128U = _mm_add_epi32(avg128U, _mm_srai_epi32(_mm_madd_epi16(ul_ch128[0], ul_ch128[0]), x));
        avg128U = _mm_add_epi32(avg128U, _mm_srai_epi32(_mm_madd_epi16(ul_ch128[1], ul_ch128[1]), x));
        avg128U = _mm_add_epi32(avg128U, _mm_srai_epi32(_mm_madd_epi16(ul_ch128[2], ul_ch128[2]), x));
        ul_ch128+=3;
      }

      avg[(aatx<<1)+aarx] = (((int32_t*)&avg128U)[0] +
                             ((int32_t*)&avg128U)[1] +
                             ((int32_t*)&avg128U)[2] +
                             ((int32_t*)&avg128U)[3]   ) / y;

    }

  _mm_empty();
  _m_empty();

#elif defined(__arm__)

  short rb;
  unsigned char aatx, aarx, nre = 12, symbol_mod;
  int32x4_t avg128U;
  int16x4_t *ul_ch128;

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  for (aatx=0; aatx<frame_parms->nb_antenna_ports_eNB; aatx++)
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
      //clear average level
      avg128U = vdupq_n_s32(0);
      // 5 is always a symbol with no pilots for both normal and extended prefix

      ul_ch128 = (int16x4_t *)&ul_ch_estimates_ext[(aatx<<1)+aarx][symbol*frame_parms->N_RB_UL*12];

      for (rb = 0; rb < nb_rb; rb++) {
        //  printf("rb %d : ",rb);
        //  print_shorts("ch",&ul_ch128[0]);
        avg128U = vqaddq_s32(avg128U, vmull_s16(ul_ch128[0], ul_ch128[0]));
        avg128U = vqaddq_s32(avg128U, vmull_s16(ul_ch128[1], ul_ch128[1]));
        avg128U = vqaddq_s32(avg128U, vmull_s16(ul_ch128[2], ul_ch128[2]));
        avg128U = vqaddq_s32(avg128U, vmull_s16(ul_ch128[3], ul_ch128[3]));

        if (((symbol_mod == 0) || (symbol_mod == (frame_parms->Ncp-1)))&&(frame_parms->nb_antenna_ports_eNB!=1)) {
          ul_ch128+=4;
        } else {
          avg128U = vqaddq_s32(avg128U, vmull_s16(ul_ch128[4], ul_ch128[4]));
          avg128U = vqaddq_s32(avg128U, vmull_s16(ul_ch128[5], ul_ch128[5]));
          ul_ch128+=6;
        }

        /*
          if (rb==0) {
          print_shorts("ul_ch128",&ul_ch128[0]);
          print_shorts("ul_ch128",&ul_ch128[1]);
          print_shorts("ul_ch128",&ul_ch128[2]);
          }
        */
      }

      if (symbol==2) //assume start symbol 2
          nre=6;
      else
          nre=12;

      avg[(aatx<<1)+aarx] = (((int32_t*)&avg128U)[0] +
                             ((int32_t*)&avg128U)[1] +
                             ((int32_t*)&avg128U)[2] +
                             ((int32_t*)&avg128U)[3]   ) / (nb_rb*nre);
    }


#endif
439 440
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
void nr_ulsch_channel_compensation(int **rxdataF_ext,
                                int **ul_ch_estimates_ext,
                                int **ul_ch_mag,
                                int **ul_ch_magb,
                                int **rxdataF_comp,
                                int **rho,
                                NR_DL_FRAME_PARMS *frame_parms,
                                unsigned char symbol,
                                uint8_t pilots,
                                unsigned char mod_order,
                                unsigned short nb_rb,
                                unsigned char output_shift)
{

#ifdef DEBUG_CH_COMP
  int16_t *rxF, *ul_ch;
  int prnt_idx;

459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
  rxF   = (int16_t *)&rxdataF_ext[0][(symbol*nb_rb*12)];
  ul_ch = (int16_t *)&ul_ch_estimates_ext[0][symbol*nb_rb*12];

  printf("--------------------symbol = %d, mod_order = %d, output_shift = %d-----------------------\n", symbol, mod_order, output_shift);
  printf("----------------Before compansation------------------\n");

  for (prnt_idx=0;prnt_idx<12*nb_rb*2;prnt_idx++){

    printf("rxF[%d] = %d\n", prnt_idx, rxF[prnt_idx]);
    printf("ul_ch[%d] = %d\n", prnt_idx, ul_ch[prnt_idx]);

  }

#endif

#ifdef DEBUG_CH_MAG
  int16_t *ch_mag;
  int print_idx;


  ch_mag   = (int16_t *)&ul_ch_mag[0][(symbol*nb_rb*12)];

  printf("--------------------symbol = %d, mod_order = %d-----------------------\n", symbol, mod_order);
  printf("----------------Before computation------------------\n");

  for (print_idx=0;print_idx<50;print_idx++){

    printf("ch_mag[%d] = %d\n", print_idx, ch_mag[print_idx]);

  }

#endif

#if defined(__i386) || defined(__x86_64)

  unsigned short rb;
  unsigned char aatx,aarx;
  __m128i *ul_ch128,*ul_ch128_2,*ul_ch_mag128,*ul_ch_mag128b,*rxdataF128,*rxdataF_comp128,*rho128;
  __m128i mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3,QAM_amp128,QAM_amp128b;
  QAM_amp128b = _mm_setzero_si128();

  for (aatx=0; aatx<frame_parms->nb_antennas_tx; aatx++) {

    if (mod_order == 4) {
      QAM_amp128 = _mm_set1_epi16(QAM16_n1);  // 2/sqrt(10)
      QAM_amp128b = _mm_setzero_si128();
    } else if (mod_order == 6) {
      QAM_amp128  = _mm_set1_epi16(QAM64_n1); //
      QAM_amp128b = _mm_set1_epi16(QAM64_n2);
    }

    //    printf("comp: rxdataF_comp %p, symbol %d\n",rxdataF_comp[0],symbol);

    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {

      ul_ch128          = (__m128i *)&ul_ch_estimates_ext[(aatx<<1)+aarx][symbol*nb_rb*12];
      ul_ch_mag128      = (__m128i *)&ul_ch_mag[(aatx<<1)+aarx][symbol*nb_rb*12];
      ul_ch_mag128b     = (__m128i *)&ul_ch_magb[(aatx<<1)+aarx][symbol*nb_rb*12];
      rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol*nb_rb*12];
      rxdataF_comp128   = (__m128i *)&rxdataF_comp[(aatx<<1)+aarx][symbol*nb_rb*12];


      for (rb=0; rb<nb_rb; rb++) {
        if (mod_order>2) {
          // get channel amplitude if not QPSK

          //print_shorts("ch:",(int16_t*)&ul_ch128[0]);

          mmtmpD0 = _mm_madd_epi16(ul_ch128[0],ul_ch128[0]);
          mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);

          mmtmpD1 = _mm_madd_epi16(ul_ch128[1],ul_ch128[1]);
          mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);

          mmtmpD0 = _mm_packs_epi32(mmtmpD0,mmtmpD1);

          // store channel magnitude here in a new field of ulsch

          ul_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpD0,mmtmpD0);
          ul_ch_mag128b[0] = ul_ch_mag128[0];
          ul_ch_mag128[0] = _mm_mulhi_epi16(ul_ch_mag128[0],QAM_amp128);
          ul_ch_mag128[0] = _mm_slli_epi16(ul_ch_mag128[0],1);

          // print_ints("ch: = ",(int32_t*)&mmtmpD0);
          // print_shorts("QAM_amp:",(int16_t*)&QAM_amp128);
          // print_shorts("mag:",(int16_t*)&ul_ch_mag128[0]);

          ul_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpD0,mmtmpD0);
          ul_ch_mag128b[1] = ul_ch_mag128[1];
          ul_ch_mag128[1] = _mm_mulhi_epi16(ul_ch_mag128[1],QAM_amp128);
          ul_ch_mag128[1] = _mm_slli_epi16(ul_ch_mag128[1],1);

          if (pilots==0) {
            mmtmpD0 = _mm_madd_epi16(ul_ch128[2],ul_ch128[2]);
            mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
            mmtmpD1 = _mm_packs_epi32(mmtmpD0,mmtmpD0);

            ul_ch_mag128[2] = _mm_unpacklo_epi16(mmtmpD1,mmtmpD1);
            ul_ch_mag128b[2] = ul_ch_mag128[2];

            ul_ch_mag128[2] = _mm_mulhi_epi16(ul_ch_mag128[2],QAM_amp128);
            ul_ch_mag128[2] = _mm_slli_epi16(ul_ch_mag128[2],1);
          }

          ul_ch_mag128b[0] = _mm_mulhi_epi16(ul_ch_mag128b[0],QAM_amp128b);
          ul_ch_mag128b[0] = _mm_slli_epi16(ul_ch_mag128b[0],1);


          ul_ch_mag128b[1] = _mm_mulhi_epi16(ul_ch_mag128b[1],QAM_amp128b);
          ul_ch_mag128b[1] = _mm_slli_epi16(ul_ch_mag128b[1],1);

          if (pilots==0) {
            ul_ch_mag128b[2] = _mm_mulhi_epi16(ul_ch_mag128b[2],QAM_amp128b);
            ul_ch_mag128b[2] = _mm_slli_epi16(ul_ch_mag128b[2],1);
          }
        }

        // multiply by conjugated channel
        mmtmpD0 = _mm_madd_epi16(ul_ch128[0],rxdataF128[0]);
        //  print_ints("re",&mmtmpD0);

        // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpD1 = _mm_shufflelo_epi16(ul_ch128[0],_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
        //  print_ints("im",&mmtmpD1);
        mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[0]);
        // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
        //  print_ints("re(shift)",&mmtmpD0);
        mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
        //  print_ints("im(shift)",&mmtmpD1);
        mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
        mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
        //        print_ints("c0",&mmtmpD2);
        //  print_ints("c1",&mmtmpD3);
        rxdataF_comp128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
        //  print_shorts("rx:",rxdataF128);
        //  print_shorts("ch:",ul_ch128);
        //  print_shorts("pack:",rxdataF_comp128);

        // multiply by conjugated channel
        mmtmpD0 = _mm_madd_epi16(ul_ch128[1],rxdataF128[1]);
        // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpD1 = _mm_shufflelo_epi16(ul_ch128[1],_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
        mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[1]);
        // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
        mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
        mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
        mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);

        rxdataF_comp128[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
        //  print_shorts("rx:",rxdataF128+1);
        //  print_shorts("ch:",ul_ch128+1);
        //  print_shorts("pack:",rxdataF_comp128+1);

        if (pilots==0) {
          // multiply by conjugated channel
          mmtmpD0 = _mm_madd_epi16(ul_ch128[2],rxdataF128[2]);
          // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
          mmtmpD1 = _mm_shufflelo_epi16(ul_ch128[2],_MM_SHUFFLE(2,3,0,1));
          mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
          mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
          mmtmpD1 = _mm_madd_epi16(mmtmpD1,rxdataF128[2]);
          // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
          mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
          mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
          mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
          mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);

          rxdataF_comp128[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
          //  print_shorts("rx:",rxdataF128+2);
          //  print_shorts("ch:",ul_ch128+2);
          //        print_shorts("pack:",rxdataF_comp128+2);

          ul_ch128+=3;
          ul_ch_mag128+=3;
          ul_ch_mag128b+=3;
          rxdataF128+=3;
          rxdataF_comp128+=3;
        } else { // we have a smaller PUSCH in symbols with pilots so skip last group of 4 REs and increment less
          ul_ch128+=2;
          ul_ch_mag128+=2;
          ul_ch_mag128b+=2;
          rxdataF128+=2;
          rxdataF_comp128+=2;
        }

      }
    }
  }

  if (rho) {


    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
      rho128        = (__m128i *)&rho[aarx][symbol*frame_parms->N_RB_UL*12];
      ul_ch128      = (__m128i *)&ul_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_UL*12];
      ul_ch128_2    = (__m128i *)&ul_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_UL*12];

      for (rb=0; rb<nb_rb; rb++) {
        // multiply by conjugated channel
        mmtmpD0 = _mm_madd_epi16(ul_ch128[0],ul_ch128_2[0]);
        //  print_ints("re",&mmtmpD0);

        // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpD1 = _mm_shufflelo_epi16(ul_ch128[0],_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate[0]);
        //  print_ints("im",&mmtmpD1);
        mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch128_2[0]);
        // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
        //  print_ints("re(shift)",&mmtmpD0);
        mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
        //  print_ints("im(shift)",&mmtmpD1);
        mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
        mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
        //        print_ints("c0",&mmtmpD2);
        //  print_ints("c1",&mmtmpD3);
        rho128[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

        //print_shorts("rx:",ul_ch128_2);
        //print_shorts("ch:",ul_ch128);
        //print_shorts("pack:",rho128);

        // multiply by conjugated channel
        mmtmpD0 = _mm_madd_epi16(ul_ch128[1],ul_ch128_2[1]);
        // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpD1 = _mm_shufflelo_epi16(ul_ch128[1],_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
        mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch128_2[1]);
        // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
        mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
        mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
        mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);


        rho128[1] =_mm_packs_epi32(mmtmpD2,mmtmpD3);
        //print_shorts("rx:",ul_ch128_2+1);
        //print_shorts("ch:",ul_ch128+1);
        //print_shorts("pack:",rho128+1);
        // multiply by conjugated channel
        mmtmpD0 = _mm_madd_epi16(ul_ch128[2],ul_ch128_2[2]);
        // mmtmpD0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpD1 = _mm_shufflelo_epi16(ul_ch128[2],_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
        mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)conjugate);
        mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch128_2[2]);
        // mmtmpD1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
        mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
        mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
        mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);

        rho128[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);
        //print_shorts("rx:",ul_ch128_2+2);
        //print_shorts("ch:",ul_ch128+2);
        //print_shorts("pack:",rho128+2);

        ul_ch128+=3;
        ul_ch128_2+=3;
        rho128+=3;

      }

    }
  }

  _mm_empty();
  _m_empty();

#elif defined(__arm__)


  unsigned short rb;
  unsigned char aatx,aarx,symbol_mod,pilots=0;

  int16x4_t *ul_ch128,*ul_ch128_2,*rxdataF128;
  int32x4_t mmtmpD0,mmtmpD1,mmtmpD0b,mmtmpD1b;
  int16x8_t *ul_ch_mag128,*ul_ch_mag128b,mmtmpD2,mmtmpD3,mmtmpD4;
  int16x8_t QAM_amp128,QAM_amp128b;
  int16x4x2_t *rxdataF_comp128,*rho128;

  int16_t conj[4]__attribute__((aligned(16))) = {1,-1,1,-1};
  int32x4_t output_shift128 = vmovq_n_s32(-(int32_t)output_shift);

  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  if ((symbol_mod == 0) || (symbol_mod == (4-frame_parms->Ncp))) {
    if (frame_parms->nb_antenna_ports_eNB==1) { // 10 out of 12 so don't reduce size
      nb_rb=1+(5*nb_rb/6);
    }
    else {
      pilots=1;
    }
  }

  for (aatx=0; aatx<frame_parms->nb_antenna_ports_eNB; aatx++) {
    if (mod_order == 4) {
      QAM_amp128  = vmovq_n_s16(QAM16_n1);  // 2/sqrt(10)
      QAM_amp128b = vmovq_n_s16(0);
    } else if (mod_order == 6) {
      QAM_amp128  = vmovq_n_s16(QAM64_n1); //
      QAM_amp128b = vmovq_n_s16(QAM64_n2);
    }
    //    printf("comp: rxdataF_comp %p, symbol %d\n",rxdataF_comp[0],symbol);

    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
      ul_ch128          = (int16x4_t*)&ul_ch_estimates_ext[(aatx<<1)+aarx][symbol*frame_parms->N_RB_UL*12];
      ul_ch_mag128      = (int16x8_t*)&ul_ch_mag[(aatx<<1)+aarx][symbol*frame_parms->N_RB_UL*12];
      ul_ch_mag128b     = (int16x8_t*)&ul_ch_magb[(aatx<<1)+aarx][symbol*frame_parms->N_RB_UL*12];
      rxdataF128        = (int16x4_t*)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_UL*12];
      rxdataF_comp128   = (int16x4x2_t*)&rxdataF_comp[(aatx<<1)+aarx][symbol*frame_parms->N_RB_UL*12];

      for (rb=0; rb<nb_rb; rb++) {
  if (mod_order>2) {
    // get channel amplitude if not QPSK
    mmtmpD0 = vmull_s16(ul_ch128[0], ul_ch128[0]);
    // mmtmpD0 = [ch0*ch0,ch1*ch1,ch2*ch2,ch3*ch3];
    mmtmpD0 = vqshlq_s32(vqaddq_s32(mmtmpD0,vrev64q_s32(mmtmpD0)),output_shift128);
    // mmtmpD0 = [ch0*ch0 + ch1*ch1,ch0*ch0 + ch1*ch1,ch2*ch2 + ch3*ch3,ch2*ch2 + ch3*ch3]>>output_shift128 on 32-bits
    mmtmpD1 = vmull_s16(ul_ch128[1], ul_ch128[1]);
    mmtmpD1 = vqshlq_s32(vqaddq_s32(mmtmpD1,vrev64q_s32(mmtmpD1)),output_shift128);
    mmtmpD2 = vcombine_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));
    // mmtmpD2 = [ch0*ch0 + ch1*ch1,ch0*ch0 + ch1*ch1,ch2*ch2 + ch3*ch3,ch2*ch2 + ch3*ch3,ch4*ch4 + ch5*ch5,ch4*ch4 + ch5*ch5,ch6*ch6 + ch7*ch7,ch6*ch6 + ch7*ch7]>>output_shift128 on 16-bits
    mmtmpD0 = vmull_s16(ul_ch128[2], ul_ch128[2]);
    mmtmpD0 = vqshlq_s32(vqaddq_s32(mmtmpD0,vrev64q_s32(mmtmpD0)),output_shift128);
    mmtmpD1 = vmull_s16(ul_ch128[3], ul_ch128[3]);
    mmtmpD1 = vqshlq_s32(vqaddq_s32(mmtmpD1,vrev64q_s32(mmtmpD1)),output_shift128);
    mmtmpD3 = vcombine_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));
    if (pilots==0) {
      mmtmpD0 = vmull_s16(ul_ch128[4], ul_ch128[4]);
      mmtmpD0 = vqshlq_s32(vqaddq_s32(mmtmpD0,vrev64q_s32(mmtmpD0)),output_shift128);
      mmtmpD1 = vmull_s16(ul_ch128[5], ul_ch128[5]);
      mmtmpD1 = vqshlq_s32(vqaddq_s32(mmtmpD1,vrev64q_s32(mmtmpD1)),output_shift128);
      mmtmpD4 = vcombine_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));
    }

    ul_ch_mag128b[0] = vqdmulhq_s16(mmtmpD2,QAM_amp128b);
    ul_ch_mag128b[1] = vqdmulhq_s16(mmtmpD3,QAM_amp128b);
    ul_ch_mag128[0] = vqdmulhq_s16(mmtmpD2,QAM_amp128);
    ul_ch_mag128[1] = vqdmulhq_s16(mmtmpD3,QAM_amp128);

    if (pilots==0) {
      ul_ch_mag128b[2] = vqdmulhq_s16(mmtmpD4,QAM_amp128b);
      ul_ch_mag128[2]  = vqdmulhq_s16(mmtmpD4,QAM_amp128);
    }
  }

  mmtmpD0 = vmull_s16(ul_ch128[0], rxdataF128[0]);
  //mmtmpD0 = [Re(ch[0])Re(rx[0]) Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1]) Im(ch[1])Im(ch[1])]
  mmtmpD1 = vmull_s16(ul_ch128[1], rxdataF128[1]);
  //mmtmpD1 = [Re(ch[2])Re(rx[2]) Im(ch[2])Im(ch[2]) Re(ch[3])Re(rx[3]) Im(ch[3])Im(ch[3])]
  mmtmpD0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0),vget_high_s32(mmtmpD0)),
             vpadd_s32(vget_low_s32(mmtmpD1),vget_high_s32(mmtmpD1)));
  //mmtmpD0 = [Re(ch[0])Re(rx[0])+Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1])+Im(ch[1])Im(ch[1]) Re(ch[2])Re(rx[2])+Im(ch[2])Im(ch[2]) Re(ch[3])Re(rx[3])+Im(ch[3])Im(ch[3])]

  mmtmpD0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[0],*(int16x4_t*)conj)), rxdataF128[0]);
  //mmtmpD0 = [-Im(ch[0])Re(rx[0]) Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1]) Re(ch[1])Im(rx[1])]
  mmtmpD1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[1],*(int16x4_t*)conj)), rxdataF128[1]);
  //mmtmpD0 = [-Im(ch[2])Re(rx[2]) Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3]) Re(ch[3])Im(rx[3])]
  mmtmpD1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0b),vget_high_s32(mmtmpD0b)),
             vpadd_s32(vget_low_s32(mmtmpD1b),vget_high_s32(mmtmpD1b)));
  //mmtmpD1 = [-Im(ch[0])Re(rx[0])+Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1])+Re(ch[1])Im(rx[1]) -Im(ch[2])Re(rx[2])+Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3])+Re(ch[3])Im(rx[3])]

  mmtmpD0 = vqshlq_s32(mmtmpD0,output_shift128);
  mmtmpD1 = vqshlq_s32(mmtmpD1,output_shift128);
  rxdataF_comp128[0] = vzip_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));
  mmtmpD0 = vmull_s16(ul_ch128[2], rxdataF128[2]);
  mmtmpD1 = vmull_s16(ul_ch128[3], rxdataF128[3]);
  mmtmpD0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0),vget_high_s32(mmtmpD0)),
             vpadd_s32(vget_low_s32(mmtmpD1),vget_high_s32(mmtmpD1)));
  mmtmpD0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[2],*(int16x4_t*)conj)), rxdataF128[2]);
  mmtmpD1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[3],*(int16x4_t*)conj)), rxdataF128[3]);
  mmtmpD1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0b),vget_high_s32(mmtmpD0b)),
             vpadd_s32(vget_low_s32(mmtmpD1b),vget_high_s32(mmtmpD1b)));
  mmtmpD0 = vqshlq_s32(mmtmpD0,output_shift128);
  mmtmpD1 = vqshlq_s32(mmtmpD1,output_shift128);
  rxdataF_comp128[1] = vzip_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));

  if (pilots==0) {
    mmtmpD0 = vmull_s16(ul_ch128[4], rxdataF128[4]);
    mmtmpD1 = vmull_s16(ul_ch128[5], rxdataF128[5]);
    mmtmpD0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0),vget_high_s32(mmtmpD0)),
         vpadd_s32(vget_low_s32(mmtmpD1),vget_high_s32(mmtmpD1)));

    mmtmpD0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[4],*(int16x4_t*)conj)), rxdataF128[4]);
    mmtmpD1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[5],*(int16x4_t*)conj)), rxdataF128[5]);
    mmtmpD1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0b),vget_high_s32(mmtmpD0b)),
         vpadd_s32(vget_low_s32(mmtmpD1b),vget_high_s32(mmtmpD1b)));


    mmtmpD0 = vqshlq_s32(mmtmpD0,output_shift128);
    mmtmpD1 = vqshlq_s32(mmtmpD1,output_shift128);
    rxdataF_comp128[2] = vzip_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));


    ul_ch128+=6;
    ul_ch_mag128+=3;
    ul_ch_mag128b+=3;
    rxdataF128+=6;
    rxdataF_comp128+=3;

  } else { // we have a smaller PUSCH in symbols with pilots so skip last group of 4 REs and increment less
    ul_ch128+=4;
    ul_ch_mag128+=2;
    ul_ch_mag128b+=2;
    rxdataF128+=4;
    rxdataF_comp128+=2;
  }
      }
    }
  }

  if (rho) {
    for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
      rho128        = (int16x4x2_t*)&rho[aarx][symbol*frame_parms->N_RB_UL*12];
      ul_ch128      = (int16x4_t*)&ul_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_UL*12];
      ul_ch128_2    = (int16x4_t*)&ul_ch_estimates_ext[2+aarx][symbol*frame_parms->N_RB_UL*12];
      for (rb=0; rb<nb_rb; rb++) {
  mmtmpD0 = vmull_s16(ul_ch128[0], ul_ch128_2[0]);
  mmtmpD1 = vmull_s16(ul_ch128[1], ul_ch128_2[1]);
  mmtmpD0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0),vget_high_s32(mmtmpD0)),
             vpadd_s32(vget_low_s32(mmtmpD1),vget_high_s32(mmtmpD1)));
  mmtmpD0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[0],*(int16x4_t*)conj)), ul_ch128_2[0]);
  mmtmpD1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[1],*(int16x4_t*)conj)), ul_ch128_2[1]);
  mmtmpD1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0b),vget_high_s32(mmtmpD0b)),
             vpadd_s32(vget_low_s32(mmtmpD1b),vget_high_s32(mmtmpD1b)));

  mmtmpD0 = vqshlq_s32(mmtmpD0,output_shift128);
  mmtmpD1 = vqshlq_s32(mmtmpD1,output_shift128);
  rho128[0] = vzip_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));

  mmtmpD0 = vmull_s16(ul_ch128[2], ul_ch128_2[2]);
  mmtmpD1 = vmull_s16(ul_ch128[3], ul_ch128_2[3]);
  mmtmpD0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0),vget_high_s32(mmtmpD0)),
             vpadd_s32(vget_low_s32(mmtmpD1),vget_high_s32(mmtmpD1)));
  mmtmpD0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[2],*(int16x4_t*)conj)), ul_ch128_2[2]);
  mmtmpD1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[3],*(int16x4_t*)conj)), ul_ch128_2[3]);
  mmtmpD1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0b),vget_high_s32(mmtmpD0b)),
             vpadd_s32(vget_low_s32(mmtmpD1b),vget_high_s32(mmtmpD1b)));

  mmtmpD0 = vqshlq_s32(mmtmpD0,output_shift128);
  mmtmpD1 = vqshlq_s32(mmtmpD1,output_shift128);
  rho128[1] = vzip_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));

  mmtmpD0 = vmull_s16(ul_ch128[0], ul_ch128_2[0]);
  mmtmpD1 = vmull_s16(ul_ch128[1], ul_ch128_2[1]);
  mmtmpD0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0),vget_high_s32(mmtmpD0)),
             vpadd_s32(vget_low_s32(mmtmpD1),vget_high_s32(mmtmpD1)));
  mmtmpD0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[4],*(int16x4_t*)conj)), ul_ch128_2[4]);
  mmtmpD1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[5],*(int16x4_t*)conj)), ul_ch128_2[5]);
  mmtmpD1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpD0b),vget_high_s32(mmtmpD0b)),
             vpadd_s32(vget_low_s32(mmtmpD1b),vget_high_s32(mmtmpD1b)));

  mmtmpD0 = vqshlq_s32(mmtmpD0,output_shift128);
  mmtmpD1 = vqshlq_s32(mmtmpD1,output_shift128);
  rho128[2] = vzip_s16(vmovn_s32(mmtmpD0),vmovn_s32(mmtmpD1));


  ul_ch128+=6;
  ul_ch128_2+=6;
  rho128+=3;
      }
    }
  }
#endif


#ifdef DEBUG_CH_COMP

  rxF   = (int16_t *)&rxdataF_comp[0][(symbol*nb_rb*12)];

  printf("----------------After compansation------------------\n");

  for (prnt_idx=0;prnt_idx<12*nb_rb*2;prnt_idx++){

    printf("rxF[%d] = %d\n", prnt_idx, rxF[prnt_idx]);

  }

#endif

#ifdef DEBUG_CH_MAG


  ch_mag   = (int16_t *)&ul_ch_mag[0][(symbol*nb_rb*12)];

  printf("----------------After computation------------------\n");

  for (print_idx=0;print_idx<12*nb_rb*2;print_idx++){

    printf("ch_mag[%d] = %d\n", print_idx, ch_mag[print_idx]);

  }

#endif

}
965 966 967 968 969 970 971 972

void nr_rx_pusch(PHY_VARS_gNB *gNB,
                 uint8_t UE_id,
                 uint32_t frame,
                 uint8_t nr_tti_rx,
                 unsigned char symbol,
                 unsigned char harq_pid)
{
973

974
  uint8_t first_symbol_flag, aarx, aatx, pilots; // pilots, a flag to indicate DMRS REs in current symbol
975
  NR_DL_FRAME_PARMS *frame_parms = &gNB->frame_parms;
976
  nfapi_nr_ul_config_ulsch_pdu_rel15_t *rel15_ul = &gNB->ulsch[UE_id][0]->harq_processes[harq_pid]->ulsch_pdu.ulsch_pdu_rel15;
977 978 979 980 981 982
  uint32_t nb_re_pusch, bwp_start_subcarrier;
  int avgs;
  int avg[4];

  pilots = 0;
  first_symbol_flag = 0;
983
  
984
  if(symbol == rel15_ul->start_symbol){
985
    gNB->pusch_vars[UE_id]->rxdataF_ext_offset = 0;
986 987
    first_symbol_flag = 1;
  }
988

989
  if (symbol == rel15_ul->start_symbol){  // [hna] here it is assumed that first carries 6 DMRS REs (dmrs-type 1)
990
    nb_re_pusch = rel15_ul->number_rbs * 6;
991 992
    pilots = 1;
  } else {
993
    nb_re_pusch = rel15_ul->number_rbs * NR_NB_SC_PER_RB;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    pilots = 0;
  }

  bwp_start_subcarrier = (rel15_ul->start_rb*NR_NB_SC_PER_RB + frame_parms->first_carrier_offset) % frame_parms->ofdm_symbol_size;

  //----------------------------------------------------------
  //--------------------- Channel estimation ---------------------
  //----------------------------------------------------------

  if (pilots == 1)
    nr_pusch_channel_estimation(gNB,
                                0,
                                nr_tti_rx,
                                0, // p
                                symbol,
                                bwp_start_subcarrier,
                                rel15_ul->number_rbs);
1011 1012 1013 1014 1015 1016

  //----------------------------------------------------------
  //--------------------- RBs extraction ---------------------
  //----------------------------------------------------------
  
  nr_ulsch_extract_rbs_single(gNB->common_vars.rxdataF,
1017
                              gNB->pusch_vars[UE_id]->ul_ch_estimates,
1018
                              gNB->pusch_vars[UE_id]->rxdataF_ext,
1019
                              gNB->pusch_vars[UE_id]->ul_ch_estimates_ext,
1020 1021 1022 1023
                              gNB->pusch_vars[UE_id]->rxdataF_ext_offset,
                              // rb_alloc, [hna] Resource Allocation Type 1 is assumed only for the moment
                              symbol,
                              rel15_ul->start_rb,
1024
                              rel15_ul->number_rbs,
1025
                              frame_parms);
1026

1027 1028
  nr_ulsch_scale_channel(gNB->pusch_vars[UE_id]->ul_ch_estimates_ext,
                         frame_parms,
1029
                         gNB->ulsch[UE_id],
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                         symbol,
                         pilots,
                         rel15_ul->number_rbs);

  if (first_symbol_flag==1) {

     nr_ulsch_channel_level(gNB->pusch_vars[UE_id]->ul_ch_estimates_ext,
                           frame_parms,
                           avg,
                           symbol,
                           nb_re_pusch,
                           rel15_ul->number_rbs);
     avgs = 0;

     for (aatx=0;aatx<frame_parms->nb_antennas_tx;aatx++)
       for (aarx=0;aarx<frame_parms->nb_antennas_rx;aarx++)
         avgs = cmax(avgs,avg[(aatx<<1)+aarx]);

     gNB->pusch_vars[UE_id]->log2_maxh = (log2_approx(avgs)/2)+1;

  }

  nr_ulsch_channel_compensation(gNB->pusch_vars[UE_id]->rxdataF_ext,
                                gNB->pusch_vars[UE_id]->ul_ch_estimates_ext,
                                gNB->pusch_vars[UE_id]->ul_ch_mag0,
                                gNB->pusch_vars[UE_id]->ul_ch_magb0,
                                gNB->pusch_vars[UE_id]->rxdataF_comp,
                                (frame_parms->nb_antennas_tx>1) ? gNB->pusch_vars[UE_id]->rho : NULL,
                                frame_parms,
                                symbol,
                                pilots,
                                rel15_ul->Qm,
                                rel15_ul->number_rbs,
                                gNB->pusch_vars[UE_id]->log2_maxh);

1065
#ifdef NR_SC_FDMA
1066
  nr_idft(&((uint32_t*)gNB->pusch_vars[UE_id]->rxdataF_ext[0])[symbol * rel15_ul->number_rbs * NR_NB_SC_PER_RB], nb_re_pusch);
1067 1068
#endif

1069 1070 1071 1072
  //----------------------------------------------------------
  //-------------------- LLRs computation --------------------
  //----------------------------------------------------------
  
1073 1074 1075
  nr_ulsch_compute_llr(&gNB->pusch_vars[UE_id]->rxdataF_comp[0][symbol * rel15_ul->number_rbs * NR_NB_SC_PER_RB],
                       gNB->pusch_vars[UE_id]->ul_ch_mag0,
                       gNB->pusch_vars[UE_id]->ul_ch_magb0,
1076
                       &gNB->pusch_vars[UE_id]->llr[gNB->pusch_vars[UE_id]->rxdataF_ext_offset * rel15_ul->Qm],
1077
                       rel15_ul->number_rbs,
1078
                       nb_re_pusch,
1079 1080
                       symbol,
                       rel15_ul->Qm);
1081
  
1082 1083
  gNB->pusch_vars[UE_id]->rxdataF_ext_offset = gNB->pusch_vars[UE_id]->rxdataF_ext_offset +  nb_re_pusch;
  
1084
}