Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
O
OpenXG-RAN
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wangjie
OpenXG-RAN
Commits
249e6715
Commit
249e6715
authored
Jun 01, 2017
by
Matthieu Kanj
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add synchro fucntions for NPSS and NSSS signal for NB-IoT
parent
4deb7c54
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
366 additions
and
0 deletions
+366
-0
openair1/PHY/LTE_REFSIG/first_synchro_NB_IoT.m
openair1/PHY/LTE_REFSIG/first_synchro_NB_IoT.m
+47
-0
openair1/PHY/LTE_REFSIG/main_synchro_NPSS_NB_IoT.m
openair1/PHY/LTE_REFSIG/main_synchro_NPSS_NB_IoT.m
+166
-0
openair1/PHY/LTE_REFSIG/second_synchro_NB_IoT.m
openair1/PHY/LTE_REFSIG/second_synchro_NB_IoT.m
+20
-0
openair1/PHY/LTE_TRANSPORT/nsss_gen_NB_IoT.m
openair1/PHY/LTE_TRANSPORT/nsss_gen_NB_IoT.m
+133
-0
No files found.
openair1/PHY/LTE_REFSIG/first_synchro_NB_IoT.m
0 → 100644
View file @
249e6715
function
[
theta_estim
,
estim_CFO
]
=
Fc_first_synchro
(
observation
,
L_frame
,
L_sub_frame
,
FFT_size
,
L_symbol
,
N_subframe_observation
,
L_CP
,
SNR
,
type_first_estim
)
% This function performs the estimation of the beginning of symbols as well
% as the estimation of CFO. It allows for a coarse synchronization
gamma
=
zeros
(
1
,
L_frame
);
epsilon
=
zeros
(
1
,
L_frame
);
for
n
=
1
:
1
:
length
(
gamma
)
gamma
(
n
)
=
sum
(
observation
(
n
:
n
+
L_CP
-
1
)
.*
conj
(
observation
(
n
+
FFT_size
:
n
+
FFT_size
+
L_CP
-
1
)));
epsilon
(
n
)
=
sum
(
abs
(
observation
(
n
:
n
+
L_CP
-
1
))
.^
2
+
abs
(
observation
(
n
+
FFT_size
:
n
+
FFT_size
+
L_CP
-
1
))
.^
2
);
end
rho
=
10
^
(
SNR
/
20
)/(
10
^
(
SNR
/
20
)
+
1
);
theta
=
2
*
abs
(
gamma
)
-
rho
*
(
epsilon
);
% Estimation of the symbol start and the corresponding CFO
theta_reshape
=
reshape
(
theta
,
L_symbol
,
N_subframe_observation
*
L_sub_frame
);
% gamma_reshape = reshape(gamma,L_symbol,N_subframe_observation*L_sub_frame); % useful for estimation of CFO
[
~
,
index_max
]
=
max
(
theta_reshape
);
% where theta is max symbol by symbol
switch
type_first_estim
case
1
%estimation by mean
theta_estim
=
sum
(
index_max
)/
length
(
index_max
);
% estimation by mean
estim_CFO
=
-
1
/(
2
*
pi
)
*
atan
(
imag
(
gamma
(
round
(
theta_estim
)))/
real
(
gamma
(
round
(
theta_estim
))));
case
2
%estimation by majority
counter_index
=
zeros
(
1
,
L_symbol
);
for
k
=
1
:
1
:
length
(
index_max
)
counter_index
(
index_max
(
k
))
=
counter_index
(
index_max
(
k
))
+
1
;
% add the number of index_max
end
[
~
,
theta_estim
]
=
max
(
counter_index
);
% get the max of index max -> theta estim
% index_index_max = find(index_max == theta_estim);
% estim_CFO = -1/(2*pi)*atan(imag(gamma(round(theta_estim)))/real(gamma(round(theta_estim))));
estim_CFO_vec
=
-
1
/(
2
*
pi
)
*
atan
(
imag
(
gamma
(
round
(
theta_estim
:
L_symbol
:
end
)))
.
/
real
(
gamma
(
round
(
theta_estim
:
L_symbol
:
end
))));
% estim_CFO_vec2 = -1/(2*pi)*atan(imag(gamma_reshape(theta_estim,index_max(index_index_max)))./real(gamma_reshape(theta_estim,index_max(index_index_max))));
estim_CFO
=
sum
(
estim_CFO_vec
)/
length
(
estim_CFO_vec
);
% estim_CFO_2 = sum(estim_CFO_vec2)/length(estim_CFO_vec2);
otherwise
print
(
'error: type of estimation not defined'
)
end
openair1/PHY/LTE_REFSIG/main_synchro_NPSS_NB_IoT.m
0 → 100644
View file @
249e6715
clear
all
close
all
% description: test synchro using CP for time-freq. synchro
% and ZC sequence for beginning of the radio frame estimation
% date : 09/03/2017
% author : Vincent Savaux, b<>com, Rennes, France
% email: vincent.savaux@b-com.com
% Parameters
u
=
5
;
% root of ZC sequence
size_RB
=
12
;
% number of sub-carrier per RB
N_ZC
=
size_RB
-
1
;
L_sub_frame
=
14
;
j
=
1
i
;
CFO
=
0.1
;
% normalized CFO
N_frames
=
4
;
% at least 3
N_sub_frame
=
10
*
N_frames
;
% how many simulated sub_frame you want
FFT_size
=
128
;
N_zeros
=
(
FFT_size
-
size_RB
)/
2
;
% Number of zero subcarriers in upper and lower frequencies
L_CP
=
round
(
4.6875
/(
66.7
)
*
FFT_size
);
% Number of samples of the CP
L_symbol
=
(
FFT_size
+
L_CP
);
L_frame
=
(
FFT_size
+
L_CP
)
*
L_sub_frame
*
10
;
L_signal
=
(
FFT_size
+
L_CP
)
*
L_sub_frame
*
N_sub_frame
;
normalized_time
=
0
:
1
:
L_signal
-
1
;
SNR_start
=
0
;
% in dB
SNR_end
=
30
;
% in dB
N_subframe_observation
=
10
;
% length of observation for syncronization
N_loop
=
1000
;
% number of runs, for good statistics
type_first_estim
=
2
;
% 1 -> estimation by mean, 2-> estimation by majority
matrix_error_theta_1
=
zeros
(
N_loop
,
SNR_end
-
SNR_start
+
1
);
matrix_error_theta_2
=
zeros
(
N_loop
,
SNR_end
-
SNR_start
+
1
);
matrix_error_angle_1
=
zeros
(
N_loop
,
SNR_end
-
SNR_start
+
1
);
matrix_error_angle_2
=
zeros
(
N_loop
,
SNR_end
-
SNR_start
+
1
);
matrix_error_angle_3
=
zeros
(
N_loop
,
SNR_end
-
SNR_start
+
1
);
matrix_error_BOF
=
zeros
(
N_loop
,
SNR_end
-
SNR_start
+
1
);
for
SNR
=
SNR_start
:
2
:
SNR_end
for
loop
=
1
:
N_loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Creation of the signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ZC sequence in frequency domain
vec_n
=
0
:
N_ZC
-
1
;
f_ZC_sequence
=
exp
(
-
j
*
pi
*
u
*
vec_n
.*
(
vec_n
+
1
)/
N_ZC
);
f_NPSS_symbol
=
[
f_ZC_sequence
.'
;
0
];
% one NPSS symbol
f_NPSS_frame
=
[
zeros
(
size_RB
,
3
),
kron
(
ones
(
1
,
L_sub_frame
-
3
),
f_NPSS_symbol
)];
% OFDM sub_frame in frequency domain -> modulation : QPSK
%random QPSK elements:
f_OFDM_frames
=
(
2
*
randi
([
0
,
1
],
size_RB
,
L_sub_frame
*
N_sub_frame
)
-
1
)
+
j
*
(
2
*
randi
([
0
,
1
],
size_RB
,
L_sub_frame
*
N_sub_frame
)
-
1
);
%replace the k*6th subframes by f_NPSS_frame:
f_LTE_frames
=
f_OFDM_frames
;
for
k
=
0
:
N_frames
-
1
N_index
=
k
*
10
*
L_sub_frame
+
85
;
f_LTE_frames
(:,
N_index
:
N_index
+
13
)
=
f_NPSS_frame
;
end
% IFFT: get frames in time domain (Parralel representation)
f_zero_carriers
=
zeros
(
N_zeros
,
L_sub_frame
*
N_sub_frame
);
f_ups_LTE_frames
=
[
f_zero_carriers
;
f_LTE_frames
;
f_zero_carriers
];
% add zero carriers up and down the symbols
t_P_LTE_frames
=
ifft
(
f_ups_LTE_frames
,
FFT_size
);
% Add CP (Parralel representation)
t_P_LTE_frames_CP
=
[
t_P_LTE_frames
(
end
-
L_CP
+
1
:
end
,:);
t_P_LTE_frames
];
% Parralel to series conversion
t_S_LTE_frames
=
reshape
(
t_P_LTE_frames_CP
,
1
,[]);
% Add a channel frequency offset (CFO)
t_S_received_frames
=
t_S_LTE_frames
.*
exp
(
j
*
2
*
pi
*
CFO
*
normalized_time
/
FFT_size
);
% Add noise
P_signal
=
sum
(
abs
(
t_S_received_frames
)
.^
2
)/
length
(
t_S_received_frames
);
P_noise
=
P_signal
*
10
^
(
-
SNR
/
20
);
init_noise
=
randn
(
size
(
t_S_received_frames
));
normalized_noise
=
init_noise
/
sqrt
(
sum
(
abs
(
init_noise
)
.^
2
)/
length
(
init_noise
));
noise
=
sqrt
(
P_noise
)
*
normalized_noise
;
t_S_noisy_frames
=
t_S_received_frames
+
noise
;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Time and frequency synchronization
% The principle is based on the croos-correlation between the received
% sequence and the transmitted SC sequence.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Get an observation, the duration of which is one frame length. The
% beginning of the stored samples is at 1 frame +- 0.5 frame
index_start
=
L_frame
+
randi
([
-
L_frame
/
2
,
L_frame
/
2
],
1
);
observation
=
t_S_noisy_frames
(
index_start
:
index_start
+
1.5
*
L_frame
-
1
);
f_oversampl_NPSS_symbol
=
[
f_zero_carriers
(:,
1
);
f_NPSS_symbol
;
f_zero_carriers
(:,
1
)];
t_NPPS_unit
=
ifft
(
f_oversampl_NPSS_symbol
,
FFT_size
);
t_NPPS_correl
=
[
t_NPPS_unit
(
end
-
L_CP
+
1
:
end
);
t_NPPS_unit
];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimation of start of the symbols and the CFO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[
theta_estim
,
estim_CFO
]
=
first_synchro
(
observation
,
L_frame
,
L_sub_frame
,
FFT_size
,
L_symbol
,
N_subframe_observation
,
L_CP
,
SNR
,
type_first_estim
);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Time and frequency synchronization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
new_index_start
=
index_start
+
theta_estim
-
1
;
new_vec_time
=
new_index_start
-
1
:
1
:
new_index_start
+
1.5
*
L_frame
-
2
;
new_observation
=
t_S_noisy_frames
(
new_index_start
:
new_index_start
+
1.5
*
L_frame
-
1
)
.*
exp
(
-
j
*
2
*
pi
*
estim_CFO
*
new_vec_time
/
FFT_size
);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Second synchronization: beginning of frame (BOF)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[
BOF
]
=
second_synchro
(
new_observation
,
f_NPSS_symbol
,
L_frame
,
L_symbol
,
FFT_size
,
L_CP
,
N_zeros
);
exact_index
=
L_symbol
-
rem
(
index_start
,
L_symbol
)
+
2
;
[
error_theta_1
,
ind_error1
]
=
min
([
abs
(
exact_index
-
theta_estim
-
L_symbol
),
abs
(
exact_index
-
theta_estim
),
abs
(
exact_index
-
theta_estim
+
L_symbol
)]);
% [error_theta_2,ind_error2] = min([abs(exact_index - theta_estim_2-137), abs(exact_index - theta_estim_2),abs(exact_index - theta_estim_2+137)]);
error_CFO_1
=
CFO
-
estim_CFO
;
% error_CFO_2 = CFO - estim_CFO_1;
% error_CFO_3 = CFO - estim_CFO_2;
vec_exact_index
=
85
:
140
:
N_frames
*
140
;
estim_BOF
=
ceil
((
index_start
-
1
)/
L_symbol
)
+
BOF
;
error_BOF
=
min
(
abs
(
estim_BOF
-
vec_exact_index
));
matrix_error_theta_1
(
loop
,
SNR
-
SNR_start
+
1
)
=
error_theta_1
;
% matrix_error_theta_2(loop,SNR-SNR_start+1) = error_theta_2;
matrix_error_angle_1
(
loop
,
SNR
-
SNR_start
+
1
)
=
error_CFO_1
;
% matrix_error_angle_2(loop,SNR-SNR_start+1) = error_CFO_2;
% matrix_error_angle_3(loop,SNR-SNR_start+1) = error_CFO_3;
matrix_error_BOF
(
loop
,
SNR
-
SNR_start
+
1
)
=
error_BOF
;
end
end
plot
(
SNR_start
:
2
:
SNR_end
,
sqrt
(
sum
(
abs
(
matrix_error_theta_1
(:,
1
:
2
:
SNR_end
+
1
))
.^
2
)/
N_loop
))
hold
% plot(SNR_start:2:SNR_end,sqrt(sum(abs(matrix_error_theta_2(:,1:2:SNR_end+1)).^2)/N_loop))
figure
plot
(
SNR_start
:
2
:
SNR_end
,
sqrt
(
sum
(
abs
(
matrix_error_angle_1
(:,
1
:
2
:
SNR_end
+
1
))
.^
2
)/
N_loop
))
hold
% plot(SNR_start:SNR_end,sum(abs(matrix_error_angle_2(:,1:31)))/N_loop)
% plot(SNR_start:SNR_end,sum(abs(matrix_error_angle_3(:,1:31)))/N_loop)
% plot(SNR_start:2:SNR_end,sqrt(sum(abs(matrix_error_angle_2(:,1:2:SNR_end+1)).^2)/N_loop),'s')
% plot(SNR_start:2:SNR_end,sqrt(sum(abs(matrix_error_angle_3(:,1:2:SNR_end+1)).^2)/N_loop),'d')
figure
plot
(
SNR_start
:
2
:
SNR_end
,
sqrt
(
sum
(
abs
(
matrix_error_BOF
(:,
1
:
2
:
SNR_end
+
1
))
.^
2
)/
N_loop
))
hold
save
openair1/PHY/LTE_REFSIG/second_synchro_NB_IoT.m
0 → 100644
View file @
249e6715
function
[
BOF
]
=
Fc_second_synchro
(
new_observation
,
f_NPSS_symbol
,
L_frame
,
L_symbol
,
FFT_size
,
L_CP
,
N_zeros
)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
% new_obs_reshape = reshape(new_observation(1:L_frame), L_symbol, []);
new_obs_reshape
=
reshape
(
new_observation
,
L_symbol
,
[]);
t_new_obs_CP_remov
=
new_obs_reshape
(
L_CP
+
1
:
end
,:);
f_new_symbols
=
fft
(
t_new_obs_CP_remov
,
FFT_size
);
for
n
=
1
:
length
(
f_new_symbols
(
1
,:))
corr
(:,
n
)
=
xcorr
(
f_new_symbols
(
N_zeros
+
1
:
N_zeros
+
12
,
n
),
f_NPSS_symbol
);
mean
=
sum
(
abs
(
corr
(:,
n
)));
mm
(
n
)
=
sum
((
abs
(
corr
(:,
n
))
-
mean
)
.^
2
);
end
for
k
=
1
:
length
(
mm
)
-
13
min_var
(
k
)
=
sum
(
mm
(
k
:
k
+
13
));
end
[
~
,
BOF
]
=
min
(
min_var
);
end
openair1/PHY/LTE_TRANSPORT/nsss_gen_NB_IoT.m
0 → 100644
View file @
249e6715
clear
all
% nsss_gen / matlab
% Copyright 2016 b<>com. All rights reserved.
% description: generation of NSSS subframe
% Reference: 3GPP TS36.211 release 13
% author: Vincent Savaux, b<>com, Rennes, France
% email: vincent.savaux@b-com.com
% Input : \
% Output : matrix NSSS_frame
% Parameters
% frame_number = 100;
% cellID = 200;
% % % Mapping results to estimated u-3
SNR_start
=
-
10
;
SNR_end
=
2
;
vec_SNR
=
SNR_start
:
2
:
SNR_end
;
N_loop
=
40
;
Proba_fail
=
zeros
(
1
,
length
(
vec_SNR
));
mat_bn
=
zeros
(
4
,
128
);
% mat_bn contains the 4 possible Hadamard sequences defined in the standard
mat_bn
(
1
,:)
=
ones
(
1
,
128
);
mat_bn
(
2
,:)
=
[
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
-
1
1
-
1
-
1
1
...
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
1
-
1
-
1
...
1
-
1
1
1
-
1
-
1
1
1
-
1
1
-
1
-
1
1
-
1
1
1
-
1
1
-
1
...
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
1
-
1
-
1
1
-
1
1
1
-
1
-
1
...
1
1
-
1
1
-
1
-
1
1
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
...
-
1
1
1
-
1
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
-
1
1
-
1
-
1
...
1
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
];
mat_bn
(
3
,:)
=
[
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
-
1
1
-
1
-
1
1
...
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
...
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
1
-
1
-
1
1
-
1
1
...
1
-
1
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
-
1
...
1
1
-
1
1
-
1
-
1
1
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
...
-
1
1
1
-
1
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
...
-
1
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
-
1
1
-
1
-
1
1
];
mat_bn
(
4
,:)
=
[
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
-
1
1
-
1
-
1
1
...
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
...
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
1
-
1
-
1
1
-
1
1
...
1
-
1
-
1
1
1
-
1
1
-
1
-
1
1
-
1
1
1
-
1
1
-
1
-
1
1
1
...
-
1
-
1
1
-
1
1
1
-
1
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
-
1
...
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
-
1
1
1
-
1
1
-
1
-
1
...
1
-
1
1
1
-
1
1
-
1
-
1
1
1
-
1
-
1
1
-
1
1
1
-
1
];
mat_bn
=
[
mat_bn
,
mat_bn
(:,
1
:
4
)];
% see the definition of m in stadard
mat_theta_f
=
zeros
(
4
,
132
);
% mat_bn contains the 4 possible phase sequences defined in the standard
mat_theta_f
(
1
,:)
=
ones
(
1
,
132
);
mat_theta_f
(
2
,:)
=
repmat
([
1
,
-
j
,
-
1
,
j
],
1
,
33
);
mat_theta_f
(
3
,:)
=
repmat
([
1
,
-
1
],
1
,
66
);
mat_theta_f
(
4
,:)
=
repmat
([
1
,
j
,
-
1
,
-
j
],
1
,
33
);
mat_16_theta
=
round
(
kron
(
mat_theta_f
,
ones
(
4
,
1
)));
% mat_bn contains the 4x4=16 possible pseudo-random sequences
mat_16_bn
=
repmat
(
mat_bn
,
4
,
1
);
mat_16
=
mat_16_theta
.*
mat_16_bn
;
corresponding_values
=
zeros
(
16
,
2
);
% first column for q, second for theta_f
corresponding_values
(:,
1
)
=
repmat
([
0
;
1
;
2
;
3
],
4
,
1
);
% mapping column to q
corresponding_values
(:,
2
)
=
kron
([
0
;
1
;
2
;
3
],
ones
(
4
,
1
));
% mapping column to theta_f
for
k
=
1
:
length
(
vec_SNR
)
% loop on the SNR
N_fail
=
0
;
for
loop
=
1
:
N_loop
SNR
=
vec_SNR
(
k
);
frame_number
=
2
*
randi
([
0
,
3
],
1
);
cellID
=
randi
([
0
,
503
],
1
);
% function NSSS_subframe = nsss_gen(frame_number,cellID)
theta_f
=
33
/
132
*
mod
(
frame_number
/
2
,
4
);
% as defined in stadard
u
=
mod
(
cellID
,
126
)
+
3
;
% root of ZC sequence, defined in standard
q
=
floor
(
cellID
/
126
);
size_RB
=
12
;
% number of sub-carrier per RB
N_ZC
=
131
;
L_sub_frame
=
14
;
% number of OFDM symbols per subframe
j
=
1
i
;
vec_n
=
0
:
N_ZC
;
vec_n1
=
mod
(
vec_n
,
131
);
vec_bq
=
mat_bn
(
q
+
1
,:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Creation of the signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ZC sequence in frequency domain
ZC_sequence
=
exp
(
-
j
*
pi
*
u
*
vec_n1
.*
(
vec_n1
+
1
)/
N_ZC
);
had_sequence
=
exp
(
-
j
*
2
*
pi
*
theta_f
*
vec_n
);
vec_bq_had
=
vec_bq
.*
had_sequence
;
P_noise
=
10
^
(
-
SNR
/
10
);
% SNR in dB to noise power
noise
=
sqrt
(
P_noise
/
2
)
*
randn
(
1
,
132
)
+
sqrt
(
P_noise
/
2
)
*
j
*
randn
(
1
,
132
);
vec_d
=
vec_bq
.*
had_sequence
.*
ZC_sequence
+
noise
;
mat_NSSS
=
flipud
(
reshape
(
vec_d
,
size_RB
,
L_sub_frame
-
3
));
NSSS_subframe
=
[
zeros
(
size_RB
,
3
),
mat_NSSS
];
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Exhaustive cell ID research
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sequence_r
=
repmat
(
vec_d
,
16
,
1
)
.*
conj
(
mat_16
);
% this remove the phase component
vec_u
=
3
:
128
;
mat_u
=
repmat
(
vec_u
.'
,
1
,
length
(
vec_n1
));
mat_n1
=
repmat
(
vec_n1
,
126
,
1
);
sequence_ZC
=
exp
(
-
j
*
pi
*
mat_u
.*
mat_n1
.*
(
mat_n1
+
1
)/
N_ZC
);
matrix_max_correl
=
zeros
(
126
,
16
);
% this will be filled by the maximum of correlation value
for
s_
=
1
:
16
seq_ref
=
sequence_r
(
s_
,:);
for
u_
=
1
:
126
correl
=
xcorr
(
seq_ref
,
sequence_ZC
(
u_
,:));
[
val_max
,
ind_max
]
=
max
(
abs
(
correl
));
matrix_max_correl
(
u_
,
s_
)
=
val_max
;
end
end
max_correl
=
max
(
max
(
matrix_max_correl
));
% get the max of all correlation values
index_max
=
find
(
matrix_max_correl
==
max_correl
);
estim_u_
=
mod
(
index_max
,
126
)
-
1
;
index_column
=
(
index_max
-
mod
(
index_max
,
126
))/
126
+
1
;
estim_q_
=
corresponding_values
(
index_column
);
estim_cell_ID
=
q
*
126
+
estim_u_
;
if
cellID
~=
estim_cell_ID
N_fail
=
N_fail
+
1
;
end
end
Proba_fail
(
k
)
=
N_fail
/
N_loop
;
end
plot
(
vec_SNR
,
Proba_fail
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment