simulator.c 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*
  Author: Laurent THOMAS, Open Cells for Nokia
  copyleft: OpenAirInterface Software Alliance and it's licence
*/

#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdbool.h>
#include <errno.h>
#include <sys/epoll.h>
#include <string.h>

#include <common/utils/assertions.h>
#include <common/utils/LOG/log.h>
#include "common_lib.h"
#include <openair1/PHY/defs_eNB.h>
#include "openair1/PHY/defs_UE.h"

#define PORT 4043 //TCP port for this simulator
#define CirSize 3072000 // 100ms is enough
#define sample_t uint32_t // 2*16 bits complex number
#define sampleToByte(a,b) ((a)*(b)*sizeof(sample_t))
#define byteToSample(a,b) ((a)/(sizeof(sample_t)*(b)))
#define MAGICeNB 0xA5A5A5A5A5A5A5A5
#define MAGICUE  0x5A5A5A5A5A5A5A5A

typedef struct {
  uint64_t magic;
  uint32_t size;
  uint32_t nbAnt;
  uint64_t timestamp;
} transferHeader;

typedef struct buffer_s {
  int conn_sock;
  bool alreadyRead;
  uint64_t lastReceivedTS;
  bool headerMode;
  transferHeader th;
  char *transferPtr;
  uint64_t remainToTransfer;
  char *circularBufEnd;
  sample_t *circularBuf;
} buffer_t;

typedef struct {
  int listen_sock, epollfd;
  uint64_t nextTimestamp;
  uint64_t typeStamp;
  uint64_t initialAhead;
  char *ip;
  buffer_t buf[FD_SETSIZE];
} rfsimulator_state_t;

void allocCirBuf(rfsimulator_state_t *bridge, int sock) {
  buffer_t *ptr=&bridge->buf[sock];
  AssertFatal ( (ptr->circularBuf=(sample_t *) malloc(sampleToByte(CirSize,1))) != NULL, "");
  ptr->circularBufEnd=((char *)ptr->circularBuf)+sampleToByte(CirSize,1);
  ptr->conn_sock=sock;
  ptr->headerMode=true;
  ptr->transferPtr=(char *)&ptr->th;
  ptr->remainToTransfer=sizeof(transferHeader);
  int sendbuff=1000*1000*10;
  AssertFatal ( setsockopt(sock, SOL_SOCKET, SO_SNDBUF, &sendbuff, sizeof(sendbuff)) == 0, "");
  struct epoll_event ev= {0};
  ev.events = EPOLLIN | EPOLLRDHUP;
  ev.data.fd = sock;
  AssertFatal(epoll_ctl(bridge->epollfd, EPOLL_CTL_ADD,  sock, &ev) != -1, "");
}

void removeCirBuf(rfsimulator_state_t *bridge, int sock) {
  AssertFatal( epoll_ctl(bridge->epollfd, EPOLL_CTL_DEL,  sock, NULL) != -1, "");
  close(sock);
  free(bridge->buf[sock].circularBuf);
  memset(&bridge->buf[sock], 0, sizeof(buffer_t));
  bridge->buf[sock].conn_sock=-1;
}

void socketError(rfsimulator_state_t *bridge, int sock) {
  if (bridge->buf[sock].conn_sock!=-1) {
    LOG_W(HW,"Lost socket \n");
    removeCirBuf(bridge, sock);

    if (bridge->typeStamp==MAGICUE)
      exit(1);
  }
}


#define helpTxt "\
\x1b[31m\
rfsimulator: error: you have to run one UE and one eNB\n\
For this, export RFSIMULATOR=enb (eNB case) or \n\
                 RFSIMULATOR=<an ip address> (UE case)\n\
\x1b[m"

enum  blocking_t {
  notBlocking,
  blocking
};

void setblocking(int sock, enum blocking_t active) {
  int opts;
  AssertFatal( (opts = fcntl(sock, F_GETFL)) >= 0,"");

  if (active==blocking)
    opts = opts & ~O_NONBLOCK;
  else
    opts = opts | O_NONBLOCK;

  AssertFatal(fcntl(sock, F_SETFL, opts) >= 0, "");
}

static bool flushInput(rfsimulator_state_t *t);

void fullwrite(int fd, void *_buf, int count, rfsimulator_state_t *t) {
  char *buf = _buf;
  int l;
  setblocking(fd, notBlocking);

  while (count) {
    l = write(fd, buf, count);

    if (l <= 0) {
      if (errno==EINTR)
        continue;

      if(errno==EAGAIN) {
        flushInput(t);
        continue;
      } else
        return;
    }

    count -= l;
    buf += l;
  }
}

int server_start(openair0_device *device) {
  rfsimulator_state_t *t = (rfsimulator_state_t *) device->priv;
  t->typeStamp=MAGICeNB;
  AssertFatal((t->listen_sock = socket(AF_INET, SOCK_STREAM, 0)) >= 0, "");
  int enable = 1;
  AssertFatal(setsockopt(t->listen_sock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) == 0, "");
  struct sockaddr_in addr = {
sin_family:
    AF_INET,
sin_port:
    htons(PORT),
sin_addr:
    { s_addr: INADDR_ANY }
  };
  bind(t->listen_sock, (struct sockaddr *)&addr, sizeof(addr));
  AssertFatal(listen(t->listen_sock, 5) == 0, "");
  struct epoll_event ev;
  ev.events = EPOLLIN;
  ev.data.fd = t->listen_sock;
  AssertFatal(epoll_ctl(t->epollfd, EPOLL_CTL_ADD,  t->listen_sock, &ev) != -1, "");
  return 0;
}

int start_ue(openair0_device *device) {
  rfsimulator_state_t *t = device->priv;
  t->typeStamp=MAGICUE;
  int sock;
  AssertFatal((sock = socket(AF_INET, SOCK_STREAM, 0)) >= 0, "");
  struct sockaddr_in addr = {
sin_family:
    AF_INET,
sin_port:
    htons(PORT),
sin_addr:
    { s_addr: INADDR_ANY }
  };
  addr.sin_addr.s_addr = inet_addr(t->ip);
  bool connected=false;

  while(!connected) {
    LOG_I(HW,"rfsimulator: trying to connect to %s:%d\n", t->ip, PORT);

    if (connect(sock, (struct sockaddr *)&addr, sizeof(addr)) == 0) {
      LOG_I(HW,"rfsimulator: connection established\n");
      connected=true;
    }

    perror("rfsimulator");
    sleep(1);
  }

  setblocking(sock, notBlocking);
  allocCirBuf(t, sock);
  t->buf[sock].alreadyRead=true; // UE will start blocking on read
  return 0;
}

int rfsimulator_write(openair0_device *device, openair0_timestamp timestamp, void **samplesVoid, int nsamps, int nbAnt, int flags) {
  rfsimulator_state_t *t = device->priv;

  for (int i=0; i<FD_SETSIZE; i++) {
    buffer_t *ptr=&t->buf[i];

    if (ptr->conn_sock >= 0 ) {
      transferHeader header= {t->typeStamp, nsamps, nbAnt, timestamp};
      fullwrite(ptr->conn_sock,&header, sizeof(header), t);
      sample_t tmpSamples[nsamps][nbAnt];

      for(int a=0; a<nbAnt; a++) {
        sample_t *in=(sample_t *)samplesVoid[a];

        for(int s=0; s<nsamps; s++)
          tmpSamples[s][a]=in[s];
      }

      if (ptr->conn_sock >= 0 )
        fullwrite(ptr->conn_sock, (void *)tmpSamples, sampleToByte(nsamps,nbAnt), t);
    }
  }

  LOG_D(HW,"sent %d samples at time: %ld->%ld, energy in first antenna: %d\n",
        nsamps, timestamp, timestamp+nsamps, signal_energy(samplesVoid[0], nsamps) );
  return nsamps;
}

static bool flushInput(rfsimulator_state_t *t) {
  // Process all incoming events on sockets
  // store the data in lists
  struct epoll_event events[FD_SETSIZE]= {0};
  int nfds = epoll_wait(t->epollfd, events, FD_SETSIZE, 200);

  if ( nfds==-1 ) {
    if ( errno==EINTR || errno==EAGAIN )
      return false;
    else
      AssertFatal(false,"error in epoll_wait\n");
  }

  for (int nbEv = 0; nbEv < nfds; ++nbEv) {
    int fd=events[nbEv].data.fd;

    if (events[nbEv].events & EPOLLIN && fd == t->listen_sock) {
      int conn_sock;
      AssertFatal( (conn_sock = accept(t->listen_sock,NULL,NULL)) != -1, "");
      setblocking(conn_sock, notBlocking);
      allocCirBuf(t, conn_sock);
      LOG_I(HW,"A ue connected\n");
    } else {
      if ( events[nbEv].events & (EPOLLHUP | EPOLLERR | EPOLLRDHUP) ) {
        socketError(t,fd);
        continue;
      }

      buffer_t *b=&t->buf[fd];

      if ( b->circularBuf == NULL ) {
        LOG_E(HW, "received data on not connected socket %d\n", events[nbEv].data.fd);
        continue;
      }

      int blockSz;

      if ( b->headerMode)
        blockSz=b->remainToTransfer;
      else
        blockSz= b->transferPtr+b->remainToTransfer < b->circularBufEnd ?
                 b->remainToTransfer :
                 b->circularBufEnd - 1 - b->transferPtr ;

      int sz=recv(fd, b->transferPtr, blockSz, MSG_DONTWAIT);

      if ( sz < 0 ) {
        if ( errno != EAGAIN ) {
          LOG_E(HW,"socket failed %s\n", strerror(errno));
          abort();
        }
      } else if ( sz == 0 )
        continue;

      AssertFatal((b->remainToTransfer-=sz) >= 0, "");
      b->transferPtr+=sz;

      if (b->transferPtr==b->circularBufEnd - 1)
        b->transferPtr=(char *)b->circularBuf;

      // check the header and start block transfer
      if ( b->headerMode==true && b->remainToTransfer==0) {
        AssertFatal( (t->typeStamp == MAGICUE  && b->th.magic==MAGICeNB) ||
                     (t->typeStamp == MAGICeNB && b->th.magic==MAGICUE), "Socket Error in protocol");
        b->headerMode=false;
        b->alreadyRead=true;

        if ( b->lastReceivedTS != b->th.timestamp) {
          int nbAnt= b->th.nbAnt;

          for (uint64_t index=b->lastReceivedTS; index < b->th.timestamp; index++ )
            for (int a=0; a < nbAnt; a++)
              b->circularBuf[(index*nbAnt+a)%CirSize]=0;

          LOG_W(HW,"gap of: %ld in reception\n", b->th.timestamp-b->lastReceivedTS );
        }

        b->lastReceivedTS=b->th.timestamp;
        b->transferPtr=(char *)&b->circularBuf[b->lastReceivedTS%CirSize];
        b->remainToTransfer=sampleToByte(b->th.size, b->th.nbAnt);
      }

      if ( b->headerMode==false ) {
        b->lastReceivedTS=b->th.timestamp+b->th.size-byteToSample(b->remainToTransfer,b->th.nbAnt);

        if ( b->remainToTransfer==0) {
          LOG_D(HW,"Completed block reception: %ld\n", b->lastReceivedTS);

          // First block in UE, resync with the eNB current TS
          if ( t->nextTimestamp == 0 )
            t->nextTimestamp=b->lastReceivedTS-b->th.size;

          b->headerMode=true;
          b->transferPtr=(char *)&b->th;
          b->remainToTransfer=sizeof(transferHeader);
          b->th.magic=-1;
        }
      }
    }
  }

  return nfds>0;
}

int rfsimulator_read(openair0_device *device, openair0_timestamp *ptimestamp, void **samplesVoid, int nsamps, int nbAnt) {
  if (nbAnt != 1) {
    LOG_E(HW, "rfsimulator: only 1 antenna tested\n");
    exit(1);
  }

  rfsimulator_state_t *t = device->priv;
  LOG_D(HW, "Enter rfsimulator_read, expect %d samples, will release at TS: %ld\n", nsamps, t->nextTimestamp+nsamps);
  // deliver data from received data
  // check if a UE is connected
  int first_sock;

  for (first_sock=0; first_sock<FD_SETSIZE; first_sock++)
    if (t->buf[first_sock].circularBuf != NULL )
      break;

  if ( first_sock ==  FD_SETSIZE ) {
    // no connected device (we are eNB, no UE is connected)
    if (!flushInput(t)) {
      for (int x=0; x < nbAnt; x++)
        memset(samplesVoid[x],0,sampleToByte(nsamps,1));

      t->nextTimestamp+=nsamps;
      LOG_W(HW,"Generated void samples for Rx: %ld\n", t->nextTimestamp);
      *ptimestamp = t->nextTimestamp-nsamps;
      return nsamps;
    }
  } else {
    bool have_to_wait;

    do {
      have_to_wait=false;

      for ( int sock=0; sock<FD_SETSIZE; sock++)
        if ( t->buf[sock].circularBuf &&
             t->buf[sock].alreadyRead && //>= t->initialAhead &&
             (t->nextTimestamp+nsamps) > t->buf[sock].lastReceivedTS ) {
          have_to_wait=true;
          break;
        }

      if (have_to_wait)
        /*printf("Waiting on socket, current last ts: %ld, expected at least : %ld\n",
          ptr->lastReceivedTS,
          t->nextTimestamp+nsamps);
        */
        flushInput(t);
    } while (have_to_wait);
  }

  // Clear the output buffer
  for (int a=0; a<nbAnt; a++)
    memset(samplesVoid[a],0,sampleToByte(nsamps,1));

  // Add all input signal in the output buffer
  for (int sock=0; sock<FD_SETSIZE; sock++) {
    buffer_t *ptr=&t->buf[sock];

    if ( ptr->circularBuf && ptr->alreadyRead ) {
      for (int a=0; a<nbAnt; a++) {
        sample_t *out=(sample_t *)samplesVoid[a];

        for ( int i=0; i < nsamps; i++ )
          out[i]+=ptr->circularBuf[((t->nextTimestamp+i)*nbAnt+a)%CirSize]<<1;
      }
    }
  }

  *ptimestamp = t->nextTimestamp; // return the time of the first sample
  t->nextTimestamp+=nsamps;
  LOG_D(HW,"Rx to upper layer: %d from %ld to %ld, energy in first antenna %d\n",
        nsamps,
        *ptimestamp, t->nextTimestamp,
        signal_energy(samplesVoid[0], nsamps));
  return nsamps;
}


int rfsimulator_request(openair0_device *device, void *msg, ssize_t msg_len) {
  abort();
  return 0;
}
int rfsimulator_reply(openair0_device *device, void *msg, ssize_t msg_len) {
  abort();
  return 0;
}
int rfsimulator_get_stats(openair0_device *device) {
  return 0;
}
int rfsimulator_reset_stats(openair0_device *device) {
  return 0;
}
void rfsimulator_end(openair0_device *device) {}
int rfsimulator_stop(openair0_device *device) {
  return 0;
}
int rfsimulator_set_freq(openair0_device *device, openair0_config_t *openair0_cfg,int exmimo_dump_config) {
  return 0;
}
int rfsimulator_set_gains(openair0_device *device, openair0_config_t *openair0_cfg) {
  return 0;
}


__attribute__((__visibility__("default")))
int device_init(openair0_device *device, openair0_config_t *openair0_cfg) {
  //set_log(HW,OAILOG_DEBUG);
  rfsimulator_state_t *rfsimulator = (rfsimulator_state_t *)calloc(sizeof(rfsimulator_state_t),1);

  if ((rfsimulator->ip=getenv("RFSIMULATOR")) == NULL ) {
    LOG_E(HW,helpTxt);
    exit(1);
  }

  rfsimulator->typeStamp = strncasecmp(rfsimulator->ip,"enb",3) == 0 ?
                           MAGICeNB:
                           MAGICUE;
  LOG_I(HW,"rfsimulator: running as %s\n", rfsimulator-> typeStamp == MAGICeNB ? "eNB" : "UE");
  device->trx_start_func       = rfsimulator->typeStamp == MAGICeNB ?
                                 server_start :
                                 start_ue;
  device->trx_get_stats_func   = rfsimulator_get_stats;
  device->trx_reset_stats_func = rfsimulator_reset_stats;
  device->trx_end_func         = rfsimulator_end;
  device->trx_stop_func        = rfsimulator_stop;
  device->trx_set_freq_func    = rfsimulator_set_freq;
  device->trx_set_gains_func   = rfsimulator_set_gains;
  device->trx_write_func       = rfsimulator_write;
  device->trx_read_func      = rfsimulator_read;
  /* let's pretend to be a b2x0 */
  device->type = USRP_B200_DEV;
  device->openair0_cfg=&openair0_cfg[0];
  device->priv = rfsimulator;

  for (int i=0; i<FD_SETSIZE; i++)
    rfsimulator->buf[i].conn_sock=-1;

  AssertFatal((rfsimulator->epollfd = epoll_create1(0)) != -1,"");
  rfsimulator->initialAhead=openair0_cfg[0].sample_rate/1000; // One sub frame
  return 0;
}