Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
F
fmt
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Libraries
fmt
Commits
f4dd1b1b
Commit
f4dd1b1b
authored
Jan 12, 2022
by
Junekey Jeon
Committed by
Victor Zverovich
Jan 19, 2022
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Simplify Dragonbox Step 3.
parent
70561ed1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
44 additions
and
59 deletions
+44
-59
include/fmt/format-inl.h
include/fmt/format-inl.h
+44
-59
No files found.
include/fmt/format-inl.h
View file @
f4dd1b1b
...
...
@@ -990,22 +990,22 @@ inline bool divisible_by_power_of_5(uint64_t x, int exp) FMT_NOEXCEPT {
return
x
*
divtest_table
[
exp
].
mod_inv
<=
divtest_table
[
exp
].
max_quotient
;
}
// Replaces n by floor(n / pow(
5
, N)) returning true if and only if n is
// divisible by pow(
5
, N).
// Precondition: n <=
2 * pow(5
, N + 1).
// Replaces n by floor(n / pow(
10
, N)) returning true if and only if n is
// divisible by pow(
10
, N).
// Precondition: n <=
pow(10
, N + 1).
template
<
int
N
>
bool
check_divisibility_and_divide_by_pow
5
(
uint32_t
&
n
)
FMT_NOEXCEPT
{
bool
check_divisibility_and_divide_by_pow
10
(
uint32_t
&
n
)
FMT_NOEXCEPT
{
static
constexpr
struct
{
uint32_t
magic_number
;
int
bits_for_comparison
;
uint32_t
threshold
;
int
shift_amount
;
}
infos
[]
=
{{
0xcccd
,
16
,
0x3333
,
18
},
{
0xa429
,
8
,
0x0a
,
20
}};
int
margin_bits
;
int
divisibility_check_bits
;
}
infos
[]
=
{{
0x199a
,
8
,
8
},
{
0xa3d71
,
10
,
16
}};
constexpr
auto
info
=
infos
[
N
-
1
];
n
*=
info
.
magic_number
;
const
uint32_t
comparison_mask
=
(
1u
<<
info
.
bits_for_comparison
)
-
1
;
bool
result
=
(
n
&
comparison_mask
)
<=
info
.
threshold
;
n
>>=
info
.
shift_amount
;
n
>>=
margin_bits
;
const
uint32_t
comparison_mask
=
(
1u
<<
info
.
divisibility_check_bits
)
-
1
;
bool
result
=
(
n
&
comparison_mask
)
==
0
;
n
>>=
info
.
divisibility_check_bits
;
return
result
;
}
...
...
@@ -2111,7 +2111,7 @@ template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
const
cache_entry_type
cache
=
cache_accessor
<
T
>::
get_cached_power
(
-
minus_k
);
const
int
beta_minus_1
=
exponent
+
floor_log2_pow10
(
-
minus_k
);
// Compute zi and deltai
// Compute zi and deltai
.
// 10^kappa <= deltai < 10^(kappa + 1)
const
uint32_t
deltai
=
cache_accessor
<
T
>::
compute_delta
(
cache
,
beta_minus_1
);
const
carrier_uint
two_fc
=
significand
<<
1
;
...
...
@@ -2119,10 +2119,10 @@ template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
const
carrier_uint
zi
=
cache_accessor
<
T
>::
compute_mul
(
two_fr
<<
beta_minus_1
,
cache
);
// Step 2: Try larger divisor; remove trailing zeros if necessary
// Step 2: Try larger divisor; remove trailing zeros if necessary
.
// Using an upper bound on zi, we might be able to optimize the division
// better than the compiler; we are computing zi / big_divisor here
// better than the compiler; we are computing zi / big_divisor here
.
decimal_fp
<
T
>
ret_value
;
ret_value
.
significand
=
divide_by_10_to_kappa_plus_1
(
zi
);
uint32_t
r
=
static_cast
<
uint32_t
>
(
zi
-
float_info
<
T
>::
big_divisor
*
...
...
@@ -2131,7 +2131,7 @@ template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
if
(
r
>
deltai
)
{
goto
small_divisor_case_label
;
}
else
if
(
r
<
deltai
)
{
// Exclude the right endpoint if necessary
// Exclude the right endpoint if necessary
.
if
(
r
==
0
&&
!
include_right_endpoint
&&
is_endpoint_integer
<
T
>
(
two_fr
,
exponent
,
minus_k
))
{
--
ret_value
.
significand
;
...
...
@@ -2141,7 +2141,7 @@ template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
}
else
{
// r == deltai; compare fractional parts
// Check conditions in the order different from the paper
// to take advantage of short-circuiting
// to take advantage of short-circuiting
.
const
carrier_uint
two_fl
=
two_fc
-
1
;
if
((
!
include_left_endpoint
||
!
is_endpoint_integer
<
T
>
(
two_fl
,
exponent
,
minus_k
))
&&
...
...
@@ -2151,59 +2151,44 @@ template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
}
ret_value
.
exponent
=
minus_k
+
float_info
<
T
>::
kappa
+
1
;
// We may need to remove trailing zeros
// We may need to remove trailing zeros
.
ret_value
.
exponent
+=
remove_trailing_zeros
(
ret_value
.
significand
);
return
ret_value
;
// Step 3: Find the significand with the smaller divisor
// Step 3: Find the significand with the smaller divisor
.
small_divisor_case_label:
ret_value
.
significand
*=
10
;
ret_value
.
exponent
=
minus_k
+
float_info
<
T
>::
kappa
;
const
uint32_t
mask
=
(
1u
<<
float_info
<
T
>::
kappa
)
-
1
;
auto
dist
=
r
-
(
deltai
/
2
)
+
(
float_info
<
T
>::
small_divisor
/
2
);
// Is dist divisible by 2^kappa?
if
((
dist
&
mask
)
==
0
)
{
const
bool
approx_y_parity
=
((
dist
^
(
float_info
<
T
>::
small_divisor
/
2
))
&
1
)
!=
0
;
dist
>>=
float_info
<
T
>::
kappa
;
// Is dist divisible by 5^kappa?
if
(
check_divisibility_and_divide_by_pow5
<
float_info
<
T
>::
kappa
>
(
dist
))
{
ret_value
.
significand
+=
dist
;
// Check z^(f) >= epsilon^(f)
// We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
// where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
// Since there are only 2 possibilities, we only need to care about the
// parity. Also, zi and r should have the same parity since the divisor
// is an even number
if
(
cache_accessor
<
T
>::
compute_mul_parity
(
two_fc
,
cache
,
beta_minus_1
)
!=
approx_y_parity
)
{
--
ret_value
.
significand
;
}
else
{
// If z^(f) >= epsilon^(f), we might have a tie
// when z^(f) == epsilon^(f), or equivalently, when y is an integer
if
(
is_center_integer
<
T
>
(
two_fc
,
exponent
,
minus_k
))
{
ret_value
.
significand
=
ret_value
.
significand
%
2
==
0
?
ret_value
.
significand
:
ret_value
.
significand
-
1
;
}
bool
const
approx_y_parity
=
((
dist
^
(
small_divisor
/
2
))
&
1
)
!=
0
;
// Is dist divisible by 10^kappa?
bool
divisible_by_10_to_the_kappa
=
check_divisibility_and_divide_by_pow10
<
float_info
<
T
>::
kappa
>
(
dist
);
// Add dist / 10^kappa to the significand.
ret_value
.
significand
+=
dist
;
if
(
divisible_by_10_to_the_kappa
)
{
// Check z^(f) >= epsilon^(f).
// We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
// where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
// Since there are only 2 possibilities, we only need to care about the
// parity. Also, zi and r should have the same parity since the divisor
// is an even number.
if
(
cache_accessor
<
T
>::
compute_mul_parity
(
two_fc
,
cache
,
beta_minus_1
)
!=
approx_y_parity
)
{
--
ret_value
.
significand
;
}
else
{
// If z^(f) >= epsilon^(f), we might have a tie
// when z^(f) == epsilon^(f), or equivalently, when y is an integer
if
(
is_center_integer
<
T
>
(
two_fc
,
exponent
,
minus_k
))
{
ret_value
.
significand
=
ret_value
.
significand
%
2
==
0
?
ret_value
.
significand
:
ret_value
.
significand
-
1
;
}
}
// Is dist not divisible by 5^kappa?
else
{
ret_value
.
significand
+=
dist
;
}
}
// Is dist not divisible by 2^kappa?
else
{
// Since we know dist is small, we might be able to optimize the division
// better than the compiler; we are computing dist / small_divisor here
ret_value
.
significand
+=
small_division_by_pow10
<
float_info
<
T
>::
kappa
>
(
dist
);
}
return
ret_value
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment