Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
F
fmt
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Libraries
fmt
Commits
dd8c5ce4
Commit
dd8c5ce4
authored
Aug 29, 2018
by
Victor Zverovich
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implement more FP formatting options
parent
46484da7
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
237 additions
and
209 deletions
+237
-209
include/fmt/format-inl.h
include/fmt/format-inl.h
+152
-43
include/fmt/format.h
include/fmt/format.h
+9
-94
test/format-impl-test.cc
test/format-impl-test.cc
+72
-0
test/format-test.cc
test/format-test.cc
+4
-72
No files found.
include/fmt/format-inl.h
View file @
dd8c5ce4
...
...
@@ -340,6 +340,96 @@ const int16_t basic_data<T>::POW10_EXPONENTS[] = {
template
<
typename
T
>
const
char
basic_data
<
T
>::
RESET_COLOR
[]
=
"
\x1b
[0m"
;
template
<
typename
T
>
const
wchar_t
basic_data
<
T
>::
WRESET_COLOR
[]
=
L"
\x1b
[0m"
;
// A handmade floating-point number f * pow(2, e).
class
fp
{
private:
typedef
uint64_t
significand_type
;
// All sizes are in bits.
static
FMT_CONSTEXPR_DECL
const
int
char_size
=
std
::
numeric_limits
<
unsigned
char
>::
digits
;
// Subtract 1 to account for an implicit most significant bit in the
// normalized form.
static
FMT_CONSTEXPR_DECL
const
int
double_significand_size
=
std
::
numeric_limits
<
double
>::
digits
-
1
;
static
FMT_CONSTEXPR_DECL
const
uint64_t
implicit_bit
=
1ull
<<
double_significand_size
;
public:
significand_type
f
;
int
e
;
static
FMT_CONSTEXPR_DECL
const
int
significand_size
=
sizeof
(
significand_type
)
*
char_size
;
fp
()
:
f
(
0
),
e
(
0
)
{}
fp
(
uint64_t
f
,
int
e
)
:
f
(
f
),
e
(
e
)
{}
// Constructs fp from an IEEE754 double. It is a template to prevent compile
// errors on platforms where double is not IEEE754.
template
<
typename
Double
>
explicit
fp
(
Double
d
)
{
// Assume double is in the format [sign][exponent][significand].
typedef
std
::
numeric_limits
<
Double
>
limits
;
const
int
double_size
=
sizeof
(
Double
)
*
char_size
;
const
int
exponent_size
=
double_size
-
double_significand_size
-
1
;
// -1 for sign
const
uint64_t
significand_mask
=
implicit_bit
-
1
;
const
uint64_t
exponent_mask
=
(
~
0ull
>>
1
)
&
~
significand_mask
;
const
int
exponent_bias
=
(
1
<<
exponent_size
)
-
limits
::
max_exponent
-
1
;
auto
u
=
bit_cast
<
uint64_t
>
(
d
);
auto
biased_e
=
(
u
&
exponent_mask
)
>>
double_significand_size
;
f
=
u
&
significand_mask
;
if
(
biased_e
!=
0
)
f
+=
implicit_bit
;
else
biased_e
=
1
;
// Subnormals use biased exponent 1 (min exponent).
e
=
static_cast
<
int
>
(
biased_e
-
exponent_bias
-
double_significand_size
);
}
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template
<
int
SHIFT
=
0
>
void
normalize
()
{
// Handle subnormals.
auto
shifted_implicit_bit
=
implicit_bit
<<
SHIFT
;
while
((
f
&
shifted_implicit_bit
)
==
0
)
{
f
<<=
1
;
--
e
;
}
// Subtract 1 to account for hidden bit.
auto
offset
=
significand_size
-
double_significand_size
-
SHIFT
-
1
;
f
<<=
offset
;
e
-=
offset
;
}
// Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where
// a boundary is a value half way between the number and its predecessor
// (lower) or successor (upper). The upper boundary is normalized and lower
// has the same exponent but may be not normalized.
void
compute_boundaries
(
fp
&
lower
,
fp
&
upper
)
const
{
lower
=
f
==
implicit_bit
?
fp
((
f
<<
2
)
-
1
,
e
-
2
)
:
fp
((
f
<<
1
)
-
1
,
e
-
1
);
upper
=
fp
((
f
<<
1
)
+
1
,
e
-
1
);
upper
.
normalize
<
1
>
();
// 1 is to account for the exponent shift above.
lower
.
f
<<=
lower
.
e
-
upper
.
e
;
lower
.
e
=
upper
.
e
;
}
};
// Returns an fp number representing x - y. Result may not be normalized.
inline
fp
operator
-
(
fp
x
,
fp
y
)
{
FMT_ASSERT
(
x
.
f
>=
y
.
f
&&
x
.
e
==
y
.
e
,
"invalid operands"
);
return
fp
(
x
.
f
-
y
.
f
,
x
.
e
);
}
// Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest
// with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be normalized.
FMT_API
fp
operator
*
(
fp
x
,
fp
y
);
// Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its
// (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 3.
FMT_API
fp
get_cached_power
(
int
min_exponent
,
int
&
pow10_exponent
);
FMT_FUNC
fp
operator
*
(
fp
x
,
fp
y
)
{
// Multiply 32-bit parts of significands.
uint64_t
mask
=
(
1ULL
<<
32
)
-
1
;
...
...
@@ -446,31 +536,52 @@ FMT_FUNC void grisu2_gen_digits(
}
}
FMT_FUNC
void
grisu2_format_positive
(
double
value
,
char
*
buffer
,
size_t
&
size
,
int
&
dec_exp
)
{
FMT_ASSERT
(
value
>
0
,
"value is nonpositive"
);
fp
fp_value
(
value
);
fp
lower
,
upper
;
// w^- and w^+ in the Grisu paper.
fp_value
.
compute_boundaries
(
lower
,
upper
);
// Find a cached power of 10 close to 1 / upper.
const
int
min_exp
=
-
60
;
// alpha in Grisu.
auto
dec_pow
=
get_cached_power
(
// \tilde{c}_{-k} in Grisu.
min_exp
-
(
upper
.
e
+
fp
::
significand_size
),
dec_exp
);
dec_exp
=
-
dec_exp
;
fp_value
.
normalize
();
fp
scaled_value
=
fp_value
*
dec_pow
;
fp
scaled_lower
=
lower
*
dec_pow
;
// \tilde{M}^- in Grisu.
fp
scaled_upper
=
upper
*
dec_pow
;
// \tilde{M}^+ in Grisu.
++
scaled_lower
.
f
;
// \tilde{M}^- + 1 ulp -> M^-_{\uparrow}.
--
scaled_upper
.
f
;
// \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}.
uint64_t
delta
=
scaled_upper
.
f
-
scaled_lower
.
f
;
grisu2_gen_digits
(
scaled_value
,
scaled_upper
,
delta
,
buffer
,
size
,
dec_exp
);
}
// Prettifies the output of the Grisu2 algorithm.
// The number is given as v = buffer * 10^exp.
FMT_FUNC
void
grisu2_prettify
(
char
*
buffer
,
size_t
&
size
,
int
exp
,
char
type
,
size_t
precision
,
bool
print_decimal_point
)
{
FMT_FUNC
void
grisu2_prettify
(
char
*
buffer
,
size_t
&
size
,
int
exp
,
int
precision
)
{
// pow(10, full_exp - 1) <= v <= pow(10, full_exp).
int
full_exp
=
static_cast
<
int
>
(
size
)
+
exp
;
int
int_size
=
static_cast
<
int
>
(
size
);
// 10^(full_exp - 1) <= v <= 10^full_exp.
int
full_exp
=
int_size
+
exp
;
if
(
int_size
<=
full_exp
&&
full_exp
<=
21
)
{
// 1234e7 -> 12340000000
const
int
exp_threshold
=
21
;
if
(
int_size
<=
full_exp
&&
full_exp
<=
exp_threshold
)
{
// 1234e7 -> 12340000000[.0+]
std
::
uninitialized_fill_n
(
buffer
+
int_size
,
full_exp
-
int_size
,
'0'
);
char
*
p
=
buffer
+
full_exp
;
if
(
pr
int_decimal_point
&&
size
<
precision
)
{
if
(
pr
ecision
>
0
)
{
*
p
++
=
'.'
;
auto
fill_size
=
precision
-
size
;
std
::
uninitialized_fill_n
(
p
,
fill_size
,
'0'
);
p
+=
fill_size
;
std
::
uninitialized_fill_n
(
p
,
precision
,
'0'
);
p
+=
precision
;
}
size
=
to_unsigned
(
p
-
buffer
);
}
else
if
(
0
<
full_exp
&&
full_exp
<=
21
)
{
// 1234e-2 -> 12.34
size_t
fractional_size
=
to_unsigned
(
int_size
-
full_exp
)
;
}
else
if
(
0
<
full_exp
&&
full_exp
<=
exp_threshold
)
{
// 1234e-2 -> 12.34
[0+]
int
fractional_size
=
-
exp
;
std
::
memmove
(
buffer
+
full_exp
+
1
,
buffer
+
full_exp
,
fractional_size
);
buffer
[
full_exp
]
=
'.'
;
if
(
type
==
'f'
&&
fractional_size
<
precision
)
{
size_
t
num_zeros
=
precision
-
fractional_size
;
if
(
fractional_size
<
precision
)
{
in
t
num_zeros
=
precision
-
fractional_size
;
std
::
uninitialized_fill_n
(
buffer
+
size
+
1
,
num_zeros
,
'0'
);
size
+=
num_zeros
;
}
...
...
@@ -493,29 +604,14 @@ FMT_FUNC void grisu2_prettify(char *buffer, size_t &size, int exp, char type,
}
}
FMT_FUNC
void
grisu2_format_positive
(
double
value
,
char
*
buffer
,
size_t
&
size
,
int
&
dec_exp
)
{
FMT_ASSERT
(
value
>
0
,
"value is nonpositive"
);
fp
fp_value
(
value
);
fp
lower
,
upper
;
// w^- and w^+ in the Grisu paper.
fp_value
.
compute_boundaries
(
lower
,
upper
);
// Find a cached power of 10 close to 1 / upper.
const
int
min_exp
=
-
60
;
// alpha in Grisu.
auto
dec_pow
=
get_cached_power
(
// \tilde{c}_{-k} in Grisu.
min_exp
-
(
upper
.
e
+
fp
::
significand_size
),
dec_exp
);
dec_exp
=
-
dec_exp
;
fp_value
.
normalize
();
fp
scaled_value
=
fp_value
*
dec_pow
;
fp
scaled_lower
=
lower
*
dec_pow
;
// \tilde{M}^- in Grisu.
fp
scaled_upper
=
upper
*
dec_pow
;
// \tilde{M}^+ in Grisu.
++
scaled_lower
.
f
;
// \tilde{M}^- + 1 ulp -> M^-_{\uparrow}.
--
scaled_upper
.
f
;
// \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}.
uint64_t
delta
=
scaled_upper
.
f
-
scaled_lower
.
f
;
grisu2_gen_digits
(
scaled_value
,
scaled_upper
,
delta
,
buffer
,
size
,
dec_exp
);
inline
void
round
(
char
*
,
size_t
&
size
,
int
&
exp
,
int
diff
)
{
// TODO: round instead of truncating
size
-=
to_unsigned
(
diff
);
exp
+=
diff
;
}
// Formats
value using Grisu2 algorithm. Grisu2 doesn't give any guarantees on
// the shortness of the result.
// Formats
a nonnegative value using Grisu2 algorithm. Grisu2 doesn't give any
//
guarantees on
the shortness of the result.
FMT_FUNC
void
grisu2_format
(
double
value
,
char
*
buffer
,
size_t
&
size
,
char
type
,
int
precision
,
bool
print_decimal_point
)
{
FMT_ASSERT
(
value
>=
0
,
"value is negative"
);
...
...
@@ -526,14 +622,27 @@ FMT_FUNC void grisu2_format(double value, char *buffer, size_t &size, char type,
*
buffer
=
'0'
;
size
=
1
;
}
size_t
unsigned_precision
=
precision
>=
0
?
precision
:
6
;
if
(
size
>
unsigned_precision
)
{
// TODO: round instead of truncating
dec_exp
+=
static_cast
<
int
>
(
size
-
unsigned_precision
);
size
=
unsigned_precision
;
const
int
default_precision
=
6
;
if
(
precision
<
0
)
precision
=
default_precision
;
if
(
!
type
||
type
==
'g'
||
type
==
'G'
)
{
int
extra_digits
=
static_cast
<
int
>
(
size
)
-
precision
;
if
(
extra_digits
>
0
)
round
(
buffer
,
size
,
dec_exp
,
extra_digits
);
precision
=
0
;
}
else
if
(
type
==
'f'
||
type
==
'F'
)
{
if
(
precision
>
0
)
print_decimal_point
=
true
;
int
extra_digits
=
-
dec_exp
-
precision
;
if
(
extra_digits
>
0
)
{
if
(
extra_digits
>=
static_cast
<
int
>
(
size
))
extra_digits
=
static_cast
<
int
>
(
size
)
-
1
;
round
(
buffer
,
size
,
dec_exp
,
extra_digits
);
}
}
grisu2_prettify
(
buffer
,
size
,
dec_exp
,
type
,
unsigned_precision
,
print_decimal_point
);
if
(
print_decimal_point
&&
precision
<
1
)
precision
=
1
;
grisu2_prettify
(
buffer
,
size
,
dec_exp
,
precision
);
}
}
// namespace internal
...
...
include/fmt/format.h
View file @
dd8c5ce4
...
...
@@ -150,7 +150,7 @@ FMT_END_NAMESPACE
#endif
#ifndef FMT_USE_GRISU
# define FMT_USE_GRISU
0
# define FMT_USE_GRISU
1
#endif
// __builtin_clz is broken in clang with Microsoft CodeGen:
...
...
@@ -275,96 +275,10 @@ inline dummy_int _finite(...) { return dummy_int(); }
inline
dummy_int
isnan
(...)
{
return
dummy_int
();
}
inline
dummy_int
_isnan
(...)
{
return
dummy_int
();
}
// A handmade floating-point number f * pow(2, e).
class
fp
{
private:
typedef
uint64_t
significand_type
;
// All sizes are in bits.
static
FMT_CONSTEXPR_DECL
const
int
char_size
=
std
::
numeric_limits
<
unsigned
char
>::
digits
;
// Subtract 1 to account for an implicit most significant bit in the
// normalized form.
static
FMT_CONSTEXPR_DECL
const
int
double_significand_size
=
std
::
numeric_limits
<
double
>::
digits
-
1
;
static
FMT_CONSTEXPR_DECL
const
uint64_t
implicit_bit
=
1ull
<<
double_significand_size
;
public:
significand_type
f
;
int
e
;
static
FMT_CONSTEXPR_DECL
const
int
significand_size
=
sizeof
(
significand_type
)
*
char_size
;
fp
()
:
f
(
0
),
e
(
0
)
{}
fp
(
uint64_t
f
,
int
e
)
:
f
(
f
),
e
(
e
)
{}
// Constructs fp from an IEEE754 double. It is a template to prevent compile
// errors on platforms where double is not IEEE754.
template
<
typename
Double
>
explicit
fp
(
Double
d
)
{
// Assume double is in the format [sign][exponent][significand].
typedef
std
::
numeric_limits
<
Double
>
limits
;
const
int
double_size
=
sizeof
(
Double
)
*
char_size
;
const
int
exponent_size
=
double_size
-
double_significand_size
-
1
;
// -1 for sign
const
uint64_t
significand_mask
=
implicit_bit
-
1
;
const
uint64_t
exponent_mask
=
(
~
0ull
>>
1
)
&
~
significand_mask
;
const
int
exponent_bias
=
(
1
<<
exponent_size
)
-
limits
::
max_exponent
-
1
;
auto
u
=
bit_cast
<
uint64_t
>
(
d
);
auto
biased_e
=
(
u
&
exponent_mask
)
>>
double_significand_size
;
f
=
u
&
significand_mask
;
if
(
biased_e
!=
0
)
f
+=
implicit_bit
;
else
biased_e
=
1
;
// Subnormals use biased exponent 1 (min exponent).
e
=
static_cast
<
int
>
(
biased_e
-
exponent_bias
-
double_significand_size
);
}
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
template
<
int
SHIFT
=
0
>
void
normalize
()
{
// Handle subnormals.
auto
shifted_implicit_bit
=
implicit_bit
<<
SHIFT
;
while
((
f
&
shifted_implicit_bit
)
==
0
)
{
f
<<=
1
;
--
e
;
}
// Subtract 1 to account for hidden bit.
auto
offset
=
significand_size
-
double_significand_size
-
SHIFT
-
1
;
f
<<=
offset
;
e
-=
offset
;
}
// Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where
// a boundary is a value half way between the number and its predecessor
// (lower) or successor (upper). The upper boundary is normalized and lower
// has the same exponent but may be not normalized.
void
compute_boundaries
(
fp
&
lower
,
fp
&
upper
)
const
{
lower
=
f
==
implicit_bit
?
fp
((
f
<<
2
)
-
1
,
e
-
2
)
:
fp
((
f
<<
1
)
-
1
,
e
-
1
);
upper
=
fp
((
f
<<
1
)
+
1
,
e
-
1
);
upper
.
normalize
<
1
>
();
// 1 is to account for the exponent shift above.
lower
.
f
<<=
lower
.
e
-
upper
.
e
;
lower
.
e
=
upper
.
e
;
}
};
// Returns an fp number representing x - y. Result may not be normalized.
inline
fp
operator
-
(
fp
x
,
fp
y
)
{
FMT_ASSERT
(
x
.
f
>=
y
.
f
&&
x
.
e
==
y
.
e
,
"invalid operands"
);
return
fp
(
x
.
f
-
y
.
f
,
x
.
e
);
inline
bool
use_grisu
()
{
return
FMT_USE_GRISU
&&
std
::
numeric_limits
<
double
>::
is_iec559
;
}
// Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest
// with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be normalized.
FMT_API
fp
operator
*
(
fp
x
,
fp
y
);
// Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its
// (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 3.
FMT_API
fp
get_cached_power
(
int
min_exponent
,
int
&
pow10_exponent
);
// Formats value using Grisu2 algorithm:
// https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf
FMT_API
void
grisu2_format
(
double
value
,
char
*
buffer
,
size_t
&
size
,
char
type
,
...
...
@@ -2948,13 +2862,14 @@ void basic_writer<Range>::write_double(T value, const format_specs &spec) {
return
write_inf_or_nan
(
handler
.
upper
?
"INF"
:
"inf"
);
basic_memory_buffer
<
char_type
>
buffer
;
if
(
internal
::
const_check
(
FMT_USE_GRISU
&&
sizeof
(
T
)
<=
sizeof
(
double
)
&&
std
::
numeric_limits
<
double
>::
is_iec559
))
{
char
type
=
static_cast
<
char
>
(
spec
.
type
());
if
(
internal
::
const_check
(
internal
::
use_grisu
()
&&
sizeof
(
T
)
<=
sizeof
(
double
))
&&
type
!=
'a'
&&
type
!=
'A'
)
{
char
buf
[
100
];
// TODO: correct buffer size
size_t
size
=
0
;
internal
::
grisu2_format
(
static_cast
<
double
>
(
value
),
buf
,
size
,
static_cast
<
char
>
(
spec
.
type
()),
spec
.
precision
(),
spec
.
flag
(
HASH_FLAG
));
internal
::
grisu2_format
(
static_cast
<
double
>
(
value
),
buf
,
size
,
type
,
spec
.
precision
(),
spec
.
flag
(
HASH_FLAG
));
FMT_ASSERT
(
size
<=
100
,
"buffer overflow"
);
buffer
.
append
(
buf
,
buf
+
size
);
// TODO: avoid extra copy
}
else
{
...
...
test/format-impl-test.cc
View file @
dd8c5ce4
...
...
@@ -24,6 +24,78 @@
#undef min
#undef max
using
fmt
::
internal
::
fp
;
template
<
bool
is_iec559
>
void
test_construct_from_double
()
{
fmt
::
print
(
"warning: double is not IEC559, skipping FP tests
\n
"
);
}
template
<
>
void
test_construct_from_double
<
true
>
()
{
auto
v
=
fp
(
1.23
);
EXPECT_EQ
(
v
.
f
,
0x13ae147ae147aeu
);
EXPECT_EQ
(
v
.
e
,
-
52
);
}
TEST
(
FPTest
,
ConstructFromDouble
)
{
test_construct_from_double
<
std
::
numeric_limits
<
double
>::
is_iec559
>
();
}
TEST
(
FPTest
,
Normalize
)
{
auto
v
=
fp
(
0xbeef
,
42
);
v
.
normalize
();
EXPECT_EQ
(
0xbeef000000000000
,
v
.
f
);
EXPECT_EQ
(
-
6
,
v
.
e
);
}
TEST
(
FPTest
,
ComputeBoundariesSubnormal
)
{
auto
v
=
fp
(
0xbeef
,
42
);
fp
lower
,
upper
;
v
.
compute_boundaries
(
lower
,
upper
);
EXPECT_EQ
(
0xbeee800000000000
,
lower
.
f
);
EXPECT_EQ
(
-
6
,
lower
.
e
);
EXPECT_EQ
(
0xbeef800000000000
,
upper
.
f
);
EXPECT_EQ
(
-
6
,
upper
.
e
);
}
TEST
(
FPTest
,
ComputeBoundaries
)
{
auto
v
=
fp
(
0x10000000000000
,
42
);
fp
lower
,
upper
;
v
.
compute_boundaries
(
lower
,
upper
);
EXPECT_EQ
(
0x7ffffffffffffe00
,
lower
.
f
);
EXPECT_EQ
(
31
,
lower
.
e
);
EXPECT_EQ
(
0x8000000000000400
,
upper
.
f
);
EXPECT_EQ
(
31
,
upper
.
e
);
}
TEST
(
FPTest
,
Subtract
)
{
auto
v
=
fp
(
123
,
1
)
-
fp
(
102
,
1
);
EXPECT_EQ
(
v
.
f
,
21u
);
EXPECT_EQ
(
v
.
e
,
1
);
}
TEST
(
FPTest
,
Multiply
)
{
auto
v
=
fp
(
123ULL
<<
32
,
4
)
*
fp
(
56ULL
<<
32
,
7
);
EXPECT_EQ
(
v
.
f
,
123u
*
56u
);
EXPECT_EQ
(
v
.
e
,
4
+
7
+
64
);
v
=
fp
(
123ULL
<<
32
,
4
)
*
fp
(
567ULL
<<
31
,
8
);
EXPECT_EQ
(
v
.
f
,
(
123
*
567
+
1u
)
/
2
);
EXPECT_EQ
(
v
.
e
,
4
+
8
+
64
);
}
TEST
(
FPTest
,
GetCachedPower
)
{
typedef
std
::
numeric_limits
<
double
>
limits
;
for
(
auto
exp
=
limits
::
min_exponent
;
exp
<=
limits
::
max_exponent
;
++
exp
)
{
int
dec_exp
=
0
;
auto
fp
=
fmt
::
internal
::
get_cached_power
(
exp
,
dec_exp
);
EXPECT_LE
(
exp
,
fp
.
e
);
int
dec_exp_step
=
8
;
EXPECT_LE
(
fp
.
e
,
exp
+
dec_exp_step
*
log2
(
10
));
EXPECT_DOUBLE_EQ
(
pow
(
10
,
dec_exp
),
ldexp
(
fp
.
f
,
fp
.
e
));
}
}
template
<
typename
T
>
struct
ValueExtractor
:
fmt
::
internal
::
function
<
T
>
{
T
operator
()(
T
value
)
{
...
...
test/format-test.cc
View file @
dd8c5ce4
...
...
@@ -31,77 +31,6 @@ using fmt::format_error;
using
fmt
::
string_view
;
using
fmt
::
memory_buffer
;
using
fmt
::
wmemory_buffer
;
using
fmt
::
internal
::
fp
;
template
<
bool
is_iec559
>
void
test_construct_from_double
()
{
fmt
::
print
(
"warning: double is not IEC559, skipping FP tests
\n
"
);
}
template
<
>
void
test_construct_from_double
<
true
>
()
{
auto
v
=
fp
(
1.23
);
EXPECT_EQ
(
v
.
f
,
0x13ae147ae147aeu
);
EXPECT_EQ
(
v
.
e
,
-
52
);
}
TEST
(
FPTest
,
ConstructFromDouble
)
{
test_construct_from_double
<
std
::
numeric_limits
<
double
>::
is_iec559
>
();
}
TEST
(
FPTest
,
Normalize
)
{
auto
v
=
fp
(
0xbeef
,
42
);
v
.
normalize
();
EXPECT_EQ
(
0xbeef000000000000
,
v
.
f
);
EXPECT_EQ
(
-
6
,
v
.
e
);
}
TEST
(
FPTest
,
ComputeBoundariesSubnormal
)
{
auto
v
=
fp
(
0xbeef
,
42
);
fp
lower
,
upper
;
v
.
compute_boundaries
(
lower
,
upper
);
EXPECT_EQ
(
0xbeee800000000000
,
lower
.
f
);
EXPECT_EQ
(
-
6
,
lower
.
e
);
EXPECT_EQ
(
0xbeef800000000000
,
upper
.
f
);
EXPECT_EQ
(
-
6
,
upper
.
e
);
}
TEST
(
FPTest
,
ComputeBoundaries
)
{
auto
v
=
fp
(
0x10000000000000
,
42
);
fp
lower
,
upper
;
v
.
compute_boundaries
(
lower
,
upper
);
EXPECT_EQ
(
0x7ffffffffffffe00
,
lower
.
f
);
EXPECT_EQ
(
31
,
lower
.
e
);
EXPECT_EQ
(
0x8000000000000400
,
upper
.
f
);
EXPECT_EQ
(
31
,
upper
.
e
);
}
TEST
(
FPTest
,
Subtract
)
{
auto
v
=
fp
(
123
,
1
)
-
fp
(
102
,
1
);
EXPECT_EQ
(
v
.
f
,
21u
);
EXPECT_EQ
(
v
.
e
,
1
);
}
TEST
(
FPTest
,
Multiply
)
{
auto
v
=
fp
(
123ULL
<<
32
,
4
)
*
fp
(
56ULL
<<
32
,
7
);
EXPECT_EQ
(
v
.
f
,
123u
*
56u
);
EXPECT_EQ
(
v
.
e
,
4
+
7
+
64
);
v
=
fp
(
123ULL
<<
32
,
4
)
*
fp
(
567ULL
<<
31
,
8
);
EXPECT_EQ
(
v
.
f
,
(
123
*
567
+
1u
)
/
2
);
EXPECT_EQ
(
v
.
e
,
4
+
8
+
64
);
}
TEST
(
FPTest
,
GetCachedPower
)
{
typedef
std
::
numeric_limits
<
double
>
limits
;
for
(
auto
exp
=
limits
::
min_exponent
;
exp
<=
limits
::
max_exponent
;
++
exp
)
{
int
dec_exp
=
0
;
auto
fp
=
fmt
::
internal
::
get_cached_power
(
exp
,
dec_exp
);
EXPECT_LE
(
exp
,
fp
.
e
);
int
dec_exp_step
=
8
;
EXPECT_LE
(
fp
.
e
,
exp
+
dec_exp_step
*
log2
(
10
));
EXPECT_DOUBLE_EQ
(
pow
(
10
,
dec_exp
),
ldexp
(
fp
.
f
,
fp
.
e
));
}
}
namespace
{
...
...
@@ -626,7 +555,10 @@ TEST(FormatterTest, HashFlag) {
EXPECT_EQ
(
"0x42"
,
format
(
"{0:#x}"
,
0x42ull
));
EXPECT_EQ
(
"042"
,
format
(
"{0:#o}"
,
042ull
));
EXPECT_EQ
(
"-42.0000"
,
format
(
"{0:#}"
,
-
42.0
));
if
(
fmt
::
internal
::
use_grisu
())
EXPECT_EQ
(
"-42.0"
,
format
(
"{0:#}"
,
-
42.0
));
else
EXPECT_EQ
(
"-42.0000"
,
format
(
"{0:#}"
,
-
42.0
));
EXPECT_EQ
(
"-42.0000"
,
format
(
"{0:#}"
,
-
42.0
l
));
EXPECT_THROW_MSG
(
format
(
"{0:#"
,
'c'
),
format_error
,
"missing '}' in format string"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment