lte_ul_channel_estimation.c 29.6 KB
Newer Older
1 2 3 4 5
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
6
 * the OAI Public License, Version 1.1  (the "License"); you may not use this file
7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */
ghaddab's avatar
ghaddab committed
21

22 23
#include "PHY/defs.h"
#include "PHY/extern.h"
24
#include "PHY/sse_intrin.h"
25
//#define DEBUG_CH
26
#include "UTIL/LOG/log.h"
27

28
#include "T.h"
29 30

// round(exp(sqrt(-1)*(pi/2)*[0:1:N-1]/N)*pow2(15))
31
static int16_t ru_90[2*128] = {32767, 0,32766, 402,32758, 804,32746, 1206,32729, 1608,32706, 2009,32679, 2411,32647, 2811,32610, 3212,32568, 3612,32522, 4011,32470, 4410,32413, 4808,32352, 5205,32286, 5602,32214, 5998,32138, 6393,32058, 6787,31972, 7180,31881, 7571,31786, 7962,31686, 8351,31581, 8740,31471, 9127,31357, 9512,31238, 9896,31114, 10279,30986, 10660,30853, 11039,30715, 11417,30572, 11793,30425, 12167,30274, 12540,30118, 12910,29957, 13279,29792, 13646,29622, 14010,29448, 14373,29269, 14733,29086, 15091,28899, 15447,28707, 15800,28511, 16151,28311, 16500,28106, 16846,27897, 17190,27684, 17531,27467, 17869,27246, 18205,27020, 18538,26791, 18868,26557, 19195,26320, 19520,26078, 19841,25833, 20160,25583, 20475,25330, 20788,25073, 21097,24812, 21403,24548, 21706,24279, 22006,24008, 22302,23732, 22595,23453, 22884,23170, 23170,22884, 23453,22595, 23732,22302, 24008,22006, 24279,21706, 24548,21403, 24812,21097, 25073,20788, 25330,20475, 25583,20160, 25833,19841, 26078,19520, 26320,19195, 26557,18868, 26791,18538, 27020,18205, 27246,17869, 27467,17531, 27684,17190, 27897,16846, 28106,16500, 28311,16151, 28511,15800, 28707,15447, 28899,15091, 29086,14733, 29269,14373, 29448,14010, 29622,13646, 29792,13279, 29957,12910, 30118,12540, 30274,12167, 30425,11793, 30572,11417, 30715,11039, 30853,10660, 30986,10279, 31114,9896, 31238,9512, 31357,9127, 31471,8740, 31581,8351, 31686,7962, 31786,7571, 31881,7180, 31972,6787, 32058,6393, 32138,5998, 32214,5602, 32286,5205, 32352,4808, 32413,4410, 32470,4011, 32522,3612, 32568,3212, 32610,2811, 32647,2411, 32679,2009, 32706,1608, 32729,1206, 32746,804, 32758,402, 32766};
32

33
static int16_t ru_90c[2*128] = {32767, 0,32766, -402,32758, -804,32746, -1206,32729, -1608,32706, -2009,32679, -2411,32647, -2811,32610, -3212,32568, -3612,32522, -4011,32470, -4410,32413, -4808,32352, -5205,32286, -5602,32214, -5998,32138, -6393,32058, -6787,31972, -7180,31881, -7571,31786, -7962,31686, -8351,31581, -8740,31471, -9127,31357, -9512,31238, -9896,31114, -10279,30986, -10660,30853, -11039,30715, -11417,30572, -11793,30425, -12167,30274, -12540,30118, -12910,29957, -13279,29792, -13646,29622, -14010,29448, -14373,29269, -14733,29086, -15091,28899, -15447,28707, -15800,28511, -16151,28311, -16500,28106, -16846,27897, -17190,27684, -17531,27467, -17869,27246, -18205,27020, -18538,26791, -18868,26557, -19195,26320, -19520,26078, -19841,25833, -20160,25583, -20475,25330, -20788,25073, -21097,24812, -21403,24548, -21706,24279, -22006,24008, -22302,23732, -22595,23453, -22884,23170, -23170,22884, -23453,22595, -23732,22302, -24008,22006, -24279,21706, -24548,21403, -24812,21097, -25073,20788, -25330,20475, -25583,20160, -25833,19841, -26078,19520, -26320,19195, -26557,18868, -26791,18538, -27020,18205, -27246,17869, -27467,17531, -27684,17190, -27897,16846, -28106,16500, -28311,16151, -28511,15800, -28707,15447, -28899,15091, -29086,14733, -29269,14373, -29448,14010, -29622,13646, -29792,13279, -29957,12910, -30118,12540, -30274,12167, -30425,11793, -30572,11417, -30715,11039, -30853,10660, -30986,10279, -31114,9896, -31238,9512, -31357,9127, -31471,8740, -31581,8351, -31686,7962, -31786,7571, -31881,7180, -31972,6787, -32058,6393, -32138,5998, -32214,5602, -32286,5205, -32352,4808, -32413,4410, -32470,4011, -32522,3612, -32568,3212, -32610,2811, -32647,2411, -32679,2009, -32706,1608, -32729,1206, -32746,804, -32758,402, -32766};
34 35 36

#define SCALE 0x3FFF

37 38 39
//#undef LOG_D
//#define LOG_D(A,B,C...) printf(B,C)

40
int32_t lte_ul_channel_estimation(PHY_VARS_eNB *eNB,
41
				  eNB_rxtx_proc_t *proc,
42 43
                                  uint8_t UE_id,
                                  unsigned char l,
44
                                  unsigned char Ns) {
45

46 47
  LTE_DL_FRAME_PARMS *frame_parms = &eNB->frame_parms;
  LTE_eNB_PUSCH *pusch_vars = eNB->pusch_vars[UE_id];
48 49 50
  int32_t **ul_ch_estimates=pusch_vars->drs_ch_estimates;
  int32_t **ul_ch_estimates_time=  pusch_vars->drs_ch_estimates_time;
  int32_t **rxdataF_ext=  pusch_vars->rxdataF_ext;
51 52
  int subframe = proc->subframe_rx;
  uint8_t harq_pid = subframe2harq_pid(frame_parms,proc->frame_rx,subframe);
53 54 55 56
  int16_t delta_phase = 0;
  int16_t *ru1 = ru_90;
  int16_t *ru2 = ru_90;
  int16_t current_phase1,current_phase2;
57
  uint16_t N_rb_alloc = eNB->ulsch[UE_id]->harq_processes[harq_pid]->nb_rb;
58 59
  uint16_t aa,Msc_RS,Msc_RS_idx;
  uint16_t * Msc_idx_ptr;
60
  int k,pilot_pos1 = 3 - frame_parms->Ncp, pilot_pos2 = 10 - 2*frame_parms->Ncp;
61 62
  int32_t *ul_ch1=NULL, *ul_ch2=NULL;
  int16_t ul_ch_estimates_re,ul_ch_estimates_im;
63

Xiwen JIANG's avatar
Xiwen JIANG committed
64
  //uint8_t nb_antennas_rx = frame_parms->nb_antenna_ports_eNB;
65
  uint8_t nb_antennas_rx = frame_parms->nb_antennas_rx;
66
  uint8_t cyclic_shift;
67

68 69 70 71
  uint32_t alpha_ind;
  uint32_t u=frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.grouphop[Ns+(subframe<<1)];
  uint32_t v=frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.seqhop[Ns+(subframe<<1)];
  int32_t tmp_estimates[N_rb_alloc*12] __attribute__((aligned(16)));
72

73
  int symbol_offset,i;
74 75 76 77

  //debug_msg("lte_ul_channel_estimation: cyclic shift %d\n",cyclicShift);


78 79
  int16_t alpha_re[12] = {32767, 28377, 16383,     0,-16384,  -28378,-32768,-28378,-16384,    -1, 16383, 28377};
  int16_t alpha_im[12] = {0,     16383, 28377, 32767, 28377,   16383,     0,-16384,-28378,-32768,-28378,-16384};
80

81
#if defined(__x86_64__) || defined(__i386__)
82 83
  __m128i *rxdataF128,*ul_ref128,*ul_ch128;
  __m128i mmtmpU0,mmtmpU1,mmtmpU2,mmtmpU3;
84 85 86 87
#elif defined(__arm__)
  int16x8_t *rxdataF128,*ul_ref128,*ul_ch128;
  int32x4_t mmtmp0,mmtmp1,mmtmp_re,mmtmp_im;
#endif
88 89 90

int32_t temp_in_ifft_0[2048*2] __attribute__((aligned(32)));

91 92 93
  Msc_RS = N_rb_alloc*12;

  cyclic_shift = (frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.cyclicShift +
94
                  eNB->ulsch[UE_id]->harq_processes[harq_pid]->n_DMRS2 +
95
                  frame_parms->pusch_config_common.ul_ReferenceSignalsPUSCH.nPRS[(subframe<<1)+Ns]) % 12;
96

97
  Msc_idx_ptr = (uint16_t*) bsearch(&Msc_RS, dftsizes, 33, sizeof(uint16_t), compareints);
98

99 100 101
  if (Msc_idx_ptr)
    Msc_RS_idx = Msc_idx_ptr - dftsizes;
  else {
102
    LOG_E(PHY,"lte_ul_channel_estimation: index for Msc_RS=%d not found\n",Msc_RS);
103 104
    return(-1);
  }
105

106
  LOG_D(PHY,"subframe %d, Ns %d, l %d, Msc_RS = %d, Msc_RS_idx = %d, u %d, v %d, cyclic_shift %d\n",subframe,Ns,l,Msc_RS, Msc_RS_idx,u,v,cyclic_shift);
Raymond Knopp's avatar
 
Raymond Knopp committed
107
#ifdef DEBUG_CH
108 109 110 111 112

  if (Ns==0)
    write_output("drs_seq0.m","drsseq0",ul_ref_sigs_rx[u][v][Msc_RS_idx],2*Msc_RS,2,1);
  else
    write_output("drs_seq1.m","drsseq1",ul_ref_sigs_rx[u][v][Msc_RS_idx],2*Msc_RS,2,1);
113

114 115 116 117 118 119 120
#endif


  if (l == (3 - frame_parms->Ncp)) {

    symbol_offset = frame_parms->N_RB_UL*12*(l+((7-frame_parms->Ncp)*(Ns&1)));

121
    for (aa=0; aa<nb_antennas_rx; aa++) {
122 123
      //           msg("Componentwise prod aa %d, symbol_offset %d,ul_ch_estimates %p,ul_ch_estimates[aa] %p,ul_ref_sigs_rx[0][0][Msc_RS_idx] %p\n",aa,symbol_offset,ul_ch_estimates,ul_ch_estimates[aa],ul_ref_sigs_rx[0][0][Msc_RS_idx]);

124
#if defined(__x86_64__) || defined(__i386__)
125 126 127
      rxdataF128 = (__m128i *)&rxdataF_ext[aa][symbol_offset];
      ul_ch128   = (__m128i *)&ul_ch_estimates[aa][symbol_offset];
      ul_ref128  = (__m128i *)ul_ref_sigs_rx[u][v][Msc_RS_idx];
128 129 130 131 132
#elif defined(__arm__)
      rxdataF128 = (int16x8_t *)&rxdataF_ext[aa][symbol_offset];
      ul_ch128   = (int16x8_t *)&ul_ch_estimates[aa][symbol_offset];
      ul_ref128  = (int16x8_t *)ul_ref_sigs_rx[u][v][Msc_RS_idx];
#endif
133

134
      for (i=0; i<Msc_RS/12; i++) {
135
#if defined(__x86_64__) || defined(__i386__)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        // multiply by conjugated channel
        mmtmpU0 = _mm_madd_epi16(ul_ref128[0],rxdataF128[0]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[0],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)&conjugate[0]);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[0]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[0] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
        //  printf("rb %d ch: %d %d\n",i,((int16_t*)ul_ch128)[0],((int16_t*)ul_ch128)[1]);
        // multiply by conjugated channel
        mmtmpU0 = _mm_madd_epi16(ul_ref128[1],rxdataF128[1]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[1],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[1]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[1] = _mm_packs_epi32(mmtmpU2,mmtmpU3);

        mmtmpU0 = _mm_madd_epi16(ul_ref128[2],rxdataF128[2]);
        // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
        mmtmpU1 = _mm_shufflelo_epi16(ul_ref128[2],_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
        mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
        mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[2]);
        // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,15);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,15);
        mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
        mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);

        ul_ch128[2] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#elif defined(__arm__)
      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;
      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;

      mmtmp0 = vmull_s16(((int16x4_t*)ul_ref128)[0],((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(((int16x4_t*)ul_ref128)[1],((int16x4_t*)rxdataF128)[1]);
      mmtmp_re = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));
      mmtmp0 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[0],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[0]);
      mmtmp1 = vmull_s16(vrev32_s16(vmul_s16(((int16x4_t*)ul_ref128)[1],*(int16x4_t*)conjugate)), ((int16x4_t*)rxdataF128)[1]);
      mmtmp_im = vcombine_s32(vpadd_s32(vget_low_s32(mmtmp0),vget_high_s32(mmtmp0)),
                              vpadd_s32(vget_low_s32(mmtmp1),vget_high_s32(mmtmp1)));

      ul_ch128[0] = vcombine_s16(vmovn_s32(mmtmp_re),vmovn_s32(mmtmp_im));
      ul_ch128++;
      ul_ref128++;
      rxdataF128++;

221

222
#endif
223 224 225
        ul_ch128+=3;
        ul_ref128+=3;
        rxdataF128+=3;
226 227 228
      }

      alpha_ind = 0;
229 230 231 232 233

      if((cyclic_shift != 0)) {
        // Compensating for the phase shift introduced at the transmitte
#ifdef DEBUG_CH
        write_output("drs_est_pre.m","drsest_pre",ul_ch_estimates[0],300*12,1,1);
234
#endif
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

        for(i=symbol_offset; i<symbol_offset+Msc_RS; i++) {
          ul_ch_estimates_re = ((int16_t*) ul_ch_estimates[aa])[i<<1];
          ul_ch_estimates_im = ((int16_t*) ul_ch_estimates[aa])[(i<<1)+1];
          //    ((int16_t*) ul_ch_estimates[aa])[i<<1] =  (i%2 == 1? 1:-1) * ul_ch_estimates_re;
          ((int16_t*) ul_ch_estimates[aa])[i<<1] =
            (int16_t) (((int32_t) (alpha_re[alpha_ind]) * (int32_t) (ul_ch_estimates_re) +
                        (int32_t) (alpha_im[alpha_ind]) * (int32_t) (ul_ch_estimates_im))>>15);

          //((int16_t*) ul_ch_estimates[aa])[(i<<1)+1] =  (i%2 == 1? 1:-1) * ul_ch_estimates_im;
          ((int16_t*) ul_ch_estimates[aa])[(i<<1)+1] =
            (int16_t) (((int32_t) (alpha_re[alpha_ind]) * (int32_t) (ul_ch_estimates_im) -
                        (int32_t) (alpha_im[alpha_ind]) * (int32_t) (ul_ch_estimates_re))>>15);

          alpha_ind+=cyclic_shift;

          if (alpha_ind>11)
            alpha_ind-=12;
        }

255
#ifdef DEBUG_CH
256
        write_output("drs_est_post.m","drsest_post",ul_ch_estimates[0],300*12,1,1);
257
#endif
258 259 260
      }

      // Convert to time domain for visualization
Cedric Roux's avatar
Cedric Roux committed
261
      memset(temp_in_ifft_0,0,frame_parms->ofdm_symbol_size*sizeof(int32_t));
262 263
      for(i=0; i<Msc_RS; i++)
        ((int32_t*)temp_in_ifft_0)[i] = ul_ch_estimates[aa][symbol_offset+i];
Cedric Roux's avatar
Cedric Roux committed
264

265 266
      switch(frame_parms->N_RB_DL) {
      case 6:
267
	idft128((int16_t*) temp_in_ifft_0,
268 269 270 271
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 25:
272
	idft512((int16_t*) temp_in_ifft_0,
273 274 275 276
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 50:
277
	idft1024((int16_t*) temp_in_ifft_0,
278 279 280 281
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
      case 100:
282
	idft2048((int16_t*) temp_in_ifft_0,
283 284 285
	       (int16_t*) ul_ch_estimates_time[aa],
	       1);
	break;
286 287
      }

Cedric Roux's avatar
Cedric Roux committed
288
#if T_TRACER
289
      if (aa == 0)
Cedric Roux's avatar
Cedric Roux committed
290
        T(T_ENB_PHY_UL_CHANNEL_ESTIMATE, T_INT(0), T_INT(eNB->ulsch[UE_id]->rnti),
Cedric Roux's avatar
Cedric Roux committed
291
          T_INT(proc->frame_rx), T_INT(subframe),
292
          T_INT(0), T_BUFFER(ul_ch_estimates_time[0], 512  * 4));
Cedric Roux's avatar
Cedric Roux committed
293
#endif
294

295 296
#ifdef DEBUG_CH

297
      if (aa==0) {
298 299 300
        if (Ns == 0) {
          write_output("rxdataF_ext.m","rxF_ext",&rxdataF_ext[aa][symbol_offset],512*2,2,1);
          write_output("tmpin_ifft.m","drs_in",temp_in_ifft_0,512,1,1);
301
          write_output("drs_est0.m","drs0",ul_ch_estimates_time[aa],512,1,1);
302
        } else
303
          write_output("drs_est1.m","drs1",ul_ch_estimates_time[aa],512,1,1);
304
      }
305

306 307 308
#endif


309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    
    
	if (Ns&1) {//we are in the second slot of the sub-frame, so do the interpolation

	  ul_ch1 = &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*pilot_pos1];
	  ul_ch2 = &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*pilot_pos2];
	  
	  
	  // Estimation of phase difference between the 2 channel estimates
	  delta_phase = lte_ul_freq_offset_estimation(frame_parms,
						      ul_ch_estimates[aa],
						      N_rb_alloc);
	  // negative phase index indicates negative Im of ru
	  //    msg("delta_phase: %d\n",delta_phase);
	  
324
#ifdef DEBUG_CH
325
	  LOG_D(PHY,"lte_ul_channel_estimation: ul_ch1 = %p, ul_ch2 = %p, pilot_pos1=%d, pilot_pos2=%d\n",ul_ch1, ul_ch2, pilot_pos1,pilot_pos2);
326
#endif
327 328 329 330 331 332 333 334
	  
	  for (k=0; k<frame_parms->symbols_per_tti; k++) {
	    
	    // we scale alpha and beta by SCALE (instead of 0x7FFF) to avoid overflows
	    //	    alpha = (int16_t) (((int32_t) SCALE * (int32_t) (pilot_pos2-k))/(pilot_pos2-pilot_pos1));
	    //	    beta  = (int16_t) (((int32_t) SCALE * (int32_t) (k-pilot_pos1))/(pilot_pos2-pilot_pos1));

	    
335
#ifdef DEBUG_CH
336
	    LOG_D(PHY,"lte_ul_channel_estimation: k=%d, alpha = %d, beta = %d\n",k,alpha,beta);
337
#endif
338
          //symbol_offset_subframe = frame_parms->N_RB_UL*12*k;
339
	    
340
          // interpolate between estimates
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	    if ((k != pilot_pos1) && (k != pilot_pos2))  {
	      //          multadd_complex_vector_real_scalar((int16_t*) ul_ch1,alpha,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
	      //          multadd_complex_vector_real_scalar((int16_t*) ul_ch2,beta ,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
	      
	      //          multadd_complex_vector_real_scalar((int16_t*) ul_ch1,SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
	      //          multadd_complex_vector_real_scalar((int16_t*) ul_ch2,SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
	      //          msg("phase = %d\n",ru[2*cmax(((delta_phase/7)*(k-3)),0)]);
	      
	      // the phase is linearly interpolated
	      current_phase1 = (delta_phase/7)*(k-pilot_pos1);
	      current_phase2 = (delta_phase/7)*(k-pilot_pos2);
	      //          msg("sym: %d, current_phase1: %d, current_phase2: %d\n",k,current_phase1,current_phase2);
	      // set the right quadrant
	      (current_phase1 > 0) ? (ru1 = ru_90) : (ru1 = ru_90c);
	      (current_phase2 > 0) ? (ru2 = ru_90) : (ru2 = ru_90c);
	      // take absolute value and clip
	      current_phase1 = cmin(abs(current_phase1),127);
	      current_phase2 = cmin(abs(current_phase2),127);
	      
	      //          msg("sym: %d, current_phase1: %d, ru: %d + j%d, current_phase2: %d, ru: %d + j%d\n",k,current_phase1,ru1[2*current_phase1],ru1[2*current_phase1+1],current_phase2,ru2[2*current_phase2],ru2[2*current_phase2+1]);
	      
	      // rotate channel estimates by estimated phase
	      rotate_cpx_vector((int16_t*) ul_ch1,
				&ru1[2*current_phase1],
				(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],
				Msc_RS,
				15);
	      
	      rotate_cpx_vector((int16_t*) ul_ch2,
				&ru2[2*current_phase2],
				(int16_t*) &tmp_estimates[0],
				Msc_RS,
				15);
	      
	      // Combine the two rotated estimates
	      multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
	      multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
	      
	      /*
		if ((k<pilot_pos1) || ((k>pilot_pos2))) {
		
382
                multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
383
		
384
                multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
385 386 387
		
		} else {
		
388
                multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
389
		
390
                multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],SCALE>>1,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
391
		
392
                //              multadd_complex_vector_real_scalar((int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],alpha,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],1,Msc_RS);
393
		
394
                //              multadd_complex_vector_real_scalar((int16_t*) &tmp_estimates[0],beta ,(int16_t*) &ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],0,Msc_RS);
395 396 397 398 399 400 401
		
		}
	      */
	      
	      //      memcpy(&ul_ch_estimates[aa][frame_parms->N_RB_UL*12*k],ul_ch1,Msc_RS*sizeof(int32_t));
	    }
	  } //for(k=...
402

403 404 405 406
	  // because of the scaling of alpha and beta we also need to scale the final channel estimate at the pilot positions
	  
	  //    multadd_complex_vector_real_scalar((int16_t*) ul_ch1,SCALE,(int16_t*) ul_ch1,1,Msc_RS);
	  //    multadd_complex_vector_real_scalar((int16_t*) ul_ch2,SCALE,(int16_t*) ul_ch2,1,Msc_RS);
407

408
	} //if (Ns&1)
409 410

    } //for(aa=...
411

412 413 414
  } //if(l==...


415

416
  return(0);
417
}
418

419
extern uint16_t transmission_offset_tdd[16];
420
//#define DEBUG_SRS
421

422
int32_t lte_srs_channel_estimation(LTE_DL_FRAME_PARMS *frame_parms,
423 424
                                   LTE_eNB_COMMON *common_vars,
                                   LTE_eNB_SRS *srs_vars,
425
                                   SOUNDINGRS_UL_CONFIG_DEDICATED *soundingrs_ul_config_dedicated,
426
                                   unsigned char subframe,
427
                                   unsigned char eNB_id)
428
{
429

430
  int aa;
431
  int N_symb,symbol;
432
  uint8_t nb_antennas_rx = frame_parms->nb_antennas_rx;
433 434 435 436
#ifdef DEBUG_SRS
  char fname[40], vname[40];
#endif

437 438
  //uint8_t Ssrs  = frame_parms->soundingrs_ul_config_common.srs_SubframeConfig;
  //uint8_t T_SFC = (Ssrs<=7 ? 5 : 10);
439 440

  N_symb = 2*7-frame_parms->Ncp;
441
  symbol = N_symb-1; //SRS is always in last symbol of subframe
442

443
  /*
444
     msg("SRS channel estimation eNB %d, subframs %d, %d %d %d %d %d\n",eNB_id,sub_frame_number,
445 446 447 448 449 450 451
     SRS_parms->Csrs,
     SRS_parms->Bsrs,
     SRS_parms->kTC,
     SRS_parms->n_RRC,
     SRS_parms->Ssrs);
  */

452
  //if ((1<<(sub_frame_number%T_SFC))&transmission_offset_tdd[Ssrs]) {
453

454 455 456 457 458
  if (generate_srs(frame_parms,
		   soundingrs_ul_config_dedicated,
		   &srs_vars->srs[eNB_id],
		   0x7FFF,
		   subframe)==-1) {
459
      LOG_E(PHY,"lte_srs_channel_estimation: Error in generate_srs_rx\n");
460 461 462
      return(-1);
    }

463
    for (aa=0; aa<nb_antennas_rx; aa++) {
464
#ifdef DEBUG_SRS
465 466 467 468
      LOG_E(PHY,"SRS channel estimation eNB %d, subframs %d, aarx %d, %p, %p, %p\n",eNB_id,sub_frame_number,aa,
	    &common_vars->rxdataF[aa][frame_parms->ofdm_symbol_size*symbol],
	    srs_vars->srs,
	    srs_vars->srs_ch_estimates[aa]);
469
#endif
470
      
471 472
      //write_output("eNB_rxF.m","rxF",&common_vars->rxdataF[0][aa][2*frame_parms->ofdm_symbol_size*symbol],2*(frame_parms->ofdm_symbol_size),2,1);
      //write_output("eNB_srs.m","srs_eNB",common_vars->srs,(frame_parms->ofdm_symbol_size),1,1);
473

474

475
      mult_cpx_conj_vector((int16_t*) &common_vars->rxdataF[aa][2*frame_parms->ofdm_symbol_size*symbol],
476
			   (int16_t*) srs_vars->srs,
477
			   (int16_t*) srs_vars->srs_ch_estimates[aa],
478 479 480
			   frame_parms->ofdm_symbol_size,
			   15,
			   0);
481 482

#ifdef DEBUG_SRS
483 484 485
      sprintf(fname,"srs_ch_est%d.m",aa);
      sprintf(vname,"srs_est%d",aa);
      write_output(fname,vname,srs_vars->srs_ch_estimates[aa],frame_parms->ofdm_symbol_size,1,1);
486 487
#endif
    }
488

489 490
  /*
    else {
491
    for (aa=0;aa<nb_antennas_rx;aa++)
492
    bzero(srs_vars->srs_ch_estimates[eNB_id][aa],frame_parms->ofdm_symbol_size*sizeof(int));
493 494 495 496 497
    }
  */
  return(0);
}

498
int16_t lte_ul_freq_offset_estimation(LTE_DL_FRAME_PARMS *frame_parms,
499 500 501 502
                                      int32_t *ul_ch_estimates,
                                      uint16_t nb_rb)
{

503
#if defined(__x86_64__) || defined(__i386__)
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
  int k, rb;
  int a_idx = 64;
  uint8_t conj_flag = 0;
  uint8_t output_shift;
  int pilot_pos1 = 3 - frame_parms->Ncp;
  int pilot_pos2 = 10 - 2*frame_parms->Ncp;
  __m128i *ul_ch1 = (__m128i*)&ul_ch_estimates[pilot_pos1*frame_parms->N_RB_UL*12];
  __m128i *ul_ch2 = (__m128i*)&ul_ch_estimates[pilot_pos2*frame_parms->N_RB_UL*12];
  int32_t avg[2];
  int16_t Ravg[2];
  Ravg[0]=0;
  Ravg[1]=0;
  int16_t iv, rv, phase_idx;
  __m128i avg128U1, avg128U2, R[3], mmtmpD0,mmtmpD1,mmtmpD2,mmtmpD3;

  // round(tan((pi/4)*[1:1:N]/N)*pow2(15))
  int16_t alpha[128] = {201, 402, 603, 804, 1006, 1207, 1408, 1610, 1811, 2013, 2215, 2417, 2619, 2822, 3024, 3227, 3431, 3634, 3838, 4042, 4246, 4450, 4655, 4861, 5066, 5272, 5479, 5686, 5893, 6101, 6309, 6518, 6727, 6937, 7147, 7358, 7570, 7782, 7995, 8208, 8422, 8637, 8852, 9068, 9285, 9503, 9721, 9940, 10160, 10381, 10603, 10825, 11049, 11273, 11498, 11725, 11952, 12180, 12410, 12640, 12872, 13104, 13338, 13573, 13809, 14046, 14285, 14525, 14766, 15009, 15253, 15498, 15745, 15993, 16243, 16494, 16747, 17001, 17257, 17515, 17774, 18035, 18298, 18563, 18829, 19098, 19368, 19640, 19915, 20191, 20470, 20750, 21033, 21318, 21605, 21895, 22187, 22481, 22778, 23078, 23380, 23685, 23992, 24302, 24615, 24931, 25250, 25572, 25897, 26226, 26557, 26892, 27230, 27572, 27917, 28266, 28618, 28975, 29335, 29699, 30067, 30440, 30817, 31198, 31583, 31973, 32368, 32767};

  // compute log2_maxh (output_shift)
  avg128U1 = _mm_setzero_si128();
  avg128U2 = _mm_setzero_si128();

  for (rb=0; rb<nb_rb; rb++) {
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[0],ul_ch1[0]));
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[1],ul_ch1[1]));
    avg128U1 = _mm_add_epi32(avg128U1,_mm_madd_epi16(ul_ch1[2],ul_ch1[2]));

    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[0],ul_ch2[0]));
    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[1],ul_ch2[1]));
    avg128U2 = _mm_add_epi32(avg128U2,_mm_madd_epi16(ul_ch2[2],ul_ch2[2]));

    ul_ch1+=3;
    ul_ch2+=3;
  }

  avg[0] = (((int*)&avg128U1)[0] +
            ((int*)&avg128U1)[1] +
            ((int*)&avg128U1)[2] +
            ((int*)&avg128U1)[3])/(nb_rb*12);

  avg[1] = (((int*)&avg128U2)[0] +
            ((int*)&avg128U2)[1] +
            ((int*)&avg128U2)[2] +
            ((int*)&avg128U2)[3])/(nb_rb*12);

  //    msg("avg0 = %d, avg1 = %d\n",avg[0],avg[1]);
  avg[0] = cmax(avg[0],avg[1]);
  avg[1] = log2_approx(avg[0]);
  output_shift = cmax(0,avg[1]-10);
  //output_shift  = (log2_approx(avg[0])/2)+ log2_approx(frame_parms->nb_antennas_rx-1)+1;
  //    msg("avg= %d, shift = %d\n",avg[0],output_shift);

  ul_ch1 = (__m128i*)&ul_ch_estimates[pilot_pos1*frame_parms->N_RB_UL*12];
  ul_ch2 = (__m128i*)&ul_ch_estimates[pilot_pos2*frame_parms->N_RB_UL*12];

  // correlate and average the 2 channel estimates ul_ch1*ul_ch2
  for (rb=0; rb<nb_rb; rb++) {
    mmtmpD0 = _mm_madd_epi16(ul_ch1[0],ul_ch2[0]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[0],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[0]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[0] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    mmtmpD0 = _mm_madd_epi16(ul_ch1[1],ul_ch2[1]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[1],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[1]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[1] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    mmtmpD0 = _mm_madd_epi16(ul_ch1[2],ul_ch2[2]);
    mmtmpD1 = _mm_shufflelo_epi16(ul_ch1[2],_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_shufflehi_epi16(mmtmpD1,_MM_SHUFFLE(2,3,0,1));
    mmtmpD1 = _mm_sign_epi16(mmtmpD1,*(__m128i*)&conjugate);
    mmtmpD1 = _mm_madd_epi16(mmtmpD1,ul_ch2[2]);
    mmtmpD0 = _mm_srai_epi32(mmtmpD0,output_shift);
    mmtmpD1 = _mm_srai_epi32(mmtmpD1,output_shift);
    mmtmpD2 = _mm_unpacklo_epi32(mmtmpD0,mmtmpD1);
    mmtmpD3 = _mm_unpackhi_epi32(mmtmpD0,mmtmpD1);
    R[2] = _mm_packs_epi32(mmtmpD2,mmtmpD3);

    R[0] = _mm_add_epi16(_mm_srai_epi16(R[0],1),_mm_srai_epi16(R[1],1));
    R[0] = _mm_add_epi16(_mm_srai_epi16(R[0],1),_mm_srai_epi16(R[2],1));

    Ravg[0] += (((short*)&R)[0] +
                ((short*)&R)[2] +
                ((short*)&R)[4] +
                ((short*)&R)[6])/(nb_rb*4);

    Ravg[1] += (((short*)&R)[1] +
                ((short*)&R)[3] +
                ((short*)&R)[5] +
                ((short*)&R)[7])/(nb_rb*4);

    ul_ch1+=3;
    ul_ch2+=3;
  }

  // phase estimation on Ravg
  //   Ravg[0] = 56;
  //   Ravg[1] = 0;
  rv = Ravg[0];
  iv = Ravg[1];

  if (iv<0)
    iv = -Ravg[1];

  if (rv<iv) {
    rv = iv;
    iv = Ravg[0];
    conj_flag = 1;
  }

  //   msg("rv = %d, iv = %d\n",rv,iv);
  //   msg("max_avg = %d, log2_approx = %d, shift = %d\n",avg[0], avg[1], output_shift);

  for (k=0; k<6; k++) {
    (iv<(((int32_t)(alpha[a_idx]*rv))>>15)) ? (a_idx -= 32>>k) : (a_idx += 32>>k);
  }

  (conj_flag==1) ? (phase_idx = 127-(a_idx>>1)) : (phase_idx = (a_idx>>1));

  if (Ravg[1]<0)
    phase_idx = -phase_idx;

  return(phase_idx);
639 640 641
#elif defined(__arm__)
  return(0);
#endif
642
}